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Abstract. In connection with uniform computability and intuitionistic
provability, the strength of the sequential version of Π1

2 theorems has been
investigated in reverse mathematics. In some examples, we illustrate that
it occasionally depends on the way of formalizing the Π1

2 statement, so
the investigation of sequential strength demands careful attention to the
formalization. Moreover our results suggest the optimality of Dorais’s
uniformization theorems.

Keywords: Reverse mathematics, Sequential version, Uniformity, Mar-
riage theorem, Bounded König’s lemma, Weak weak König’s lemma.

1 Introduction

Definition 1 (Sequential version). The sequential version of a Π1
2 statement

having the form:

(♠) ∀X (ϕ(X) → ∃Y ψ(X, Y ))

is the statement

∀〈Xn〉n∈N (∀n ϕ(Xn) → ∃〈Yn〉n∈N∀n ψ(Xn, Yn)) ,

where X is possibly a tuple of set (or function) variables. Throughout this paper,
we denote the sequential version of a statement T having a form (♠) as Seq(T).

Many mathematical statements have the form (♠), and their sequential forms
have been investigated in order to reveal the lack of uniformity of their proof in
classical subsystems of second-order arithmetic (e.g. [2], [3], [6]). For instance,
5 The first author is supported by a grant from Shigakukai. The second author is

supported by a Japan Society for the Promotion of Science postdoctoral fellowship
for young scientists, and by a grant from the John Templeton Foundation.



the intermediate value theorem is provable in RCA0, but the sequential version
of it is equivalent to WKL (weak König’s lemma), and so, not provable in RCA0.
This is of course caused by the necessity of non-uniformity in the proof in RCA0.
However, the strength of the sequential version may increase for another reason.
In this paper, we concentrate our attention on Π1

2 statements having the following
syntactical form:

(\′) ∀X (∃Zθ(X, Z) → ∃Y ψ(X, Y )) ,

where θ(X,Z) is arithmetical. Despite the fact that (\′) is, even in intuitionistic
predicate logic, equivalent to the following statement:

(\) ∀X, Z (θ(X, Z) → ∃Y ψ(X, Y )) ,

the sequential version of (\′) is occasionally stronger than that of (\) even if
θ(X,Z) has a very weak complexity such as Π0

1. This is caused by the difficulty
of obtaining the sequence of Z in (\′). Using the finite marriage theorem and
the bounded König’s lemma, we illustrate this phenomenon. On the other hand,
the sequential version of a statement of the form (\′) is not always stronger than
that of (\) as we see in the case of the weak weak König’s lemma. The important
point is that the sequential form of (\′) captures the difficulty of obtaining a
solution Y from X alone while that of (\) captures the difficulty of obtaining
a solution Y using both X and Z. That is to say, whenever we consider the
sequential version of a Π1

2 statement, we must pay attention to the formalization
and what information can be used to obtain a solution.

In addition, it has been recently established in [7] and [1] that the intuitionis-
tic provability of Π1

2 statements of some syntactical form guarantees its classical
sequential provability. Such kind of results are called “uniformization theorems”.
Our results can be used to show that Dorais’s uniformization theorems in [1] are
the best possible for the syntactical classes involved.

Throughout this paper, we use the standard notation and terminology in
reverse mathematics (cf. [9]). In addition, x⊂finX denotes that x is a finite
subset of X, and Q+ denotes the set of positive rational numbers. We recall that
WKL0 = RCA0 +WKL and ACA0 = RCA0 +ACA (arithmetical comprehension).

2 The Finite Marriage Theorem

The so-called marriage theorem for finite graphs states that a finite binary graph
(B,G; R) satisfying the Hall condition:

∀x⊂finB∃y⊂finG (|x| ≤ |y| ∧ ∀g ∈ y∃b ∈ x ((b, g) ∈ R)) ,

has an injection M ⊆ R from B to G. It is well-known that there is a uniform
algorithm to construct an injection from a given finite bipartite graph satisfying
the Hall condition, which suggests that the sequential version of the finite mar-
riage theorem is provable in RCA0. However, it depends on the formalization.



We provide the following two formalizations of the finite marriage theorem.

FMT :

∀B, G,R, k







(B, G; R) is a bipartite graph
which satisfies the Hall condition

and k bounds B ∪G


 → ∃M

(
M ⊆ R
is injective

)
 ,

F′MT :

∀B,G, R


∃k




(B,G; R) is a bipartite graph
which satisfies the Hall condition

and k bounds B ∪G


 → ∃M

(
M ⊆ R
is injective

)
 ,

where “k bounds B ∪ G” denotes that for all v ∈ B ∪ G, v < k. Note that the
premise of (. . . → . . .) in FMT is purely universal. Throughout this paper, we
use a little odd notation (e.g. F′MT) to indicate which assumption of uniformity
is dropped by sequentializing.

Proposition 2.

1. RCA0 ` Seq(FMT).
2. RCA0 ` Seq(F′MT) ↔ ACA.

Proof. (1) A slight recasting of the proof of the finite marriage theorem in RCA0

([4, Theorem 2.1]).
(2) ACA0 ` Seq(F′MT) follows from the fact that the infinite marriage theo-

rem is provable in ACA0 ([5, Theorem 2.2]). For the reverse direction, it suffices
to find the range of an injection f : N→ N ([9, Lemma III.1.3]). The basic idea is
to construct, simultaneously in RCA0, infinite numbers of finite bipartite graphs
such that the solution of the i-th graph indicates whether i is in Rng(f) or not.
By Σ0

0 comprehension, take 〈Bn〉n∈N and 〈Gn〉n∈N as

b ∈ Bn ⇔ b = 0 ∨ f

(
b− 2

2

)
= n,

g ∈ Gn ⇔ g = 1 ∨ f

(
g − 3

2

)
= n,

which means that in addition to the underlying sequence {0, 1}n∈N of vertices,
the odd numbers are divided into {Bn}n∈N and the even numbers are divided
into {Gn}n∈N according to f , and take 〈Rn〉n∈N as

(b, g) ∈ Rn ⇔ (b, g) = (0, 1)

∨
(

b = 0 ∧ f

(
g − 3

2

)
= n

)
∨

(
g = 1 ∧ f

(
b− 2

2

)
= n

)
.

Then it is easy to see that (Bn, Gn;Rn) satisfies the Hall condition for each
n ∈ N. Moreover if n is in the range of f via j, Bn ∪Gn is bounded by 2j + 4,
and otherwise, Bn ∪ Gn is bounded by 2. Thus, by Seq(F′MT), there exists a
sequence 〈Mn〉n∈N of injections. Put S := {n : Mn(0) 6= 1}, then S is the range
of f by the above construction. ut



The previous proposition indicates that ACA is not needed to construct an
injection from a finite bipartite graph satisfying the Hall condition, and only
used to take a sequence of bounds. In fact, the next proposition follows from the
previous proposition immediately. (One can even prove it directly.)

Proposition 3. The following assertion SeqB is equivalent to ACA over RCA0.

(SeqB) For any sequence of sets 〈Xn〉n∈N, if Xn is finite for all n, then there
exists a function g : N→ N such that g(n) bounds Xn.

Proof. ACA0 ` SeqB is straightforward. For the reverse direction, it suffices to
show Seq(F′MT) from SeqB over RCA0. Let 〈(Bn, Gn; Rn)〉n∈N be a sequence
of finite bipartite graphs satisfying the Hall condition. Using SeqB, we have a
function g : N → N such that g(n) bounds Bn ∪ Gn for all n ∈ N. Then the
existence of a sequence of injections follows from Seq(FMT). ut

3 The Bounded König’s lemma

It is known that the bounded König’s lemma, which states that an infinite tree
having a bounding function has an infinite path, is equivalent to WKL [9, Lemma
IV.1.4]. As in the previous section, we provide the two formalizations of it.

BKL : ∀T, g

((
T ⊆ N<N is an infinite tree
and g : N→ N bounds T

)
→ ∃P

(
P is an infinite
path of T

))
,

B′KL : ∀T
(
∃g

(
T ⊆ N<N is an infinite tree
and g : N→ N bounds T

)
→ ∃P

(
P is an infinite
path of T

))
,

where “g bounds T” denotes that for all σ ∈ T and i < lh(σ), σ(i) < g(i). In
addition, we now treat a weaker version of the bounded König’s lemma in which
a tree in question is bounded by a constant.

BcKL : ∀T, k

((
T ⊆ N<N is an infinite tree
and k bounds T

)
→ ∃P

(
P is an infinite
path of T

))
,

B′cKL : ∀T
(
∃k

(
T ⊆ N<N is an infinite tree
and k bounds T

)
→ ∃P

(
P is an infinite
path of T

))
,

where “k bounds T” denotes that for all σ ∈ T and i < lh(σ), σ(i) < k. Note
that the premise of (. . . → . . .) in BcKL is purely universal.

Proposition 4.

1. RCA0 ` Seq(BKL) ↔ Seq(BcKL) ↔ WKL.
2. RCA0 ` Seq(B′KL) ↔ Seq(B′cKL) ↔ ACA.



Proof. We reason in RCA0.
(1) WKL implies Seq(WKL) ([6, Lemma 5]), and Seq(WKL) implies Seq(BKL)

by imitating the proof of BKL in WKL0 ([9, Lemma IV.1.4]). The implication
from Seq(BKL) to Seq(BcKL) is obvious. That from Seq(BcKL) to WKL follows
immediately from the fact that binary trees are bounded by 2.

(2) It is straightforward that ACA implies Seq(B′KL) by imitating the proof
of König’s lemma in ACA0 ([9, Lemma III.7.2]). Seq(B′KL) implies Seq(B′cKL).
The implication from Seq(B′cKL) to ACA follows from Lemma 11 below. ut

In the reverse mathematics of analysis, the bounded König’s lemma corre-
sponds to the Heine/Borel compactness of effectively totally bounded complete
separable metric spaces. Thus, to consider the strength of a sequential version
of a mathematical statement which is related to Heine/Borel compactness, it is
important to check which version of bounded König’s lemma is needed. Here,
we will consider the maximum principle of continuous functions as an example.
The following statement is equivalent to WKL over RCA0. (See [9, Section IV].)

(MP) For any f , if f is a continuous function from [−1, 1] to R, then there
exists a ∈ [−1, 1] such that

max{f(x) : x ∈ [−1, 1]} = f(a).

By an easy consideration, we can see that MP is equivalent to the following.

(MP+) For any f , if f is a continuous function from (−1, 1) to R such that
f(0) > 0 and limx→±1 f(x) = 0, then there exists a ∈ (−1, 1) such
that

max{f(x) : x ∈ (−1, 1)} = f(a).

For the sequential version of MP, the following is well-known, actually, it is an
easy consequence of RCA0 ` WKL ↔ Seq(WKL) ([6, Lemma 5]).

Proposition 5. Seq(MP) is equivalent to WKL over RCA0.

However, the sequential version of MP+ is strictly stronger than that of MP. (In
general, ACA is required to extend a continuous function f : (−1, 1) → R with
limx→±1 f(x) = 0 into a continuous function from [−1, 1] to R.)

Proposition 6. The following are equivalent over RCA0.

1. ACA.
2. The sequential version of the following statement: for any f , if f is a bounded

support continuous function from R to R, then there exists a ∈ R such that
max{f(x) : x ∈ R} = f(a). (Here, f is said to have bounded support if there
exists k ∈ N such that the closure of {x ∈ R : f(x) 6= 0} is a subset of
[−k, k].)

3. The sequential version of the following statement: for any f , if f is a con-
tinuous function from R to R such that f(0) > 0 and limx→±∞ f(x) = 0,
then there exists a ∈ R such that max{f(x) : x ∈ R} = f(a).



4. Seq(MP+).

Proof. By modifying the proof of MP ↔ WKL, we can easily see that 2 is
equivalent to the sequential version of the following statement: if T ⊆ NN is
an infinite tree such that T ⊆ 2k × 2<N for some k, then T has an infinite
path. Note that this is a weaker version of Seq(B′cKL), and still is equivalent
to ACA as in the proof of Lemma 11 below. For a given continuous function
f from R to R such that f(0) > 0 and lim|x|→∞ f(x) = 0, define a continuous
function g as g(x) = max{0, f(x)− f(0)/2}. Then, g has bounded support and
max{g(x) : x ∈ R}+ f(0)/2 = max{f(x) : x ∈ R}, hence we have 2 ↔ 3. By an
easy rescaling, we have 3 ↔ 4. Thus, they are all equivalent to ACA. ut

4 The Weak Weak König’s Lemma

The weak weak König’s lemma, which states that a binary tree with positive
measure has an infinite path, has an intermediate strength between RCA0 and
WKL0 ([9, Remark X.1.8]). In this case, both of sequential versions are stronger
than the instancewise version and actually equivalent to WKL.

WWKL : ∀T, m

((
T ⊆ 2<N is a tree and
m ∈ Q+ satisfies (W2)

)
→ ∃P

(
P is an infinite
path of T

))
,

W′WKL : ∀T
(
∃m

(
T ⊆ 2<N is a tree and
m ∈ Q+ satisfies (W2)

)
→ ∃P

(
P is an infinite
path of T

))
,

where (W2) denotes

lim
n→∞

|{σ ∈ T : lh(σ) = n}|
2n

≥ m.

Proposition 7.

1. RCA0 ` Seq(WWKL) ↔ WKL. ([2, Theorem 4.1.(2)])
2. RCA0 ` Seq(W′WKL) ↔ WKL.

Proof (of 2). It is easy to show within RCA0 that for binary tree T , if there exists

m ∈ Q+ such that lim
n→∞

|{σ ∈ T : lh(σ) = n}|
2n

≥ m, then T is infinite. Therefore

WKL0 ` Seq(W′WKL) immediately follows from WKL0 ` Seq(WKL) ([6, Lemma
5]). For the reverse direction, Seq(W′WKL) obviously implies Seq(WWKL),
which is equivalent to WKL over RCA0 from (1). ut

Remark 8. Note that the previous proposition does not suggest that the se-
quential strength of a mathematical statement equivalent to WWKL is WKL in
general. Here, we will consider Riemann integrability for bounded functions as
an example. The following statement is equivalent to WWKL over RCA0. (See
[8].)



(Int) For any f , if f is a continuous function from [0, 1] to [0, 1], then there
exists r ∈ R such that ∫ 1

0

f(x) dx = r.

However, Seq(Int) does not imply WKL. This is because Seq(Int) follows from
the following sequential contrapositive of W′WKL:

(?) ∀T
(
∀n

(
Tn ⊆ 2<N is a tree
which has no path

)
→ ∀n lim

k→∞
|{σ ∈ Tn : lh(σ) = k}|

2k
= 0

)
.

The contrapositive of W′WKL does not have the form (♠) from Definition 1 any
more and (?) is trivially equivalent to WWKL. Therefore Seq(Int) is actually
equivalent to WWKL. In fact, for many sequential versions of mathematical
statements which are equivalent to WWKL, we do not need Seq(WWKL) or
Seq(W′WKL) but (?).

Next, we will investigate the effect of uniformity for positive measure more
precisely. For this, we shall consider some more variants, namely, bounded König’s
lemmas with respect to measure.

– WBKL : ∀T, m, g







T ⊆ N<N is a tree,
m ∈ Q+ satisfies (Wg),
g : N→ N bounds T


 → ∃P

(
P is an infinite
path of T

)
,

where (Wg) denotes

lim
n→∞

|{σ ∈ T : lh(σ) = n}|∏
i<n g(i)

≥ m.

– WBcKL : ∀T, m, k







T ⊆ N<N is a tree,
m ∈ Q+ satisfies (Wk),
k bounds T


 → ∃P

(
P is an infinite
path of T

)
,

where (Wk) denotes

lim
n→∞

|{σ ∈ T : lh(σ) = n}|
kn

≥ m.

Proposition 9. WBKL and WBcKL are equivalent to WWKL over RCA0.

Proof. We reason in RCA0. WBKL to WBcKL to WWKL is trivial. We will show
WBKL from WWKL. Let T ⊆ N<N be a tree bounded by g : N→ N such that
for some q ∈ Q+,

lim
n→∞

|{σ ∈ T : lh(σ) = n}|∏
i<n g(i)

≥ q.

For σ ∈ N<N, define lg(σ) and rg(σ) as follows:

lg(σ) =
∑

k<lh(σ)

σ(k)∏
i≤k g(i)

, rg(σ) = lg(σ) +
1∏

i<lh(σ) g(i)
.



Similarly, for σ ∈ 2<N, define l2(σ) and r2(σ) as follows:

l2(σ) =
∑

k<lh(σ)

σ(k)2−k−1, r2(σ) = l2(σ) + 2−lh(σ).

Note that
⋃

σ∈T,lh(σ)=m[lg(σ), rg(σ)] are disjoint intervals in [0, 1] whose lengths
sum to the measure of level m of T and these intervals can be approximated
arbitrarily well from within by intervals with dyadic rational endpoints. That is,
for m ∈ N, there exists N ∈ N such that

∣∣∣∣
{

σ ∈ 2<N :
lh(σ) = N ∧
∃τ ∈ T (lh(τ) = m ∧ lg(τ) ≤ l2(σ) ∧ r2(σ) ≤ rg(τ))

}∣∣∣∣
2N

>
|{σ ∈ T : lh(σ) = m}|∏

i<m g(i)
− q

2m+2
.

We define h(m) as the least such N .
Now we define T ∗ ⊆ 2N as

σ ∈ T ∗ ⇔

∀m < lh(σ)
(

h(m) ≤ lh(σ) → ∃τ ∈ T (lh(τ) = m ∧
lg(τ) ≤ l2(σ ¹ h(m)) ∧ r2(σ ¹ h(m)) ≤ rg(τ))

)
.

Then, T ∗ is a tree such that for all n ∈ N,

|{σ ∈ T ∗ : lh(σ) = n}|
2n

>
|{σ ∈ T : lh(σ) = n}|∏

i<n g(i)
−

∑
m<n

q

2m+2
≥ q

2
.

Thus, by WWKL, there exists a path P ∗ through T ∗. For any m ∈ N, there
exists a unique τm ∈ T such that lh(τm) = m and lg(τm) ≤ l2(P ¹ h(m))∧r2(P ¹
h(m)) ≤ rg(τm). Then, P =

⋃
m∈N τm is a path through T . ut

Next we investigate the sequential strength of the statements in question. The
following proposition means that the uniformity for positive-measure does not
help to weaken the sequential strength of the bounded König’s lemma.

Proposition 10.

1. Seq(W′BKL), Seq(WBKL), Seq(W′BcKL) and Seq(WBcKL) are equivalent
to WKL over RCA0.

2. Seq(W′B′KL), Seq(WB′KL), Seq(W′B′cKL) and Seq(WB′cKL) are equiva-
lent to ACA over RCA0.

Here WB′KL, W′BKL, W′B′KL, WB′cKL, W′BcKL, and W′B′cKL are defined
in the same manner as before, that is, W′ (resp. B′, B′c) means that the universal
quantifier ∀m (resp. ∀g, ∀k) is moved into (. . . → . . .) as the existential quantifier
∃m (resp. ∃g, ∃k).

To show the previous proposition, we first show the following lemma.



Lemma 11. RCA0 ` Seq(WB′cKL) → ACA, that is, the following statement
implies ACA over RCA0 :

∀〈Tn〉n∈N, 〈mn〉n∈N
(
∀n∃k




Tn ⊆ N<N is a tree,
mn ∈ Q+ satisfies (Wk) for Tn,
k bounds Tn




−→ ∃〈Pn〉n∈N∀n (Pn is an infinite path of Tn)

)
.

Proof. As in the proof of Proposition 2.(2), we will find the range of an injection
f : N → N ([9, Lemma III.1.3]). By Σ0

0 comprehension, we take a sequence
〈Tn〉n∈N of trees from the given injection f as

σ ∈ Tn ⇔
∀i < lh(σ)

(
σ(0) = 0 ∧ σ(i + 1) ≤ 1 ∧ f(i) 6= n

)
∨

∃j < σ(0)
(
∀i < lh(σ) (σ(i) ≤ 2j + 1) ∧ f(j) = n

)
.

Then, each Tn ⊆ N<N clearly forms a tree. Put mn :≡ 1/2. We need to find a
required bound k for each n. For given n, if there exists j such that f(j) = n,
then put k := 2j + 2, and otherwise, put k := 2. In either case, we can check
that k bounds Tn and mn(= 1/2) satisfies (Wk) for Tn. Thus, by Seq(WB′cKL),
there exists a sequence 〈Pn〉n∈N of paths. Put S := {n : Pn(0) 6= 0}. It is easy
to see that Pn(0) 6= 0 ↔ ∃j (f(j) = n), namely, S is the range of f . ut
Proof (of Proposition 10). We reason in RCA0.

(1) Each of Seq(W′BKL), Seq(WBKL), Seq(W′BcKL), Seq(WBcKL) follows
from Seq(BKL), then also from WKL by Proposition 4.(1). On the other hand,
each of them implies Seq(WWKL) which is equivalent to WKL.

(2) Each of Seq(W′B′KL), Seq(WB′KL), Seq(W′B′cKL), Seq(WB′cKL) fol-
lows from Seq(B′KL), then also from ACA by Proposition 4.(2). On the other
hand, each of Seq(W′B′KL), Seq(WB′KL), Seq(W′B′cKL) implies Seq(WB′cKL)
and Seq(WB′cKL) implies ACA by Lemma 11. ut

5 The Best Possibility of Dorais’s Uniformization Results

The first uniformization theorems are established in [7], which can be applied
for Π1

2 statements of the form (♠) (from Definition 1) with purely universal ϕ.
Dorais has recently shown other uniformization theorems in second-order setting
with function-based language, which can be applied for more Π1

2 statements.

Proposition 12 (Dorais [1]).

1. For any T : ∀f (ϕ(f) → ∃gψ(f, g)) such that ϕ(f) is in NK and ψ(f, g) is
in ΓK , if EL + GC + CN ` T, then RCA ` Seq(T).

2. For any T : ∀f (ϕ(f) → ∃gψ(f, g)) such that ϕ(f) is in NL and ψ(f, g) is in
ΓL, if EL + WKL + GCL + CNL ` T, then RCA + WKL ` Seq(T).



We refer the readers to see [1] for precise definitions of each of the symbols
in the previous proposition. In fact, the restriction of ψ to ΓK and ΓL is not
tight and the interest is only in the possibility of extending NK and NL. All
purely existential and purely universal formulas are included in NK . In addition,
all formulas of the form ∃x ≤ t∀zAqf are included in NL. Here we show that
NK and NL cannot be extended to the class including all formulas of the form
∃x∀zAqf in Proposition 12.

Suppose that in Proposition 12.(1), NK can be extended to such a class.
Since each purely universal formula in set-based language is translated as a
purely universal formula in function-based language by identifying sets with
their characteristic functions, the premise of (. . . → . . .) in function-based F′MT
(intuitionistically equivalent to function-based FMT) has the form ∃x∀zAqf .
Then Proposition 2.(2) derives that function-based F′MT is not provable in
EL + GC + CN. However, it is provable in EL0 by transforming the proof of the
finite marriage theorem in RCA0 ([4, Theorem 2.1]).

Next we suppose in Proposition 12.(2), NL can be extended to such a class. As
in the previous paragraph, Proposition 4.(2) derives that function-based B′cKL
(intuitionistically equivalent to function-based BcKL) is not provable in EL +
WKL+GCL +CNL. However, it is provable in EL0 +WKL by transforming the
proof of the bounded König’s lemma in WKL0 ([9, Lemma IV.1.4]).
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