JAIST Repository

https://dspace.jaist.ac.jp/

iUy UUg o

Title goooooooo

Author(s) oo, 00

Citation

Issue Date 2014-06

Type Thesis or Dissertation

Text version

ETD

.net/ 101009/ 12226

URL http:/7/7 hdl handl
Rights
Description Supervisor: goooag, ooooooo oo

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

K

%L O
E I VAR S
T AL H A

N{ITIRE S /N

1 (1 k)

EIE 26 303 5

Fork 26 -6 A 24 H

T at AREIC S FFREN R TV AERIC L D — 7 AR O

oo ¥ ™

o X #E H

FREE
w3 #FOA E B EA 8K EA BB SEEIN R R e
HA FR IF] T
w7 FafE IF] T
BRER TR PESEDARR S HFFERT Hix
HE e BRUEERT R¥ERE T
X DONBEDEE

In recent years, software development process is required to support for diversification
and multi-platform by the shorter delivery time. In order to develop a system to
efficiently respond to such requests, software development using component has
spread. When defining the structure and behavior of software components, UML
diagrams are often used. UML is a standardized modeling language developed by OMG.
Especially in upstream development, UML sequence diagrams are frequently used to

understand and verify the behavior of components.

However, the specification of sequence diagram is complicated and flexible. Also, in
many cases, the detailed behavior has not been determined in early development stage.
For example, developers can design login process as “return a success message if the
user name and the password are correct, return a failure message if the user name and
the password are invalid”. Here, if the way how passwords are stored and they are
checked has not been designed yet, it cannot be described deterministically whether it
should return a success message or a failure message. For these designs, it is important
to verify designs leaving the nondeterminism like “return a success message or a failure
message nondeterministically”. Using conventional methods, it was difficult to handle
those nondeterminism. Therefore, it was difficult to verify sequence diagrams
automatically. It has relied on manual review to find mistakes such as inconsistencies
and insufficient refinements between sequence diagrams. If such mistakes are found in

a late development stage, it may take a lot of time and cost to correct them.

In this paper, we define a subset of sequence diagrams with formal semantics and
propose a method to verify consistency of the sequence diagrams. With this method,
developers can clarify the specifications by using formal description and find bugs by

using automatic verification.

In order to verify sequence diagrams, we propose a synthesis method of a formal
expression called CSP (Communicating Sequential Processes) from sequence diagrams.
This synthesis method consists of following steps: At first, an order of sending and
receiving is extracted from each sequence diagram for each component and it is formally
expressed as a CSP process. Next, two or more CSP processes extracted from a number
of sequence diagrams for the component is combined to a CSP process which represents
the whole behavior of the component. We define new CSP operators for synthesizing
sequence diagrams. Finally, using expansion rules of the new CSP operators, the CSP
process is converted into a standard CSP process without the new operators. The
standard CSP process can be verified using existing CSP tools such as PAT and FDR2.
In addition, counter examples found in the model checking can be translated back to

sequence diagrams for supporting to correct their inconsistency.

Compared with the related works, the main advantage of this work is that
nondeterminism can be considered. It means that our approach can handle abstract
sequence diagrams. Sequence diagrams are often abstract in early development stage.

Our approach can be applied to such diagrams.

We implemented a tool named SDVerifier, based on the proposed method, which can be
used for verifying sequence diagrams. We also conducted experiments with real world

case studies.

Keywords

Sequence Diagram, Process Algebra, CSP, Process Synthesis, Verification

BXEEORBREOES

MR IY 7 by = THBE TSN V—r V ARORFEERIT) Z 2 HROE LT,
EATFEOOLESTHLI 7o ARBEEHWZH LT U AAROFIEOREL Y — L
DI FHHIZ OV TR L72b DO Th D, v —7 v AR OE N L ORRFEICE L CiX Live
Sequence Chart Z XU L L2 OO ERH DR, TN 6D ITEBED VAT A
IR W THEBICI AT DI T2 A v — Y OBIR &2 KB DHEN T4 TlERwn,

RO TV A E2EGT 5 2 & CRAET 2EEOIEREMHICE L Tix, SEMRIER
ERNC A v —VERIRT 5 Z & 5Ll REERTRE/R T T /VABFE LR o 7o, R LTI
T AR THD CSP # W Ty —7 AR ZHFCTER L, 22 TRETDIA v E
— VORI > TWVWDbP L7y ey ZRBELRNZ X0, HLBEMTORLFHE VD
FUIl & R O BeMECREMAL L7-BRICRIE L 72 2 [—BEOfRFE) ICBET 2MEEE ATREE L C
W5, INZE Y — T AR E AT V=27 FNEBEALE L TCSP O a& A TA# L, KRIC
B O —r AR SN D VT U A O A E KRBT 572912 CSP 23R L7= 7k &
Bl L LT eCSP 28 AT 5, ZHUIENE CSP IZAMERT o & EEFEA N M2
b3 258D 2 DOFEFE % CSPIZHEAL, b L— A% flid LOURIEM L V5 2 FEOS%
it Lo TEDOEREZFRNCER LD TH D, BHO CSPIZHESN TV HIHEEA
FTIEA N MRAERITDIET D55 OB N AR+ Th DM, #H LWEE 08 AN X
D B O NEREIIMBERIN 2 UGl 95 2 E N ATBEIC 72 5, RIT eCSP IZ L S ECak
EHERDORBGEY —/V(PAT) T D Z L WHAREZR X D ICEMD T VT AL EEHRT Do £D
BUCAT V=7 NOERAEEBE IR TE 2 X)10 THERIRIE] EWH BEEEAL, £
FT V2 NORTAZZTFE LR EEFER LTS, EFFIZE L TEBEOMRE
NTHEDN TS VAT AE RGN0 —EZ 5k, REEL, BRMIZREY ZRA LY
Bl EN TR, KO IC X 2R OREICH I L TS, ELREEES X T L~
W ORREMEIC DWW TERZITVL, EAMEL 0 THLZLERL TN D,

Db, Rk, Y7 ho=T7OHfEE LTy —7 U AXDO G EMRFEIC DWW TH LB
FAREEE L, BORMRGE E BRI IV ZORMMEE R LIEZLOTH Y . FIICERRT
HEZANRRKREN, LoTHHL ([FHRBS) OFfbmale LTHMMES D0 RO,

