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Abstract

Let f be a computable function from finite sequences of 0’s and 1’s

to real numbers. We prove that strong f -randomness implies strong f -

randomness relative to a PA-degree. We also prove: if X is strongly

f -random and Turing reducible to Y where Y is Martin-Löf random rel-

ative to Z, then X is strongly f -random relative to Z. In addition, we

prove analogous propagation results for other notions of partial random-

ness, including non-K-triviality and autocomplexity. We prove that f -

randomness relative to a PA-degree implies strong f -randomness, hence

f -randomness does not imply f -randomness relative to a PA-degree.
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1 Introduction

We begin by recalling two known results concerning Martin-Löf randomness
relative to a Turing oracle. Let N denote the set of positive integers. Let
{0, 1}N denote the Cantor space, i.e., the set of infinite sequences of 0’s and 1’s.

Theorem 1.1. Let X ∈ {0, 1}N be Martin-Löf random. Suppose X is Turing
reducible to Y where Y is Martin-Löf random relative to Z. Then X is Martin-
Löf random relative to Z.

Theorem 1.2. Let Q be a nonempty Π0
1 subset of {0, 1}N. If X ∈ {0, 1}N is

Martin-Löf random, then X is Martin-Löf random relative to some Z ∈ Q.

Recall from [18] that a PA-degree is defined to be the Turing degree of a com-
plete consistent theory extending first-order Peano arithmetic. It is well known
that, via Gödel numbering, the set of complete consistent theories extending
first-order Peano arithmetic may be viewed as a Π0

1 subset of {0, 1}N. Moreover
[18, 29, 32, 33], this particular Π0

1 subset of {0, 1}N is universal in the following
sense: a Turing oracle Z is of PA-degree if and only if every nonempty Π0

1 subset
of {0, 1}N contains an element which is Turing reducible to Z. Consequently,
Theorem 1.2 may be restated as follows:
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Theorem 1.3. If X ∈ {0, 1}N is Martin-Löf random, then X is Martin-Löf
random relative to some PA-degree.

Theorem 1.1, which we call the XYZ Theorem, is due to Miller/Yu [22,
Theorem 4.3]. Theorems 1.2 and 1.3 are due independently to several groups of
researchers: Downey et al [10, Proposition 7.4], Reimann/Slaman [27, Theorem
4.5] (also cited in [10]), and Simpson/Yokoyama [37, Lemma 3.3].

Theorems 1.2 and 1.3 have been very useful in the study of randomness.
Reimann/Slaman [27] used Theorem 1.2 to prove that any noncomputable
X ∈ {0, 1}N is nonatomically random with respect to some probability measure
on {0, 1}N. Simpson/Yokoyama [37] used a generalization of Theorem 1.2 to
study the reverse mathematics of Loeb measure. Recently Brattka/Miller/Nies
[5] used Theorem 1.2 to prove that x ∈ [0, 1] is random if and only if every
computable continuous function of bounded variation is differentiable at x.

The theme of Theorems 1.1–1.3 is what might be called “propagation of
Martin-Löf randomness.” Namely, all of these theorems assert that if X is
Martin-Löf random then X is Martin-Löf random relative to certain Turing
oracles.

The purpose of this paper is to present some new results which are gener-
alizations of Theorems 1.1–1.3. The theme of our new results might be called
“propagation of partial randomness.” Here “partial randomness” refers to cer-
tain properties which are in the same vein as Martin-Löf randomness. Recent
studies of partial randomness include [6, 16, 19, 21, 25, 28, 39]. Our main
new results involve a specific notion of partial randomness known as strong f -
randomness where f is an arbitrary computable function from finite sequences
of 0’s and 1’s to real numbers. Along the way we present some old and new
characterizations of strong f -randomness. We also consider other notions of
partial randomness including complexity [4, 15, 19], autocomplexity [19], and
non-K-triviality [11, 23].

The plan of this paper is as follows. In §2 we define f -randomness and strong

f -randomness and characterize these notions in terms of Kolmogorov complex-
ity. In §3 we prove that (f +2 log2 f)-randomness implies strong f -randomness.
Note that §2 and §3 and §8 are largely expository. In §4 we present our main re-
sults concerning propagation of strong f -randomness. Namely, we prove appro-
priate generalizations of Theorems 1.1–1.3 with Martin-Löf randomness replaced
by strong f -randomness. In §5 and §6 we prove analogous results concerning
propagation of non-K-triviality and propagation of diagonal nonrecursiveness,
respectively. In §7 we prove analogous results concerning propagation of au-
tocomplexity, and we characterize autocomplexity in terms of f -randomness
and strong f -randomness. In §8 we define vehement f -randomness and prove
that it is equivalent to strong f -randomness, provided f is convex. In §9 we
prove a version of Theorem 1.2 with Martin-Löf randomness replaced by ve-
hement f -randomness. In §10 we present two new characterizations of strong
f -randomness. In §11 we show that our results concerning propagation of strong
f -randomness fail for f -randomness.
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2 f-randomness and strong f-randomness

Let f : {0, 1}∗ → [−∞,∞] be an arbitrary computable function from finite
sequences of 0’s and 1’s to the extended1 real numbers. In this section we define
what it means for X ∈ {0, 1}N to be f -random, strongly f -random, f -complex,
and strongly f -complex.

Recall that according to Schnorr’s Theorem (see [11, Theorem 6.2.3] or [23,
Theorem 3.2.9] or [34, Theorem 10.7]), X is Martin-Löf random if and only if
for all n the prefix-free Kolmogorov complexity of the first n bits of X is at
least n modulo an additive constant. In this section we prove generalizations
of Schnorr’s Theorem, replacing Martin-Löf randomness by f -randomness and
strong f -randomness. Our proofs are modeled on one of the standard proofs
[34, Theorem 10.7] of Schnorr’s Theorem.

This section is mostly expository. For the history of the concepts and results
in this section, see Calude/Staiger/Terwijn [6] and Tadaki [39].

Definition 2.1. For X ∈ {0, 1}N and n ∈ N we write X↾n = X↾{1, . . . , n} =
the first n bits of X . Given f : {0, 1}∗ → [−∞,∞] we define X to be f -complex
or strongly f -complex if

∃c ∀n (KP(X↾n) ≥ f(X↾n)− c)

or

∃c ∀n (KA(X↾n) ≥ f(X↾n)− c)

respectively. Here KP and KA denote prefix-free complexity (see [11, §3.5] or
[23, §2.2] or [34, §10]) and a priori complexity (see [11, §3.16] or [40]) respec-
tively.

Definition 2.2. Given f : {0, 1}∗ → [−∞,∞], the f -weight of σ ∈ {0, 1}∗ is

defined as wtf (σ) = 2−f(σ). The direct f -weight of A ⊆ {0, 1}∗ is defined as
dwtf (A) =

∑
σ∈A wtf (σ). A set P ⊆ {0, 1}∗ is said to be prefix-free if no ele-

ment of P is a proper initial segment of an element of P . The prefix-free f -weight
of A is defined as

pwtf (A) = sup{dwtf (P ) | P ⊆ A is prefix-free}.

Definition 2.3. For σ ∈ {0, 1}∗ we write JσK = {X ∈ {0, 1}N | σ ⊂ X}. For
A ⊆ {0, 1}∗ we write JAK =

⋃
σ∈AJσK and

Â = {σ ∈ A | ∄ρ (ρ ⊂ σ and ρ ∈ A)} = the set of minimal elements of A.

Note that Â is prefix-free and JÂK = JAK.

We write r.e. as an abbreviation for recursively enumerable. A sequence of
sets Ai ⊆ {0, 1}∗, i ∈ N is said to be uniformly r.e. if {(σ, i) | σ ∈ Ai} is r.e.

1We define f : {0, 1}∗ → [−∞,∞] to be computable if f/(|f | + 1) : {0, 1}∗ → [−1, 1] is
computable.
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Definition 2.4. Assume that f : {0, 1}∗ → [−∞,∞] is computable. We define
X ∈ {0, 1}N to be f -random or strongly f -random if X /∈

⋂
iJAiK whenever Ai

is uniformly r.e. with dwtf (Ai) ≤ 2−i or pwtf (Ai) ≤ 2−i respectively.

Remark 2.5. Since pwtf (A) ≤ dwtf (A) for all A, it is clear that strong f -
randomness implies f -randomness. Similarly, since ∃c ∀τ (KA(τ) ≤ KP(τ) + c),
it is clear that strong f -complexity implies f -complexity. Note also that wtf is
a premeasure in the sense of [26, Definition 1].

The next theorem is a straightforward generalization of Tadaki [39, Theorem
3.1].

Theorem 2.6. Let f : {0, 1}∗ → [−∞,∞] be computable. Then f -randomness
is equivalent to f -complexity.

Proof. Suppose X is f -random. Let Si = {τ | KP(τ) < f(τ) − i}. Clearly Si is
uniformly r.e., and by Kraft’s Inequality [34, Theorem 10.3] we have

dwtf (Si) =
∑

τ∈Si

2−f(τ) ≤
∑

τ∈Si

2−KP(τ)−i = 2−i
∑

τ∈Si

2−KP(τ) < 2−i

so Si is a test for f -randomness. SinceX is f -random it follows thatX /∈
⋂

iJSiK,
i.e., ∃i ∀n (KP(X↾n) ≥ f(X↾n)− i), i.e., X is f -complex.

Now suppose X is not f -random, say X ∈
⋂

iJAiK where Ai is uniformly r.e.
and dwtf (Ai) ≤ 2−i. Then

∑

i

∑

τ∈A2i

2−f(τ)+i =
∑

i

2idwtf (A2i) ≤
∑

i

2i2−2i =
∑

i

2−i = 1

so by the Kraft/Chaitin Lemma (see [34, Corollary 10.6]) we have

∃c ∀i ∀τ (τ ∈ A2i ⇒ KP(τ) ≤ f(τ) − i+ c).

Since X ∈
⋂

iJA2iK it follows that ∃c ∀i ∃n (KP(X↾n) ≤ f(X↾n) − i + c). In
other words, X is not f -complex. This completes the proof.

Corollary 2.7. The sets Si = {τ | KP(τ) < f(τ)− i} form a universal test for
f -randomness.

Proof. Paraphrasing Theorem 2.6 we see that X is f -random if and only if
X /∈

⋂
iJSiK. It remains to prove that dwtf (Si) ≤ 2−i, but we have already seen

this as part of the proof of Theorem 2.6.

The next theorem is a straightforward generalization of Calude/Staiger/Terwijn
[6, Corollary 4.10].

Theorem 2.8. Let f : {0, 1}∗ → [−∞,∞] be computable. Then strong f -
randomness is equivalent to strong f -complexity.

5



Proof. Recall that KA(τ) = − log2 m(τ) wherem : {0, 1}∗ → [0, 1] is a universal
left-r.e. semimeasure. See for instance [11, §3.16] or [40].

Suppose X is strongly f -random. Let Si = {τ | KA(τ) < f(τ)− i}. Clearly
Si is uniformly r.e. We claim that pwtf (Si) ≤ 2−i. To see this, let P ⊆ Si be
prefix-free. Then

dwtf (P ) =
∑

τ∈P

2−f(τ) ≤
∑

τ∈P

2−i−KA(τ) = 2−i
∑

τ∈P

m(τ) ≤ 2−i

since m is a semimeasure. This proves our claim. Thus Si is a test for
strong f -randomness. Since X is strongly f -random, we have X /∈

⋂
iJSiK,

i.e., ∃i ∀n (KA(X↾n) ≥ f(X↾n)− i), i.e., X is strongly f -complex.
Now suppose X is not strongly f -random, say X ∈

⋂
iJAiK where Ai is

uniformly r.e. and pwtf (Ai) ≤ 2−i. For each i let mi be the uniformly left-
r.e. semimeasure given by mi(σ) = pwtf ({τ ∈ Ai | τ ⊇ σ}). Note that

mi(τ) ≥ wtf (τ) whenever τ ∈ Ai. For each i we have mi(〈〉) = pwtf (Ai) ≤ 2−i,

hence 2im2i(〈〉) ≤ 2i2−2i = 2−i, so consider the left-r.e. semimeasure m(σ) =∑
i 2

im2i(σ). Since m is a universal left-r.e. semimeasure, let c be such that
m(σ) ≤ 2cm(σ) for all σ. Then for all τ ∈ A2i we have 2i−f(τ) = 2iwtf (τ) ≤
2im2i(τ) ≤ m(τ) ≤ 2cm(τ) = 2c−KA(τ), hence KA(τ) ≤ f(τ) − i + c. Since
X ∈

⋂
iJA2iK it follows that ∀i ∃n (KA(X↾n) ≤ f(X↾n)− i+ c). In other words,

X is not strongly f -complex. This completes the proof.

Corollary 2.9. The sets Si = {τ | KA(τ) < f(τ)− i} form a universal test for
strong f -randomness.

Proof. Paraphrasing Theorem 2.8 we see that X is strongly f -random if and
only if X /∈

⋂
iJSiK. It remains to prove that pwtf (Si) ≤ 2−i, but we have

already seen this as part of the proof of Theorem 2.8.

Remark 2.10. As a special case, consider the functions fs : {0, 1}∗ → [0,∞)
given by fs(σ) = s|σ| where s is rational and 0 < s ≤ 1. Here we are writ-
ing |σ| = the length of σ. Define X ∈ {0, 1}N to be s-random if it is fs-
random, and strongly s-random if it is strongly fs-random. Note that Martin-
Löf randomness is equivalent to 1-randomness and to strong 1-randomness. The
effective Hausdorff dimension of X is

effdim(X) = sup{s | X is s-random} = sup{s | X is strongly s-random}

and this notion has been studied in [21, 25, 39] and many other publications.

Remark 2.11. Given a computable function f : {0, 1}∗ → [−∞,∞], it is
easy to see that {X | X is f -random} and {X | X is strongly f -random} are
Σ0

2 subsets of {0, 1}N. Conversely, given a Σ0
2 set S ⊆ {0, 1}N, we can easily

construct a computable function f : {0, 1}∗ → N such that

S = {X | X is f -random} = {X | X is strongly f -random}.
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Namely, if S =
⋃

i{paths through Ti} where Ti ⊆ {0, 1}∗, i ∈ N is a computable
sequence of computable trees, let

f(τ) =

{
1 if h(τ↾(|τ | − 1)) = h(τ),

2|τ | otherwise,

where h(τ) = the least i such that i = |τ | or τ ∈ Ti. We mention these examples
in order to suggest how our concepts of f -randomness and strong f -randomness
may apply to a wide variety of situations. See also Theorem 7.3 below.

3 g-randomness implies strong f-randomness

Suppose we have two computable functions f, g : {0, 1}∗ → [−∞,∞]. Clearly
g-randomness implies f -randomness provided ∀σ (f(σ) ≤ g(σ)). We now prove
that g-randomness implies strong f -randomness provided g grows significantly
faster than f . Our result here is a slight refinement of known results due
to Calude/Staiger/Terwijn [6] and Reimann/Stephan [28]. See also Uspen-
sky/Shen [40, §4.2].

Definition 3.1. The increasing set of f : {0, 1}∗ → [−∞,∞] is

I(f) = {σ | (∀ρ ⊂ σ) (f(ρ) < f(σ))}.

Lemma 3.2. Given a computable function f : {0, 1}∗ → [−∞,∞], we can
effectively find a computable function f : {0, 1}∗ → N such that for all σ,

f0(σ) < f(σ) < f0(σ) + 2 (1)

where f0(σ) = min(max(f(σ), 0), 2|σ|). It then follows that f -randomness is
equivalent to f -randomness, and strong f -randomness is equivalent to strong
f -randomness.

Proof. Given σ ∈ {0, 1}∗ we can effectively approximate f0(σ) to find f(σ) ∈ N
such that (1) holds. In this way we obtain a computable function f : {0, 1}∗ →
N. Using the fact that ∃c ∀σ (0 < KP(σ) < 2|σ|+c and 0 < KA(σ) < 2|σ|+c), we
can easily see that (strong) f -complexity is equivalent to (strong) f -complexity.
The desired conclusions then follow in view of Theorems 2.6 and 2.8.

Lemma 3.3. Let f : {0, 1}∗ → N be computable. Given an r.e. set A ⊆ {0, 1}∗

we can effectively find an r.e. set A ⊆ I(f) such that JAK ⊆ JAK and dwtf (A) ≤
dwtf (A) and pwtf (A) ≤ pwtf (A).

Proof. Let A = {σ | σ ∈ A} where σ = min{ρ ⊆ σ | f(ρ) ≥ f(σ)}. It is
straightforward to verify that this A has the desired properties.

Remark 3.4. Because of Lemmas 3.2 and 3.3, we are often safe in assuming
that f : {0, 1}∗ → N and that A ⊆ I(f).
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Theorem 3.5. Let f, g : {0, 1}∗ → [−∞,∞] be computable with g of the form
g(σ) = f(σ) +h(f(σ)) where h is nondecreasing and

∑∞
n=1 2

−h(n) < ∞. If X is
g-random, then X is strongly f -random.

Proof. Because h is nondecreasing, we may safely apply Lemma 3.2 to assume
that f : {0, 1}∗ → N. Fix c such that

∑
n 2

−h(n) ≤ 2c < ∞. Suppose X is not
strongly f -random, say X ∈

⋂
iJAiK where Ai is uniformly r.e. and pwtf (Ai) ≤

2−i. By Lemma 3.3 we may safely assume that Ai ⊆ I(f) for all i. Let Pin =
{σ ∈ Ai | f(σ) = n}. Clearly Ai =

⋃
n Pin and Pin is prefix-free. Thus

dwtf (Pin) ≤ pwtf (Ai) and

dwtg(Ai) =
∑

σ∈Ai
2−g(σ)

=
∑

σ∈Ai
2−h(f(σ))2−f(σ)

=
∑

n

∑
σ∈Pin

2−h(n)2−f(σ)

=
∑

n 2
−h(n)

∑
σ∈Pin

2−f(σ)

=
∑

n 2
−h(n)dwtf (Pin)

≤ 2cpwtf (Ai)

≤ 2c−i.

Since X ∈
⋂

iJAiK it follows that X is not g-random, Q.E.D.

Theorem 3.6. Let f : {0, 1}∗ → (0,∞] be computable. Suppose X is
(f + (1 + ǫ) log2 f)-random for some ǫ > 0. Then X is strongly f -random.

Proof. We may safely assume that ǫ is rational. In this case it suffices to apply
Theorem 3.5 with h(x) = (1 + ǫ) log2 x.

Remark 3.7. Consider the computable function f = fs where s = 1/2, i.e.,
f(σ) = |σ|/2 for all σ. (More generally, let f be computable and satisfy certain
other conditions which we shall not specify here.) Reimann/Stephan [28] have
constructed an X which is f -random but not strongly f -random. Hudelson [16]
has constructed an X which is strongly f -random but such that no Y Turing
reducible to X is (f + (1 + ǫ) log2 f)-random for any ǫ > 0. We conjecture that
there exists an X which is f -random but such that no Y Turing reducible to X
is strongly f -random.

Remark 3.8. In Theorem 3.6 and Remark 3.7 we may replace f+(1+ ǫ) log2 f
by f + log2 f + (1 + ǫ) log2 log2 f , etc., as in [40, §4.2].

4 Propagation of strong f-randomness

The purpose of this section is to prove generalizations of Theorems 1.1–1.3
in which Martin-Löf randomness is replaced by strong f -randomness. These
generalizations are perhaps the most important new results of this paper. Let
µ be the fair-coin probability measure on {0, 1}N given by µ(JσK) = 2−|σ|.
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Definition 4.1. A Levin system is an indexed family of sets Vσ ⊆ {0, 1}N,
σ ∈ {0, 1}∗, such that

1. Vσ is Σ0
1 uniformly in σ,

2. Vσ ⊇ Vσa〈0〉 ∪ Vσa〈1〉 for all σ,

3. Vσa〈0〉 ∩ Vσa〈1〉 = ∅ for all σ.

These properties easily imply

4. Vρ ⊇ Vσ whenever ρ ⊆ σ,

5. Vσ ∩ Vτ = ∅ whenever σ and τ are incompatible.

Lemma 4.2. Let Vσ be a Levin system, and let f be computable. If X is
strongly f -random, then ∃c ∀n (µ(VX↾n) ≤ 2c−f(X↾n)).

Proof. Let Ai = {σ | µ(Vσ) > 2i−f(σ)}. Clearly Ai is uniformly r.e. We claim
that pwtf (Ai) ≤ 2−i. To see this, let P ⊆ Ai be prefix-free. By part 5 of

Definition 4.1 we have 1 ≥ µ(
⋃

σ∈P Vσ) =
∑

σ∈P µ(Vσ) ≥
∑

σ∈P 2i−f(σ) =
2idwtf (P ), so dwtf (P ) ≤ 2−i. This proves our claim. Thus Ai is a test for
strong f -randomness. Since X is strongly f -random, it follows that X /∈ JAiK
for some i. In other words, µ(VX↾n) ≤ 2i−f(X↾n) for all n, Q.E.D.

Remark 4.3. Our idea of using strong f -randomness in Lemma 4.2 was inspired
by Reimann’s use of strong f -randomness in [26, Theorem 14].

Lemma 4.4. Let rσ, σ ∈ {0, 1}∗, be a uniformly left-r.e. system of real numbers.

Given a Levin system Vσ, we can effectively find a Levin system Ṽσ such that

1. Ṽσ ⊆ Vσ for all σ,

2. µ(Ṽσ) ≤ rσ for all σ,

3. Ṽσ = Vσ whenever σ is such that µ(Vρ) < rρ for all ρ ⊆ σ.

Proof. The proof is awkward but straightforward.

Theorem 4.5. Let f : {0, 1}∗ → [−∞,∞] be computable. Suppose X is
strongly f -random and Turing reducible to Y where Y is Martin-Löf random
relative to Z. Then X is strongly f -random relative to Z.

Proof. Let Φ be a partial recursive functional such that X = ΦY . Consider the

Levin system Vσ = {Y | ΦY ⊇ σ}. By Lemma 4.2 let c be such that µ(VX↾n) <
2c−f(X↾n) for all n. Applying Lemma 4.4 with rσ = 2c−f(σ) we obtain a Levin
system Ṽσ such that µ(Ṽσ) ≤ 2c−f(σ) for all σ, and Y ∈ VX↾n = ṼX↾n for all n.
Now suppose X is not strongly f -random relative to Z, say X ∈

⋂
iJA

Z
i K where

AZ
i is uniformly Z-r.e. and pwtf (A

Z
i ) ≤ 2−i. Let WZ

i =
⋃

σ∈AZ

i

Ṽσ. Clearly

WZ
i is uniformly Σ0,Z

1 . Because X ∈
⋂

iJA
Z
i K and Y ∈

⋂
n VX↾n =

⋂
n ṼX↾n, we
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have Y ∈
⋂

iW
Z
i . Let Pi = ÂZ

i = {minimal elements of AZ
i }. Because Ṽσ is a

Levin system, we have WZ
i =

⋃
σ∈Pi

Ṽσ and hence

µ(WZ
i ) =

∑

σ∈Pi

µ(Ṽσ) ≤
∑

σ∈Pi

2c−f(σ) = 2cdwtf (Pi) ≤ 2cpwtf (A
Z
i ) ≤ 2c−i

since Pi is a prefix-free subset of AZ
i . Thus Y is not Martin-Löf random relative

to Z, Q.E.D.

Remark 4.6. In Theorem 4.5 the assumption “Y is Martin-Löf random relative
to Z” cannot be weakened to “Y is strongly f -random relative to Z.” For
example, define Z(n) = Y (2n) where Y is Martin-Löf random. Then Z is
strongly 1/2-random (indeed Martin-Löf random) and Turing reducible to Y ,
and Y is strongly 1/2-random relative to Z, but of course Z is not strongly
1/2-random relative to Z.

Theorem 4.7. For each i ∈ N let fi : {0, 1}
∗ → [−∞,∞] be computable and

let Xi ∈ {0, 1}N. Suppose ∀i (Xi is strongly fi-random). Then, we can find Z
of PA-degree such that ∀i (Xi is strongly fi-random relative to Z).

Proof. By the Kučera/Gács Theorem (see [11, Theorem 8.3.2] or [23, §3.3] or [34,
Theorem 3.8]), let Y be Martin-Löf random such that ∀i (Xi is Turing reducible
to Y ). By Theorem 1.3 let Z be of PA-degree such that Y is Martin-Löf random
relative to Z. If ∀i (Xi is strongly fi-random), it follows by Theorem 4.5 that
∀i (Xi is strongly fi-random relative to Z).

Corollary 4.8. Let f : {0, 1}∗ → [−∞,∞] be computable. If X is strongly
f -random, then X is strongly f -random relative to some PA-degree.

Proof. Apply Theorem 4.7 with Xi = X and fi = f for all i.

Even the following corollary appears to be new.

Corollary 4.9. Suppose (∀i ∈ N) (Xi is Martin-Löf random). Then, we can
find Z of PA-degree such that (∀i ∈ N) (Xi is Martin-Löf random relative to Z).

Proof. Consider f : {0, 1}∗ → [0,∞) where f(σ) = |σ| for all σ. By Remark 2.10
Xi is Martin-Löf random if and only if Xi is strongly f -random, and similarly
Xi is Martin-Löf random relative to Z if and only if Xi is strongly f -random
relative to Z. Apply Theorem 4.7 with fi = f for all i.

We end this section by presenting a kind of Borel/Cantelli Lemma for strong
f -randomness. Let us say that X is strongly BC-f -random if {i | X ∈ JAiK}
is finite whenever Ai is uniformly r.e. and

∑
i pwtf (Ai) < ∞. This notion

resembles a generalization of Tadaki’s earlier notion of Solovay D-randomness
[39, Definition 3.8].

Theorem 4.10. Let f : {0, 1}∗ → [−∞,∞] be computable. Suppose X is
strongly f -random and Turing reducible to Y where Y is Martin-Löf random
relative to Z. Then X is strongly BC-f -random relative to Z.
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Proof. Suppose X is not strongly BC-f -random relative to Z. Let AZ
i be uni-

formly Z-r.e. such that
∑

i pwtf (A
Z
i ) < ∞ and X ∈ JAZ

i K for infinitely many

i. Let Vσ, c, Ṽσ, W
Z
i , Pi be as in the proof of Theorem 4.5. For all i we have

µ(WZ
i ) ≤ 2cpwtf (A

Z
i ), hence

∑
i µ(W

Z
i ) ≤ 2c

∑
i pwtf (A

Z
i ) < ∞. On the other

hand, for all i such that X ∈ JAZ
i K we have Y ∈ WZ

i , so Y ∈ WZ
i for infinitely

many i. Relativizing Solovay’s Lemma [34, Lemma 3.5] to Z, we see that Y is
not Martin-Löf random relative to Z, Q.E.D.

Theorem 4.11. Let f : {0, 1}∗ → [−∞,∞] be computable. If X is strongly
f -random, then X is strongly BC-f -random relative to some PA-degree.

Proof. By the Kučera/Gács Theorem, let Y be Martin-Löf random such that
X is Turing reducible to Y . By Theorem 1.3 let Z be of PA-degree such that Y
is Martin-Löf random relative to Z. If X is strongly f -random, Theorem 4.10
tells us that X is strongly BC-f -random relative to Z, Q.E.D.

Corollary 4.12. Let f : {0, 1}∗ → [−∞,∞] be computable. Then strong
f -randomness is equivalent to strong BC-f -randomness.

Proof. Trivially strong BC-f -randomness implies strong f -randomness. The
converse is immediate from Theorem 4.11.

Remark 4.13. It is possible to give a direct proof of Corollary 4.12 resembling
the standard proof of Solovay’s Lemma [34, Lemma 3.5].

5 Propagation of non-K-triviality

Recall from [11, 23] that X is LR-reducible to Z, abbreviated X ≤LR Z, if
∀Y ((Y Martin-Löf random relative to Z) ⇒ (Y Martin-Löf random relative to
X)). The concept of LR-recucibility has been very useful [20, 34, 35] in the
reverse mathematics of measure-theoretic regularity. It is also known (see [11,
Chapter 11] or [23, Chapter 5]) that LR-reducibility can be used to characterize
K-triviality. Namely, X is K-trivial if and only if X ≤LR 0.

From our point of view in this paper, it seems reasonable to view non-K-
triviality as a kind of partial randomness notion. Accordingly, we now present
appropriate analogs of our main propagation results, Theorems 4.5 and 4.7. Our
results in this section are easy consequences of previously known characteriza-
tons of K-triviality.

Theorem 5.1. Suppose X is Turing reducible to Y where Y is Martin-Löf
random relative to Z. Then X �LR 0 implies X �LR Z.

Proof. Since X �LR 0, it follows by [11, Chapter 11] or [23, Chapter 5] that
X is not a base for Martin-Löf randomness. In particular, since X is Turing
reducible to Y , Y is not Martin-Löf random relative to X . But then, since Y is
Martin-Löf random relative to Z, we have X �LR Z, Q.E.D.
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Theorem 5.2. Suppose Xi �LR 0 for all i ∈ N. Then, we can find Z of
PA-degree such that Xi �LR Z for all i ∈ N.

Proof. For each i let Yi be Martin-Löf random but not Martin-Löf random
relative to Xi. By Corollary 4.9 let Z be of PA-degree such that ∀i (Yi is Martin-
Löf random relative to Z). It follows that ∀i (Xi �LR Z), Q.E.D.

Remark 5.3. In Theorems 5.1 and 5.2, the conclusion X �LR Z implies that
X ⊕ Z �LR Z, i.e., X is not K-trivial relative to Z. On the other hand, results
such as Theorems 1.3 and 4.7 and 5.2 bear an obvious resemblance to the well
known GKT Theorem (see Gandy/Kreisel/Tait [13] or [18, Theorem 2.5] or
[31, Theorem VIII.2.24]). Indeed, Theorem 5.2 is just the GKT Theorem with
Turing reducibility replaced by LR-reducibility.

6 Propagation of diagonal nonrecursiveness

Let {n} denote the partial recursive functional with index n. Let DNR be the set
of functions f : N → N which are diagonally nonrecursive, i.e., f(n) 6= {n}(n)
for all n. Known results concerning diagonal nonrecursiveness may be found
in [1, 17, 19, 32]. We also consider relative DNR-ness: DNRZ = {f ∈ NN |
∀n (f(n) 6= {n}Z(n))}. The purpose of this section is to obtain propagation
results for diagonal nonrecursiveness.

Theorem 6.1. Suppose there exists a DNR function which is Turing reducible
to X . Suppose also that X is Turing reducible to Y where Y is Martin-Löf
random relative to Z. Then there exists a DNRZ function which is Turing
reducible to X .

In order to prove Theorem 6.1 we need the following lemma, which is a
variant of the Parametrized Recursion Theorem. In stating and proving our
lemma, we shall use standard recursion-theoretic notation. In particular, for
any expression E we write E↓ to mean that E is defined, and E↑ to mean that
E is undefined. We also write E1 ≃ E2 to mean that either (E1↓ and E2↓ and
E1 = E2) or (E1↑ and E2↑). Via Gödel numbering, we identify finite sequences
of positive integers with positive integers. We write f ≤T X to mean that f is
Turing reducible to X .

Lemma 6.2. Let Θ(n, j, σ,−) be a partial recursive functional. Then, we can
find a primitive recursive function p(n, j) such that

{p(n, j)}(−) ≃ Θ(n, j, 〈p(n, i) | i ≤ j〉,−)

for all n, j,−.

Proof. By the Parametrized Recursion Theorem, let q be a primitive recursive
function such that {q(n, j, σ)}(−) ≃ Θ(n, j, σa〈q(n, j, σ)〉,−) for all n, j, σ,−.
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Define p primitive recursively by letting p(n, j) = q(n, i, 〈p(n, i) | i < j〉) for all
n, j. We then have

{p(n, j)}(−) ≃ {q(n, j, 〈p(n, i) | i < j〉)}(−)

≃ Θ(n, j, 〈p(n, i) | i < j〉a〈q(n, j, 〈p(n, i) | i < j〉)〉,−)

≃ Θ(n, j, 〈p(n, i) | i < j〉a〈p(n, j)〉,−)

≃ Θ(n, j, 〈p(n, i) | i ≤ j〉,−)

and this proves our lemma.

We now prove Theorem 6.1.

Proof of Theorem 6.1. Let f ∈ NN be DNR and ≤T X . Then f ≤T Y so let
Φ be a partial recursive functional such that f = ΦY , i.e., f(n) = Φ(Y, n) for
all n. As in §4 let µ be the fair-coin probability measure on {0, 1}N. Define a

partial recursive function θ(n, j, σ) ≃ some m such that µ({Y | ΦY (σ(j))↓ =

m and (∀i < j) (ΦY (σ(i))↓ 6= {σ(i)}(σ(i))↓)}) > 2−n. Apply Lemma 6.2 to
obtain a primitive recursive function p(n, j) such that {p(n, j)}(p(n, j)) ≃ some

m such that µ(Vn,j,m) > 2−n where Vn,j,m = {Y | ΦY (p(n, j))↓ = m and

(∀i < j) (ΦY (p(n, i))↓ 6= {p(n, i)}(p(n, i))↓)}. Thus {p(n, j)}(p(n, j))↓ implies
µ(Vn,j) > 2−n where Vn,j = Vn,j,{p(n,j)}(p(n,j)). On the other hand, i 6= j
implies Vn,i ∩ Vn,j = ∅ so for each n there is at least one j ≤ 2n such that
{p(n, j)}(p(n, j))↑.

Let Ψ be a partial recursive functional defined by

ΨY (n) ≃ 〈ΦY (p(n, i)) | i ≤ 2n〉

for all n. In particular we have g ∈ NN defined by

g(n) = ΨY (n) = 〈f(p(n, i)) | i ≤ 2n〉

for all n. Clearly g ≤T f ≤T X , so it will suffice to prove that g(n) 6= {n}Z(n)
for all but finitely many n.

Let UZ
n = {Y | ΨY (n)↓ = {n}Z(n)↓}. Clearly UZ

n is uniformly Σ0,Z
1 . Given

a rational number r, let UZ
n [r] be UZ

n enumerated so long as its µ-measure is ≤ r.

Thus UZ
n [r] is uniformly Σ0,Z

1 and µ(UZ
n [r]) ≤ r. Moreover, UZ

n [r] = UZ
n if and

only if µ(UZ
n ) ≤ r. Since Y is Martin-Löf random, it follows by Solovay’s Lemma

[34, Lemma 3.5] that Y /∈ UZ
n [2−n] for all but finitely many n. Therefore, it will

suffice to prove g(n) 6= {n}Z(n) for all such n.
Supposing otherwise, we would have ΨY (n) = g(n) = {n}Z(n), hence

Y ∈ UZ
n , hence µ(UZ

n ) > 2−n. Moreover, for all Y ∈ UZ
n we would have

ΨY (n) = {n}Z(n) = g(n), hence ΦY (p(n, i)) = f(p(n, i)) 6= {p(n, i)}(p(n, i)) for
all i ≤ 2n. Let j ≤ 2n be such that (∀i < j) ({p(n, i)}(p(n, i))↓). Then UZ

n ⊆
Vn,j,f(p(n,j)), hence µ(Vn,j,f(p(n,j))) ≥ µ(UZ

n ) > 2−n, hence {p(n, j)}(p(n, j))↓,
so by induction on j we see that {p(n, j)}(p(n, j))↓ holds for all j ≤ 2n. This
contradiction completes the proof.
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Theorem 6.3. Let Q be a nonempty Π0
1 subset of {0, 1}N. If (∀i ∈ N) (∃f ∈

DNR) (f ≤T Xi), then (∃Z ∈ Q) (∀i ∈ N) (∃g ∈ DNRZ) (g ≤T Xi).

Proof. By the Kučera/Gács Theorem (see [11, Theorem 8.3.2] or [23, §3.3] or
[34, Theorem 3.8]), let Y be Martin-Löf random such that ∀i (Xi ≤T Y ). By
Theorem 1.2 let Z ∈ Q be such that Y is Martin-Löf random relative to Z. If
∀i ∃f (f ∈ DNR and f ≤T Xi), it follows by Theorem 6.1 that ∀i ∃g (g ∈ DNRZ

and g ≤T Xi).

Corollary 6.4. Let Q be a nonempty Π0
1 subset of {0, 1}N. If there exists a

DNR function which is Turing reducible to X , then for some Z ∈ Q there exists
a DNRZ function which is Turing reducible to X .

Proof. This is the special case of Theorem 6.3 with Xi = X for all i ∈ N.

Theorem 6.5. Suppose (∀i ∈ N) (∃f ∈ DNR) (f ≤T Xi). Then, there exists Z
of PA-degree such that (∀i ∈ N) (∃g ∈ DNRZ) (g ≤T Xi).

Proof. In Theorem 6.3 let Q be the Π0
1 set consisting of all completions of first-

order Peano arithmetic.

Corollary 6.6. If there exists a DNR function which is Turing reducible to X ,
then for some Z of PA-degree there exists a DNRZ function which is Turing
reducible to X .

Proof. In Corollary 6.4 let Q be the Π0
1 set consisting of all completions of

first-order Peano arithmetic.

Remark 6.7. As in [32, §10] and [36, §2.2], let C be a “nice” class of recursive
functions. For example, C could be the class of all recursive functions, or the
class of primitive recursive functions, or the class of recursive functions up to
level α of the transfinite Ackermann hierarchy for some limit ordinal α ≤ ε0. A
function f : N → N is said to be C-bounded if (∃F ∈ C)∀n (f(n) < F (n)). In
particular, f is recursively bounded if it is C-bounded where C = the class of
all recursive functions. Our proofs above show that Theorems 6.1 and 6.3 and
6.5 and Corollaries 6.4 and 6.6 also hold with “DNR” replaced by “C-bounded
DNR.” It suffices to note that, in our proof of Theorem 6.1, if f is C-bounded
then so is g. See also the refinements mentioned in Remarks 7.8 and 7.9 below.

We end this section by presenting an alternative proof of Corollary 6.4.

Alternative proof of Corollary 6.4. Let N∗ be the set of finite sequences of pos-
itive integers. For each σ ∈ N∗ let

Qσ = {Z ∈ Q | (∀n < |σ|) (σ(n) 6= {n}Z(n))}

where |σ| = the length of σ. Clearly σ ⊆ τ implies Qσ ⊇ Qτ . By the
Parametrization or S-m-n Theorem, let p(n, σ) be a primitive recursive func-
tion such that for all m, {p(n, σ)}(p(n, σ)) = m if and only if {n}Z(n) = m for
all Z ∈ Qσ. Let f ≤T X be a DNR function. Define g ≤T X recursively by
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letting g(n) = f(p(n, 〈g(i) | i < n〉)) for all n. We are going to show that g is
DNR relative to some Z ∈ Q.

We claim that Q〈g(i)|i<n〉 6= ∅ for all n. To begin with, we have Q〈〉 = Q 6= ∅.
Assume inductively that Q〈g(i)|i<n〉 6= ∅. We shall prove that Q〈g(i)|i≤n〉 6= ∅.
There are two cases. If {p(n, 〈g(i) | i < n〉)}(p(n, 〈g(i) | i < n〉)) = m, we have
{n}Z(n) = m for all Z ∈ Q〈g(i)|i<n〉, but g(n) = f(p(n, 〈g(i) | i < n〉)) 6= m since
f is DNR. ThusQ〈g(i)|i≤n〉 = Q〈g(i)|i<n〉 6= ∅. If {p(n, 〈g(i) | i < n〉)}(p(n, 〈g(i) |
i < n〉)) is undefined, there exists Z ∈ Q〈g(i)|i<n〉 such that {n}Z(n) 6= g(n),
and then Z belongs to Q〈g(i)|i≤n〉. This proves our claim.

By compactness, our claim implies that
⋂∞

n=0 Q〈g(i)|i<n〉 6= ∅. Moreover,
from the definition of Q〈g(i)|i<n〉 we see that g is DNR relative to any Z ∈⋂∞

n=0 Q〈g(i)|i<n〉. This completes the proof.

Remark 6.8. Our alternative proof of Corollary 6.4 is more constructive than
the previous proof via Theorem 6.1 and the Kučera/Gács Theorem. In par-
ticular, the alternative proof can be formalized in WKL0 (see [31]) while the
previous proof cannot.

There are some issues here which are interesting from the viewpoint of reverse
mathematics [31]. For example, consider the following statement.

Let Q be a nonempty Π0
1 subset of {0, 1}

N. If X1 and X2 are Martin-
Löf random, there exists Z ∈ Q such that X1 and X2 are Martin-Löf
random relative to Z.

By Corollary 4.9 this statement is true, and from the truth of the statement it
follows easily that the statement is true in all ω-models of WKL0. Moreover, we
conjecture that the statement is provable in WKL0. On the other hand, by [2,
Theorem 2.1] together with [38], the following special case of the Kučera/Gács
Theorem is false in all ω-models of WKL0 except those which contain 0(1) = the
Turing jump of 0.

If X1 and X2 are Martin-Löf random, there exists a Martin-Löf
random Y such that X1 ≤T Y and X2 ≤T Y .

7 Propagation of autocomplexity

In this section we prove propagation results for autocomplexity and complexity.
We also obtain a characterization of autocomplexity in terms of f -randomness
and strong f -randomness. With this characterization plus [19, Theorem 2.3],
we see considerable overlap between the propagation results of this section and
those of §4 and §6.

Definition 7.1.

1. Following [19] we define X ∈ {0, 1}N to be autocomplex if there exists an
unbounded function h : N → N such that h ≤T X and h(n) ≤ KS(X↾n)
for all n. Here KS denotes simple Kolmogorov complexity [40], also known
as plain complexity [11, 23].
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2. Following [4] and [15] and [19], we define X ∈ {0, 1}N to be complex if
there exists an unbounded computable function h : N → N such that
h(n) ≤ KS(X↾n) for all n.

Remark 7.2. By [40, §4.3.1] there exist constants c1 and c2 such that KS(σ) ≤
KP(σ) + c1 ≤ KS(σ) + 3 log2 |σ| + c2 and KA(σ) ≤ KP(σ) + c1 ≤ KA(σ) +
3 log2 |σ| + c2 for all σ ∈ {0, 1}∗. These inequalities imply that the distinctions
among KS and KP and KA are immaterial for some purposes. In particular, we
can replace KS in Definition 7.1 by KP or KA.

We begin with autocomplexity.

Theorem 7.3. The following are pairwise equivalent.

1. X is autocomplex.

2. X is f -random for some computable f : {0, 1}∗ → N such that {f(X↾n) |
n ∈ N} is unbounded.

3. X is strongly f -random for some computable f : {0, 1}∗ → N such that
{f(X↾n) | n ∈ N} is unbounded.

Proof. The equivalence 2 ⇔ 3 is clear in view of Remark 7.2.
To prove 2 ⇒ 1, suppose 2 holds via f . By Theorem 2.6 X is f -complex, so

let c ∈ N be such that KP(X↾n) ≥ f(X↾n)− c for all n. Then for all n we have
KP(X↾n) ≥ h(n) where h(n) = max(1, f(X↾n)− c). Clearly h ≤T X (in fact h
is Lipschitz computable from X) and h is unbounded, so it follows by Remark
7.2 that X is autocomplex, i.e., 1 holds.

It remains to prove 1 ⇒ 2. Suppose X is autocomplex. By Remark 7.2 let
h : N → N be unbounded such that h ≤T X and h(n) ≤ KP(X↾n) for all n. Let
Φ be a partial recursive functional such that h = ΦX . Consider the primitive
recursive function f : {0, 1}∗ → N defined by f(σ) = max{p(σ, n) | n ≤ |σ|}
where p(σ, n) = Φσ

|σ|(n) if Φσ
|σ|(n)↓, otherwise p(σ, n) = 1. Then for all n

and all sufficiently large m ≥ n we have h(n) = p(X↾m,n) ≤ f(X↾m). Since
{h(n) | n ∈ N} is unbounded, it follows that {f(X↾m) | m ∈ N} is unbounded.
Consider the primitive recursive function q(σ) = the least n ≤ |σ| such that
f(σ) = p(σ, n). Let c be a constant such that KP(σ↾q(σ)) ≤ KP(σ) + c for all
σ. Then for all m we have KP(X↾m)+ c ≥ KP(X↾q(X↾m)) ≥ h(X↾q(X↾m)) ≥
p(X↾m, q(X↾m)) = f(X↾m) so X is f -complex. It follows by Theorem 2.6 that
X is f -random. This completes the proof.

Theorem 7.4.

1. If X is autocomplex and ≤T Y where Y is Martin-Löf random relative to
Z, then X is autocomplex relative to Z.

2. If (∀i ∈ N) (Xi is autocomplex), there exists Z of PA-degree such that
(∀i ∈ N) (Xi is autocomplex relative to Z).
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First proof. Part 1 is immediate from Theorems 4.5 and 7.3. Part 2 is immediate
from Theorems 4.7 and 7.3.

Second proof. By Kjos-Hanssen/Merkle/Stephan [19, Theorem 2.3] we know
that X is autocomplex if and only if there exists a DNR function which is
Turing reducible to X . Modulo this result, parts 1 and 2 are equivalent to
Theorems 6.1 and 6.5 respectively.

Remark 7.5. Yet another proof of Theorem 7.4 was obtained independently
by Bienvenu [3] who had seen it conjectured in an earlier draft of the present
paper. The earlier draft included Theorems 4.5 and 4.7, as well as Corollary 6.4
with our alternative proof, but it did not include Theorem 6.1 or 6.5 or 7.3.

We now turn to propagation results for complexity. Let us define f :
{0, 1}∗ → [−∞,∞] to be length-invariant if ∀σ ∀τ (|σ| = |τ | ⇒ f(σ) = f(τ)).

Theorem 7.6. The following are pairwise equivalent.

1. X is complex.

2. X is f -random for some computable f : {0, 1}∗ → N which is unbounded
and length-invariant.

3. X is strongly f -random for some computable f : {0, 1}∗ → N which is
unbounded and length-invariant.

Proof. This is immediate from Theorems 2.6 and 2.8 and Remark 7.2.

Theorem 7.7.

1. If X is complex and ≤T Y where Y is Martin-Löf random relative to Z,
then X is complex relative to Z.

2. If (∀i ∈ N) (Xi is complex), there exists Z of PA-degree such that (∀i ∈
N) (Xi is complex relative to Z).

Proof. Part 1 is immediate from Theorems 4.5 and 7.6. Part 2 is immediate
from Theorems 4.7 and 7.6.

Remark 7.8. By [19, Theorem 2.3] we know that X is complex if and only if
some DNR function is truth-table reducible to X . Consequently, the Turing de-
grees of complex X ’s are the same as the Turing degrees of recursively bounded
DNR functions. And of course, the Turing degrees of autocomplex X ’s are the
same as the Turing degrees of DNR functions. Thus Theorems 4.5 and 4.7 may
be viewed as far-reaching refinements not only of Theorems 7.4 and 7.7 but also
of Theorems 6.1–6.5 and Remark 6.7.

Remark 7.9. By [1, Theorem 1.8] there exists an autocomplex X such that
no complex Y is Turing reducible to X . Within the class of complex X ’s, much
more refined results of the same kind have been obtained by Hudelson [16]
generalizing the main result of Miller [21, Theorem 4.1]. See also Remarks 3.7
and 3.8 above, as well as [36, §§2.1–2.3, Figure 1].
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8 Vehement f-randomness

In this section we define vehement f -randomness and discuss its relationship
with strong f -randomness. The notion of vehement f -randomness was originally
introduced by Kjos-Hanssen (unpublished, but see [26]). We prove that, under
a convexity hypothesis on f , vehement f -randomness is equivalent to strong
f -randomness. Our result is a generalization of known results due to Reimann
[26, Corollary 21] and Miller [21, Lemma 3.3].

Definition 8.1. Given f : {0, 1}∗ → [−∞,∞], the vehement f -weight of A ⊆
{0, 1}∗ is defined as vwtf (A) = inf{dwtf (S) | JAK ⊆ JSK}.

Remark 8.2. Note that JAK ⊆ JBK implies vwtf (A) ≤ vwtf (B). In particular,
vwtf (A) depends only on JAK.

Lemma 8.3. For all A we have vwtf (A) ≤ dwtf (Â) ≤ pwtf (A).

Proof. The first inequality holds because JAK ⊆ JÂK. The second inequality

holds because Â is a prefix-free subset of A.

Definition 8.4. Fix f : {0, 1}∗ → [−∞,∞]. A good cover of A is a set B such
that JAK ⊆ JBK and pwtf (B) ≤ vwtf (A). It follows by Remark 8.2 and Lemma

8.3 that vwtf (A) = vwtf (B) = dwtf (B̂) = pwtf (B).

Lemma 8.5. Suppose B is a good cover of A. Given F ⊆ B̂ let us write
AF = {σ ∈ A | JF K ⊇ JσK} and BF = {τ ∈ B | JF K ⊇ JτK}. Then BF is a good
cover of AF .

Proof. Clearly B̂F = F , hence JAF K ⊆ JF K = JB̂F K = JBF K. In order to show
that BF is a good cover of AF , it remains to show that dwtf (P ) ≤ dwtf (S)

whenever P ⊆ BF is prefix-free and JAF K ⊆ JSK. Letting G = B̂ \ F we see
that P ∩G = ∅ and P ∪G is a prefix-free subset of B and JAK = JAF K∪ JAGK ⊆
JSK ∪ JGK = JS ∪ GK. Thus dwtf (P ) + dwtf (G) = dwtf (P ∪ G) ≤ pwtf (B) ≤
vwtf (A) ≤ dwtf (S ∪ G) ≤ dwtf (S) + dwtf (G), hence dwtf (P ) ≤ dwtf (S),
Q.E.D.

Remark 8.6. Let B be a good cover of A, and suppose τ is such that JBK 6⊇
JτK. Then obviously no initial segment of τ belongs to B. In other words,

τ ∈ B̂ ∪ {τ}. Letting F = B̂ ∪ {τ} \ {τ} and applying Lemma 8.5, we see that

B̂F = F and BF is a good cover of AF .

Definition 8.7. We define f : {0, 1}∗ → [−∞,∞] to be convex if wtf (σ) ≤
wtf (σ

a〈0〉) + wtf (σ
a〈1〉) for all σ ∈ {0, 1}∗. Equivalently, wtf (σ) ≤ dwtf (S)

for all σ ∈ {0, 1}∗ and all S ⊆ {0, 1}∗ such that JSK = JσK.

Lemma 8.8. Assume that f is convex. Suppose B is a good cover of A but

not of A′ = A ∪ {σ}. Choose τ ⊆ σ so as to minimize dwtf (B̂ ∪ {τ}). Then
B′ = B ∪ {τ} is a good cover of A′.
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Proof. Obviously JB′K ⊇ JA′K so it remains to prove that dwtf (P
′) ≤ dwtf (S

′)
whenever P ′ ⊆ B′ is prefix-free and JA′K ⊆ JS′K.

Since JσK ⊆ JA′K ⊆ JS′K, let τ∗ ⊆ σ be as short as possible such that
Jτ∗K ⊆ JS′K. Obviously S′ contains no proper initial segment of τ∗. Hence
Jτ∗K = JS∗K for some S∗ ⊆ S′. It follows by Definition 8.7 that wtf (τ

∗) ≤
dwtf (S

∗). Therefore, replacing S′ by (S′ \ S∗) ∪ {τ∗}, we may safely assume
that τ∗ ∈ S′.

Since JσK 6⊆ JBK and τ ⊆ σ and τ∗ ⊆ σ, we obviously have JτK 6⊆ JBK
and Jτ∗K 6⊆ JBK. Applying Remark 8.6 to τ and to τ∗, we obtain sets F =

B̂ ∪ {τ} \ {τ} and F ∗ = ̂B ∪ {τ∗} \ {τ∗}. In particular, since JAK ⊆ JS′K we
have JAF∗K = JAK \ Jτ∗K ⊆ JS′K \ Jτ∗K ⊆ JS′ \ {τ∗}K. Moreover, by our choice of

τ we have dwtf (B̂ ∪ {τ}) ≤ dwtf ( ̂B ∪ {τ∗}).
We are now ready to complete the proof of Lemma 8.8. If τ /∈ P ′ we have

P ′ = P ⊆ B, hence dwtf (P ) ≤ pwtf (B) ≤ vwtf (A) ≤ dwtf (S
′) and we are

done. Suppose now that τ ∈ P ′. Then P ′ = P ∪ {τ} where P ⊆ BF . Thus we
have

dwtf (P
′) = dwtf (P ) + wtf (τ)

≤ pwtf (BF ) + wtf (τ)

= dwtf (F ) + wtf (τ)

= dwtf (B̂ ∪ {τ})

≤ dwtf ( ̂B ∪ {τ∗})

= dwtf (F
∗) + wtf (τ

∗)

= vwtf (AF∗) + wtf (τ
∗)

≤ dwtf (S
′ \ {τ∗}) + wtf (τ

∗)

= dwtf (S
′)

and again we are done.

Definition 8.9. Given f : {0, 1}∗ → [−∞,∞] define

Lf : {(P1, P2) | P1, P2 are finite and prefix-free} → {0, 1}

by

Lf(P1, P2) =

{
1 if dwtf (P1) < dwtf (P2),

0 otherwise.

We say that f is strongly computable if both f and Lf are computable. This
is often the case, e.g., if f is computable and integer-valued as in Lemma 3.2.
Note also that Lemma 3.3 depends only on strong computability.

Lemma 8.10. Let f be strongly computable and convex. If A is r.e., we can
effecively find an r.e. set B such that B is a good cover of A.
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Proof. For n = 0, 1, 2, . . . let An consist of the first n elements in some fixed
recursive enumeration of A. Assume inductively that we have found a finite set
Bn which is a good cover of An. Let An+1 = An ∪ {σn}. If JσnK ⊆ JBnK let
Bn+1 = Bn. Otherwise, use strong computability to effectively choose τn ⊆ σn

which minimizes dwtf ( ̂Bn ∪ {τn}). Lemma 8.8 then implies that Bn+1 = Bn ∪
{τn} is a good cover of An+1. Finally let B =

⋃∞
n=1 Bn. Clearly B is r.e. and

JAK ⊆ JBK, so it remains to prove that dwtf (P ) ≤ vwtf (A) for all prefix-free
sets P ⊆ B. But clearly dwtf (P ) = sup{dwtf (P0) | P0 is a finite subset of P},
so it suffices to consider finite prefix-free sets. If P ⊆ B is finite and prefix-free,
let n be such that P ⊆ Bn. Then dwtf (P ) ≤ pwtf (Bn) ≤ vwtf (An) ≤ vwtf (A),
Q.E.D.

Lemma 8.11. Let f be strongly computable and convex. If A is r.e., we can
effecively find an r.e. set B such that JAK ⊆ JBK and pwtf (B) ≤ vwtf (A).

Proof. This is a restatement of Lemma 8.10.

Definition 8.12. Assume that f : {0, 1}∗ → [−∞,∞] is computable. We
define X ∈ {0, 1}∗ to be vehemently f -random if X /∈

⋂
iJAiK whenever Ai is

uniformly r.e. such that vwtf (Ai) ≤ 2−i.

Theorem 8.13. Let f : {0, 1}∗ → [−∞,∞] be strongly computable and convex.
Then vehement f -randomness is equivalent to strong f -randomness.

Proof. Suppose X is not strongly f -random, say X ∈
⋂

iJAiK where Ai is uni-
formly r.e. and pwtf (Ai) ≤ 2−i. By Lemma 8.3 we have vwtf (Ai) ≤ pwtf (Ai) ≤

2−i so X is not vehemently f -random.
Now suppose X is not vehemently f -random, say X ∈

⋂
iJAiK where Ai is

uniformly r.e. and vwtf (Ai) ≤ 2−i. By Lemma 8.11 we can find uniformly r.e.
Bi such that JAiK ⊆ JBiK and pwtf (Bi) ≤ vwtf (Ai) ≤ 2−i. ClearlyX ∈

⋂
iJBiK,

so X is not strongly f -random.

We now sketch how to replace “strongly computable” by “computable.”

Lemma 8.14. Let f be computable and convex. Given ǫ > 0 we can effectively
find an f which is strongly computable and convex and such that f(σ) < f(σ) <
f(σ) + ǫ for all σ.

Proof. Let Q be the set of rational numbers. By a straightforward but awkward
construction, we can find f : {0, 1}∗ → Q which is computable and convex and
such that f(σ) < f(σ) < f(σ) + ǫ for all σ. From the Q-valuedness of f it
follows easily that f is strongly computable.

Lemma 8.15. Let f be computable and convex. Given δ > 0 and an r.e. set
A, we can effectively find an r.e. set B such that JAK ⊆ JBK and pwtf (B) ≤
(1 + δ) · vwtf (A).

Proof. Let f be as in Lemma 8.14 with ǫ = log2(1 + δ). If A is r.e., apply
Lemma 8.11 to find an r.e. set B such that JAK ⊆ JBK and pwtf (B) ≤ vwtf (A).
It is then easy to check that pwtf (B) ≤ (1 + δ) · vwtf (A).
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Theorem 8.16. Let f : {0, 1}∗ → [−∞,∞] be computable and convex. Then
vehement f -randomness is equivalent to strong f -randomness.

Proof. Proceed as in the proof of Theorem 8.13 but instead of Lemma 8.11 use
Lemma 8.15 with δ = 1.

9 Propagation of vehement f-randomness

In this section we present an alternative proof of one of our main results con-
cerning propagation of strong f -randomness, Corollary 4.8. Our alternative
proof proceeds via vehement f -randomness and depends heavily on Remark
8.2. Our alternative proof has the advantage of being a direct generalization of
one of the known proofs (see [10, Proposition 7.4]) of the corresponding result
for Martin-Löf randomness, Theorem 1.2.

Theorem 9.1. Let f : {0, 1}∗ → [−∞,∞] be computable and convex. Let
Q be a nonempty Π0

1 subset of {0, 1}N. If X is strongly f -random, then X is
strongly f -random relative to some Z ∈ Q.

Proof. Relativizing Corollary 2.9 let SZ
i be a universal test for strong f -randomness

relative to Z. In other words, SZ
i is uniformly r.e. relative to Z and pwtf (S

Z
i ) ≤

2−i and ∀X ∀Z (X /∈
⋂

iJS
Z
i K ⇔ X is strongly f -random relative to Z). By

Lemma 8.3 we have vwtf (S
Z
i ) ≤ pwtf (S

Z
i ) ≤ 2−i so by Theorem 8.16 SZ

i is
also a universal test for vehement f -randomness relative to Z. Thus, letting
UZ
i = JSZ

i K, we have

∀X ∀Z (X /∈
⋂

i U
Z
i ⇔ X is vehemently f -random relative to Z)

and UZ
i is uniformly Σ0

1 relative to Z.

Let Ũi =
⋂

Z∈Q UZ
i . Since Q is Π0

1, it follows by compactness that Ũi is

uniformly Σ0
1. Therefore, let S̃i be uniformly r.e. such that JS̃iK = Ũi. For any

Z ∈ Q we have Ũi ⊆ UZ
i , i.e., JS̃iK ⊆ JSZ

i K, so vwtf (S̃i) ≤ vwtf (S
Z
i ) ≤ 2−i

by Remark 8.2. Thus S̃i is a test for vehement f -randomness. In particular we
have ∀X (X vehemently f -random ⇒ X /∈

⋂
i Ũi).

Suppose now that X is strongly f -random. By Theorem 8.16 X is vehe-
mently f -random, so

X /∈
⋂

i

Ũi =
⋂

i

⋂

Z∈Q

UZ
i =

⋂

Z∈Q

⋂

i

UZ
i .

Let Z ∈ Q be such that X /∈
⋂

i U
Z
i . Then X is vehemently f -random relative

to Z, so by Theorem 8.16 X is strongly f -random relative to Z, Q.E.D.

Theorem 9.2. Let f : {0, 1}∗ → [−∞,∞] be computable and convex. Let Q
be a nonempty Π0

1 subset of {0, 1}N. If X is vehemently f -random, then X is
vehemently f -random relative to some Z ∈ Q.

Proof. This is immediate from Theorems 8.16 and 9.1.
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10 Other characterizations of strong f-randomness

In this section we present two new characterizations of strong f -randomness.
One of our new characterizations is in terms of f -randomness relative to a PA-
degree. The other is in terms of what we call provable noncomplexity.

Theorem 10.1. Let f : {0, 1}∗ → [−∞,∞] be computable. The following are
pairwise equivalent.

1. X is strongly f -random.

2. X is strongly f -random relative to some PA-degree.

3. X is f -random relative to some PA-degree.

Proof. The implication 1 ⇒ 2 follows from Theorem 4.7. The implication 2 ⇒ 3
is trivial. It remains to prove 3 ⇒ 1. Assume that 1 fails, i.e., X is not strongly
f -random. Let Ai, i ∈ N be uniformly r.e. such that pwtf (Ai) ≤ 2−i and

X ∈
⋂

iJAiK. For each i let Âi be the set of minimal elements of Ai. Let Q
be the set of sequences Zi, i ∈ N such that Zi ⊆ {0, 1}∗ and dwtf (Zi) ≤ 2−i

and ∀σ (σ ∈ Ai ⇒ ∃ρ (ρ ⊆ σ and ρ ∈ Zi)). The sequence Âi, i ∈ N belongs to
Q, so Q is nonempty. Moreover, Q may be viewed as a Π0

1 set in the Cantor
space. Therefore, given Z of PA-degree, we can find a sequence Bi, i ∈ N which
is Turing reducible to Z and belongs to Q. From the definition of Q it follows
that dwtf (Bi) ≤ 2−i and X ∈

⋂
iJBiK. Thus X is not f -random relative to Z.

This holds for all PA-degrees, so 3 fails, Q.E.D.

For our second characterization, let PA denote first-order Peano arithmetic.
Within PA we define prefix-free complexity KP : {0, 1}∗ → N and a priori

complexity KA : {0, 1}∗ → (0,∞) as usual. Also within PA we define KP(j) =

prefix-free complexity relative to 0(j), and KA(j) = a priori complexity relative
to 0(j), where 0(j) = the jth Turing jump of 0. Let f : {0, 1}∗ → N and
X ∈ {0, 1}N be arbitrary.

Definition 10.2. Let K stand for KP or KA, and let Z be a Turing oracle.
We define X to be KZ-f -complex if ∃c ∀n (KZ(X↾n) > f(X↾n)− c)).

Definition 10.3. Let M be a nonstandard model of PA. We define X to be
M -f -complex if ∀r ∃c ∀n (KPr(X↾n) > f(X↾n)−c). Here r ranges overM -finite
functions r with prefix-free domain, and KPr(τ) = min{|σ| | r(σ) = τ}.

Definition 10.4. Let K stand for KP or KA or KP(j) or KA(j). Let T be a con-
sistent theory extending PA. We define X to be provably K-f -noncomplex in T
if ∀c ∃n (T ⊢ (∃m < n) (K(X↾m) < f(X↾m)− c)).

Theorem 10.5. Let K stand for KP or KA. Let T be a recursively axiomati-
zable, consistent theory extending PA. Let f : {0, 1}∗ → N and X ∈ {0, 1}N be
arbitrary. For each j ∈ N the following are pairwise equivalent.

1. X is not KZ-f -complex for any Z of PA-degree.
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2. X is not M -f -complex for any nonstandard M |= T .

3. X is provably K-f -noncomplex in some recursively axiomatizable, consis-
tent theory extending T .

4. X is provably K(j)-f -noncomplex in some recursively axiomatizable, con-
sistent theory extending T .

Proof. This is a special case of [41, Theorems 4.1 and 4.4].

Theorem 10.6. Let f : {0, 1}∗ → N be computable. Let T be a recursively
axiomatizable, consistent theory extending PA. For allX ∈ {0, 1}N the following
are pairwise equivalent.

1. X is strongly f -random.

2. X is M -f -complex for some nonstandard M |= T .

3. X is not provably KP-f -noncomplex in any recursively axiomatizable,
consistent theory extending T .

Proof. By Theorems 2.8 and 10.1 X is strongly-f -random if and only if X is
KAZ-f -complex for all Z of PA-degree. The equivalences 1 ⇔ 2 and 1 ⇔ 3 then
follow by Theorem 10.5.

Define KZ-length-complexity to mean KZ-f -complexity where f(σ) = the
length of σ, and similarly for M -length-complexity and provable KP-length-
noncomplexity.

Theorem 10.7. Let T be a recursively axiomatizable, consistent theory ex-
tending PA. For all X ∈ {0, 1}N the following are pairwise equivalent.

1. X is Martin-Löf random.

2. X is M -length-complex for some nonstandard M |= T .

3. X is not provably KP-length-noncomplex in any recursively axiomatizable,
consistent theory extending T .

Proof. This is the special case of Theorem 10.6 with f(σ) = |σ| for all σ.

Remark 10.8. By Theorem 10.5 our notion of provable length-noncomplexity
is stable under relativation to a strong oracle. Thus, letting X be Martin-Löf
random and Turing reducible to 0(1), we see that X is not KP(1)-length-complex
but not provably KP(1)-noncomplex in any recursively axiomatizable, consistent
extension T of PA. It follows that for any such T there exist τ ∈ {0, 1}∗ and

n ∈ N such that KP(1)(τ) < n but T 6⊢ KP(1)(τ) < n. Comparing this to the
celebrated Chaitin Incompleteness Theorem [7, 24], we now have a somewhat
different example of a statement which is true but not provable in T .
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11 Non-propagation of f-randomness

In this section we show that Theorems 4.5 and 4.7 and 10.6 fail if strong f -
randomness is replaced by f -randomness.

Theorem 11.1. For many f ’s, e.g., f(σ) = |σ|/2, we can find an X which is
f -random but not f -random relative to any PA-degree.

Proof. By Reimann/Stephan [28] letX be f -random but not strongly f -random.
By Theorem 10.1 X is not f -random relative to any PA-degree.

Corollary 11.2. For many f ’s, e.g., f(σ) = |σ|/2, we can find an X which
is f -random but provably KP-f -noncomplex in some recursively axiomatizable,
consistent extension of PA. Indeed, X is provably KP-f -noncomplex in some
recursively axiomatizable, consistent extension of any recursively axiomatizable,
consistent extension of PA.

Proof. By Theorem 11.1 let X be f -random but not f -random relative to any
PA-degree. The desired conclusion follows by Theorem 10.5.
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