## **JAIST Repository**

https://dspace.jaist.ac.jp/

| Title        | Sufficient completeness of parameterized specifications in CafeOBJ                                                             |
|--------------|--------------------------------------------------------------------------------------------------------------------------------|
| Author(s)    | Nakamura, Masaki; Gaina, Daniel; Ogata, Kazuhiro;<br>Futatsugi, Kokichi                                                        |
| Citation     | Research report (School of Information Science,<br>Japan Advanced Institute of Science and<br>Technology), IS-RR-2014-005: 1-4 |
| Issue Date   | 2014-12-15                                                                                                                     |
| Туре         | Technical Report                                                                                                               |
| Text version | publisher                                                                                                                      |
| URL          | http://hdl.handle.net/10119/12301                                                                                              |
| Rights       |                                                                                                                                |
| Description  | リサーチレポート(北陸先端科学技術大学院大学情報<br>科学研究科)                                                                                             |



### IS-RR-2014-005

# Sufficient completeness of parameterized specifications in CafeOBJ

Masaki Nakamura, Daniel Gaina, Kazuhiro Ogata, Kokichi Futatsugi December 15, 2014

# Sufficient completeness of parameterized specifications in CafeOBJ

Masaki Nakamura<sup>1</sup>, Daniel Găină<sup>2</sup>, Kazuhiro Ogata<sup>2</sup>, and Kokichi Futatsugi<sup>2</sup>

<sup>1</sup> Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, Japan <sup>2</sup> Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, Japan

CafeOBJ is a specification language which supports several kinds of specifications [1]. In this study, we focus on constructor-based order-sorted (CBOS) equational specifications. A signature  $(S, \leq, \varSigma, \varSigma^C)$  (abbr.  $\varSigma$ ) consists of a set S of sorts, a poset S on S, a  $S^+$ -sorted set S of operators, and a set  $\Sigma^C \subseteq \Sigma$  of constructors. We use the notation for the complement set  $\overline{\varSigma'} = \Sigma \setminus \Sigma'$ , constrained sorts  $S^{cs} = \{s \in S \mid f \in \Sigma^C_{ws} \lor (f \in \Sigma^C_{ws'} \land s' \leq s)\}$ , loose sorts  $S^{ls} = S \setminus S^{cs}$ , and constrained operators  $\Sigma^{S^{cs}} = \{f \in \Sigma_{ws} \mid w \in S^*, s \in S^{cs}\}$ , A specification SP is a pair of a signature  $\Sigma$  and a set of equations on  $\Sigma$ . We use the subscript  $A_{SP}$  to refer the element of SP, e.g.  $S_{SP}$ ,  $\Sigma_{SP}$ ,  $E_{SP}$ , etc. Sufficient completeness is an important property which guarantees the existence of the initial model [3]. A sufficient condition of sufficient completeness is given in [2] as follows:  $SP = ((S, \leq, \Sigma, \Sigma^C), E)$  is sufficiently complete if for each  $S^{ls}$ -sorted set  $S^{ls}$  of variables of loose sorts and each term  $S^{ls}$  there exists a term  $S^{ls}$  such that  $S^{$ 

The theory of term rewriting systems (TRS) is useful to prove sufficient completeness, where equations are regarded as left-to-right rewrite rules. A term is E-reducible if it has a subterm which can be rewritten by some rewrite rule in E. It is known that the notion of basic terms is useful to show ground reducibility. We give a variant of basic terms for CBOS specifications.

**Definition 1.** For  $\Sigma' \subseteq \Sigma$ ,  $f(\overline{t})$  is a  $\Sigma'$ -basic if  $f \in \overline{\Sigma'}$  and  $\overline{t}$  are terms constructed from  $\Sigma'$  and loose variables Y.

Basic terms give us a sufficient condition of SCE. A specification SP satisfies SCE if SP is terminating, i.e, no infinite rewrite sequence exists, and all  $\Sigma^C$ -basic terms are  $E_{SP}$ -reducible [4]. We call the above condition SCR. The following N+ is a specification of natural number with the addition:  $S_{N+} = \{Zero\ NzNat < Nat\},\ \Sigma_{N+} = \{0: \to Zero, s: Nat \to NzNat, \_+\_: Nat\ Nat \to Nat\},\ \Sigma_{N+}^C = \{0,s\},\ \text{and}\ E_{N+} = \{X+0=X,X+s(Y)=s(X+Y)\},\ \text{which is terminating}$  and all  $\Sigma^C$ -basic terms  $s^m(0)+s^n(0)$  are reducible, thus is sufficiently complete.

A parameterized specification is a specification morphism  $i: P \to SP$  such that  $i: \mathcal{L}_P \to \mathcal{L}_{SP}$  is an inclusion and  $E_P \subseteq E_{SP}$ . A view  $v: P \to P'$  is a specification morphism from P to P', where  $v(s) \in S_{P'}$  for  $s \in S_P$ ,  $v(f) \in \mathcal{L}_{P'}$  for  $f \in \mathcal{L}_P$  and v(e) is satisfied by P' for  $e \in E_P$  where v(e) is obtained by replacing each occurrence  $f \in \mathcal{L}_P$  in e with the operator v(f). The instantiation of i by v, denoted by SP(v), is obtained by constructing the pushout of  $P' \leftarrow P \to SP$  [1]. Let  $E'_{SP}$  be  $E_{SP} \setminus E_P$ . Roughly speaking, SP(v) is obtained by

replacing P with P', and  $E'_{SP}$  with  $\{v(e) \mid e \in E'_{SP}\}$ . See [1] for more details. The following  $i: FUN \to MAP$  is a parameterized specification of map functions on generic lists:  $S_{FUN} = \{Elt\}$ ,  $\Sigma_{FUN} = \{f: Elt \to Elt\}$  and  $E_{FUN} = \emptyset$ .  $S_{MAP} = \{List\}$ ,  $\Sigma_{MAP} = \{nil: \to List, :_{;-}: Elt List \to List, map: List \to List\}$ ,  $\Sigma_{MAP}^C = \{nil: :_{;-}\}$ , and  $E_{MAP} = \{map(nil) = nil, map(E; L) = f(E); map(L)\}$ . Consider the specification N+' obtained by adding d(X) = X + X to N+ and the view  $v_{fn}: FUN \to N+'$  where  $v_{fn}(Elt) = Nat$  and  $v_{fn}(f) = d$ . Then, the instantiation  $MAP(v_{fn})$  is a specification of lists on natural numbers where the function map takes  $[n_0, n_1, \ldots, n_k]$  and returns  $[2n_0, 2n_1, \ldots, 2n_k]$ .  $MAP(v_{fn})$  has the equations  $\{map(nil) = nil, map(E; L) = d(E); map(L)\}$ .

Given a parameterized specification  $i:P\to SP$  and a view  $v:P\to P'$ , the challenge is to find sufficient conditions such that the instantiation SP(v) is sufficient complete. MAP seems to be well-defined in the sense that after instantiation by a sufficiently complete specification, like N+', the operator f becomes a constructor or an operator defined for all constructor terms, and thus map(l) is equivalent to a constructor term for any  $l\in T_{\Sigma^C}(Y)$ . For example, in  $MAP(v_{fn}), map(0; s(0); nil) \to^* 0 + 0; s(0) + s(0); nil \to^* 0; s(s(0)); nil \in T_{\Sigma^C}(\emptyset)$ . However, MAP does not satisfy the above sufficient conditions SCE of sufficient completeness since a constrained term f(X); nil does not have any equivalent constructor term. In order to cover such parameterized specifications, we generalize the condition SCR as follows:

**Definition 2.** A specification SP satisfies  $\Sigma'$ -SCR if SP is terminating and all  $\Sigma'$ -basic terms are  $E_{SP}$ -reducible.

Note that SCR is equivalent to  $\Sigma^C$ -SCR. We call  $i: P \to SP$  left-P-free if the left-hand sides of the equations in  $E'_{SP}$  include no  $f \in \Sigma_P$ , constructor-preserving if for each  $s \in S_P$ ,  $T_{\Sigma^C}(Y)_s$  are same in both P and SP [4]. We have the following sufficient condition of sufficient completeness of instantiations.

**Theorem 1.** If (1) i is left-P-free and constructor-preserving, (2) SP satisfies  $\Sigma_{SP}^C \cup \Sigma_P$ -SCR, (3) P' satisfies SCR, (4) SP(v) is terminating, then SP(v) satisfies SCR.

Consider  $i: FUN \to MAP$  and a view  $v: FUN \to N+'$ . i is left-FUN-free and constructor-preserving. All  $\Sigma_{MAP}^C \cup \{f\}$ -basic terms are in the form of either map(nil) or map(e;l), and reducible. N+' satisfies SCR. Termination of MAP(v) can be proved, for example, by the method in [4]. Thus, MAP(v) satisfies SCR from Theorems 1 and is sufficiently complete.

#### References

- 1. Razvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report. World Scientific, 1998.
- Kokichi Futatsugi, Daniel Găină, and Kazuhiro Ogata. Principles of proof scores in CafeOBJ. Theor. Comput. Sci., 464:90-112, December 2012.
- 3. Daniel Găină and Kokichi Futatsugi. Initial semantics in logics with constructors. Journal of Logic and Computation, 2012. doi: 10.1093/logcom/exs044.
- Masaki Nakamura, et al. Incremental proofs of termination, confluence and sufficient completeness of OBJ specifications. LNCS 8373, pages 92–109. Springer, 2014.

#### **Appendixes**

#### A A generalization of SCE

We give a generalization of SCE, denoted by  $\Sigma'$ -SCE.

**Definition 3.** A specification SP satisfies  $\Sigma'$ -SCE if for each  $S^{ls}$ -sorted set Y of variables of loose sorts and each term  $t \in T_{\Sigma^{S^{cs}}}(Y)$ , there exists a term  $u \in T_{\Sigma'}(Y)$  such that  $t =_E u$ .

Note that  $\Sigma^C$ -SCE is equivalent to SCE. We have the following property.

**Theorem 2.**  $\Sigma'$ -SCR implies  $\Sigma'$ -SCE.

**Proof.** Let Y be a set of loose variables and  $t \in T_{\Sigma^{S^{cs}}}(Y)$ . It suffices to show that  $t \to^* u$  for some  $u \in T_{\Sigma'}(Y)$ . Note that  $\to_E^* \subseteq_{E}$ . If  $t \in T_{\Sigma'}(Y)$ , then u = t. Assume t has an operator in  $\overline{\Sigma'}$ . Choose a subterms  $f(\overline{t})$  whose root f is an operator in  $\overline{\Sigma'}$  and  $\overline{t}$  do not have any operator in  $\overline{\Sigma'}$ .  $f(\overline{t})$  is a  $\Sigma'$ -basic term and reducible from the assumption of  $\Sigma'$ -SCR. Take  $t_1$  as a term obtained by rewriting t, i.e.,  $t \to_E t_1$ . If  $t_1 \in T_{\Sigma'}(Y)$ , then  $u = t_1$ . If not, repeat the same thing for  $t_1$ . From termination, there exists  $t_n \in T_{\Sigma'}(Y)$  such that  $t_i \to_E t_{i+1}$   $(i = 1, \ldots, n-1)$ . Then  $u = t_n$ .

#### B Proof of Theorem 1

The notion of constructor-preserving has been defined for hierarchical extensions in [4], which can be modified for parameterized specifications straightforwardly.

**Definition 4.** [4] A parameterized specification  $i: P \to SP$  is constructor-preserving if (1) for each  $f \in (\Sigma_{SP}^C)_{ws}$  such that  $s \in S_P$ ,  $f \in \Sigma_P$ , and (2) for each  $s \in S_P$ , there is no  $s' \in S_{SP} \setminus S_P$  such that  $s' \leq_{SP} s$ .

Note that if  $i: P \to SP$  is constructor-preserving,  $(T_{\Sigma_P^C}(Y))_s = (T_{\Sigma_{SP}^C}(Y))_s$  for each sort  $s \in S_P$ , and  $(T_{\Sigma_{P'}^C}(Y))_s = (T_{\Sigma_{SP(v)}^C}(Y))_s$  for each view  $v: P \to P'$  and sort  $s \in S_{P'}$ .

**Theorem 1.** If (1) i is left-P-free and constructor-preserving, (2) SP satisfies  $\Sigma_{SP}^C \cup \Sigma_{P}$ -SCR, (3) P' satisfies  $\Sigma_{P'}^C$ -SCR, (4) SP(v) is terminating, then SP(v) satisfies  $\Sigma_{SP(v)}^C$ -SCR.

**Proof.** From the assumption (4), it suffices to show that each  $\Sigma_{SP(v)}^C$ -basic term  $f(\bar{t})$  is reducible.

- Consider the case of  $f \in \Sigma_{P'}$ . From the definition of basic terms,  $f \in \overline{\Sigma_{SP(v)}^C} \subseteq \overline{\Sigma_{P'}^C}$  and each  $t_i \in \{\bar{t}\}$  is in  $(T_{\Sigma_{SP(v)}^C}(Y))_s$  for some  $s \in S_{P'}$ . From the assumption of constructor-preserving,  $\bar{t} \in (T_{\Sigma_{P'}^C}(Y))_s$  and  $f(\bar{t})$  is  $E_{P'}$ -reducible from (3). Since  $E_{P'} \subseteq E_{SP(v)}$ ,  $f(\bar{t})$  is also  $E_{SP(v)}$ -reducible.
- Consider the case of  $f \in \Sigma_{SP(v)} \setminus \Sigma_{P'} = \Sigma_{SP} \setminus \Sigma_{P}$ . Since  $f(\overline{t})$  is  $\Sigma_{SP(v)}^{C}$ -basic,  $f \notin \Sigma_{SP(v)}^{C}$  and  $f \notin \Sigma_{SP}^{C}$ . Thus  $f \in \overline{\Sigma_{SP}^{C} \cup \Sigma_{P}}$ . An argument term  $t_i \in \{\overline{t}\}$  may have operators in  $\Sigma_{P'}$ . Make the term  $t_i'$  by replacing each maximal occurrence of  $g \in (\Sigma_{P'})_{ws}$  in  $t_i$  with a fresh distinct variable  $x \in X_s$ . Note that  $s \in S_{P'}$ . Since  $t_i'$  is constructed from only  $\Sigma_{SP \setminus P}$ , there exists  $t_i'' \in T_{\Sigma_{SP}^{C}}(Y)$  where Y is a set

of loose variables. Thus,  $f(\overline{t}'')$  is a  $\Sigma_{SP}^C \cup \Sigma_P$ -basic term and it is  $E_{SP}$ -reducible. Since  $f \in \Sigma_{SP} \setminus \Sigma_P$ , it is a redex of  $E_{SP} \setminus E_P$ , i.e. an instance of the left-hand side l of an equation in  $E_{SP} \setminus E_P$ . From the left-P-freeness,  $f(\overline{t}')$  is also a redex of  $E_{SP(v)} \setminus E_{P'}$ . From the construction,  $f(\overline{t})$  is an instance of  $f(\overline{t}')$ , and it is a redex of the same equation. Thus, it is  $E_{SP(v)}$ -reducible.

#### C Source codes

The following CafeOBJ codes correspond to the specifications FUN, N+, the parameterized specification  $i: FUN \to MAP$  and the view  $v_{fn}: FUN \to N+$ .

```
mod* FUN{ [Elt] op f : Elt -> Elt }
mod! N+{ [Zero NzNat < Nat]
  op 0 : -> Zero {constr}
  op s_ : Nat -> NzNat {constr}
  op _+_ : Nat Nat -> Nat
  eq X:Nat + 0 = X.
  eq X:Nat + s Y:Nat = s (X + Y).
mod! MAP(Z :: FUN){    [List]
  op nil : -> List
                     {constr}
  op (_;_) : Elt List -> List {constr}
  op map : List -> List
  eq map(nil) = nil .
  eq map(E:Elt; L:List) = (f(E); map(L)). }
view FN from FUN to N+ {
  sort Elt -> Nat,
  op f(E:Elt) -> (E:Nat + E) }
   Note that CafeOBJ supports a view from operators to derived operators, like op
f(E) -> E + E in FN. Such a view can be considered as the combination of an operator-
to-operator view and a module where an extra equation f(\bar{X}) = r is added, like op f(E)
\rightarrow d(E) and N + \cup \{d(E) = E + E\}. The following is the result of the show command
of the instantiation MAP(FN) in CafeOBJ system and the reduction command for map(s
0; ss0; nil):
CafeOBJ> show MAP(FN) .
module MAP(Z <= FN)
  imports {
               protecting (N+) }
  signature {
                 [ List ]
    op nil : -> List { constr prec: 0 }
    op _ ; _ : Nat List -> List { constr prec: 41 }
    op map : List -> List { prec: 0 } }
  axioms {
    eq map(nil) = nil.
    eq map((E:Nat; L:List)) = ((E + E); map(L)).
CafeOBJ> red in MAP(FN) : map(s 0 ; s s 0 ; nil) .
-- reduce in MAP(Z <= FN) : (map(((s 0) ; ((s (s 0)) ; nil)))):List
((s (s 0)); ((s (s (s 0)))); nil)):List
```

(0.000 sec for parse, 8 rewrites(0.000 sec), 13 matches)