
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Pushdown Model Generation of Malware

Author(s)
Nguyen, Minh Hai; Ogawa, Mizuhito; Quan, Thanh

Tho

Citation

Research report (School of Information Science,

Japan Advanced Institute of Science and

Technology), IS-RR-2014-003: 1-18

Issue Date 2014-06-24

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/12136

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学情報

科学研究科）

Pushdown Model Generation of Malware

Nguyen Minh Hai1, Mizuhito Ogawa2 and Quan Thanh Tho1

1HoChiMinh City University of Technology, Vietnam
2Japan Advanced Institute of Science and Technology, Japan

Abstract. Model checking software consists of two steps: model gen-
eration and model checking. A model is often generated statically by
abstraction, and sometimes refined iteratively. However, model genera-
tion is not easy for malware, since malware is often distributed without
source codes, but as binary executables. Worse, sophisticated malware
tries to obfuscate its behavior, like self-modification, which dynamically
modifies itself and destination of indirect jumps.

This paper proposes a pushdown model generation of x86 binaries in an
on-the-fly manner with concolic testing to decide the precise destinations
of indirect jumps. A tool BE-PUM (Binary Emulation for PUshdown
Model generation) is built on JakStab, and currently it covers 52 popular
x86 instructions. Experiments are performed on 1700 malwares taken
from malware database. Compared to JakStab and IDA Pro, two state-
of-the-art tools in this field, BE-PUM shows better tracing ability, which
sometimes shows significant differences.

Keywords: concolic testing, pushdown system, malware detection, bi-
nary code analysis, self-modifying code

1 Introduction

Malware Analysis Malwares, or malicious softwares, are computer programs
which are intended to damage or disrupt a system. Popular kinds of malwares
are classified as follows [1].

– Virus: It replicates possibly evolved copies when executed and then inserts
those copies into other computer programs. Worm is a special kind of virus
working on the network environment.

– Trojan horse: It comes as an infected program with attractive features. Once
executed, a Trojan secretly sends private information to the hacker. Popu-
lar kinds include Backdoor, which allows remote connection without proper
permission, and Password-stealing, which captures system passwords.

– Spammer : It sends unsolicited messages to a large group of users.
– Flooder : It attacks a computer with a heavy load of traffic, like distributed

denial-of-service (DDoS) attack.
– Keylogger : It captures all of keystrokes on the victim computer, based on

which the attacker can reveal its sensitive information.

2 Nguyen Minh Hai1, Mizuhito Ogawa2 and Quan Thanh Tho1

They are distributed as binary executables, without source codes. There are
three major techniques to detect malwares.

– Signature recognition.
– Virtual emulation in a sandbox.
– Program analysis.

Signature is a typical bit pattern, which characterizes malwares. Most of
industrial malware detection methods depend on regular expression based sig-
nature recognition [1,2]. However, recent advanced obfuscation techniques and
polymorphic virus show that they can evade signature recognition. For instance,
a polymorphic virus can form a complex formal language [3], which are beyond
regular expressions.

Advanced obfuscation techniques not only change the contents of the signa-
tures but also the control flow. Common obfuscation techniques include:

– Dead code insertion: When replicated, it inserts a random block of codes
that does not change the real behavior.

– Code reordering : It changes the location of procedures or changes the order
of independent instructions within a procedure.

– Register reassignment : It changes registers used by live variables.
– Instruction replacement : It replaces instructions in the code by others with

the same functions.

Typical techniques of polymorphic virus include mutation, e.g.,

– Self-encryption: The decryption module (often at the beginning) decrypts
the rest of the code, by from simple XOR-ing to sophisticated ones.

– Self-modification: Typically, the destinations of indirect jumps are modified,
including overwriting the return address in the stack.

For these advanced techniques, current approaches are either virtual emula-
tion or model checking. Virtual emulation prepares a sandbox to explore behavior
of malwares, which requires a deep encoding of system environments to emulate
windows APIs [4]. This is not only heavy, but also not easy to find a suitable
abstraction level. Furthermore, emulation may fail when malware changes its
actions by probing the environment whether it is an emulator.

As an alternative, recent research attempts to infer an abstract model from
binary executables. An abstract model commonly adopts the control flow graphs
(CFG). Once a CFG (abstract model) is obtained, popular analysis techniques
like model checking can be adopted [5,6,7,8,9,10].

However, such a model generation is not easy, since it requires disassembly,
and obfuscation and mutation techniques confuse a lot. For instance, indirect
jumps requires precise arithmetic analysis on 32-bit addresses and interpretation
of x86 instructions to detect precise destinations. Such an analysis mutually
depends on a model generation, and an on-the-fly model generation [11] is a
typical technique. That is, starting from the entry, when an indirect jump is

Pushdown Model Generation of Malware 3

found, its destination is analyzed, and a partial model is enlarged. This continues
until no more new destinations are found.

There are lots of binary analysis tools, e.g., CodeSurfer/x86 [12,13], McVeto [14],
JakStab [15,16], BIRD [17], Renovo [18], Syman [19], and BINCOA/OSMOSE [20],
among which CodeSufer/x86, McVeto, and JakStab apply static analysis, and
BIRD, Renove, Syman, and BINCOA/OSMOSE apply concolic testing. Except
for McVeto, they take a context-cloning (or context-insensitive) approach, and
except for Syman, they do not support system calls. Especially, CodeSurfer is
extended from a commercial product, known as IDA Pro1, which is claimed to
be one of the most popular and powerful tools for binary code analysis. However,
it is also quite limited when dealing with indirect jumps.

Model-checking-based approaches for malware detection Among model
generation approaches, model checking has been increasingly attracting much
attention. Back to 2001, the idea of presenting binary code as a model and
malicious behaviors as properties to be verified was proposed [21]. Recently,
pushdown model checking [6] starts to be applied. In order to describe proper-
ties, LTL is firstly suggested [22]. Later on, variations of CTLs for describing
malicious behavior are suggested, ranging from CTL [23], CTPL [9], SCTPL
[6] and SCTPL/X [23]. Recent results in this approach have pointed out that a
pushdown model is suitable for analysis of malware behaviors [5,6]. It is because
viruses typically need to call system API to perform intended malicious actions.

Contribution This paper proposes a pushdown model generation (i.e., context-
stacking approach) based on concolic testing, which is implemented as BE-PUM
(Binary Emulation for PUshdown Model generation) as an extension of Jak-
Stab [15,16]. As our limited knowledge, BE-PUM solely generates pushdown
models of binary codes including indirect jumps. Currently BE-PUM supports
52 popular x86 instructions (but does not support system calls), which covers
more than 1700 malwares from VX Heavens2 (consisting of 4123 malwares clas-
sified below). Experiments on 1700 malwares shows that BE-PUM outperforms
JakStab and IDA Pro, sometimes significantly.

Kind Virus Backdoor Email P2P Constr. Exploit IRC VirTool Net Worm IM
Number 2079 1079 359 105 86 85 73 68 66 64 59

2 Illustrating Example and Related Work

Illustrating Example In this section, we illustrate how BE-PUM works. For
simplicity, we show Control Flow Graph (CFG) generation without procedure
calls, which illustrates how to solve the destination of indirect jumps. The inte-
gration of CFG into a pushdown model will be formally discussed in the following

1 http://www.datarescue.com/idabase/
2 http://vx.netlux.org

4 Nguyen Minh Hai1, Mizuhito Ogawa2 and Quan Thanh Tho1

Fig. 1: CFG of an example code

sections. A target example is given in Fig. 1. A binary program starts at start
and introduces an indirect jump at L14. The execution path leading to this dy-
namic jump is easily determined, i.e., P = (star → 0→ 1→ 3→ 4→ 6→ 7→
8 → 9 → 10 → 12 → 13 → 14). For an initial value α of the register eax and
β of the register ebx, symbolic execution evaluates the path condition of P as
(α >= 0) ∧ (β >= α) ∧ (4 ∗ α+ β = 3).

Then, these conditions are solved by an SMT solver to generate a test-case,
say, α = 0 and β = 3. By emulating the program with them, finally L15 is
discovered as a new target of the indirect jump at L14. The resulting CFG
is shown in Fig. 1, where the dotted arrow indicates a newly generated edge.
Fig. 2 shows the analysis results of JakStab, IDA Pro, and BE-PUM, from left
to right. JakStab and IDA Pro fail to detect the destination of jmp at L14, while
BE-PUM successfully generates an edge.

Related Work There are various model generation tools from binary exe-
cutables, e.g., BINCOA/OSMOSE [20,24], CodeSurfer/x86 [12,13], McVeto [14],
JakStab [15,16], BIRD [17], Syman [19], and Renovo [18].

Among these tools, BIRD has focus more on disassembly. Although all of
them applies disassembly (mostly IDA Pro is used as a preprocessor) and in-

Pushdown Model Generation of Malware 5

Fig. 2: Generated results by (a) JakStab, (b) IDA Pro and (c) BE-PUM

terpretation is given at assembly level, OSMOSE and CodeSurfer/x86 support
32-bit vector models, which directly describe memory as a state. For instance,
OSMOSE is based on a DBA (Dynamic Bit-vector Automaton) [25].

Among above mentioned difficulties, self-decryption and system calls have
extra hardness, and few tools can handle them. For self-decryption, Polyun-
pack [26] and Renovo [18] are such examples, in which differences between static
codes and dynamic codes detect malicious codes. For system calls, only Syman
supports with Windows API emulator Aligator [4].

For handling indirect jumps, detection of their destinations requires precise
arithmetic analysis on 32-bit addresses and interpretation [27] of x86 instruc-
tions. We have three axes to classify tools.

– Whether static or dynamic analyses: CodeSurfer/x86, McVeto, and JakStab
apply static analyses, whereas BIRD, Renovo, Syman, and BINCOA/OS-
MOSE apply dynamic emulation (except for Syman which also apply con-
colic testing). BE-PUM belongs to the latter.

– Whether an on-the-fly model generation [11] : JakStab, McVeto, Syman, and
BINCOA/OSMOSE apply an on-the-fly modeling. BE-PUM uses the same
method. CodeSurfer/x86 applies a static analysis (value-set analysis) first
and then generates a CFG.

6 Nguyen Minh Hai1, Mizuhito Ogawa2 and Quan Thanh Tho1

– Context-stacking vs context-cloning : Except for McVeto, they adopt context-
cloning (or context-insensitive) approaches. McVeto also applies CEGAR-
like abstraction refinement.

3 Preliminaries

3.1 Pushdown Systems

For a context-sensitive model, there are two approaches: context-cloning and
context-stacking. We focus on malware that does not modify intermediate stack
frames, but may modify the top stack frame (i.e., return address / value), and
apply a pushdown system.

Definition 1. A pushdown system (PDS) is a triplet 〈P, Γ,∆〉 where

– P is a finite set of states,
– Γ is finite stack alphabet, and
– ∆ ⊆ P × Γ≤2 × P × Γ≤2 is a finite set of transitions, where (p, v, q, w) ∈ ∆

is denoted by (p, v → q, w).

We use α, β, γ, · · · to range over Γ , and w, v, · · · over words in Γ ∗. A config-
uration 〈p, w〉 is a pair of a state p and a stack content (word) w. As convention,
we denote configurations by c1, c2, · · · . One step transition ↪→ between configu-
rations is defined as follows. ↪→∗ is the reflexive transitive closure of ↪→.

〈p, γw〉 ↪→ 〈p′, γ′w〉
(p, γ → p′, γ′) ∈ ∆ inter

〈p, γw〉 ↪→ 〈p′, αβw〉
(p, γ → p′, αβ) ∈ ∆

push
〈p, γw〉 ↪→ 〈p′, w〉
(p, γ → p′, ε) ∈ ∆

pop

A PDS enjoys decidable configuration reachability, i.e., given configurations 〈p, w〉,
〈q, v〉 with p, q ∈ P and w, v ∈ Γ ∗, decide whether 〈p, w〉 ↪→∗ 〈q, v〉.

3.2 Concolic Testing

Concolic testing is a hybrid software verification technique that combines con-
crete execution with symbolic execution [28], which is available in testing tools
like PathCrawler [29], jCUTE [30], and SAGE [31]. As compared to traditional
white-box testing, concolic testing can reduce test data generation by restricting
attention to feasible execution paths.

Let us consider the example in Fig. 1. For traditional white-box testing,
there would be 4 path conditions eax < 0, (eax >= 0) ∧ (ebx < eax), (eax >=
0) ∧ (ebx >= eax) ∧ (4 ∗ eax + ebx 6= 3), and (eax >= 0) ∧ (ebx >= eax) ∧
(4 ∗ eax + ebx = 3) needed to be considered. When concolic testing is applied,
it first randomly generates values for eax and ebx, e.g. eax = 1 and ebx = 2.
In the concrete execution, Line 1 is reached since the condition of eax >= 0
is true. Line 4 also holds the condition ebx >= eax, but Line 10 fails to hold
4 ∗ eax+ ebx = 3. Concurrently, the symbolic execution follows the same path,

Pushdown Model Generation of Malware 7

but treating eax and ebx as symbolic variables. The condition (eax >= 0) ∧
(ebx >= eax) ∧ (4 ∗ eax + ebx 6= 3) is a path condition. To follow a different
execution path on the next run, the reason (4 ∗ eax + ebx 6= 3) of failure (at
Line 10) is negated as (4 ∗ eax + ebx = 3). An SMT solver is then invoked to
find values satisfying (eax >= 0) ∧ (ebx >= eax) ∧ (4 ∗ eax + ebx = 3), e.g.,
eax = 0, ebx = 3. Its execution reaches Line 12.

In our context of malware model generation, concolic testing is applied to
decide the destination address when indirect jumps are encountered. Note that
this stepwise execution requires virtual emulation.

4 X86 Binary Execution Models

4.1 Memory Models and x86 operational semantics

In this section, we present an abstract memory model, on which operational
semantics of x86 binary is given. Our semantics is inspired by [27], but for a
direct connection with our binary emulation, everything except for 9 system flags
(i.e., R, S, M in Definition 2) is represented by 32-bit vectors, and arithmetic
operations are bit-encoded on these vectors.

We assume that a target X86 binary program Progx86 is loaded and consumes
in a bounded area of memory, referred as M . The instruction pointer eip is
a special register that points to the current address of instructions, and it is
initially set to the entry address of Progx86.

Definition 2. A memory model is a tuple (F,R, S,M), where F is the set of
9 system flags (AF , CF , DF , IF , OF , PF , SF , TF , and ZF), R is the set
of 16 registers (eax, ebx, ecx, edx, esi, edi, esp, edp, cs, ds, es, fs, gs, ss,
eip, and eflags), M is the set of memory locations to store, and S(⊆M) is the
set of contiguous memory locations for a stack (associated standard push/pop
operations).

Let k = EnvR(eip) ∈ M be a mapping instr(EnvM , k) that disassembles a
binary code at the memory location k and return an instruction (with its ar-
guments). An operational semantics of a binary code Progx86 is described as
transitions (in Fig. 3) among environments Env, which consists of a flag valu-
ation EnvF , a register valuation EnvR, a stack valuation EnvS, and a memory
valuation EnvM (on M \ S).

Remark 1. The reason to define operational semantics directly on a binary ex-
ecutable is that self-modifying codes may not have statically corresponding as-
semblers. For instance, execution of the head of a self-decryption virus decrypts
the rest, say by XOR-ing. Thus, the latter part does not have corresponding
assembly code before decryption.

8 Nguyen Minh Hai1, Mizuhito Ogawa2 and Quan Thanh Tho1

EnvR(eip) = k, instr(EnvM , k) =′′ add r1 r
′′
2 ,

w = EnvR(r1) + EnvR(r2),m = k + |add r1 r2|
(EnvF , EnvR, EnvS , EnvM)→ (EnvF , EnvR[eip← m, r1 ← w], EnvS , EnvM)

[
Addition

]
EnvR(eip) = k, instr(EnvM , k) = “sub r1 r

′′
2 ,

w = EnvR(r1)− EnvR(r2),m = k + |sub r1 r2|
(EnvF , EnvR, EnvS , EnvM)→ (EnvF , EnvR[eip← m, r1 ← w], EnvS , EnvM)

[
Subtraction

]
EnvR(eip) = k, instr(EnvM , k) =′′ and r1 r

′′
2 ,

w = EnvR(r1) ∧ EnvR(r2),m = k + |and r1 r2|
(EnvF , EnvR, EnvS , EnvM)→ (EnvF , EnvR[eip← m, r1 ← w], EnvS , EnvM)

[
And

]
EnvR(eip) = k, instr(EnvM , k) = “or r1 r

′′
2 ,

w = EnvR(r1)|EnvR(r2),m = k + |or r1 r2|
(EnvF , EnvR, EnvS , EnvM)→ (EnvF , EnvR[eip← m, r1 ← w], EnvS , EnvM)

[
Or

]
EnvR(eip) = k, instr(EnvM , k) =′′ mov t r′′,
r ∈ R,w = EnvR(r),m = k + |mov t r|

(EnvF , EnvR, EnvS , EnvM)→ (EnvF , EnvR[eip← m], EnvS , EnvM [t← w])

[
Move

]
EnvR(eip) = k, instr(EnvM , k) =′′ xchg r1 r′′2 ,
w1 = EnvR(r1), w2 = EnvR(r2),m = k + |xchg r1 r2|

(EnvF , EnvR, EnvS , EnvM)→ (EnvF , EnvR[eip← m, r1 ← w2, r2 ← w1], EnvS , EnvM)

[
Exchange

]
EnvR(eip) = k, instr(EnvM , k) =′′ call r′′,
m′ = k + |call r|,m = EnvR(r), push(S,m′) = S′

(EnvF , EnvR, EnvS , EnvM)→ (EnvF , EnvR[eip← m], EnvS′ , EnvM)

[
Call

]
EnvR(eip) = k, instr(EnvM , k) =′′ cmp r1 r′′2 ,m = k + |cmp r1 r2|,
c = EnvR(r1) − EnvR(r2), sf = (c < 0), zf = (c = 0),
cf = ((EnvR(r1) >= 0) ∧ (EnvR(r2) < 0)) ∨ ((c < 0) ∧ ((EnvR(r1) >= 0) ∨ (EnvR(r2) < 0)),
of = ((EnvR(r1) < 0) ∧ (EnvR(r2) >= 0) ∧ (c > 0)) ∨ ((EnvR(r1) >= 0) ∧ (EnvR(r2) < 0) ∧ (c < 0))

(EnvF , EnvR, EnvS , EnvM)→ (EnvF [CF ← cf,OF ← of, SF ← sf, ZF ← zf], EnvR[eip← m], EnvS , EnvM)

[
Cmp

]
EnvR(eip) = k, instr(EnvM , k) =′′ ret′′, empty(S)

(EnvF , EnvR, EnvS , EnvM)→⊥
[
Return

]
EnvR(eip) = k, instr(EnvM , k) =′′ ret′′,¬empty(S), pop(S) = (S′,m)

(EnvF , EnvR, EnvS , EnvM)→ (EnvF , EnvR[eip← m], EnvS′ , EnvM)

[
Return

]
EnvR(eip) = k, instr(EnvM , k) =′′ jmp r′′, EnvR(r) = m

(EnvF , EnvR, EnvS , EnvM)→ (EnvF , EnvR[eip← m], EnvS , EnvM)

[
(Indirect)Jump

]
R(eip) = k, instr(EnvM , k) =′′ jmp m′′,M(m) = m′

(EnvF , EnvR, EnvS , EnvM)→ (EnvF , EnvR[eip← m′], EnvS , EnvM)

[
Jump

]

Fig. 3: The rules of operational semantics

Pushdown Model Generation of Malware 9

4.2 Pushdown model

A control flow graph (CFG) is often intra-procedural. We can consider a call
graph and/or an inter-procedural CFG. Our choice is a pushdown model as a
unified representation of a call graph and an intra-procedural CFG.

We assume that self-modification on a stack occurs only for the return ad-
dress, i.e., the top stack frame only (not at an intermediate stack frame), and tar-
gets only on sequential binaries. These assumptions validate a pushdown model.

A pushdown model of Progx86 is given as transitions among pairs (k, asm) of
memory locations k(∈ M) and corresponding assembly instructions asm. Such
an assembly instruction asm is obtained by disassembly of a binary sequence
starting from k, and we refer by asm = instr(EnvM , k).

Definition 3. Let P = {(k, asm) | k ∈M, asm is an x86 assembly instruction}.
A pushdown model P of an x86 binary program Progx86 is a tuple 〈P, P,∆〉,
where ∆ ⊆ (P × P) × (P × P≤2). For a transition of x86 operational se-
mantics (EnvF , EnvR, EnvS , EnvM) → (Env′F , Env

′
R, Env

′
S , Env

′
M) with k =

EnvR(eip) and k′ = Env′R(eip), we have

– Push rules 〈instr(EnvM , k), ε〉 ↪→ 〈instr(Env′M ,m), instr(Env′M , w)〉,
corresponding to Call rule in Fig. 3.

– Pop rules 〈instr(EnvM , k), instr(EnvM ,m)〉 ↪→ 〈instr(Env′M ,m), ε〉,
corresponding to Return rules in Fig. 3.

– Internal rules 〈instr(EnvM , k), ε〉 ↪→ 〈instr(Env′M ,m), ε〉, correspond-
ing to other rules in Fig. 3.

Note that asm = instr(EnvM , k) can be different even for the same k,
since EnvM can be modified. When such self-modification occurs, we distin-
guish (k, asm) and (k, asm′) as different states. If there are no self-modification,
we often identify P with the set of program locations of a corresponding x86
assembly program. A pushdown model extracts only control structures by omit-
ting the environment Env from the operational semantics. Thus, a pushdown
model will have nondeterministic transitions, e.g., at conditional branches and
depending on system flag status.

Example 1. A pushdown model of the program in Fig. 1 is a tuple 〈P, P,∆〉
with P = {(L1, ′′jge l1′′), . . . , (L15, ret)}. ∆ is the set of pushdown transition
rules corresponding to instructions in P . In this example, there are no calls and
the stack does not change. Except for (L14, jmp ebx), the pushdown transition
rules follow in a straightforward way, since their next instructions are statically
decided. For instance, at L6,

〈(L6, ′′mov ecx, 4′′), ε〉 ↪→ 〈(L7, ′′mul ecx′′), ε〉

where in the execution model, ecx is updated to 4.
At the jump instruction at L1 has nondeterministic transition rule

〈(L1, ′′jge l1′′), ε〉 ↪→ 〈(L2, ′′jmp offset start′′), ε〉
〈(L1, ′′jge l1′′), ε〉 ↪→ 〈(L3, ′′cmp ebx, eax′′), ε〉

10 Nguyen Minh Hai1, Mizuhito Ogawa2 and Quan Thanh Tho1

corresponding to two possible signs of eax. Transition rules at L14 are quite
complicated, and will be explained in Example 2.

5 Pushdown Model Generation by Concolic Testing

5.1 On-the-fly model generation by concolic testing

The aim of our tool BE-PUM (Binary Emulation for PUshdown Model gener-
ation) is to precisely handle indirect jumps, which requires correct arithmetic
analysis on 32-bit addresses and interpretation of x86 instructions (Section 4).
Such an analysis mutually depends on a model generation, which is sometimes
said as a ”chicken and egg” problem. The situation is similar to context-sensitive
points-to analysis of Java.

Destination of a method invocation in Java is decided by dynamic types. On-
the-fly point-to analysis mutually generates and checks a partial model [32]. That
is, starting from the program entry, when method invocation is found, dynamic
types are statically analyzed. We apply a similar on-the-fly model generation,
replacing a method invocation with an indirect jump.

Malware is usually much smaller than web applications in Java, and its com-
plex behavior requires more precise arithmetic analysis on addresses. For such
an analysis on a partial model, we have choices, static analysis and dynamic
analysis. Our choice is a dynamic method, concolic testing. Currently, we apply
concolic testing for all instructions to decide next locations. Although we admit
a room for optimization by avoiding concolic testing for immediate instructions,
this is also effective for obfuscation by opaque predicates, e.g., conditions like
x2 ≥ 0.

Definition 4 presents the rules for on-the-fly model generation, which is a
saturation procedure on configurations of the form 〈P,∆,ψ〉. ψ(k, asm) is the
path precondition at (k, asm), which initially set true at the entry (k0, asm0).

Definition 4. The initial configuration is 〈{(k0, asm0)}, φ, ψ0〉, where (k0, asm0)
is the pair of the entry address k0(∈M) and the initial instruction asm0, and

ψ0(k, asm) =

{
true if (k, asm) = (k0, asm0).
false otherwise.

For (k, asm) ∈ P , let (m, asm′) = next(k, asm), which is obtained by the
transition Env → Env′ (described in Fig. 3) such that Env satisfies the con-
straint ψ(k, asm), k = EnvR(eip), and asm = instr(EnvM , k).3

When (m, asm′) is not a system call, the on-the-fly model generation contin-
ues with rules 〈P,∆,ψ〉 ` 〈P ′, ∆′, ψ′〉 such that

– P ′ := P ∪ {(m, asm′)},
– ∆′ := ∆ ∪ {rule} for rule described in Definition 3, and

3 Env → Env′ is executed by concolic testing on a binary emulator.

Pushdown Model Generation of Malware 11

– ψ′(m, asm′) := ψ(m, asm′)∨ (SideCond∧post(ψ(k, asm))) for the side con-
ditions SideCond appearing in Env → Env′ and the strongest post condition
post(ψ(k, asm)) of ψ(k, asm).

Note that valuation of system flags EnvF can be any Boolean combination,
since windows OS can generate all of them. This leads to non-deterministic
transitions at x86 instructions, like cmp and cjump4.

The on-the-fly pushdown model generation continues until P and ∆ converge
(regardless of convergence on ψ5).

Since we apply concolic testing (implemented with an SMT solver on linear
integer arithmetic) to decide the next instruction at each configuration, the
generated pushdown model is an under approximation of concrete execution.

Theorem 1. For an X86 binary program Progx86 with the entry (k0, asm), if
((k0, asm), ε) ↪→∗ ((m, asm′), stack) in the model P, there exist Env = (EnvF ,
EnvR, EnvS , Envm) and Env′ = (Env′F , Env

′
R, Env

′
S , Env

′
m) such that

Env →∗ Env′, EnvR(eip) = k0, Env′R(eip) = m, instr(EnvM , k0) = asm,
instr(Env′M ,m) = asm′, and Env′S describes stack.

Example 2. We will follow Example 1. A transition rule at L14 is an indirect
jump. The path precondition ψ(L14, ′′jmp ebx′′) is

(α >= 0) ∧ (β >= α) ∧ (4 ∗ α+ β = 3)

for the initial values α and β of the registers eax and ebx, respectively. A satis-
fiable instance is α = 0 and β = 3. Testing (on a binary emulator) with them
leads to next(L14, ′′jmp ebx′′) = (L15, ′′ret′′), and we obtain (L15, ′′ret′′) and
〈(L14, ′′jmp ebx′′), ε〉 ↪→ 〈(L15, ′′ret′′), ε〉 for updates of P and ∆, respectively.

There are no more transitions to add, and the model generation converges.

5.2 BE-PUM implementation

BE-PUM is built on JakStab [15,16], which implements Definition 4. Compared
with JakStab,

– BE-PUM applies concolic testing to decide the destination of indirect jumps,
whereas JakStab applies a static analysis.

– BE-PUM takes a context-stacking approach, whereas JakStab applies a
context-cloning approach.

Fig. 4 shows the architecture of BE-PUM, which consists of three compo-
nents: intra-procedural CFG extension, path condition solving, and binary emu-
lation.

Intra-procedural CFG extension is by (modified) JakStab. The modification
is, when an indirect jump is reached, instead of a static analysis (default for
JakStab), BE-PUM interrupts JakStab and passes to the path condition solving.

4 Currently, BE-PUM implements only the former.
5 The convergence of ψ requires the invariant generation, which is beyond the scope.

12 Nguyen Minh Hai1, Mizuhito Ogawa2 and Quan Thanh Tho1

Fig. 4: The BE-PUM architecture

Note that a step-wise concolic testing requires both path condition solving
and virtual emulation, If concolic testing detects an unexplored area of codes, we
enlarge a pushdown model accordingly. Then, the control of BE-PUM returns to
the intra-procedure CFG extension component. BE-PUM will terminate if either
the exploration has converged, or reaching to system calls. The latter limitation
comes from our current binary emulation (and the execution model) does not
cover Windows APIs.

Path condition solving BE-PUM applies symbolic execution to evaluate the
path conditions (in linear arithmetic) of a pushdown model, and adopts Z3.4.3 6

to solve the path conditions. Then, a satisfiable instance is an input of concolic
testing on the binary emulator.

Binary Emulation BE-PUM prepares a controlled sandbox, which implements
the x86 operational semantics (Definition 2). All elements R,S,M except for
Boolean system flags F are implemented as 32-bit vectors.

Since the total number of x86 instructions is about one thousand, we first
focus on frequently used instructions for implementation of BE-PUM. Table 1
shows the number of malwares that contains a specified instruction appears in the
malware database VX Heavens (Section 2). BE-PUM covers 52 instructions (in
Table 2), which are selected by frequency in the malware database VX Heavens
and can cover more than 1700 malwares.

6 http://z3.codeplex.com

Pushdown Model Generation of Malware 13

Table 1: Popular x86 instructions in malware
Instruction push mov jmp dec pop call add inc xor sub je jne cmp

Occurrences 2974 2756 2590 2547 2469 2282 2155 2089 2037 1771 1707 1618 1607

Instruction or jb jae lea and jbe ja ret imul shl xchg jo ror

Occurrences 1460 1418 1313 1163 1151 1042 953 894 851 709 660 612 529

Table 2: List of supported x86 instructions
Arithmetic Call Conditional Jump Jump Move Return Control

add sub call je jnz jc jnc jmp mov ret cmp

and or jle jnge jge jnle int push

xor adc js jz jb jnb lea pop

imul sal jbe jng ja jnl xchg nop

shl shr jo jns jne jnae test

inc dec jl jnbe jae jna

rol ror jg loop

Remark 2. Preliminary BE-PUM [33] supported only 18 instructions,

– arithmetic instructions (add, sub, shr, shl, dec, inc),
– logic instructions (and, or), jump instruction (jmp),
– conditional jump instructions (je, jle, ja, jne, jge, jng),
– move instruction (mov, lea), and compare instruction (cmp),

but not procedure calls (call and ret). Thus, it ran only for small toy examples.

6 Experiments

All experiments are performed Windows XP on AMD Athlon II X4 635 Processor
with 2.9 GHz and 8 GB of memory. Though our ideas on pushdown model
generation can be applied to self-modifying malwares, our experiments are on
malwares with indirect jumps only.

6.1 Checking Accuracy on 4 Malwares with Source Code

For checking the accuracy of our method, Table 3 shows the experimental results
on 4 viruses, DeadKennedy, Pony, Triv 216, and Insert, whose source codes are
available. We manually inspected on their source codes to confirm the accuracy
of generated CFGs.

In Table 3, the columns Inst are the number of instructions in the original
code, which are detected by JakStab, IDA Pro, and BE-PUM, respectively. The
Columns Cvrg show the coverage by JakStab, IDA Pro, and BE-PUM, respec-
tively. All of them terminate when either they cannot explore further or they
reach to system calls.

14 Nguyen Minh Hai1, Mizuhito Ogawa2 and Quan Thanh Tho1

Table 3: Experimental results
Program JakStab IDA Pro BE-PUM

Name Inst Time(ms) Inst Edges Cvrg Time(ms) Inst Edges Cvrg Time(ms) Inst Edges Cvrg

Dead Kennedy 200 800 97 101 48.5% 853 100 102 50% 18580 108 112 54%

Insert 173 200 44 46 25.4% 254 44 46 25.4% 2390 50 53 28.9%

Triv 216 102 160 19 19 18.6% 210 21 21 20.6% 1470 49 50 48%

Pony 758 180 35 35 4.61% 230 40 42 5.5% 24490 129 135 17%

Fig. 5 compares the generated models on Pony. BE-PUM outperforms Jak-
Stab and IDA Pro, at the cost of computational time.

The improvement comes from precision on indirect jumps. For example, when
reaching to jmp eax, JakStab fails to evaluate the value of eax, and its disas-
sembly fails. BE-PUM applies concolic testing, and successfully disassembles.

BE-PUM stops when reaching to system calls, e.g., FindWindowA, PeekMes-
sageA in user32.dll, and GetModuleFileNameA in kernel32.dll. At the moment,
our binary emulation does not cover them, which requires Windows API emula-
tion as Syman [19] does.

Fig. 5: CFG generated by (a) JakStab, (b) IDA Pro, and (c) BE-PUM

6.2 Experiments on 1700 Malwares without Source Code

For comparison with JakStab and IDA Pro, BE-PUM is tested on 1700 malwares,
which are covered in our selected 52 most popular instructions. Comparison is

Pushdown Model Generation of Malware 15

Fig. 6: Comparison of reachable nodes between JakStab, IDA Pro, and BE-PUM

summarized as a graph in Fig. 6. In Fig. 6, the x-axis presents the virus number
and the y-axis describes the number of reachable nodes.

Table 4: Some Results of CFG construction

Example
JakStab IDA Pro BE-PUM

Time(ms) Nodes Edges Time(ms) Nodes Edges Time(ms) Nodes Edges

Constructor.Win32.Agent.a 169 176 177 131 171 173 1313 183 184

Rootkit.Win32.Agent.bd 1511 311 319 1112 301 303 15266 328 336

Rootkit.Win32.Agent.h 552 327 349 755 326 347 3703 332 354

Virus.DOS.Abraxas.1881 90 64 70 123 63 68 3860 69 75

Virus.DOS.Fisher.2420 387 120 123 427 124 128 5953 128 131

Virus.DOS.HLLO.Harakiri.5488 527 255 259 485 235 243 5516 259 263

Virus.DOS.HLLO.Horney 193 184 188 252 164 172 7281 190 194

Virus.DOS.HLLP.Arjinf.7598 4 13 12 45 22 23 2359 146 166

Virus.DOS.HLLP.Colba.7981 80 106 106 103 105 106 3266 3477 3479

Virus.DOS.HLLP.DarkFox.4997 13 9 8 33 14 15 8484 20 20

Virus.DOS.HLLP.Rock.8875 25 13 12 46 21 22 48047 200 225

Virus.DOS.Shish.1142 35 8 8 17 2 2 25797 2507 2514

Virus.DOS.SillyRC.291.a 5 31 30 37 28 29 9328 38 38

Virus.DOS.Slowly.1249 12 8 8 39 18 18 28422 2529 2536

Virus.DOS.Small.118 8 29 29 43 25 28 12500 47 49

Virus.DOS.Tiny.146 594 423 423 485 410 415 13453 429 430

Virus.DOS.Tiny.154 17 27 28 39 27 28 2344 34 35

Virus.DOS.Tiny.156 19 27 28 45 27 28 2375 34 35

Virus.DOS.Tiny.158 19 27 28 36 27 28 2375 34 35

Virus.DOS.Tiny.320 46 54 54 20 2 2 1421 120 121

Virus.DOS.Trebujena.1094 3 11 10 15 2 2 1063 16 15

Table 4 extracts some examples from Fig. 6. In Table 4, the columns Time
show the computational time in milliseconds of JakStab, IDA Pro, and BE-PUM,
respectively. The columns Nodes and Edges are the numbers of instructions and
edges, respectively.

BE-PUM detects more nodes and edges compared to JakStab and IDA
Pro. Some (like HLLP.Colba.7981, Slowly.1249, Shish.1142, HLLP.Rock.8875,
HLLP.Arjinf.7598, and Tiny.320 in Table 4) shows significant improvements.

16 Nguyen Minh Hai1, Mizuhito Ogawa2 and Quan Thanh Tho1

The reason is that these viruses hide large branches after indirect jumps, which
can only detected by BE-PUM.

7 Conclusion and Future Work

This paper proposed an on-the-fly pushdown model generation of x86 bina-
ries with concolic testing to decide the precise destinations of indirect jumps.
Experiments were performed on 1700 malwares taken from malware database.
Compared to JakStab and IDA Pro, two emerging tools in academic and indus-
try communities, BE-PUM shows better tracing ability, which sometimes shows
significant differences.

Often among existing tools, too large models are generated, partially because
they are applying either context-cloning or context-insensitive approach. That
is, when procedure calls occurs, they simply extend a CFG and connect edges to
locations in disassembled codes, whereas context-cloning copies a location and
context-insensitive approach does not. Our modeling follows context-stacking
and generates a pushdown model.

There are lots of future work.

– Pushdown model checking : SCTPL and SLTPL (which are variants of CTL
and LTL, respectively) pushdown model checking are applied to find sus-
picious system calls [6,7]. They rely on IDA Pro for disassembly, and they
cannot handle indirect jumps and self-modifying code. We are planning to
apply weighted pushdown model checking [34] on the result of BE-PUM.
Although model checking is often an over-approximation (and our model
generation is an under-approximation as stated in Theorem 1), we hope
that our method is precise in practice.

– Self-decryption: Few model generation tools supports self-decryption, such as
Polyunpack [26] and Renovo [18]. Currently BE-PUM implementation does
not cover self-modification and self-decryption, due to technical reasons on
the use of JakStab.

– Windows system calls: Few model generation tools supports system calls,
such as Syman [19], which applies light-weight Windows API emulator Alli-
gator. We are considering an alternative stub-based approach.

Sometimes, BE-PUM terminates with unknown jump destinations. We ex-
pect that they are obtained by using Windows API GetProcAddress in advance
or accessing the memory address of kernel32.dll, but still under investigation.

References

1. P. Szor, The Art of Computer Virus Research and Defense. Addison-Wesley Pro-
fessional, 2005.

2. E. Filiol, “Malware pattern scanning schemes secure against black-box analysis,”
Journal in Computer Virology, vol. 2, pp. 35–50, 2006.

Pushdown Model Generation of Malware 17

3. E. Filiol, “Metamorphism, formal grammars and undecidable code mutation,” In-
ternational Journal of Computer Science, vol. 2, pp. 70–75, 2007.

4. A. Mori, T. Izumida, T. Sawada, and T. Inoue, “A tool for analyzing and detecting
malicious mobile code,” in Proceedings of the 28th International Conference on
Software Engineering, pp. 831–834, 2006. LNCS 3233.

5. G. Balakrishnan, T. W. Reps, A. Lal, J. Lim, D. Melski, R. Gruian, S. H. Yong, C.-
H. Chen, and T. Teitelbaum, “Model checking x86 executables with codesurfer/x86
and wpds++,” in 17th Computer Aided Verification (CAV 2005), pp. 158–163,
2005. LNCS 3576.

6. F. Song and T. Touili, “Pushdown model checking for malware detection,” in 18th
Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
pp. 110–125, 2012. LNCS 7214.

7. F. Song and T. Touili, “LTL model-checking for malware detection,” in 19th Tools
and Algorithms for the Construction and Analysis of Systems (TACAS), pp. 416–
431, 2013. LNCS 7795.

8. A. Holzer, J. Kinder, and H. Veith, “Using verification technology to specify and
detect malware,” in 11th Computer Aided Systems Theory (EUROCAST), pp. 497–
504, 2007. LNCS 4739.

9. J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith, “Detecting malicious code
by model checking,” in 2nd Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA 2005), pp. 174–187, 2005. LNCS 3548.

10. J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith, “Proactive detection of
computer worms using model checking,” IEEE Transactions on Dependable and
Secure Computing, vol. 7, pp. 424–438, 2010.

11. J. C. Rabek, R. I. Khazan, S. M. Lewandowski, and R. K. Cunningham, “Detection
of injected, dynamically generated, and obfuscated malicious code,” in Proc. 2003
ACM Workshop on Rapid Malcode (WORM), pp. 76–82, 2003.

12. G. Balakrishnan and T. W. Reps, “Analyzing memory accesses in x86 executables,”
in 13th Compiler Construction (CC 2004), pp. 5–23, 2004. LNCS 2985.

13. G. Balakrishnan, R. Gruian, T. W. Reps, and T. Teitelbaum, “Codesurfer/x86-
a platform for analyzing x86 executables,” in 14th Compiler Construction (CC
2005), pp. 250–254, 2005. LNCS 3443.

14. A. V. Thakur, J. Lim, A. Lal, A. Burton, E. Driscoll, M. Elder, T. Andersen,
and T. W. Reps, “Directed proof generation for machine code,” in 22nd Computer
Aided Verification (CAV 2010), pp. 288–305, 2010. LNCS 6174.

15. J. Kinder, F. Zuleger, and H. Veith, “An abstract interpretation-based framework
for control flow reconstruction from binaries,” in 10th International Conference
on Verification, Model Checking, and Abstract Interpretation, pp. 214–228, 2009.
LNCS 5403.

16. J. Kinder and D. Kravchenko, “Alternating control flow reconstruction,” in 13th
International Conference on Verification, Model Checking, and Abstract Interpre-
tation, pp. 267–282, 2012. LNCS 7148.

17. S. Nanda, W. Li, L. Lam, and T. Chiueh, “BIRD: Binary interpretation using run-
time disassembly,” in 4th Code Generation and Optimization (CGO 2006), pp. 358–
370, 2006.

18. M. Kang, P. Poosankam, and H. Yin, “Renovo: A hidden code extractor for packed
executables,” in Recurring Malcode 2007, pp. 46–53, 2007.

19. T.Izumida, K.Futatsugi, and A.Mori, “A generic binary analysis method for mal-
ware,” in 5th International Workshop on Security, pp. 199–216, 2010. LNCS 6434.

18 Nguyen Minh Hai1, Mizuhito Ogawa2 and Quan Thanh Tho1

20. S. Bardin, P. Herrmann, J. Leroux, O. Ly, R. Tabary, and A. Vincent, “The bincoa
framework for binary code analysis,” in 23rd Computer Aided Verification (CAV
2011), pp. 165–170, 2011. LNCS 6806.

21. J. Bergeron, M. Debbabi, J. Desharnais, M. Erhioui, Y. Lavoie, and N. Tawbi,
“Static detection of malicious code in executable programs,” in Symposium on
Requirements Engineering for Information Security (SREIS’01), 2001.

22. P. Singh and A. Lakhotia, “Static verication of worm and virus behavior in binary
executables using model checking,” in 4th IEEE Information Assurance Workshop,
2003.

23. F. Song and T. Touili, “Efficient malware detection using model-checking,” in FM
2012: Formal Methods, pp. 418–433, 2012. LNCS 7436.

24. S. Bardin, P. Baufreton, N. Cornuet, P. Herrmann, and S. Labbe, “Binary-level
testing of embedded programs,” in Proceedings of the 13th International Conference
on Quality Software (QSIC 2013), pp. 11–20, 2013. LNCS 4414.

25. S. Bardin and P. Herrmann, “OSMOSE: automatic structural testing of exe-
cutables,” International Journal of Software Testing, Verification and Reliability
(STVR), pp. 29–54, 2011.

26. P. Royal, M. alpin, D. Dagon, and R. Edmonds, “Polyunpack: Automating the
hidden code extraction of unpack-executing malware,” in Computer Security Ap-
plications Conference 2006 (ACSAC06), pp. 289–300, 2006.

27. G. Bonfante, J.-Y. Marion, and D.R.-Plantey, “A computability perspective on self-
modifying programs,” in 7th Software Engineering and Formal Methods (SEFM
2009), pp. 231–239, 2009.

28. R. Sen, D. Marinov, and G. Agha, “Cute: a concolic unit testing engine for c,” in
European software engineering conference, vol. 30(5), pp. 263–272, 2005.

29. N. Williams, B. Marre, P. Mouy, and M. Roger, “Pathcrawler: Automatic gener-
ation of path tests by combining static and dynamic analysis,” in 5th European
Dependable Computing Conference, pp. 281–292, 2005. LNCS 3463.

30. K. Sen and G. Agha, “Cute and jcute : Concolic unit testing and explicit path
model-checking tools,” in 18th Computer Aided Verification (CAV 2006), pp. 419–
423, 2006. LNCS 4414.

31. P. Godefroid, M. Y. Levin, and D. A. Molnar, “SAGE: Whitebox fuzzing for secu-
rity testing,” in ACM Queue, pp. 40–44, 2012.

32. J. Whaley and M. S. Lam, “Cloning-based context-sensitive pointer alias analysis
using binary decision diagrams,” in Programming Language Design and Implemen-
tation (PLDI 2004), pp. 131–144, 2004.

33. M. H. Nguyen, T. B. Nguyen, T. T. Quan, and M. Ogawa, “A hybrid approach
for control flow graph construction from binary code,” in Proceedings of the 20th
Asia-Pacific Software Engineering Conference (APSEC 2013), pp. 159–164, 2013.

34. T. Reps, S. Schwoon, S. Jha, and D. Melski, “Weighted pushdown systems and
their application to interprocedural dataflow analysis,” in Sci. Comput. Program.,
vol. 58, pp. 206–263, 2005.

	Pushdown Model Generation of Malware
	Introduction
	Malware Analysis
	Model-checking-based approaches for malware detection
	Contribution

	Illustrating Example and Related Work
	Illustrating Example
	Related Work

	Preliminaries
	Pushdown Systems
	Concolic Testing

	X86 Binary Execution Models
	Memory Models and x86 operational semantics
	Pushdown model

	Pushdown Model Generation by Concolic Testing
	On-the-fly model generation by concolic testing
	BE-PUM implementation
	Path condition solving
	Binary Emulation

	Experiments
	Checking Accuracy on 4 Malwares with Source Code
	Experiments on 1700 Malwares without Source Code

	Conclusion and Future Work

