
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
A Hybrid Approach for Control Flow Graph

Construction from Binary Code

Author(s)
Nguyen, Minh Hai; Nguyen, Thien Binh; Quan, Thanh

Tho; Ogawa, Mizuhito

Citation
Proceedings of the 20th Asia-Pacific Software

Engineering Conference (APSEC 2013), 2: 159-164

Issue Date 2013-12

Type Conference Paper

Text version author

URL http://hdl.handle.net/10119/12246

Rights

This is the author's version of the work.

Copyright (C) 2013 IEEE. Proceedings of the 20th

Asia-Pacific Software Engineering Conference

(APSEC 2013), Volume:2, 2013, pp.159-164.

Personal use of this material is permitted.

Permission from IEEE must be obtained for all

other uses, in any current or future media,

including reprinting/republishing this material

for advertising or promotional purposes, creating

new collective works, for resale or

redistribution to servers or lists, or reuse of

any copyrighted component of this work in other

works.

Description

A Hybrid Aproach for Control Flow Graph Construction from
Binary Code

Minh Hai Nguyen1, Thien Binh Nguyen2 and Thanh
Tho Quan3

Faculty of Computer Science and Engineering
Hochiminh City University of Technology

Hochiminh City, Vietnam
1551307910@hcmut.edu.vn,

2551105019@stu.hcmut.edu.vn, 3qttho@cse.hcmut.edu.vn

Mizuhito Ogawa
School of Information Science,

Japan Advanced Institute of Science and Technology
Ishikawa, Japan

mizuhito@jaist.ac.jp

Abstract—Binary code analysis has attracted much attention.

The difficulty lies in constructing a Control Flow Graph (CFG),
which is dynamically generated and modified, such as mutations.
Typical examples are handling dynamic jump instructions, in
which destinations may be directly modified by rewriting loaded
instructions on memory. In this paper, we describe a PhD project
proposal on a hybrid approach that combines static analysis and
dynamic testing to construct CFG from binary code. Our aim is
to minimize false targets produced when processing indirect
jumps during CFG construction. To evaluate the potential of our
approach, we preliminarily compare results between our method
and Jakstab, a state-of-the-art tool in this field.

Keywords: binary code analysis, static analysis, dynamic
analysis, SMT, symbolic execution, control flow graph construction

I. INTRODUCTION

 There are several reasons to choose binary code as a
program analysis target. First, once source codes are lost or
unavailable, we need to directly analyze binary codes. Third
party modules and computer virus are such examples. Second,
a serious issue emerges from compiling from source codes to
binary codes. A compiler may remove certain behaviors of
programs, hence altering its contents or even its semantics [1].

 Recently, there are a lot of tools and prototypes introduced
for analyzing binary code. BINCOA [2] offered a framework
for binary code analysis. Its core technology is a refinement-
based static analysis [6] by abstract interpretation [7]. IDA Pro
[3] is commercial software, which has been used in many
binary analysis platforms. Remarkably, Jakstab [4][5] is a
state-of-the-art tool in the field of binary code analysis. It
translates binary codes to a low level intermediate language in
an on-the-fly manner and performs further analysis
accordingly.

Fig.1 shows four major steps. The first step translates
binary codes to disassembly codes. The second step builds an
intermediate representation (IR) from the disassembly codes.
The third step constructs the Control Flow Graph (CFG),
whose vertices represent basic blocks of instructions and
directed edges represent jumps in control flow [10]. Based on
the constructed CFG, other analysis utilities like malware
detection or security checking will be further provided.

Fig. 1. Common steps for binary code analysis.

 In Fig.1, the CFG construction step plays an essential role.
Whereas CFG construction at an imperative language level is
a classic work, that at the binary code level still remains a
challenging task due to the following obstacles.

 The first challenge lies in Complex Instruction Set
Computer (CISC) [11] architectures, such as x86. They have
very rich instruction sets, e.g., hundreds of instructions and
thousands of operands combination in x86 architecture [12].
All of them must be interpreted properly to construct a CFG.
The second challenge lies in the lack of desirable properties of
high level semantic structure. For instance, there are no
function abstraction and/or type at binary code level.
Moreover, the issues of code and data ambiguity, indirect
branches and overlapping instructions [13] are also burden.
Most of existing tools use static analysis with an over-
approximation, resulting in a CFG with more false targets.

 Inspired by [29], this paper proposes a hybrid approach
which combines static analysis and dynamic testing for
generating CFG from binary codes. We apply standard intra-
procedural CFG generation until indirect jumps and/or
function calls occur. Then, test data are generated to decide
their precise destinations. Different from [29], we apply
symbolic execution to generate appropriate test data. This
hybrid method is neither sound nor complete, but will give a
practically more precise CFG (even with mutation), compared
to abstract interpretation based static analysis.
0: x = choice(10,15,30)
3: y = 4
6: jmp x
10: ...
15: ...
20: x = x + y
24: ...
26: ...

Fig. 2. CFG reconstructed by over-approximation abstraction

Fig. 3. The framework of combining static and dynamic analysis

 The rest of the paper is organized as follows. Section II
briefly describes a motivating example which shows problems
of an over-approximation approach. Section III illustrates the
overview of our hybrid framework. Section IV discusses in
more detail our running examples to clarify the advantages of
our method. Section V illustrates our research challenges in the
subsequent PhD project. Section VI shows our preliminary
evaluation. Related works are presented in Section VII, and
Section VIII concludes the paper.

II. MOTIVATING EXAMPLE

 Fig.2 presents an example illustrating the drawback of the
over-approximation approach. We consider a code fragment
starting at Instruction 0, where variable x is given a value
randomly picked up from a set of {10,15,30}. When we
convert this program into an abstract form, a typical approach
is to use an interval to represent possible values of variables.
In this case, the abstract value of x, denoted as α(x), is
represented as an interval of [10, 30].

 The major problem occurs when value of x is used as the
target address of an indirect jump instruction at line 6. In the
abstract program, since x can take any values in the interval of
[10, 30], there are several other false branches which may be
produced, illustrated as the dotted arrows in Fig.2. They come
from an over-approximation based abstract interpretation.

 There are many approaches to give a better abstraction.
The false branch problem of an over-approximation is
inevitable, and this is crucial for CFG generation of binary
codes. For instance, mutation tries to lead such false
branching. This issue motivates us to consider a new hybrid
approach.

III. THE PROPOSED FRAMEWORK

 Fig.3 describes our framework, which consists of two
phases: Static Analysis and Dynamic Analysis. They are
executed alternatively until the CFG converges.

 In this framework, a program to be analyzed is divided into
regions. Each region is a block of instructions which contains

no dynamic jump instructions. In the Static Analysis phase, we
apply Symbolic Execution (SE) [14] to reconstruct execution
paths in one region and create the corresponding sub-CFG.
This process of SE is performed in forward manner until
encountering an indirect branch.

 When encountering a dynamic jump, we execute Path
Condition Solving to solve path conditions associated with an
execution path in the current region. Then, test-cases are
generated to cover all execution paths. In the meantime, the
sub-CFG of the current region will be updated.

 Subsequently, the Dynamic Analysis phase will be
executed. In this phase, firstly the Model Construction
converts the CFG into an intermediate labeled transition
system (LTS). The test-cases are executed in this intermediate
LTS as Test-case Execution step. It allows us to verify real
targets of dynamic jumps, which update the current CFG. If
they jump into new areas, which are not explored yet, the
Static Analysis phase is invoked again. Such combination of
static and dynamic analysis is repeated until no new areas are
discovered.

IV. EXAMPLES

Example I: Handling dynamic jump

 Fig.4 shows our first example, which starts at start and
introduces an indirect jump at Instruction 8. By static analysis,
two execution paths leading to this dynamic jump are easily
determined, i.e., P1 = (star→0→1→5→6→7→8) and P2 =
(start→0→1→2→3→7→8). For an initial value α of register
eax, the path conditions of P1 and P2 are evaluated to (α < 0)
and (α >= 0), respectively.

 We apply a prover to generate two test-cases
corresponding to these path conditions, say, α1=-1 and α2=2.
By executing the program with them, sound targets of indirect
branches are determined to be start and Instruction 6. By
continuing the path execution from Instruction 6, Instruction 4
is discovered as a new target of the indirect jump at
Instruction 8. The full CFG is illustrated in Fig.4, where the

dotted arrows indicate new edges discovered by Dynamic
Analysis phase.

Example II: Combination of multiple regions and handling
dead code

 In this example, we extend Example I to illustrate a more
complex scenario. Table 1 presents the program to be
analyzed, which contains two indirect jumps at Instruction 7
and Instruction 16. In addition, this code uses an obfuscation
by inserting dead code from Instruction 17 to Instruction 19.

 This example describes our idea that each executed
dynamic jump creates a new region in the program. Figure 5
illustrates our construction of CFG complying with this
strategy. First, the CFG of Region 1 (corresponding to the
code from Instruction 0 to Instruction 7) is extracted by the
method as described in Example I. By generating test-cases
and executing the indirect jump at Instruction 7, we discover a
new region starting at Instruction 8.
start: ;reset eax
 0: cmp eax, 0
 1: jl lthen
lelse:
 2: mov eax, offset start + 1
 3: jmp lcont
lhalt:
 4: halt

lthen:
 5: mov eax, offset l1 + 4
l1:
 6: sub eax, 3
lcont:
 7: sub eax, 1
 8: jmp eax

Fig. 4. CFG reconstructed by over-approximation abstraction.

 It must be remarked that if we apply abstract interpretation,
one typical method is to construct an interval covering all
possible targets of Instruction 7, e.g., start and Instruction 8.
Thus, it results the interval [offset lstart, offset l1 + 12] as their
possible addresses. Since this interval also includes addresses
of dead code instructions, the analysis generates false jumps
from Instruction 7 to this dead code, as described in Fig.5.
start: ;Entry point
 0: cmp eax, 0
 1: jl lthen1
lelse1:
 2: mov ax, offset start – 1
 3: jmp lcont1

lthen1:
 4: mov ax, offset l1 – 12
l1:
 5: add eax, 11
lcont1:
 6: add eax, 1
 7: jmp eax

;;;;;; Dead code;;;;
 17: cmp ebx,eax
18: jz l4

19: jmp eax
;;;;;

 8: cmp ebx, 0
 9: jl lthen2
lelse2:
 10: mov eax, offset lstart + 1
 11: jmp lcont2
lhalt:
 12: ret

lthen2:
 13: mov eax, offset l2 + 6
l2:
 14: sub eax, 5
lcont2:
 15: sub eax, 1
 16: jmp eax

Table 1 – A binary code consisting of multiple dynamic jumps and dead code

Fig. 5. Inter-region strategy of CFG construction

 Using test-case as in our method, this dead code will never
be explored since there are no real execution paths through it.
Instead, the Static Analysis phase is invoked again to continue
analyzing the source code from Instruction 8 to Instruction 16
and generates the corresponding CFG for Region 2. When
performing Dynamic Analysis for the indirect branch at
Instruction 16, there are two possible targets which are
addresses of Instruction 0 and Instruction 12. Hence, we add a
new edge from vertex 16 to vertex 0. Finally, since there are
no newly-discovered regions, it stops and the final CFG is
generated by combining Region 1 and Region 2.

V. RESEARCH CHALLENGES

 To fully implement our suggested framework, we need to
concern following research challenges.

 The first challenge is to handle path conditions associated
to each execution path of source binary code during symbolic
execution. Provers (SMT) solve the path conditions for test-
case generation. The challenge encountered here is the
computational limitation of provers. Current provers mostly
cover only linear constraints for arithmetic. At binary code
level, the types are arithmetic and the challenge lies in non-
linear constraints, such as Z3.4.3 [20] and raSAT [18].

 The next challenge is to infer loop invariants. This is a
classic issue, and recently two methodologies (and their
combinations) are popular. (1) Loop invariants in arithmetic.
For a linear loop invariant, the technique based on Farkas’
lemma [15] is common. For non-linear equational invariants,
an algebraic method is known [33]. (2) Loop invariants in
first-order logic. Craig Interpolation is known to be a good
strategy to produce loop invariants [19].

 The last challenge is to simulate the program execution by
Dynamic Analysis on the current CFG. We intend to apply
model checking, since the conversion from a CFG to a
Labeled Transition System (LTS) is fairly straightforward. The
key is, how to make model checking terminate, since test data
are in an infinite domain, such as Integers. Currently, we use
Promela of SPIN, which accepts arithmetic expressions and

α2=2

generates a model in an on-the-fly manner. We set the
termination condition as to either reach to a final state or find
a new target destination of an indirect jump. This does not
guarantee termination, e.g., a loop that contains operations to
increment. If it fails, we simply apply time-out. Alternatively,
if an LTS gets stuck with a certain input value, i.e. it cannot
determine the destination of a transition, the original CFG
needs to be enlarged with that input value.

VI. SMALL EXPERIMENTS

 Small experiments are performed to evaluate the feasibility
of our method with 5 example programs1 (some shown in
Table 2) under the following constraints: (i) the code contains
indirect jumps and (ii) the loop conditions are linear, which
allowed us to handle them using Farkas’ lemma. These
experiments have been carried out in a Core i5-3340M
computer with 4GB RAM. Our experiments are carried out in
the following steps:

(1) From given assembly code, we produce an initial CFG that
consists only program entry.

(2) We perform the intra-procedural CFG construction (or
static CFG construction since we only process static jump
instruction in this step) such that a CFG have program
instructions as its vertices. There are 6 kinds of vertices
defined, including Start, Exit, Condition, Join, Loop and Other
Instruction. Other Instruction vertices cover the arithmetic
instructions and move instructions of the assembly code.

 We apply Jakstab to construct intra-procedural CFG. By
default, Jakstab implements an on-the-fly method of static
analysis on binary source code. Once encountering indirect
branches, it applies abstract interpretation in order to resolve
possible target addresses. Since Jakstab is an open source
software, we automatically replace this step as to stop Jakstab
when a dynamic jump is found, and apply step (3).

Fig. 6. Generating symbolic conditions for a Condition vertice

(3) We perform the symbolic execution on the current CFG. In
order to do that, we build a simple symbolic execution
framework to handle a subset of x86 instructions. For each
edge in the CFG, we compute a symbolic condition, which is a
necessary condition to have an execution path through this
edge. For instance, Fig.6 illustrates the symbolic conditions

1 Interested readers can download those 5 sample programs at

http://cse.hcmut.edu.vn/~save/doku.php?id=project:start

generated when handling a Condition vertex of the CFG.
Symbolic conditions for Start, Exit, Condition, Join, and
Other Instruction vertices are straightforward. For Loop
vertices, Farkas’ lemma is used to infer a loop invariant.

(4) We apply Z3.4.3 [20] to solve path conditions (given in
step (3)) which are associated to paths reaching to the indirect
jump vertices, and to generate test-cases to cover them.

(5) We use PAT [17] to generate a LTS from the current CFG
and dynamically perform the test-cases on it. After PAT is
performed, the outputs of PAT for estimating the targets of the
indirect jumps. Then, the CFG is enlarged with the estimated
targets.

(6) If the CFG is enlarged in step (5) with fresh vertices,
return to step (2). Otherwise, the construction finished.

 Fig.7 illustrates CFGs generated by Jakstab and our method
in one testing program. The average runtime of Jakstab to
process a program is less than one seconds. Although the test
programs are just toy programs, Jakstab still fails to resolve
the target addresses of dynamic jumps. For the program in
Table 2, the CFG generated by Jakstab stopped at the indirect
jump at location 21. Using our approach, the analysis process
proceeds and achieves the full CFG.

Fig. 7. The CFGs generated by Jakstab (left) and by our method (right)

Program Jakstab Hybrid Method
Name Src Inst NumDJ J-Inst Cvrg Time H-Inst Cvrg Time
demo1 asm 11 1 10 90% 0.1s 11 100% 2.1s
demo2 asm 38 2 8 21% 0.14s 23 60% 3.1s
demo3 asm 35 3 5 14% 0.12s 35 100% 1.4s
demo4 asm 48 3 11 22% 0.14s 12 25% 1.5s
demo5 asm 48 4 5 10% 0.12s 43 90% 3.5s

Table 3 - Experimental results

 Table 3 gives the summary of our experiments. In this table
Inst implies the number of instructions in the original
program; J-Inst and H-Inst are the numbers of intructions
actually reachable using Jakstab and our approach
respectively; for reader convenience, we also compute the
value of Cvrg, which implies the percentage of instruction
coverage by the generated CFGs. One can observe that our

approach can significantly improve the quality of the
generated CFG, as compared to Jakstab. However, our
approach suffers from higher computational cost, thus
consuming more execution time.

VII. RELATED WORKS
1. Hybrid approaches for program analysis

 The approach of using hybrid method by combining static
analysis and dynamic testing to analyze imperative program
has been considered in many related works. In the field of
software testing, concolic testing [21][22][23][24] is a well-
known technique, which combines symbolic execution and
dynamic execution to generate test-case.

.data
 counter db 0h
 .code
start: ; Entry point
 0: jmp l2
 1: inc edi ;dead code
 2: mov edi, 1 ;dead code
 3: cmp al, 2
 4: jle l1
 5: nop
 6: nop
 7: nop
 8: nop
l1:
 9: cmp al, 2
 10: jge l2
 11: nop
 12: nop
 13: nop
 14: nop
l2:
 15: shr ebx, 30
 16: shl ebx, 3
 17: add ebx, 401000h

18: inc counter

19: cmp counter, 2
 20: je l3
 21: jmp ebx

l3:
 22: shr eax,31
 23: add eax, 401043h
 24: cmp ebx,eax
 25: jz l4
 26: jmp eax

 27: nop
 28: add eax,ebx
 29: sub ebx,eax
 30: jmp l5
l4:
 31: add ebx,eax
 32: sub eax,ebx
l5:
33: xor eax,eax
34: invoke ExitProcess,0

end start

Table 2 – Source code of the experimental file

 SLAM tool [25] is based on an automatic analysis of client
code to validate a set of properties or find a counter-example
showing a fail execution. DART [26] provides a new approach
for completely automatic unit testing for software to avoid
stubs that simulate the external environment of software.
SYNERGY algorithm [27] presents a new approach to
combine static and dynamic program analysis for property
checking and test generation. DUALYZER is a dual static
analysis tool [28], which is based on only over-approximation
for both proving safety and finding real bugs.

 OSMOSE [31] is a tool which also applies the concolic
testing technique for automatic test-case generation from
binary programs. This approach is quite close to our works,
but it aims at generating test-cases, rather than CFG
construction. Furthermore, OSMOSE involves solver to solve
virtually all of path conditions of execution paths of the
program. Meanwhile, our approach only invokes solver when
handling execution paths leading to dynamic jumps, thus
saving remarkable computational cost.

2. CFG construction from binary code

 There are many methods of extracting CFG from binary
source code. Gogul Balakrishnan and Thomas Reps introduced
value-set analysis (VSA) [9]. By using numeric and pointer-
analysis algorithm, VSA computes an over-approximation of
the set of numeric values or addresses that every location may
hold. This analysis technique was implemented in a tool called
CodeSurfer [8][9], which is an extension from IDAPro [3].

 Combining static and dynamics analysis for malwares is
introduced in [29]. Regardless of over- or under-
approximation, static analyses cannot resolve targets of indirect
jumps when dynamic code modifications occur, e.g.,
mutations. Numerical abstract domains, such as intervals and
k-sets, are used to handle targets of jumps, but hard to satisfy
both accuracy and complexity. Recently, a refinement-based
method is proposed based on k-sets [6]. Due to its cardinality
bound, this method still remains certain limitations.

 In BINCOA, a dynamic symbolic execution [14] and bit-
vector constrain solving [30][31] are introduced. Meanwhile,
IDA Pro relies on linear sweep decoding (the method of brute
force decoding all addresses) and recursive traversal method
[32] (decoding recursively until an indirect jump is found) for
disassembly, which make it difficult to scale.

3. Binary analysis based on model-checking

 Beside abstracting the memory addresses to reconstruct a
CFG, another approach is to describe malicious behavior of
functions using temporal logic. This reduces virus detection to
model checking. An extension CTPL of CTL (Computation
Tree Logic) is proposed for to specify certain obfuscation
actions of a virus [36][37][38]. Further, Song and Touili extend
CTPL to SCTPL for better description on stack-based actions
of viral behaviors [34]. Recently, LTL (Linear Temporal
Logic) is suggested to replace CTL, and SLTPL is introduced
[35]. They mostly consider the situation that a reasonably
precise CFG are statically computed, say, without mutations.

VIII. CONCLUSION

 This paper preliminarily reports a proposal for PhD work.
The initial goal of this work is to produce a more precise CFG
from binary codes. The difficulty to decide the precise
destinations of indirect jumps remains as a major problem in
the field. We proposed a hybrid approach, which combines an
over-approximation by static analysis and an under-
approximation by dynamic testing to achieve practically more
accurate CFGs. Initial results show that our method is quite
promising. We expect that our approach not only resolves the
issue of indirect jumps, but also improves efficiency of
analyses on binary source codes.

ACKNOWLEDGEMENT
 This research is funded by Vietnam National University
Hochiminh City (VNU-HCM) under grant number
01/BK/2013/ 911VNUHCM-JAIST.

REFERENCES
[1] G. Balakrishnan, T. Reps, D. Melski and T. Teitelbaum. What You See

Is Not What You eXecute. In Journal ACM Transactions on
Programming Languages and Systems. Lecture Notes in Computer
Science, Springer, pp. 202–213. 2005.

[2] S. Bardin, P. Herrmann, J. Leroux, O. Ly, R. Tabary and A.Vincent. The
BINCOA Framework for Binary Code Analysis, In Proceedings of the
23rd International Conference of Computer Aided Verification (CAV
2011), pp.165-170. 2011.

[3] IDAPro disassembler, http://www.datarescue.com/idabase/

[4] J. Kinder and H. Veith. Jakstab: A Static Analysis Platform for
Binaries. In Proceedings of the 20th International Conference on
Computer Aided Verification (CAV 2008). Vol. 5123, Lecture Notes in
Computer Science, Springer, pp. 423–427. 2008.

[5] J. Kinder, H. Veith and F. Zuleger. An Abstract Interpretation–Based
Framework for Control Flow Reconstruction from Binaries. In
Proceedings of the 10th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI 2009). Vol. 5403,
Lecture Notes in Computer Science, Springer, pp. 214–228, 2009.

[6] S. Bardin, P. Herrmann and F. V´edrine. Refinement-based CFG
Reconstruction from Unstructured Programs. In Proceedings of the 12th
International Conference on Verification, Model Checking, and
Abstract Interpretation (VMCAI 2011). 2011.

[7] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of
fixpoints. In Symposium on Principles of Programming Languages.
1977.

[8] G. Balakrishnan, R. Gruian, T. Reps and T. Teitelbaum. CodeSurfer/x86
– A Platform for Analyzing x86 Executables. In Proceedings of the 14th
International Conference on Compiler Construction (CC 2005). Vol.
3443. LNCS. Springer, pp. 250–254. 2005.

[9] G. Balakrishnan and T. Reps. Analyzing Memory Accesses in x86
Executables. In Proceedings of the 13th International Conference on
Compiler Construction (CC 2004). Vol. 2985. LNCS. Springer, pp. 5–
23. 2004.

[10] F. Allen. Control flow analysis. SIGPLAN Notices 5 (7): 1–19. 1970.

[11] S. Andrew. Structured Computer Organization. Pearson Education, Inc.
Upper Saddle River, NJ. 2006.

[12] Intel 64 and IA-32 Architectures Software Developer’s Manual. Intel
Corporation. 2009.

[13] J. Kinder. Static Analysis of x86 Executables, Phd Thesis, Technische
Universitat Darmstadt. 2010.

[14] J. King and T. Watson. Symbolic execution and program testing. In
Communications of the ACM Volume 19 Issue 7, pp. 385–394. 1976.

[15] M. Colón, S. Sankaranarayanan and H. Sipma. Linear Invariant
Generation Using Non–linear Constraint Solving. In Proceedings of the
15th International Conference on Computer Aided Verification (CAV
2003). LNCS 2725, Springer–Verlag, pp. 420–433. 2003.

[16] N. Nguyen, T. Quan, P. Nguyen and T. Bui. COMBINE: A Tool on
Combined Formal Methods for Bindingly Verification. In Proceedings
of the 8th Internationl Symposium on Automated Technology for
Verification and Analysis (ATVA 2010). Singapore, Springer Verlag,
ISBN-10 3-642-15642-8, ISBN-13 978-3-642-15642-7. 2010.

[17] J. Sun, Y. Liu, J.S. Dong and J. Pang. PAT: Towards Flexible
Verification under Fairness. In Proceedings of the 21th International
Conference on Computer Aided Verification (CAV 2009), Grenoble,
France, June, 2009.

[18] K. To and M. Ogawa. SMT for Polynomial Constraints on Real
Numbers, Tools for Automatic Program Analysis TAPAS 2012 , Elsevier
ENTCS vol.289, pp.27-40. 2012.

[19] J. Esparza, S. Kiefer and S. Schwoon. Abstraction Refinement with
Craig Interpolation and Symbolic Pushdown Systems. In Proceedings of
the 12th International Conference on Tools and Algorithms for the
Construction and Analysis of System (TACAS 2006). 2006.

[20] Z3: An Efficient SMT Solver, http://z3.codeplex.com/
[21] N. Williams, B. Marre, P. Mouy and M. Roger. PathCrawler: Automatic

Generation of Path Tests by Combining Static and Dynamic Analysis. In
Proceedings of the 5th European Dependable Computing Conference,
pp. 281–292. 2005.

[22] K. Sen and G. Agha. CUTE and jCUTE : Concolic Unit Testing and
Explicit Path Model-Checking Tools. In Proceedings of the 18th
International Conference on Computer Aided Verification (CAV 2006).,
pp. 419-423. 2006.

[23] P. Godefroid. Random testing for security: blackbox vs. whitebox
fuzzing. In Proceedings of the 2nd International Workshop on Random
testing, pp. 1-1. 2007.

[24] N. Beckman, A. Nori, K. Rajamani, R. Simmons, S. Tetali and A.
Thakur. Proofs from Tests. IEEE Transactions on Software Engineering.
2012.

[25] T. Ball and S. Rajamani. Automatically validating temporal safety
properties of interfaces. In Proceedings of the SPIN 2001 Workshop on
Model Checking of Software, pp. 103-122. 2001.

[26] P. Godefroid, N. Klarlund and K. Sen. DART: Directed Automated
Random Testing. In Proceedings of the ACM SIGPLAN 2005
Conference on Programming Language Design and Implementation, pp.
213-223. 2005.

[27] B. Gulavani, T. Henzinger, Y. Kannan, A. Nori and S. Rajamani,
Synergy: A New Algorithm for Property Checking. In Proceedings of
the 14th ACM SIGSOFT International Symposium on Foundations of
software engineering. 2006.

[28] C. Popeea and W. Chin. Dual analysis for proving safety and finding
bugs. In Proceedings of the 2010 ACM Symposium on Applied
Computing, pp. 2137-2143. 2010.

[29] T. Izumida, K. Futatsugi and A. Mori. A Generic Binary Analysis
Method for Malware. In Proceeding of the 5th International Workshop
on Security. 2010.

[30] S. Bardin and P. Herrmann. Structural Testing of Executables. In IEEE
ICST 2008. IEEE Computer Society, Los Alamitos. 2008

[31] S. Bardin and P. Herrmann. OSMOSE: Automatic Structural Testing of
Executables. In International Journal of Software Testing, Verification
and Reliability (STVR), 21(1). 2011.

[32] C. Linn and S. Debray. Obfuscation of executable code to improve
resistance to static disassembly. In Proceedings of the 10th ACM
conference on Computer and communications security (ACM 2003), pp.
290–299. 2003.

[33] S, Sabjarabaratababm, G,B, Suonam, and Z. Manna, Non-linear loop
invariant generation using Grobner Bases, ACM Princeples of
Programming Languages (POPL 2004), pp.318-329, 2004.

[34] F. Song and T. Touili, Pushdown Model Checking for Malware
Detection. In Proceedings of TACAS. 2012, 110-125.

[35] Fu Song, Tayssir Touili: LTL Model-Checking for Malware Detection.
In Proceedings of TACAS 2013, 416-431.

[36] Holzer, A., Kinder, J., Veith, H.: Using Verification Technology to
Specify and Detect Malware. In: Moreno Díaz, R., Pichler, F., Quesada
Arencibia, A. (eds.) EUROCAST 2007.LNCS, vol. 4739, pp. 497–504.
Springer, Heidelberg (2007)

[37] Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, H.: Detecting
Malicious Code by Model Checking. In: Julisch, K., Krgel, C. (eds.)
DIMVA 2005. LNCS, vol. 3548, pp. 174–187. Springer, Heidelberg
(2005)

[38] Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, H.: Proactive
detection of computer worms using model checking. IEEE Transactions
on Dependable and Secure Computing 7(4) (2010)

