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A one-class support vector machine (OC-SVM) is implemented using an on-chip-trainable analog VLSI
processor. The one-class classification of highly dimensional sample vectors can be solved with this analog
processor. Since the OC-SVM learning mechanism is complicated, a special solution scheme for the learning
operation is proposed on the basis of analog computational circuitries and a fully parallel architecture. In this
manner, the built VLSI processor achieves a high learning speed and a compact chip area at the same time.
By combining multiple OC-SVM processors, multiclass recognition can be implemented with an arbitrary
number of classes. The proof-of-concept chip is fabricated for the recognition of 64-dimensional vectors
representing real image patterns. Three OC-SVM processors are combined for three classes of samples,
where all the on-chip learning operations are accomplished within 0.6 us. From the measurement results,

all the test patterns are correctly recognized or rejected by the recognition system built.

1. Introduction

The support vector machine (SVM) has shown excellent performance in solving the
pattern recognition problem of highly dimensional sample vectors, particularly when a
Gaussian function kernel is employed.? It has been widely applied in many real-world
tasks of machine learning and artificial intelligence such as audio, image, and video pro-

) For the efficient use of the SVM mechanism, many attempts were made

cessing even.?
to implement the SVM algorithm using VLSI processors in a distributed and parallel
manner.>% On the other hand, the Gaussian kernel function is very expensive in silicon
owing to its complexity. Several analog VLSI implementations of an on-chip trainable
SVM have been developed with a reduced complexity of circuitry.”® As a powerful
machine that learns algorithms, the SVM always has a time-consuming learning oper-

ation. In our previous work, a special fully parallel VLSI architecture was proposed to
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improve the on-chip learning speed of the SVM.”

Traditionally, the SVM algorithm was developed for solving binary classification
problems. Two classes of learning samples are needed for binary SVM classification. A
complicated mechanism was introduced to solve multiclass classification problems.'01?)
In real-world applications, various numbers of classes are required; even only a single
class of learning samples is available in some applications. To solve these problems,
the one-class classification was developed as an extension of the SVM theory,!*17)
which is named one-class support vector machine (OC-SVM). In these previous works,
much advanced performance and various properties of the OC-SVM algorithm have
been shown by demonstrating two-dimensional pattern vectors. In most practical tasks,
a high dimensionality of vectors is required to represent the feature information of
nature (image features for instance). Thus, several previous works showed the highly
dimensional OC-SVM by software programs, and even achieved noticeable performance
in solving practical face-tracking problems.® %)

However, the learning operation of the OC-SVM algorithm requires iterative matrix
computations. Therefore, software implementations of OC-SVM learning are very time-
consuming, even if some advanced mathematical methods are employed.'® Conventional
hardware implementation strategies can hardly be applied for OC-SVM problems ow-
ing to the matrix computations. Regarding highly dimensional pattern recognition, the
problem becomes even more complicated. A previous work has shown the FPGA im-
plementation of the OC-SVM.2? Unfortunately, its learning operation is pre-processed
off-chip. In fact, a fully parallel analog VLSI could be one of the solutions for the on-
chip learning of the OC-SVM. The feasibility of this strategy was analyzed and verified
in our early study.?"

The purpose of this work is to develop a VLSI system for the multiclass recognition
of highly dimensional pattern vectors. The OC-SVM algorithm is employed for learning
every class of samples. On the basis of our previously developed analog fully parallel
architecture, a special solution scheme of the OC-SVM problem is proposed. An analog
VLSI processor is designed to implement the OC-SVM on-chip learning (and also recog-
nition) operation for each class of learning samples, individually. The proof-of-concept
chip is fabricated for the recognition of 64-dimensional sample vectors. By combining
three chips, a multiclass classification system for recognizing the feature vectors from

three (for demonstration but not limited to) classes of object images is demonstrated.

All the learning operations are accomplished within 0.6 ps. From the chip measurement
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Fig. 1. Multiclass classification task for images employing the OC-SVM mechanism.
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results, all the test patterns are correctly recognized or rejected by the system we built.

The rest of this paper is organized as follows: In Sect. 2, the target application
of this work and a special solution scheme of the OC-SVM algorithm are presented
on the basis of a fully parallel architecture. In Sect. 3, the analog OC-SVM proces-
sor and its operational principle are described. The experimental verifications of the
multiclass recognition system are shown in Sect. 4 by considering both simulation and

measurement results. Finally, conclusions are given in Sect. 5.

2. Algorithm
2.1 Target application of this work

It has been reported that the current-voltage characteristics of analog VLSI devices

22,23) These reports indi-

enable efficient computations in some complicated functions.
cate the potential of analog circuitries to offer a computational scheme of low power,
high speed, compact size, and high parallelism. On the other hand, it is widely agreed
that the analog computation suffers from an inaccuracy problem due to noise and vari-
ations among analog devices. However, absolute accuracy is not required in so-called
soft-computing tasks such as pattern recognition.?*) The reasonable use of analog VLSI
processors is helpful for performing a complex real-world task.?”) The target applica-
tion of this work is image recognition using multiclass samples. In a conventional SVM
algorithm, the learning operation is carried out using two classes of learning samples.

Thus, the SVM is one of the so-called binary classification algorithms. However, multi-

class recognition is always needed in real-world applications. The OC-SVM algorithm
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Fig. 2. Organization of multiclass recognition system employing OC-SVM algorithm.

is expected to solve this kind of problem. A single class of pattern vectors is used
as learning samples. After the learning operation, the data domain of each class is de-
scribed through the OC-SVM mechanism by “support vectors” (SVs). The combination
of many OC-SVM processors enables multiclass recognition. Figure 1 shows a multiclass
classification task for images employing the OC-SVM algorithm. Many labeled image
patterns are input into the multiclass recognition system as learning samples. According
to the on-chip learning results, the test patterns are recognized or rejected.

In fact, each class of samples and its learning operation are independent of each
other. Therefore, the number of classes can be freely increased or decreased depending
on the application demand. One VLSI learning chip is applied to the on-chip learning
of one class. During the recognition session, the test pattern is broadcasted to all the
chips, as shown in Fig. 2. The result is output by this system in real time. In this
manner, high-performance multiclass recognition is achieved.

There are several benefits of using the OC-SVM algorithm in solving image recog-
nition problems. By sharing some properties with the binary SVM, the OC-SVM al-
gorithm can obtain an accurate classification boundary through a markedly reduced
number of samples. On the other hand, the number of classes can be freely expanded.
Furthermore, the volume of data domains can be reasonably given by the learning

operation depending on the application demand.
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Fig. 3. Principle of OC-SVM algorithm: (a) the target of learning is to find a compact and flexible
domain boundary for the given learning samples; (b) this boundary is described by several “support

vectors” with different peak heights of the Gaussian-kernel function feature.

2.2 OC-SVM algorithm

The OC-SVM is a classification algorithm developed to solve the recognition problem
using only one class of samples.'® Two sessions are involved in the OC-SVM theory.
The task of the learning session is to describe the domain boundary of the given samples
(labeled); during the recognition session, when unlabeled test patterns are input, it is
necessary to “accept” or “reject” them depending on the obtained boundary (in the
form of a decision function).

The basic target of OC-SVM learning is to find a compact and flexible domain
boundary for the given learning samples, as shown in Fig. 3(a). Clearly, if this boundary

is a sphere with a sufficiently large volume, all the samples can be included. Even

5/18



Jpn. J. Appl. Phys. REGULAR PAPER

defining a compact sphere with a minimum volume to include all the samples is easy.
However, considering most practical applications, a flexible description rather than a
simple “sphere” is necessary. In this sense, the OC-SVM learning session with the so-
called “kernel trick” is expected to solve this problem.

To classify the n-dimensional vectors Xs in the form of X = (x, 29, -+, 2,), a set
of learning samples {X;, 1 <i < N} is given, where N is the number of samples.

At the starting point, we expect to find a sphere with a minimum volume R, con-

taining all (or most of) the data objects, which is defined by
F(R,a&) =R +C) & (1)

where a is the center of this sphere, &; is a slack variable for error tolerance, and the
parameter C' gives a trade-off between simplicity (or the volume of the sphere) and the
number of errors (number of target objects rejected). This function has to be minimized

under the constraint
(Xi —a)T(X; —a) < R* + &, (2)
By applying the theory developed for the original OC-SVM algorithm, and consider-
ing the Gaussian Kernel function K (X;,X;) = exp(—|| X; — X ||?/0), the task becomes
the following quadratic programming (QP) problem:'*
minL:I—Za?—ZaiajK(Xi,Xj), (3)
i i#]
under the constraints

ZO[Z' = ]., (4)

and 0 < a; < C. When Lagrangian multipliers (as) are obtained by solving this QP
problem, they can be directly used in the test session for the recognition of test patterns.

During the test session, to determine whether a test object Z is within the sphere,
the distance to the center of the sphere has to be calculated. When (Z—a)™(Z—a) < R?
is satisfied, the object Z is accepted. Expressing the sphere center in the form of the

support vectors, the object Z is accepted when

1-2) wK(Z,X) + ) oK(X;, X)) < R%. (5)
i i
Theoretically, the distance from any support vector X; to the center should be R. Thus,

6/18



Jpn. J. Appl. Phys. REGULAR PAPER

the constant items in Eq. 5 could be observed using any support vector in the following

form:

L4+ oKX, X)) — R =2) 0, K(X,, X;). (6)
(] i

In this manner, the object Z is accepted when the following condition is satisfied:

Y wK(Z,X) > ) oK (X, X;). (7)
In this work, the support vector with the largest alpha value is selected for observation.

2.3 Proposed scheme to solve the QP problem in OC-SVM algorithm
The core part of the OC-SVM algorithm is to solve the QP problem described by Eq.
3. When the complex kernel functions such as Gaussian function are employed, the
process for solving this QP problem could be very time-consuming. Furthermore, since
this problem includes the kernel function computations between each arbitrary pair of
learning samples, a large number of costly complex matrix computations are required.
In some reported works, various mathematical approaches such as sequential minimal
optimization (SMO) were considered to reduce the number of these matrix computa-
tions. In our work, an iterative learning scheme for solving a specific QP problem is
proposed by employing a large number of matrix computations. This scheme could be
expensive for conventional implementations of software programs, but can be efficiently
implemented using a fully parallel VLSI architecture.

To solve the QP problem, another Lagrangian function is constructed with the

multiplier A:
C= LA, 0 1)
=1-3,0a] - Zz’;éj ;o K (X5, X5) + A, 06 — 1)

Then, the following equations should be solved to minimize L:

(8)

0L __
oo - 0 (9)
Zi o — 1=0

The expansion of these equations is in the linear form as
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e

=200 = 25 K (XL X)) + A =0
=200 = 20 K (X, X)) + A =0

—QOZN—ZJ-#NO(]'K(XN,XJ‘)'F)\:O
O£1+O£2+...+O[N:]_

\

With the consideration of the Gaussian function kernel (o; K (X;,X;) = «;), these linear

equations can be equivalently converted into

—20[1 — Zj;él O[jK(Xl,Xj) +)\ =0
—20[2 — ijﬂ O[jK(XQ,Xj) + A=0

—2CYN — Zj;éNajK(XNJXj) + A=0
=222 0 K(X, X)) + NA =1

The Jacobian iterative method is applied to solve these linear equations. Thus, the

\

iterative updating rule is obtained as
Q $— %()‘ - Zj;éi a; Kij)
A= (142230, 05 K(X, X))

By considering the upper and lower boundaries of o« and A, the final updating rule

(12)

becomes
«; « max(0, min(%()\ — Z#i a; Ki;),C))
A= max(0, (1 + 32, 3, o K (X, X))
The trade-off parameter C' should be set within an interval of 1/N < C' <1 to ensure
that the solution to the QP problem can be obtained.'® As shown in Fig. 3(b), all the

(13)

peak heights (a;s) of the Gaussian function are initialized to be the same at the begin-
ning of learning. After learning, the alpha values are autonomously adjusted according
to the learning rule. The sample vectors with nonzero alpha values are called “support
vectors”; the others are called nonsupport vectors. These support vectors with Gaussian
kernel functions describe a compact and flexible boundary of data domains.

clearly, a large scale of parallel matrix computation is needed to update A\ by this
method. This is the reason why a fully parallel architecture is considered in this work

on the basis of an analog Gaussian-cell array.
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Fig. 4. Fully parallel on-chip learning OC-SVM processor.

3. Hardware implementation
A proof-of-concept processor is built to implement the learning operation of the OC-
SVM algorithm in a 0.18 pgm CMOS technology. The organization of the proposed
processor is shown in Fig. 4 along with a micrograph of its chip in Fig. 5. The entire
processor contains an analog Gaussian-cell array, a set of alpha adjusters, and a lambda
adjuster. All the Gaussian kernel functions are carried out using the Gaussian-cell array
in real time and in a fully parallel configuration. During the learning session, these func-
tion values are fed into the alpha and lambda adjusters; the updated alpha and lambda
values are freely fed back to the Gaussian-cell array in the form of analog signals. In
this manner, the learning operation proceeds autonomously and self-converges without
any clock-based control. The chip-area-hungry part for highly dimensional Euclidean
distance computations and the much smaller part for exponential computation are built
separately. Only exponential computing circuits should be duplicated for a high degree
of parallelism. Thus, a fully parallel array can be fabricated with a compact chip area.
During the test session, only Gaussian cells in the first row are used, and all the
calculations for an object test are also carried out in parallel and in real time according
to Eq. 7. As mentioned above, the support vector with the largest alpha value is selected

as the reference in the decision equation. This selection mechanism is realized by the
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Fig. 5. Micrograph of fabricated OC-SVM learning chip.

R

Fig. 6. Schematic of alpha adjuster circuit.

Z‘[out_i z

Fig. 7. Schematic of lambda adjuster circuit.

winner-take-all (WTA) module.

The analog Gaussian generation circuit, which was reported in our early work,” is
employed to carry out the kernel function computation. Receiving two vectors in the
form of the voltages V; = (v;1,vi2, -+, vin) and V; = (vj1,vj2,- -+ ,v;,), the Gaussian

function related to these two vectors can be computed as
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I, v,
Loyt = EG—VWZ—V;IP’ (14)

where

K,
(Vdd - Vbias - |Vthp|)(\/ Kp + V Kn)2

Here, Vi, and Vj, are the threshold voltages of the n-type and p-type MOS transistors,

v = (15)

respectively. The current I, reflects the alpha value in Eq. 13, which is dynamically
programmed by the alpha adjusters. The spread width of the Gaussian function feature
is programmed by tuning the voltage signal Vj;qs.

A current-mirror-based circuit is designed as the alpha adjuster, as shown in Fig.
6. By collecting the output current of the Gaussian cells in a specific row, the updated
current 1, is output to the respective column of Gaussian-cell array according to the
update rule in Eq. 13. The current source /. is introduced to reflect the trade-off param-
eter C. The circuit schematic of the lambda adjuster is shown in Fig. 7. The lambda
adjuster collects the output current from all the Gaussian kernel cells in the array, and
the updated lambda value is fed into all the alpha adjusters. The current source Iy,
reflects the constant factor “1” in Eq. 10. Therefore, the parameter C' is represented
by C = I./ILui. All the elements in a fully parallel array are available and necessary
for updating the lambda value. Thus, the proposed scheme to solve the OC-SVM prob-
lem particularly fits the fully parallel architecture rather than the series processing by

18,19)

software programs or the row parallel processing.®)

4. Experiments

The circuit simulations and chip measurements are used to verify the performance of
the OC-SVM processor developed. A single OC-SVM processor for 2-D sample vectors,
a single OC-SVM processor for 64-D sample vectors, and a multiclass classification

system employing multiple OC-SVM processors are considered.

4.1 Circuit simulations
To verify the correctness of the recognition results, circuit simulations are performed.
Furthermore, some important inner signals (such as «;s) can be dynamically observed

from the simulation results.
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Fig. 8. Support vector domain description of a toy example with sixteen learning samples: (a)
when a wide spread of Gaussian function feature is applied, a rough boundary is described by seven
support vectors; (b) when a narrow spread of Gaussian function feature is applied, a finer boundary

is described by ten support vectors.

4.1.1 2-D pattern recognition using single OC-SVM processor

A toy example with sixteen learning samples is set up to verify the performance of the
proposed proof-of-concept processor. Each learning sample is represented by a set of
voltage signals. For instance, the learning sample X = {0.6,0.6} is represented by V =
{0.6V,0.6V}. In this example, a Gaussian-cell array with 16 x 16 elements is constructed.
The HSPICE simulation results and description boundaries are shown in Fig. 9 by
applying different Gaussian function features. In this experiment, the parameter C' is
set at 0.08 by setting the currents I,,; and I. at 10 and 0.8 pA, respectively. From
the simulation results, there is no outlier with these configurations, and the learning
operation is accomplished within about 0.6 ps. When a wide spread of Gaussian function
feature is applied, a rough domain is described by seven support vectors, as shown in Fig
. 8(a). Various schemes of data domain description can be considered as a benefit of the
OC-SVM algorithm on the mathematical side. In this sense, the feature of the domain

description should be adjustable by tuning some control signals on the circuit side. The
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Fig. 9. Circuit simulation results of 64-D learning/classifying performance of single OC-SVM

learning chip.

results in Fig. 8(b) reflect this variation, for instance. A finer domain description is

obtained by applying a narrow spread of the Gaussian function feature, which is shown

in Fig. 8(b). However, the number of support vectors increases in this case.

4.1.2 64-D pattern recognition employing single OC-SVM processor

For real-world applications, a multiclass classification system for image recognition is

constructed using the OC-SVM learning chips. In the proof-of-concept system, three
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Fig. 10. Chip measurement results of an associative memory system employing OC-SVM learning
processor: three chips are used as OC-SVM processors independently. The test patterns are
broadcasted to all the chips.

fabricated chips are used as OC-SVM learners. Namely, three classes of images from the
COIL-20 database?® are employed as learning samples. The features of these images are
extracted into 64-dimensional vectors using typical image-processing technology named
the projected principal-edge distribution (PPED).?”) The recognition performance of a
single OC-SVM learning chip is given in Fig. 9 by the circuit simulation results.

4.2 Multiclass classification system employing multiple OC-SVM processors

10-12) binary classifiers can be used to construct a mul-

As has been reported previously,
ticlass classification system using some hierarchical decision mechanisms. For instance,
the one-against-others strategy is widely used to realize multiclass recognition using
several sets of binary classifiers. However, a complex grouping and decision mechanism
is necessary for this kind of effort. It is difficult to tackle a flexible number of classes
particularly when the hardware implementation is considered. An important benefit
of the OC-SVM recognition system we developed is the flexibility over the number of

classes. The recognition of each class is processed independently. All the recognition

results are output in parallel. Namely, it is easy to increase the number of classes by
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employing more OC-SVM processors.

The chip measurement results for the proposed multiclass recognition system are
shown in Fig. 10. Three chips are used as OC-SVM processors independently. In this
manner, three classes of learning samples are used for data domain description. After
the learning session, test patterns are broadcasted to all the chips. If the test pattern
belongs to a specific class, the respective chip outputs a signal of high voltage. From
this figure, some test patterns do not belong to any sample class. Thus, none of the
output signals is of high voltage. Namely, the specific test patterns are rejected by
all the existing classes of samples. Actually, this phenomenon reflects an important
benefit of OC-SVM compared with the binary SVM. In the latter algorithm, any test
pattern must be accepted by either class of samples. From the nature point of view, the

“all-rejection” situation might appear in real-world recognition problems.

4.3 Comparisons

The OC-SVM algorithm has already been implemented by many different approaches
using software programs, even hardware. The performances are compared between this
work and the software implementations, as Table I shows. The proposed analog VLSI
system of multiclass recognition clearly shows benefits in terms of both learning and
recognition speed compared with the software implementations. On the other hand,
the processing capacity (number of learning samples) is not superior owing to the in-
herent limitation of VLSI fabrications. However, the number of learning samples can
be increased by employing reasonably more OC-SVM processing chips. Comparisons
between this work and other hardware implementations are also given in Table II. The
OC-SVM implementation is helpful for increasing the number of classes compared with
the binary SVM. At the same time, the penalty on the chip area and power consumption
is acceptable. In the referenced work with FPGA, effort to achieve low power was made
on the digital side. The power consumption of this FPGA implementation (without con-
sideration of the power consumption for the learning session) is still much higher than
that achieved with our effort. Furthermore, the on-chip learning ability is an important

consideration for the hardware implementations.

5. Conclusions
A multiclass recognition system was built for highly dimensional sample vectors. A fully

parallel analog VLSI processor was designed to implement the one-class support vector
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Table I.  Performance comparisons between this work and the software implementations.
Reference'®  Reference!” This work
Implementation Matlab Matlab Analog VLSI
Algorithm OC-SVM OC-SVM OC-SVM
Kernel function Gaussian Gaussian Gaussian
Max Number of samples 171 2468 16 (per chip)
Number of dimensions 2~19 o7 2~ 064
Learning speed (vectors/s) | 0.31 (19-D) 3.32 26.7 x 10°
Recognition speed (vectors/s) N/A 5x 10° 108 (for DAC)
Table Il. Performance comparisons between this work and other hardware implementations.
Reference”) Reference?”) This work
Implementation Analog VLSI FPGA Analog VLSI
Algorithm Binary SVM 0OC-SVM 0OC-SVM
Learning parallelism | Fully parallel Off-chip (pre-processed) Fully parallel
Number of classes 2 Arbitrary Arbitrary
Chip area 0.85 mm? Board 0.89 mm?
Power 0.026 W 2.04 W 0.035 W

machine. Each class of samples is used for on-chip learning by a single analog processor,
individually. The learning operation is autonomously accomplished within 0.6 ps. By
combining multiple chips of OC-SVM processors, the recognition problem is solved for
an arbitrary number of classes. To verify the performance of the system, three classes of
64-dimensional vectors representing image features were employed as learning samples.
All the on-chip learning and recognition operations were performed by the recognition
system with three OC-SVM processors. From the chip measurement results, all the test

patterns were correctly recognized or rejected.
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