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Abstract—Binary code analysis has attracted much attention. 

The difficulty lies in constructing a Control Flow Graph (CFG), 
which is dynamically generated and modified, such as mutations. 
Typical examples are handling dynamic jump instructions, in 
which destinations may be directly modified by rewriting loaded 
instructions on memory. In this paper, we describe a PhD project 
proposal on a hybrid approach that combines static analysis and 
dynamic testing to construct CFG from binary code. Our aim is 
to minimize false targets produced when processing indirect 
jumps during CFG construction. To evaluate the potential of our 
approach, we preliminarily compare results between our method 
and Jakstab, a state-of-the-art tool in this field.  

Keywords: binary code analysis, static analysis, dynamic 
analysis, SMT, symbolic execution, control flow graph construction 

I. INTRODUCTION  

     There are several reasons to choose binary code as a 
program analysis target. First, once source codes are lost or 
unavailable, we need to directly analyze binary codes. Third 
party modules and computer virus are such examples. Second, 
a serious issue emerges from compiling from source codes to 
binary codes. A compiler may remove certain behaviors of 
programs, hence altering its contents or even its semantics [1].   

    Recently, there are a lot of tools and prototypes introduced 
for analyzing binary code. BINCOA [2] offered a framework 
for binary code analysis. Its core technology is a refinement-
based static analysis [6] by abstract interpretation [7]. IDA Pro 
[3] is commercial software, which has been used in many 
binary analysis platforms. Remarkably, Jakstab [4][5] is a 
state-of-the-art tool in the field of binary code analysis. It 
translates binary codes to a low level intermediate language in 
an on-the-fly manner and performs further analysis 
accordingly. 

Fig.1 shows four major steps. The first step translates 
binary codes to disassembly codes. The second step builds an 
intermediate representation (IR) from the disassembly codes. 
The third step constructs the Control Flow Graph (CFG), 
whose vertices represent basic blocks of instructions and 
directed edges represent jumps in control flow [10]. Based on 
the constructed CFG, other analysis utilities like malware 
detection or security checking will be further provided.  

 

 

Fig. 1.      Common steps for binary code analysis. 

     In Fig.1, the CFG construction step plays an essential role. 
Whereas CFG construction at an imperative language level is 
a classic work, that at the binary code level still remains a 
challenging task due to the following obstacles.  

     The first challenge lies in Complex Instruction Set 
Computer (CISC) [11] architectures, such as x86. They have 
very rich instruction sets, e.g., hundreds of instructions and 
thousands of operands combination in x86 architecture [12]. 
All of them must be interpreted properly to construct a CFG. 
The second challenge lies in the lack of desirable properties of 
high level semantic structure. For instance, there are no 
function abstraction and/or type at binary code level. 
Moreover, the issues of code and data ambiguity, indirect 
branches and overlapping instructions [13] are also burden. 
Most of existing tools use static analysis with an over-
approximation, resulting in a CFG with more false targets.  

     Inspired by [29], this paper proposes a hybrid approach 
which combines static analysis and dynamic testing for 
generating CFG from binary codes. We apply standard intra-
procedural CFG generation until indirect jumps and/or 
function calls occur. Then, test data are generated to decide 
their precise destinations. Different from [29], we apply 
symbolic execution to generate appropriate test data. This 
hybrid method is neither sound nor complete, but will give a 
practically more precise CFG (even with mutation), compared 
to abstract interpretation based static analysis.  
0:  x = choice(10,15,30) 
3:  y = 4 
6:  jmp x 
10: ... 
15: ...  
20: x = x + y 
24: ... 
26: ... 
  

Fig. 2.     CFG reconstructed by over-approximation abstraction 



     

 

Fig. 3. The framework of combining static and dynamic analysis 

     The rest of the paper is organized as follows. Section II 
briefly describes a motivating example which shows problems 
of an over-approximation approach. Section III illustrates the 
overview of our hybrid framework. Section IV discusses in 
more detail our running examples to clarify the advantages of 
our method. Section V illustrates our research challenges in the 
subsequent PhD project. Section VI shows our preliminary 
evaluation. Related works are presented in Section VII, and 
Section VIII concludes the paper. 

II. MOTIVATING EXAMPLE 

     Fig.2 presents an example illustrating the drawback of the 
over-approximation approach. We consider a code fragment 
starting at Instruction 0, where variable x is given a value  
randomly picked up from a set of {10,15,30}. When we 
convert this program into an abstract form, a typical approach 
is to use an interval to represent possible values of variables. 
In this case, the abstract value of x, denoted as α(x), is 
represented as an interval of [10, 30]. 

     The major problem occurs when value of x is used as the 
target address of an indirect jump instruction at line 6. In the 
abstract program, since x can take any values in the interval of 
[10, 30], there are several other false branches which may be 
produced, illustrated as the dotted arrows in Fig.2. They come 
from an over-approximation based abstract interpretation. 

     There are many approaches to give a better abstraction. 
The false branch problem of an over-approximation is 
inevitable, and this is crucial for CFG generation of binary 
codes. For instance, mutation tries to lead such false 
branching. This issue motivates us to consider a new hybrid 
approach. 

III. THE PROPOSED FRAMEWORK 

     Fig.3 describes our framework, which consists of two 
phases: Static Analysis and Dynamic Analysis. They are 
executed alternatively until the CFG converges.   

     In this framework, a program to be analyzed is divided into 
regions. Each region is a block of instructions which contains 

no dynamic jump instructions. In the Static Analysis phase, we 
apply Symbolic Execution (SE) [14] to reconstruct execution 
paths in one region and create the corresponding sub-CFG. 
This process of SE is performed in forward manner until 
encountering an indirect branch. 

     When encountering a dynamic jump, we execute Path 
Condition Solving to solve path conditions associated with an 
execution path in the current region. Then, test-cases are 
generated to cover all execution paths. In the meantime, the 
sub-CFG of the current region will be updated.  

     Subsequently, the Dynamic Analysis phase will be 
executed. In this phase, firstly the Model Construction 
converts the CFG into an intermediate labeled transition 
system (LTS). The test-cases are executed in this intermediate 
LTS as Test-case Execution step. It allows us to verify real 
targets of dynamic jumps, which update the current CFG. If 
they jump into new areas, which are not explored yet, the 
Static Analysis phase is invoked again. Such combination of 
static and dynamic analysis is repeated until no new areas are 
discovered. 

IV. EXAMPLES 

Example I: Handling dynamic jump 

     Fig.4 shows our first example, which starts at start and 
introduces an indirect jump at Instruction 8. By static analysis, 
two execution paths leading to this dynamic jump are easily 
determined, i.e., P1 = (star→0→1→5→6→7→8) and P2 = 
(start→0→1→2→3→7→8). For an initial value α of register 
eax, the path conditions of P1 and P2 are evaluated to (α < 0) 
and (α >= 0), respectively. 

     We apply a prover to generate two test-cases 
corresponding to these path conditions, say, α1=-1 and α2=2. 
By executing the program with them, sound targets of indirect 
branches are determined to be start and Instruction 6. By 
continuing the path execution from Instruction 6, Instruction 4 
is discovered as a new target of the indirect jump at 
Instruction 8. The full CFG is illustrated in Fig.4, where the 



dotted arrows indicate new edges discovered by Dynamic 
Analysis phase.  

Example II: Combination of multiple regions and handling 
dead code 

     In this example, we extend Example I to illustrate a more 
complex scenario. Table 1 presents the program to be 
analyzed, which contains two indirect jumps at Instruction 7 
and Instruction 16. In addition, this code uses an obfuscation 
by inserting dead code from Instruction 17 to Instruction 19.  

     This example describes our idea that each executed 
dynamic jump creates a new region in the program. Figure 5 
illustrates our construction of CFG complying with this 
strategy. First, the CFG of Region 1 (corresponding to the 
code from Instruction 0 to Instruction 7) is extracted by the 
method as described in Example I. By generating test-cases 
and executing the indirect jump at Instruction 7, we discover a 
new region starting at Instruction 8. 
start: ;reset eax 
  0: cmp eax, 0 
  1: jl lthen 
lelse: 
  2: mov eax, offset start + 1 
  3: jmp lcont 
lhalt: 
  4: halt 
 
lthen: 
  5: mov eax, offset l1 + 4 
l1: 
  6: sub eax, 3 
lcont: 
  7: sub eax, 1 
  8: jmp eax 

  
 

Fig. 4.      CFG reconstructed by over-approximation abstraction. 

     It must be remarked that if we apply abstract interpretation, 
one typical method is to construct an interval covering all 
possible targets of Instruction 7, e.g., start and Instruction 8. 
Thus, it results the interval [offset lstart, offset l1 + 12] as their 
possible addresses. Since this interval also includes addresses 
of dead code instructions, the analysis generates false jumps 
from Instruction 7 to this dead code, as described in Fig.5.    
start: ;Entry point 
  0: cmp eax, 0 
  1: jl lthen1 
lelse1: 
  2: mov ax, offset start – 1 
  3: jmp lcont1 
     
lthen1: 
  4: mov ax, offset l1 – 12 
l1: 
  5: add eax, 11 
lcont1: 
  6: add eax, 1 
  7: jmp eax 
 
;;;;;; Dead code;;;; 
 17: cmp ebx,eax 
18: jz l4 
 

19: jmp eax 
;;;;; 
  
 8: cmp ebx, 0 
  9: jl lthen2 
lelse2: 
 10: mov eax, offset lstart + 1 
 11: jmp lcont2 
lhalt: 
 12: ret 
     
lthen2: 
 13: mov eax, offset l2 + 6 
l2: 
 14: sub eax, 5 
lcont2: 
 15: sub eax, 1 
 16: jmp eax 
  

 
Table 1 – A binary code consisting of multiple dynamic jumps and dead code 

 

Fig. 5. Inter-region strategy of CFG construction 

     Using test-case as in our method, this dead code will never 
be explored since there are no real execution paths through it. 
Instead, the Static Analysis phase is invoked again to continue 
analyzing the source code from Instruction 8 to Instruction 16 
and generates the corresponding CFG for Region 2. When 
performing Dynamic Analysis for the indirect branch at 
Instruction 16, there are two possible targets which are 
addresses of Instruction 0 and Instruction 12. Hence, we add a 
new edge from vertex 16 to vertex 0. Finally, since there are 
no newly-discovered regions, it stops and the final CFG is 
generated by combining Region 1 and Region 2.  

V. RESEARCH CHALLENGES 

     To fully implement our suggested framework, we need to 
concern following research challenges.  

     The first challenge is to handle path conditions associated 
to each execution path of source binary code during symbolic 
execution. Provers (SMT) solve the path conditions for test-
case generation. The challenge encountered here is the 
computational limitation of provers. Current provers mostly 
cover only linear constraints for arithmetic. At binary code 
level, the types are arithmetic and the challenge lies in non-
linear constraints, such as Z3.4.3 [20] and raSAT [18]. 

     The next challenge is to infer loop invariants. This is a 
classic issue, and recently two methodologies (and their 
combinations) are popular. (1) Loop invariants in arithmetic. 
For a linear loop invariant, the technique based on Farkas’ 
lemma [15] is common. For non-linear equational invariants, 
an algebraic method is known [33]. (2) Loop invariants in 
first-order logic. Craig Interpolation is known to be a good 
strategy to produce loop invariants [19].  

     The last challenge is to simulate the program execution by 
Dynamic Analysis on the current CFG. We intend to apply 
model checking, since the conversion from a CFG to a 
Labeled Transition System (LTS) is fairly straightforward. The 
key is, how to make model checking terminate, since test data 
are in an infinite domain, such as Integers. Currently, we use 
Promela of SPIN, which accepts arithmetic expressions and 

α2=2 



generates a model in an on-the-fly manner. We set the 
termination condition as to either reach to a final state or find 
a new target destination of an indirect jump. This does not 
guarantee termination, e.g., a loop that contains operations to 
increment. If it fails, we simply apply time-out. Alternatively, 
if an LTS gets stuck with a certain input value, i.e. it cannot 
determine the destination of a transition, the original CFG 
needs to be enlarged with that input value.  

VI. SMALL EXPERIMENTS 

     Small experiments are performed to evaluate the feasibility 
of our method with 5 example programs1 (some shown in 
Table 2) under the following constraints: (i) the code contains 
indirect jumps and (ii) the loop conditions are linear, which 
allowed us to handle them using Farkas’ lemma. These 
experiments have been carried out in a Core i5-3340M 
computer with 4GB RAM. Our experiments are carried out in 
the following steps: 

(1) From given assembly code, we produce an initial CFG that 
consists only program entry. 

(2) We perform the intra-procedural CFG construction (or 
static CFG construction since we only process static jump 
instruction in this step) such that a CFG have program 
instructions as its vertices. There are 6 kinds of vertices 
defined, including Start, Exit, Condition, Join, Loop and Other 
Instruction. Other Instruction vertices cover the arithmetic 
instructions and move instructions of the assembly code. 

     We apply Jakstab to construct intra-procedural CFG. By 
default, Jakstab implements an on-the-fly method of static 
analysis on binary source code. Once encountering indirect 
branches, it applies abstract interpretation in order to resolve 
possible target addresses. Since Jakstab is an open source 
software, we automatically replace this step as to stop Jakstab 
when a dynamic jump is found, and apply step (3).  

 

Fig. 6. Generating symbolic conditions for a Condition vertice 

(3) We perform the symbolic execution on the current CFG. In 
order to do that, we build a simple symbolic execution 
framework to handle a subset of x86 instructions. For each 
edge in the CFG, we compute a symbolic condition, which is a 
necessary condition to have an execution path through this 
edge. For instance, Fig.6 illustrates the symbolic conditions 

                                                           
1 Interested readers can download those 5 sample programs at 

http://cse.hcmut.edu.vn/~save/doku.php?id=project:start 

 

generated when handling a Condition vertex of the CFG. 
Symbolic conditions for Start, Exit, Condition, Join, and 
Other Instruction vertices are straightforward. For Loop 
vertices,  Farkas’ lemma is used to infer a loop invariant. 

(4) We apply Z3.4.3 [20] to solve path conditions (given in 
step (3)) which are associated to paths reaching to the indirect 
jump vertices, and to generate test-cases to cover them. 

(5) We use PAT [17] to generate a LTS from the current CFG 
and dynamically perform the test-cases on it. After PAT is 
performed, the outputs of PAT for estimating the targets of the 
indirect jumps. Then, the CFG is enlarged with the estimated 
targets. 

(6) If the CFG is enlarged in step (5) with fresh vertices, 
return to step (2). Otherwise, the construction finished. 

     Fig.7 illustrates CFGs generated by Jakstab and our method 
in one testing program. The average runtime of Jakstab to 
process a program is less than one seconds.  Although the test 
programs are just toy programs, Jakstab still fails to resolve 
the target addresses of dynamic jumps. For the program in 
Table 2, the CFG generated by Jakstab stopped at the indirect 
jump at location 21. Using our approach, the analysis process 
proceeds and achieves the full CFG.  

  

Fig. 7. The CFGs generated by Jakstab (left) and  by our method (right) 

Program Jakstab Hybrid Method 
Name Src Inst NumDJ J-Inst Cvrg Time H-Inst Cvrg Time 
demo1 asm 11 1 10 90% 0.1s 11 100% 2.1s 
demo2 asm 38 2 8 21% 0.14s 23 60% 3.1s 
demo3 asm 35 3 5 14% 0.12s 35 100% 1.4s 
demo4 asm 48 3 11 22% 0.14s 12 25% 1.5s 
demo5 asm 48 4 5 10% 0.12s 43 90% 3.5s 

Table 3 - Experimental results 

     Table 3 gives the summary of our experiments. In this table 
Inst implies the number of instructions in the original 
program; J-Inst and H-Inst are the numbers of intructions 
actually reachable using Jakstab and our approach 
respectively; for reader convenience, we also compute the 
value of Cvrg, which implies the percentage of instruction 
coverage by the generated CFGs. One can observe that our 



approach can significantly improve the quality of the 
generated CFG, as compared to Jakstab. However, our 
approach suffers from higher computational cost, thus 
consuming more execution time. 

VII. RELATED WORKS 
1. Hybrid approaches for program analysis 

     The approach of using hybrid method by combining static 
analysis and dynamic testing to analyze imperative program 
has been considered in many related works. In the field of 
software testing, concolic testing [21][22][23][24] is a well-
known technique, which combines symbolic execution and 
dynamic execution to generate test-case.                       

.data   
           counter db 0h 
    .code 
start:    ; Entry point     
  0:  jmp l2 
  1:  inc edi ;dead code 
  2:  mov edi, 1 ;dead code 
  3:  cmp al, 2 
  4:  jle l1 
  5:  nop 
  6:  nop 
  7:  nop 
  8:  nop 
l1: 
  9:   cmp al, 2 
 10:  jge l2 
 11:  nop 
 12:  nop 
 13:  nop 
 14:  nop     
l2: 
 15:  shr ebx, 30 
 16:  shl ebx, 3  
 17:  add ebx, 401000h 
 

18:  inc counter 
 
19:  cmp counter, 2 
 20:  je l3 
 21:  jmp ebx 
 
l3: 
 22:   shr eax,31 
 23:   add eax, 401043h 
 24:   cmp ebx,eax 
 25:   jz l4 
 26:   jmp eax 
         
 27:   nop 
 28:   add eax,ebx 
 29:   sub ebx,eax 
 30:   jmp l5 
l4: 
 31:  add ebx,eax 
 32:  sub eax,ebx      
l5: 
33:   xor eax,eax 
34:   invoke ExitProcess,0 
     
end start 

Table 2 – Source code of the experimental file 

     SLAM tool [25] is based on an automatic analysis of client 
code to validate a set of properties or find a counter-example 
showing a fail execution. DART [26] provides a new approach 
for completely automatic unit testing for software to avoid 
stubs that simulate the external environment of software.  
SYNERGY algorithm [27] presents a new approach to 
combine static and dynamic program analysis for property 
checking and test generation. DUALYZER is a dual static 
analysis tool [28], which is based on only over-approximation 
for both proving safety and finding real bugs.  

   OSMOSE [31] is a tool which also applies the concolic 
testing technique for automatic test-case generation from 
binary programs. This approach is quite close to our works, 
but it aims at generating test-cases, rather than CFG 
construction. Furthermore, OSMOSE involves solver to solve 
virtually all of path conditions of execution paths of the 
program. Meanwhile, our approach only invokes solver when 
handling execution paths leading to dynamic jumps, thus 
saving remarkable computational cost. 

2. CFG construction from binary code 

     There are many methods of extracting CFG from binary 
source code. Gogul Balakrishnan and Thomas Reps introduced 
value-set analysis (VSA) [9]. By using numeric and pointer-
analysis algorithm, VSA computes an over-approximation of 
the set of numeric values or addresses that every location may 
hold. This analysis technique was implemented in a tool called 
CodeSurfer [8][9], which is an extension from IDAPro [3]. 

     Combining static and dynamics analysis for malwares is 
introduced in [29]. Regardless of over- or under-
approximation, static analyses cannot resolve targets of indirect 
jumps when dynamic code modifications occur, e.g., 
mutations. Numerical abstract domains, such as intervals and 
k-sets, are used to handle targets of jumps, but hard to satisfy 
both accuracy and complexity. Recently, a refinement-based 
method is proposed based on k-sets [6]. Due to its cardinality 
bound, this method still remains certain limitations. 

     In BINCOA, a dynamic symbolic execution [14] and bit-
vector constrain solving [30][31] are introduced.  Meanwhile, 
IDA Pro relies on linear sweep decoding (the method of brute 
force decoding all addresses) and recursive traversal method 
[32] (decoding recursively until an indirect jump is found) for 
disassembly, which make it difficult to scale. 

3. Binary analysis based on model-checking 

     Beside abstracting the memory addresses to reconstruct a 
CFG, another approach is to describe malicious behavior of 
functions using temporal logic. This reduces virus detection to 
model checking. An extension CTPL of CTL (Computation 
Tree Logic) is proposed for to specify certain obfuscation 
actions of a virus [36][37][38]. Further, Song and Touili extend 
CTPL to SCTPL for better description on stack-based actions 
of viral behaviors [34]. Recently, LTL (Linear Temporal 
Logic) is suggested to replace CTL, and SLTPL is introduced 
[35]. They mostly consider the situation that a reasonably 
precise CFG are statically computed, say, without mutations.      

VIII. CONCLUSION 

     This paper preliminarily reports a proposal for PhD work. 
The initial goal of this work is to produce a more precise CFG 
from binary codes. The difficulty to decide the precise 
destinations of indirect jumps remains as a major problem in 
the field. We proposed a hybrid approach, which combines an 
over-approximation by static analysis and an under-
approximation by dynamic testing to achieve practically more 
accurate CFGs. Initial results show that our method is quite 
promising. We expect that our approach not only resolves the 
issue of indirect jumps, but also improves efficiency of 
analyses on binary source codes. 
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