JAIST Repository

https://dspace.jaist.ac.jp/

Title

Sufficient completeness o

f paramet e

Dani el ; Og:

f Il nfor mat i
p f Science
D 5 : 1-4

specifications in CafeOBJ
Nakamura, Masaki; Gaina,
Author(s) _ . :
Futatsugi , Koki chi
Research report (School o
Citation Japan Advanced Institute
Technol ogy) , I S-RR-2014-0
Issue Date 2014-12-15
Type Techni cal Report

Text version

publ i sher

19/ 12301

URL http://hdl.handle.net/ 101
Rights

. 000o000oOoOOo0oooOooooboooooaon
Description

gooogd

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

IS-RR-2014-005

Sufficient completeness of parameterized
specifications in CafeOBJ

Masaki Nakamura, Daniel Gaina, Kazuhiro Ogata, Kokichi Futatsugi

December 15, 2014

Sufficient completeness of parameterized |
specifications in CafeOBJ

Masaki Nakamura!, Daniel G&ins?, Kazuhiro Ogata?, and Kokichi Futatsugi?

! Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, Japan
2 Japan Advanced Institute of Science and Technology,
1-1 Asahidai, Nomi, Ishikawa, Japan ‘

CafeOBJ is a specification language which supports several kinds of specifi-
cations [1] . In this study, we focus on constructor-based order-sorted (CBOS)
equational specifications. A signature (5, <, ¥, X¢) (abbr. X) consists of a set
S of sorts, a poset < on S, a St-sorted set X of operators, and a set recxy
of constructors. We yse the notation for the complement set X’ = X'\ X’, con-
strained sorts S = {s ¢ S | f € TS, v (f € XS, As' < s)}, loose sorts
S5 = §\ §°, and constrained operators X°° = {f € X5 | w € 8%,s € §%},
A specification SP is a pair of a signature X and a set of equations on Y. We
use the subscript Agp to refer the element of SP, e.g. Sgp, Ysp, Esp, etc.
Sufficient completeness is an important property which guarantees the existence
of the initial model [3]. A sufficient condition of sufficient completeness is given
in [2] as follows: SP = ((S, <, ¥, 2¢), E) is sufficiently complete if for each S%-
sorted set Y of variables of loose sorts and each term ¢ € T'pses (Y'), there exists
a term u € Txo(Y) such that t =g u. We call the above condition SCE.

" The theory of term rewriting systems (TRS) is useful to prove sufficient
completeness, where equations are regarded as left-to-right rewrite rules. A term
is F-reducible if it has a subterm which can be rewritten by some rewrite rule in
E. Tt is known that the notion of basic terms is useful to show ground reducibility.
We give a variant of basic terms for CBOS specifications.

Definition 1. For ¥’ C %, f(f) is a X'-basic if f € ¥’ and f are terms con-
structed from X’ and loose variables Y.

Basic terms give us a sufficient condition of SCE. A specification SP satisfies
-SCE if SP is terminating, i.e, no infinite rewrite sequence exists, and all X%-basic
terms are Egp-reducible [4]. We call the above condition SCR. The following N+
is a specification of natural number with the addition: Sy4 = {Zero NzNat <
Nat}, Uny = {0:— Zero,s : Nat — NzNat, +-: Nat Nat — Nat}, ZZ(\J,Jr =
{0,s}, and Eny = {X +0 =X, X +s(Y) = s(X +Y)}, which is terminating
and all Z%basic terms s™(0) +s"(0) are reducible, thus is sufficiently complete.

A parameterized specification is a specification morphism ¢ : P — SP such
that i : ¥p — Xgp is an inclusion and Ep C Egp. A view v : P — P’ is a
specification morphism from P to P, where v(s) € Sps for s € Sp, v(f) € Zpr
for f € Xp and v(e) is satisfied by P’ for e € Ep where v(e) is obtained by
replacing each occurrence f € Xp in e with the operator v(f). The instantiation
of i by v, denoted by SP(v), is obtained by constructing the pushout of P’ +
P — SP [1]. Let E5p be Egp \ Ep. Roughly speaking, SP(v) is obtained by

replacing P with P’, and Efp with {v(e) | e € Egp}: See [1] for more details. The
following i : FUN — M AP is a parameterized specification of map functions on
generic lists: SFUN = {Elt}, EFUN = {f : Elt — Elt} and EFUN = (B SM’AP =
{List}, Trgap = {nil :— List,;_ : Elt List — List,map : List — List},
X ap = {nil, 5.}, and Exap = {map(nil) = nil,map(E; L) = f(E); map(L)}.
Consider the specification N+’ obtained by adding d(X) = X + X to N+ and
the view vsyn : FUN — N+ where vy, (Elt) = Nat and vy, (f) = d. Then, the
instantiation M AP(vsy,) is a specification of lists on natural numbers where the
function map takes [ng,na,...,ni) and returns [2ng,2n4,...,2ng]. MAP(vsy)
has the equations {map(nil) = nil, map(E; L) = d(E); map(L)}.

Given a parameterized specification 7 : P — SP and a view v : P — P/,
the challenge is to find sufficient conditions such that the instantiation SP(v)
is sufficient complete. M AP seems to be well-defined in the sense that after
instantiation by a sufficiently complete specification, like N+', the operator .f
becomes a constructor or an operator defined for all constructor terms, and thus
map(l) is.equivalent to a constructor term for any | € T'xc(Y). For example,
in MAP(vg,), map(0; s(0);nil) —* 0+ 0;5(0) + 5(0); nil —* 0;5(s(0));nil €
Tsc(B). However, M AP does not satisfy the above sufficient conditions SCE
of sufficient completeness since a constrained term f(X);nil does not have any
equivalent constructor term. In order to cover such parameterized specifications,
we generalize the condition SCR as follows: '

Definition 2. A specification SP satisfies X’-SCR if SP is terminating and all
Y -basic terms are Egp-reducible.

Note that SCR is equivalent to X°-SCR. We call i : P — SP left-P-free
if the left-hand sides of the equations in E%p include no f € Zp, constructor-
preserving if for each s € Sp, T'sc(Y)s are same in both P and SP [4]. We have
the following sufficient condition of sufficient completeness of instantiations.

Theorem 1. If (1) i is left-P-free and constructor-preserving, (2) SP satisfies
X< U Xp-SCR, (3) P’ satisfies SCR, (4) SP(v) is terminating, then SP(v)
satisfies SCR. ’

Consider ¢ : FUN — MAP and a view v : FUN — N+'. i is left- FUN+
free and constructor-preserving. All X, p U {f}-basic terms are in the form
of either map(nil) or map(e;1), and reducible. N+’ satisfies SCR. Termination
of MAP(v) can be proved, for example, by the method in [4]. Thus, M AP(v)
satisfies SCR from Theoreins 1 and is sufficiently complete. ‘

References

1. Razvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report. World Scientific, 1998.

2. Kokichi Futatsugi, Daniel Géini, and Kazuhiro Ogata. Principles of proof scores in
CafeOBJ. Theor. Comput. Sci., 464:90-112, December 2012.

3. Daniel Gaina and Kokichi Futatsugi. Initial semantics in logics with constructors.
Journal of Logic and Computation, 2012. doi: 10.1093/logcom /exs044.

4. Masaki Nakamura, et al. Incremental proofs of termination, confluence and sufficient
completeness of OBJ specifications. LNCS 8373, pages 92-109. Springer, 2014.

Appendixes
A A generalization of SCE

We give a generalization of SCE, denoted by X'-SCE.

Definition 3. A specification. SP satisfies X'-SCE if for each S*-sorted set Y of
variables of loose sorts and each term ¢ € T,ses (Y'), there exists a term u € T/ (Y)
such that t =g u.

Note that Z°-SCE is equivalent to SCE. We have the following property.
Theorem 2. %’-SCR implies X'-SCE.

Proof. Let Y be a set of loose variables and ¢ € Tyses (V). It suffices to show that
t —* u for some u € T (Y). Note that —»5C=g. If t € T (Y), then u = t. Assume
t has an operator in %’. Choose a subterms f(Z) whose root f is an operator in)
and T do not have any operator in 3. f(£) is a X’-basic term and reducible from the
assumption of X'-SCR. Take t; as a term obtained by rewriting ¢, i.e., t —g t1. If
ty € T/ (Y), then w = t1, If not, repeat the same thing for ¢;. From termination, there
exists t, € T/ (Y) such that t; —g tip1 (¢ =1,...,n — 1) Then u = t,.

B Proof of Theofém 1‘

The notion of constructor-preserving has been defined for hierarchical extensions in [4], -
which can be modified for parameterized specifications straightforwardly.

Definition 4. [4] A parameterized specification i : P — SP is construétor—preserving
if (1) for each f € (X5p)ws such that s € Sp, f € Tp, and (2) for each s € Sp, there
is no s’ .€ Sgp \ Sp such that s’ <gp s.

Note that if ¢ : P — SP is constructor-preserving, (TEc() = (ngp (Y))s for each
sort s' € Sp, and’ (TZ‘C (Y))s = (ngp()(Y)) for each view v : P — P’ and sort
s € Spr.

Theorem 1. If (1) 4 is left-P-free and constructor-preserving, (2) SP satisfies Z§p U
Tp-SCR, (3) P’ satisfies ©%,-SCR, (4) SP(v) is terminating, then SP(v) satisfies
5¢pw)-SCR.

Proof. From the assumptlon (4), it suffices to show that each Zsp(v)—basw term f({f)
is reducible.

~ Consider the case of f € X'p:. From the definition of basic terms, f € Egp(u) c E_g—,
and each t; € {t} is in (ngP(v) (Y))s for some s € Sp:. From the assumption of
constructor-preserving, t € (TEC’ (Y))s and f(f) is Eps-reducible from (3). Since
Ep: C Esp(wy, [(t) is also Esp(v)—redumble k

— Consider the case of f € Zgp) \ Xpr = Zsp \ Zp. Since f(1) is Zsp(v) -basic,

e Z’SPM and f & X5p. Thus f € X$p U p. An argument term {; € {I} may
have operators in 3'p/. Make the term t' by replacing each maximal occurrence of -
g € (Zpr)ws in t; with a fresh distinct variable z € X,. Note that s € Spr. Since
t} is constructed from only Zgp\p, there exists ¢ € TEEP (Y) where Y is a set

)

of lodse variables. Thus, f(£') is a X§p U Zp-basic term and it is Esp-reducible.
Since f € Zgp \ Xp, it is a redex of Esp \ Ep, i.e, an instance of the left-hand
side [of an equation in Esp \ Ep. From the left- P-freeness, f(f') is also a redex of
Esp(v) \ Ep:. From the construction, f(f) is an instance of f(t'), and it is a redex
of the same equation. Thus, it is Egp(,)-reducible.

C Source codes

The foilowing CafeOBJ codes cotrespond to the specifications FUN, N+, the param-
- eterized specification ¢ : FUN — M AP and the view vfn : FUN — N+,

mod* FUN{ [Elt] op f : Elt -> Elt }
mod! N+{ [Zero NzNat < Nat]

op 0 : —> Zero {comstr}

op s. : Nat -> NzNat {constr}

op _+. : Nat Nat -> Nat

eg X:Nat + 0 = X .

eq X:Nat + s Y:Nat =s (X +7Y) . }
mod! MAP(Z :: FUN){ [List]

op nil : -> List {constr} -

op (_;_) : Elt List -> List {constr}

op map : List -> List

eq map(nil) = nil .

eq map(E:Elt ; L:List) = (£(E) ; map(L)) . }
view FN from FUN to N+ {

sort Elt -> Nat,

op £(E:E1t) -> (E:Nat + E) }

Note that CafeOBJ supports a view from operators to derived operators, like op
f(E) ->E + E in FN. Such a view can be considered as the combination of an operator-
to-operator view and a module where an extra equation f(X) = r is added, like op £ (E)
->d(E) and N + U{d(E) = E + E}. The following is the result of the show command
of the instantiation MAP(FN) in CafeOBJ system and the reduction command for map (s
0; ss 0 ; nil):

CafeOBJ> show MAP(FN)
module MAP(Z <= FN)

{ .
imports o protecting (N+) }
signature { [List]
op nil : -> List { comstr prec: 0 }
op _ ; . : Nat List —> List { constr prec: 41 }
op map : List -> List { prec: 0 } }
axioms { ‘
eq map(nil) = nil . .
eq map((E:Nat ; L:List)) = ((E + E) ; map(L)) . 1}
¥

Cafe0BJ> red in MAP(FN) : map(s 0 ; s s 0 ; hil) .

-~ reduce in MAP(Z <= FN) : ’(map(((s 0) ; ((s (s 0)) ; nil)))):List
((s (s 0)) ; (s (s (s (s OI))) ; nil)):List

(0.000 sec for parse, 8 rewrites(0.000 sec), 13 matches)

