Title	Categorical characterizations of the natural numbers require primitive recursion
Author(s)	Kolodziejczyk, Leszek Aleksander; Yokoyama, Keita
Citation	Annals of Pure and Applied Logic, 166(2): 219-231
Issue Date	2014-10-30
Туре	Journal Article
Text version	author
URL	http://hdl.handle.net/10119/12317
Rights	NOTICE: This is the author's version of a work accepted for publication by Elsevier. Leszek Aleksander Kolodziejczyk and Keita Yokoyama, Annals of Pure and Applied Logic, 166(2), 2014, 219-231, http://dx.doi.org/10.1016/j.apal.2014.10.003
Description	

Categorical characterizations of the natural numbers require primitive recursion

Leszek Aleksander Kołodziejczyk* Keita Yokoyama[†]
October 14, 2014

Abstract

Simpson and Yokoyama [Ann. Pure Appl. Logic 164 (2013), 284–293] asked whether there exists a characterization of the natural numbers by a second-order sentence which is provably categorical in the theory RCA $_0^*$. We answer in the negative, showing that for any characterization of the natural numbers which is provably true in WKL $_0^*$, the categoricity theorem implies Σ_1^0 induction.

On the other hand, we show that RCA $_0^*$ does make it possible to characterize the natural numbers categorically by means of a set of second-order sentences. We also show that a certain Π_2^1 -conservative extension of RCA $_0^*$ admits a provably categorical single-sentence characterization of the naturals, but each such characterization has to be inconsistent with WKL $_0^*$ +superexp.

Inspired by a question of Väänänen (see e.g. [Vää12] for some related work), Simpson and the second author [SY13] studied various second-order characterizations of $\langle \mathbb{N}, S, 0 \rangle$, with the aim of determining the reverse-mathematical strength of their respective categoricity theorems. One of the general conclusions is that the strength of a categoricity theorem depends heavily on the characterization. Strikingly, however, each of the categoricity theorems considered in [SY13] implies RCA₀, even over the much weaker base theory RCA₀*, that is, RCA₀ with Σ_1^0 induction replaced by Δ_0^0 induction in the language with exponentiation. (For RCA₀*, see [SS86].)

This leads to the following question.

^{*}Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland, lak@mimuw.edu.pl. Supported in part by Polish National Science Centre grant no. 2013/09/B/ST1/04390.

[†]School of Information Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan, y-keita@jaist.ac.jp. Supported in part by JSPS Grant-in-Aid for Research Activity Start-up grant no. 25887026.

Question 1. [SY13, Question 5.3, slightly rephrased] Does RCA₀* prove the existence of a second-order sentence or set of sentences T such that $\langle \mathbb{N}, S, 0 \rangle$ is a model of T and all models of T are isomorphic to $\langle \mathbb{N}, S, 0 \rangle$? One may also consider the same question with RCA₀* replaced by Π_2^0 -conservative extensions of RCA₀*.

Naturally, to have any hope of characterizing infinite structures categorically, second-order logic has to be interpreted according to the *standard* semantics (sometimes also known as strong or Tarskian semantics), as opposed to the *general* (or Henkin) semantics. In other words, a second-order quantifier $\forall X$ really means "for *all* subsets of the universe" (or, as we would say in a set-theoretic context, "for all elements of the power set of the universe").

Question 1 admits multiple versions depending on whether we focus on RCA $_0^*$ or consider other Π_2^0 -equivalent theories and whether we want the characterizations of the natural numbers to be sentences or sets of sentences. The most basic version, restricted to RCA $_0^*$ and single-sentence characterizations, would read as follows:

Question 2. Does there exist a second-order sentence ψ in the language with one unary function f and one constant c such that RCA $_0^*$ proves: (i) $\langle \mathbb{N}, S, 0 \rangle \models \psi$, and (ii) for every $\langle A, f, c \rangle$, if $\langle A, f, c \rangle \models \psi$, then there exists an isomorphism between $\langle \mathbb{N}, S, 0 \rangle$ and $\langle A, f, c \rangle$?

We answer Question 2 in the negative. In fact, characterizing $\langle \mathbb{N}, S, 0 \rangle$ not only up to isomorphism, but even just up to *equicardinality of the universe*, requires the full strength of RCA₀. More precisely:

Theorem 1. Let ψ be a second-order sentence in the language with one unary function f and one individual constant c. If WKL_0^* proves that $\langle \mathbb{N}, S, 0 \rangle \models \psi$, then over RCA_0^* the statement "for every $\langle A, f, c \rangle$, if $\langle A, f, c \rangle \models \psi$, then there exists a bijection between \mathbb{N} and A" implies RCA_0 .

Since RCA_0 is equivalent over RCA_0^* to a statement expressing the correctness of defining functions by primitive recursion [SS86, Lemma 2.5], Theorem 1 may be intuitively understood as saying that, for provably true single-sentence characterizations at least, "categorical characterizations of the natural numbers require primitive recursion".

Do less stringent versions of Question 1 give rise to "exceptions" to this general conclusion? As it turns out, they do. Firstly, characterizing the natural numbers by a *set* of sentences is already possible in RCA_0^* , in the following sense (for a precise statement of the theorem, see Section 4):

Theorem 2. There exists a Δ_0 -definable (and polynomial-time recognizable) set Ξ of $\Sigma_1^1 \wedge \Pi_1^1$ sentences such that RCA $_0^*$ proves: for every $\langle A, f, c \rangle$, $\langle A, f, c \rangle$ satisfies all $\xi \in \Xi$ if and only if $\langle A, f, c \rangle$ is isomorphic to $\langle \mathbb{N}, S, 0 \rangle$.

Secondly, even a single-sentence characterization is possible in a Π_2^1 -conservative extension of RCA₀*, at least if one is willing to consider rather peculiar theories:

Theorem 3. There is a Σ_2^1 sentence which is a categorical characterization of $\langle \mathbb{N}, S, 0 \rangle$ provably in RCA₀^{*} + ¬WKL.

Theorem 3 is not quite satisfactory, as the theory and characterization it speaks of are false in $\langle \omega, \mathscr{P}(\omega) \rangle$. So, another natural question to ask is whether a single-sentence characterization of the natural numbers can be provably categorical in a *true* Π_2^0 -conservative extension of RCA₀*. We show that under an assumption just a little stronger than Π_2^0 -conservativity, the characterization from Theorem 3 is actually "as true as possible":

Theorem 4. Let T be an extension of RCA_0^* conservative for first-order $\forall \Delta_0(\Sigma_1)$ sentences. Let η be a second-order sentence consistent with WKL_0^* + superexp. Then it is not the case that η is a categorical characterization of $\langle \mathbb{N}, S, 0 \rangle$ provably in T.

The proofs of our theorems make use of a weaker notion of isomorphism to $\langle \mathbb{N}, S, 0 \rangle$ studied in [SY13], that of "almost isomorphism". Intuitively speaking, a structure $\langle A, f, c \rangle$ satisfying some basic axioms is almost isomorphic to $\langle \mathbb{N}, S, 0 \rangle$ if it is "equal to or shorter than" the natural numbers. The two crucial facts we prove and exploit are that almost isomorphism to $\langle \mathbb{N}, S, 0 \rangle$ can be characterized by a single sentence provably in RCA₀*, and that structures almost isomorphic to $\langle \mathbb{N}, S, 0 \rangle$ correspond to Σ_0^1 -definable cuts.

The paper is structured as follows. After a preliminary Section 1, we conduct our study of almost isomorphism to $(\mathbb{N}, S, 0)$ in Section 2. We then prove Theorem 1 in Section 3, Theorems 2 and 3 in Section 4, and Theorem 4 in Section 5.

1 Preliminaries

We assume familiarity with subtheories of second-order arithmetic, as presented in [Sim09]. Of the "Big Five" theories featuring prominently in that book, we only need the two weakest: RCA_0 , axiomatized by Δ_1^0 comprehension and Σ_1^0 induction (and a finite list of simple basic axioms), and WKL_0 , which extends RCA_0 by the axiom WKL stating that an infinite binary tree has an infinite branch.

We also make use of some well-known fragments of first-order arithmetic, principally $I\Delta_0 + \exp$, which extends induction for Δ_0 formulas by an axiom exp stating the totality of exponentiation; $B\Sigma_1$, which extends $I\Delta_0$ by the Σ_1 collection (bounding) principle; and $I\Sigma_1$. For a comprehensive treatment of these and other subtheories of first-order arithmetic, refer to [HP93].

The well-known hierarchies defined in terms of alternations of first-order quantifiers make sense both for purely first-order formulas and for formulas allowing second-order parameters, and we will need notation to distinguish between the two cases. For classes of formulas with first-order quantification but also arbitrary second-order parameters, we use the Σ_n^0 notation standard in second-order arithmetic. On the other hand, when discussing classes of first-order formulas, we adopt a convention often used in first-order arithmetic and omit the superscript "0". Thus, for instance, a Σ_1 formula is a first-order formula (with no second-order variables at all) containing a single block of existential quantifiers followed by a bounded part. More generally, if we want to speak of a formula possibly containing second-order parameters \bar{X} but no other second-order parameters, we use notation of the form $\Sigma_n(\bar{X})$ (to be understood as " Σ_n relativized to \bar{X} ").

A formula is $\Delta_0(\Sigma_1)$ if it belongs to the closure of Σ_1 under boolean operations and bounded first-order quantifiers. $\forall \Delta_0(\Sigma_1)$ (respectively $\exists \Delta_0(\Sigma_1)$) is the class of first-order formulas which consist of a block of universal (respectively existential) quantifiers followed by a $\Delta_0(\Sigma_1)$ formula.

The theory RCA $_0^*$ was introduced in [SS86]. It differs from RCA $_0$ in that the Σ_1^0 induction axiom is replaced by IA $_0^0$ + exp. WKL $_0^*$ is RCA $_0^*$ plus the WKL axiom. Both RCA $_0^*$ and WKL $_0^*$ have B Σ_1 + exp as their first-order part, while the first-order part of RCA $_0$ and WKL $_0$ is I Σ_1 .

We let superexp denote both the "tower of exponents" function defined by superexp(x) = $\exp_x(2)$ (where $\exp_0(2) = 1, \exp_{x+1}(2) = 2^{\exp_x(2)}$) and the axiom saying that for every x, superexp(x) exists. $\Delta_0(\exp)$ stands for the class of bounded formulas in the language extending the language of Peano Arithmetic by a symbol for x^y . I $\Delta_0(\exp)$ is a definitional extension of I $\Delta_0 + \exp$.

In any model M of a first-order arithmetic theory (possibly the first-order part of a second-order structure), a cut is a nonempty subset of M which is downwards closed and closed under successor. For a cut J, we sometimes abuse notation and also write J to denote the structure $\langle J, S, 0 \rangle$, or even $\langle J, +, \cdot, \leq, 0, 1 \rangle$ if J happens to be closed under multiplication.

If $\langle M, \mathscr{X} \rangle \models \mathsf{RCA}_0^*$ and J is a cut in M, then \mathscr{X}_J will denote the family of sets $\{X \cap J : X \in \mathscr{X}\}$. Throughout the paper, we frequently use the following simple but important result without further mention.

Theorem ([SS86], Theorem 4.8). *If* $\langle M, \mathcal{X} \rangle \models \mathsf{RCA}_0^*$ *and J is a proper cut in M which is closed under* exp, *then* $\langle J, \mathcal{X}_J \rangle \models \mathsf{WKL}_0^*$.

If $\langle M, \mathscr{X} \rangle \models \mathsf{RCA}_0^*$ and $A \in \mathscr{X}$, then A is M-finite (or simply finite if we do not want to emphasize M) if there exists $a \in M$ such that all elements of A are smaller than a. Otherwise, the set A is (M)-infinite. For each M-finite set A there is an element $a \in M$ coding A in the sense that A consists exactly of those $x \in M$ for which

the *x*-th bit in the binary notation for *a* is 1. Moreover, RCA₀* has a well-behaved notion of cardinality of finite sets, which lets us define the *internal cardinality* $|A|_{\mathscr{M}}$ of any $A \in \mathscr{X}$ as $\sup(\{x \in M : A \text{ contains a finite subset with at least } x \text{ elements}\})$. $|A|_{\mathscr{M}}$ is an element of M if A is M-finite, and a cut in M otherwise.

 \mathbb{N} stands for the set of numbers defined by the formula x = x; in other words, $\mathbb{N}_M = M$. To refer to the set of standard natural numbers, we use the symbol ω . The general notational conventions regarding cuts apply also to \mathbb{N} : for instance, if there is no danger of confusion, we sometimes write that some structure is "isomorphic to \mathbb{N} " rather than "isomorphic to $\langle \mathbb{N}, S, 0 \rangle$ ".

We will be interested mostly in structures of the form $\langle A, f, c \rangle$, where f is a unary function and c an individual constant. The letter $\mathbb A$ will always stand for some structure of this form. $\mathbb A$ is a *Peano system* if f is one-to-one, $c \notin \operatorname{rng}(f)$, and $\mathbb A$ satisfies the second-order induction axiom:

$$\forall X [X(c) \land \forall a [X(a) \to X(f(a))] \to \forall a X(a)]. \tag{1}$$

Second-order logic is considered here in its full version — that is, non-unary second-order quantifiers are allowed — and interpreted according to the so-called standard semantics (cf. e.g. [End09]). Thus, the quantifier $\forall X$ with X unary means "for *all* subsets of A", $\forall X$ with X binary means "for *all* binary relations on A", etc. For instance, $\mathbb A$ satisfies (1) exactly if there is no proper subset of A containing c and closed under f. Of course, from the perspective of a model $\mathscr{M} = \langle M, \mathscr{X} \rangle$ of RCA $_0^*$ or some other fragment of second-order arithmetic, "for all subsets of A" means "for all $X \in \mathscr{X}$ such that $X \subseteq A$ ". After all, according to \mathscr{M} there are no other subsets of A!

2 Almost isomorphism

A Peano system is said to be *almost isomorphic to* $\langle \mathbb{N}, S, 0 \rangle$ if for every $a \in A$ there is some $x \in \mathbb{N}$ such that $f^x(c) = a$. Here we take $f^x(c) = a$ to mean that there exists a sequence $\langle a_0, a_1, a_2, \dots, a_x \rangle$ such that $a_0 = c$, $a_{z+1} = f(a_z)$ for z < x, and $a_x = a$. Note that we need to explicitly assert the existence of this sequence, which we often refer to as $\langle c, f(c), f^2(c), \dots, f^x(c) \rangle$, because RCA₀* is too weak to prove that any function can be iterated an arbitrary number of times.

Being almost isomorphic to \mathbb{N} is a definable property:

Lemma 5. There exists a $\Sigma_1^1 \wedge \Pi_1^1$ sentence ξ in the language with one unary function f and one individual constant c such that RCA_0^* proves: for every \mathbb{A} , $\mathbb{A} \models \xi$ if and only if \mathbb{A} is a Peano system almost isomorphic to $\langle \mathbb{N}, S, 0 \rangle$.

Proof. By definition, \mathbb{A} is a Peano system precisely if it satisfies the Π_1^1 sentence ξ_{peano} :

$$f \text{ is } 1\text{-}1 \land c \notin \operatorname{rng}(f) \land \forall X [X(c) \land \forall a [X(a) \to X(f(a))] \to \forall a X(a)].$$

The sentence ξ will be the conjunction of ξ_{peano} , the Σ_1^1 sentence $\xi_{\leq,\Sigma}$:

there exists a discrete linear ordering \leq

for which c is the least element and f is the successor function,

and the Π_1^1 sentence $\xi_{\leq,\Pi}$:

for every discrete linear ordering \leq with c as least element and f as successor and for every a, the set of elements \leq -below a is Dedekind-finite.

We say that a set X is *Dedekind-finite* if there is no bijection between X and a proper subset of X. Note that ξ involves quantification over non-unary relations: linear orderings and (graphs of) bijections.

In verifying that ξ characterizes Peano systems almost isomorphic to \mathbb{N} , we will make use of the fact that provably in RCA₀*, for any set A and any $X \subseteq A$, $A \models$ "X is Dedekind-finite" exactly if X is finite. To see that this is true, note that if X is infinite, then the map which takes $x \in X$ to the smallest $y \in X$ such that x < y is a bijection between X and its proper subset $X \setminus \{\min X\}$, and the graph of this bijection is a binary relation on X witnessing $X \not\models$ "X is Dedekind-finite". On the other hand, any witness for X is Dedekind-finite must in fact be the graph of a bijection between X and a proper subset of X, but such a bijection cannot exist for finite X because all proper subsets of a finite set have strictly smaller cardinality than the set itself.

We first prove that Peano systems almost isomorphic to $\mathbb N$ satisfy $\xi_{\preccurlyeq,\Sigma}$ and $\xi_{\preccurlyeq,\Pi}$. Let $\mathbb A$ be almost isomorphic to $\mathbb N$. Every $a\in A$ is of the form $f^x(c)$ for some $x\in \mathbb N$. Moreover, x is unique. To see this, assume that $a=f^x(c)=f^{x+y}(c)$ and that $\langle c,f(c),\ldots,f^x(c)=a,f^{x+1}(c),\ldots,f^{x+y}(c)=a\rangle$ is the sequence witnessing that $f^{x+y}(c)=a$ (by Δ_0^0 -induction, this sequence is unique and its first x+1 elements comprise the unique sequence witnessing $f^x(c)=a$). If y>0, then we have $c\neq f^y(c)$ and then Δ_0^0 -induction coupled with the injectivity of f gives $f^w(c)\neq f^{w+y}(c)$ for all $w\leq x$. So, y=0.

Because of the uniqueness of the $f^x(c)$ representation for $a \in A$, we can define \leq on A by Δ_1^0 -comprehension in the following way:

$$a \leq b := \exists x \exists y (a = f^x(c) \land b = f^y(c) \land x \leq y).$$

Clearly, \leq is a discrete linear ordering on A with c as the least element and f as the successor function, so \mathbb{A} satisfies $\xi_{\leq,\Sigma}$.

For each $a \in A$, the set of elements \leq -below a is finite. Moreover, if \leq is any ordering of A with c as least element and f as successor, then for each $a \in A$ the set

$$\{b \in A : b \preceq a \Leftrightarrow b \lessdot a\}$$

contains c and is closed under f. Since \mathbb{A} is a Peano system, \lessdot has to coincide with \preccurlyeq . Thus, \mathbb{A} satisfies $\xi_{\preccurlyeq,\Pi}$.

For a proof in the other direction, let \mathbb{A} be a Peano system satisfying $\xi_{\preccurlyeq,\Sigma}$ and $\xi_{\preccurlyeq,\Pi}$. Let \preccurlyeq be an ordering on A witnessing $\xi_{\preccurlyeq,\Sigma}$. Take some $a \in A$. By $\xi_{\preccurlyeq,\Pi}$, the set $[c,a]_{\preccurlyeq}$ of elements \preccurlyeq -below a is finite. Let ℓ be the cardinality of $[c,a]_{\preccurlyeq}$ and let b be the \leq -maximal element of $[c,a]_{\preccurlyeq}$. By $\Delta_0^0(\exp)$ -induction on x prove that there is an element below b^{x+1} coding a sequence $\langle s_0,\ldots,s_x\rangle$ such that $s_0=c$ and for all y < x, either $s_{y+1} = f(s_y) \preccurlyeq a$ or $s_{y+1} = s_y = a$. Take such a sequence for $x = \ell - 1$. If a does not appear in the sequence, then by $\Delta_0^0(\exp)$ -induction the sequence has the form $\langle c, f(c),\ldots,f^{\ell-1}(c)\rangle$ and all its entries are distinct elements of $[c,a]_{\preccurlyeq}\setminus\{a\}$; an impossibility, given that $[c,a]_{\preccurlyeq}\setminus\{a\}$ only has $\ell-1$ elements. So, a must appear somewhere in the sequence. Taking w to be the least such that $a=s_w$, we easily verify that $a=f^w(c)$.

Remark. We do not know whether in RCA₀* it is possible to characterize $\langle \mathbb{N}, S, 0 \rangle$ up to almost isomorphism by a Π_1^1 sentence. This does become possible in the case of $\langle \mathbb{N}, \leq \rangle$ (given a suitable definition of almost isomorphism, cf. [SY13]), where there is no need for the Σ_1^1 part of the characterization which guarantees the existence of a suitable ordering.

An important fact about Peano systems almost isomorphic to \mathbb{N} is that their isomorphism types correspond to Σ^0_1 -definable cuts. This correspondence, which will play a major role in the proofs of our main theorems, is formalized in the following definition and lemma.

Definition 6. Let $\mathscr{M} = \langle M, \mathscr{X} \rangle$ be a model of RCA₀*. For a Peano system \mathbb{A} in \mathscr{M} which is almost isomorphic to $\langle \mathbb{N}, S, 0 \rangle$, let $J(\mathbb{A})$ be the cut defined in \mathscr{M} by the Σ_1^0 formula $\varphi(x)$:

$$\exists a \in A \ f^x(c) = a.$$

For a Σ_1^0 -definable cut J in \mathcal{M} , let the structure $\mathbb{A}(J)$ be $\langle A_J, f_J, c_J \rangle$, where the set A_J consists of all the pairs $\langle x, y_x \rangle$ such that y_x is the smallest witness for the formula $x \in J$, the function f_J maps $\langle x, y_x \rangle$ to $\langle x + 1, y_{x+1} \rangle$, and c_J equals $\langle 0, y_0 \rangle$.

Lemma 7. Let $\mathcal{M} = \langle M, \mathcal{X} \rangle$ be a model of RCA₀. The following holds:

(a) for a Σ_1^0 -definable cut J in \mathcal{M} , the structure $\mathbb{A}(J)$ is a Peano system almost isomorphic to $\langle \mathbb{N}, S, 0 \rangle$, and $J(\mathbb{A}(J)) = J$,

- (b) if $\mathbb{A} \in \mathcal{X}$ is a Peano system almost isomorphic to $(\mathbb{N}, S, 0)$, then there is an isomorphism in \mathcal{M} between $\mathbb{A}(J(\mathbb{A}))$ and \mathbb{A} ,
- (c) if $\mathbb{A} \in \mathcal{X}$ is a Peano system almost isomorphic to $\langle \mathbb{N}, S, 0 \rangle$, then there is an isomorphism in \mathcal{M} between \mathbb{A} and $J(\mathbb{A})$, which also induces an isomorphism between the second-order structures $\langle \mathbb{A}, \mathcal{X} \cap \mathcal{P}(A) \rangle$ and $\langle J(\mathbb{A}), \mathcal{X}_{J(\mathbb{A})} \rangle$.

Although all the isomorphisms between first-order structures mentioned in Lemma 7 are elements of \mathscr{X} , a cut is not itself an element of \mathscr{X} unless it equals M (because induction fails for the formula $x \in J$ whenever J is a proper cut). Obviously, the isomorphism between second-order structures mentioned in part (c) is also outside \mathscr{X} .

Proof. For a Σ_1^0 -definable cut J in \mathcal{M} , it is clear that A_J and f_J are elements of \mathcal{X} , that f_J is an injection from A_J into A_J , and that c_J is outside the range of f_J . Furthermore, for every $\langle x, y_x \rangle \in A_J$, Σ_1^0 collection in \mathcal{M} guarantees that there is a common upper bound on y_0, \ldots, y_x , so Δ_0^0 induction is enough to show that the sequence $\langle c_J, f_J(c_J), \ldots, f_J^x(c_J) = \langle x, y_x \rangle \rangle$ exists. If $X \subseteq A_J$, $X \in \mathcal{X}$, is such that $c_J \in X$ but $f_J^x(c_J) \notin X$, then Δ_0^0 induction along the sequence $\langle c_J, f_J(c_J), \ldots, f_J^x(c_J) \rangle$ finds some w < x such that $f_J^w(c_J) \in X$ but $f_J(f_J^w(c_J)) \notin X$. Thus, A(J) is a Peano system almost isomorphic to A0, and clearly A1, so part (a) is proved.

For part (b), if \mathbb{A} is almost isomorphic to \mathbb{N} , then each $a \in A$ has the form $a = f^x(c)$ for some $x \in J(\mathbb{A})$, and we know from the proof of Lemma 5 that the element x is unique. Thus, the mapping which takes $f^x(c) \in \mathbb{A}$ to $\langle x, y_x \rangle \in \mathbb{A}(J(\mathbb{A}))$ is guaranteed to exist in \mathscr{M} by Δ^0_1 comprehension. It follows easily from the definitions of $J(\mathbb{A})$ and $\mathbb{A}(J)$ that the mapping $f^x(c) \mapsto \langle x, y_x \rangle$ is an isomorphism between \mathbb{A} and $\mathbb{A}(J(\mathbb{A}))$.

For part (c), we assume that \mathbb{A} equals $\mathbb{A}(J(\mathbb{A}))$, which we may do w.l.o.g. by part (b). The isomorphism between \mathbb{A} and $J(\mathbb{A})$ is given by $\langle x, y_x \rangle \mapsto x$. To prove that this also induces an isomorphism between $\langle \mathbb{A}, \mathcal{X} \cap \mathcal{P}(A) \rangle$ and $\langle J(\mathbb{A}), \mathcal{X}_{J(\mathbb{A})} \rangle$, we have to show that for any $X \subseteq A$, it holds that $X \in \mathcal{X}$ exactly if $\{x : \langle x, y_x \rangle \in X\}$ has the form $Z \cap J(\mathbb{A})$ for some $Z \in \mathcal{X}$. This is easy if $J(\mathbb{A}) = M$, so below we assume $J(\mathbb{A}) \neq M$.

The "if" direction is immediate: given $Z \in \mathcal{X}$, the set $\{\langle x, y_x \rangle : x \in Z\}$ is $\Delta_0(Z)$ and thus belongs to \mathcal{X} .

To deal with the other direction, we assume that \mathcal{M} is countable. We can do this w.l.o.g. because $J(\mathbb{A})$ is a definable cut, so the existence of a counterexample in some model would imply the existence of a counterexample in a countable model by a downwards Skolem-Löwenheim argument.

By [SS86, Theorem 4.6], the countability of \mathscr{M} means that we can extend \mathscr{X} to a family $\mathscr{X}^+ \supseteq \mathscr{X}$ such that $\langle M, \mathscr{X}^+ \rangle \models \mathsf{WKL}_0^*$. Note that there are no M-finite

sets in $\mathscr{X}^+ \setminus \mathscr{X}$. This is because for an M-finite set $X \in \mathscr{X}^+$ there is some $z \in M$ such that

$$X = \{x : \text{ the } x\text{-th bit in the binary notation for } z \text{ is } 1\}.$$

Therefore, *X* is Δ_0 -definable with parameter *z* and so $X \in \mathcal{X}$.

Now consider some $X \in \mathcal{X}$, $X \subseteq A$. Let T be the set consisting of the finite binary strings s satisfying:

$$\forall a, x < \text{lh}(s) \left[(a = \langle x, y_x \rangle \land a \in X \to (s)_x = 1) \land (a = \langle x, y_x \rangle \land a \in A \setminus X \to (s)_x = 0) \right].$$

T is $\Delta_0(X)$ -definable, so it belongs to \mathscr{X} , and it is easy to show that it is an infinite tree. Let $B \in \mathscr{X}^+$ be an infinite branch of T. Then $\{x : \langle x, y_x \rangle \in X\} = B \cap J(\mathbb{A})$. However, $B \cap J(\mathbb{A})$ can also be written as $(B \cap \{0, \dots, z\}) \cap J(\mathbb{A})$ for an arbitrary $z \in M \setminus J(\mathbb{A})$, and $B \cap \{0, \dots, z\}$, being a finite set, belongs to \mathscr{X} .

Corollary 8. Let $\mathcal{M} = \langle M, \mathcal{X} \rangle$ be a model of RCA_0^* . Let $A \in \mathcal{X}$ be a Peano system almost isomorphic to $\langle \mathbb{N}, S, 0 \rangle$. Assume that J(A) is a proper cut closed under exp, that \preccurlyeq is a linear ordering on A with least element c and successor function f, and that \oplus, \otimes are operations on A which satisfy the usual recursive definitions of addition resp. multiplication with respect to least element c and successor f. Then $\langle \langle A, \oplus, \otimes, \preccurlyeq, c, f(c) \rangle, \mathcal{X} \cap \mathcal{P}(A) \rangle \models WKL_0^*$.

Proof. Write \mathbb{A} for $\langle A, \oplus, \otimes, \leq, c, f(c) \rangle$. By Lemma 7 part (b), we can assume w.l.o.g. that $\mathbb{A} = \mathbb{A}(J(\mathbb{A}))$. Using the fact that \mathbb{A} is a Peano system, we can prove that for every $x, z \in J(\mathbb{A})$:

$$\langle x, y_x \rangle \oplus \langle z, y_z \rangle = \langle x + z, y_{x+z} \rangle,$$

$$\langle x, y_x \rangle \otimes \langle z, y_z \rangle = \langle x \cdot z, y_{x \cdot z} \rangle,$$

$$\langle x, y_x \rangle \preccurlyeq \langle z, y_z \rangle \text{ iff } x \leq z.$$

By the obvious extension of Lemma 7 part (c) to structures with addition, multiplication and ordering, $\langle \mathring{\mathbb{A}}, \mathscr{X} \cap \mathscr{P}(A) \rangle$ is isomorphic to $\langle J(A), \mathscr{X}_{J(A)} \rangle$. Since $J(\mathbb{A})$ is proper and closed under exp, this means that $\langle \mathring{\mathbb{A}}, \mathscr{X} \cap \mathscr{P}(A) \rangle \models \mathsf{WKL}_0^*$.

Remark. It was shown in [SY13, Lemma 2.2] that in RCA₀ a Peano system almost isomorphic to $\mathbb N$ is actually isomorphic to $\mathbb N$. In light of Lemma 7, this is a reflection of the fact that in RCA₀ there are no proper Σ_1^0 -definable cuts.

Informally speaking, a Peano system which is not almost isomorphic to \mathbb{N} is "too long", since it contains elements which cannot be obtained by starting at zero and iterating successor finitely many times. On the other hand, a Peano system which is almost isomorphic but not isomorphic to \mathbb{N} is "too short". The results of this section, together with our Theorem 1, give precise meaning to the intuitive

idea strongly suggested by Table 2 of [SY13], that the problem with characterizing the natural numbers in RCA_0^* is ruling out structures that are "too short" rather than "too long".

3 Characterizations: basic case

In this section, we prove Theorem 1.

Theorem 1. Let ψ be a second-order sentence in the language with one unary function f and one individual constant c. If WKL_0^* proves that $\langle \mathbb{N}, S, 0 \rangle \models \psi$, then over RCA_0^* the statement "for every \mathbb{A} , if $\mathbb{A} \models \psi$, then there exists a bijection between \mathbb{N} and \mathbb{A} " implies RCA_0 .

We use a model-theoretic argument based on the work of Section 2 and a lemma about cuts in models of $I\Delta_0 + exp + \neg I\Sigma_1$.

Lemma 9. Let $M \models I\Delta_0 + \exp + \neg I\Sigma_1$. There exists a proper Σ_1 -definable cut $J \subseteq M$ closed under exp.

Proof. We need to consider a few cases.

Case 1. $M \models$ superexp. Since $M \not\models I\Sigma_1$, there exists a Σ_1 formula $\varphi(x)$, possibly with parameters, which defines a proper subset of M closed under successor. Replacing $\varphi(x)$ by the formula $\hat{\varphi}(x)$: "there exists a sequence witnessing that for all $y \leq x$, $\varphi(y)$ holds", we obtain a proper Σ_1 -definable cut $K \subseteq M$. Define:

$$J := \{ y : \exists x \in K (y < \operatorname{superexp}(x)) \}.$$

J is a cut closed under exp because *K* is a cut, and it is proper because it does not contain superexp(b) for any $b \notin K$.

The remaining cases all assume that $M \not\models$ superexp. Let $Log^*(M)$ denote the domain of superexp in M. By the case assumption and the fact that $M \models$ exp, $Log^*(M)$ is a proper Σ_1 -definable cut in M.

Case 2. $Log^*(M)$ is closed under exp. Define $J := Log^*(M)$.

Case 3. $\text{Log}^*(M)$ is closed under addition but not under exp. Let $\text{Log}(\text{Log}^*(M))$ be the subset of M defined as $\{x : \exp(x) \in \text{Log}^*(M)\}$. Since $\text{Log}^*(M)$ is closed under addition, $\text{Log}(\text{Log}^*(M))$ is a cut. Moreover, $\text{Log}(\text{Log}^*(M)) \subsetneq \text{Log}^*(M)$, because $\text{Log}^*(M)$ is not closed under exp. Define:

$$J := \{ y : \exists x \in \text{Log}(\text{Log}^*(M)) (y < \text{superexp}(x)) \}.$$

J is a cut closed under exp because $Log(Log^*(M))$ is a cut, and it is proper because it does not contain superexp(*b*) for any $b \in Log^*(M) \setminus Log(Log^*(M))$.

Case 4. Log*(M) is not closed under addition. Let $\frac{1}{2}\text{Log}^*(M)$ be the subset of M defined as $\{x : 2x \in \text{Log}^*(M)\}$. Since $\text{Log}^*(M)$ is closed under successor, $\frac{1}{2}\text{Log}^*(M)$ is a cut. Moreover, $\frac{1}{2}\text{Log}^*(M) \subsetneq \text{Log}^*(M)$, because $\text{Log}^*(M)$ is not closed under addition. Define:

$$J := \{ y : \exists x \in \frac{1}{2} \operatorname{Log}^*(M) (y < \operatorname{superexp}(x)) \}.$$

J is a cut closed under exp because $\frac{1}{2}\text{Log}^*(M)$ is a cut, and it is proper because it does not contain superexp(*b*) for any $b \in \text{Log}^*(M) \setminus \frac{1}{2}\text{Log}^*(M)$.

Remark. Inspection of the proof reveals immediately that Lemma 9 relativizes, in the sense that in a model of $I\Delta_0(X) + \exp + \neg I\Sigma_1(X)$ there is a $\Sigma_1(X)$ -definable proper cut closed under exp.

Remark. The method used to prove Lemma 9 shows the following result: for any $n \in \omega$, there is a definable cut in $I\Delta_0 + \exp$, provably closed under exp, which is proper in all models of $I\Delta_0 + \exp + \neg I\Sigma_n$. In contrast, there is no definable cut in $I\Delta_0 + \exp$ provably closed under superexp; otherwise, $I\Delta_0 + \exp$ would prove its consistency relativized to a definable cut, which would contradict Theorem 2.1 of [Pud85].

We can now complete the proof of Theorem 1. Assume that ψ is a second-order sentence true of $\langle \mathbb{N}, S, 0 \rangle$ provably in WKL₀*. Let $\mathscr{M} = \langle M, \mathscr{X} \rangle$ be a model of RCA₀* + $\neg I\Sigma_1^0$. Assume for the sake of contradiction that according to \mathscr{M} , the universe of any structure satisfying ψ can be bijectively mapped onto \mathbb{N} .

Let J be the proper cut in M guaranteed to exist by the relativized version of Lemma 9. Note that according to \mathcal{M} , there is no bijection between A_J and \mathbb{N} . Otherwise, for every $y \in M$ the preimage of $\{0, \dots, y-1\}$ under the bijection would be a finite subset of A_J of cardinality exactly y, which would imply $|A_J|_{\mathcal{M}} = M$. But it is easy to verify that $|A_J|_{\mathcal{M}} = J$.

From our assumption on ψ it follows that \mathscr{M} believes $\mathbb{A}(J) \models \neg \psi$.

By Lemma 7 and its proof, the mapping $\langle x, y_x \rangle \mapsto x$ induces an isomorphism between $\langle \mathbb{A}(J), \mathscr{X} \cap \mathscr{P}(A_J) \rangle$ and $\langle J, \mathscr{X}_J \rangle$. Since J is closed under addition and multiplication, we can define the operation \oplus on A_J by $\langle x, y_x \rangle \oplus \langle z, y_z \rangle = \langle x + z, y_{x+z} \rangle$, and we can define \otimes and \prec analogously. By Δ_0^0 comprehension, \oplus, \otimes, \prec are all elements of \mathscr{X} . Write $\mathbb{A}(J)$ for $\langle \mathbb{A}(J), \oplus, \otimes, \prec, \langle 0, y_0 \rangle, \langle 1, y_1 \rangle \rangle$.

Clearly, A_J with the structure given by \oplus, \otimes, \leq satisfies the assumptions of Corollary 8, which means that $\langle \mathring{\mathbb{A}}(J), \mathcal{X} \cap \mathcal{P}(A_J) \rangle$ is a model of WKL₀*. We also claim that $\langle \mathring{\mathbb{A}}(J), \mathcal{X} \cap \mathcal{P}(A_J) \rangle$ believes $\mathbb{N} \models \neg \psi$. This is essentially an immediate consequence of the fact that \mathscr{M} thinks $\mathbb{A}(J) \models \neg \psi$, since the subsets of A_J are exactly the same in $\langle \mathring{\mathbb{A}}(J), \mathcal{X} \cap \mathcal{P}(A_J) \rangle$ as in \mathscr{M} . There is one minor technical annoyance related to non-unary second-order quantifiers in ψ , as the integer pairing

function in $\mathring{\mathbb{A}}(J)$ does not coincide with that of M. The reason this matters is that the language of second-order arithmetic officially contains only unary set variables, so e.g. a binary relation is represented by a set of pairs, but a set of M-pairs of elements of A_J might not even be a subset of A_J . Clearly, however, since the graph of the $\mathring{\mathbb{A}}(J)$ -pairing function is $\Delta_0^0(\exp)$ -definable in \mathscr{M} , a given set of M-pairs of elements of A_J belongs to \mathscr{X} exactly if the corresponding set of $\mathring{\mathbb{A}}$ -pairs belongs to $\mathscr{X} \cap \mathscr{P}(A_J)$; and likewise for tuples of greater constant length.

Thus, our claim holds, and we have contradicted the assumption that ψ is true of \mathbb{N} provably in WKL₀*. \square (Theorem 1)

We point out the following corollary of the proof.

Corollary 10. *The following are equivalent over* RCA₀*:

- (1) $\neg RCA_0$.
- (2) There exists $\mathcal{M} = \langle M, \mathcal{X} \rangle$ satisfying WKL^{*}₀ such that $|M| \neq |\mathbb{N}|$.

Proof. RCA₀ proves that all infinite sets have the same cardinality, which gives $(2) \Rightarrow (1)$. To prove $(1) \Rightarrow (2)$, work in a model of RCA₀* + ¬RCA₀ and take the inner model of WKL₀* provided by the proof of Theorem 1.

Remark. The type of argument described above can be employed to strengthen Theorem 1 in two ways.

Firstly, it is clear that $\langle \mathbb{N}, S, 0 \rangle$ could be replaced in the statement of Theorem 1 by, for instance, $\langle \mathbb{N}, \leq, +, \cdot, 0, 1 \rangle$. In other words, the extra structure provided by addition and multiplication does not help in characterizing the natural numbers without $I\Sigma_1^0$.

Secondly, for any fixed $n \in \omega$, the theories RCA₀*/WKL₀* appearing in the statement could be extended (both simultaneously) by an axiom expressing the totality of f_n , the n-th function in the Grzegorczyk-Wainer hierarchy (e.g., the totality of f_2 is exp, the totality of f_3 is superexp). The proof remains essentially the same, except that the argument used to show Lemma 9 now splits into n+2 cases instead of four.

By compactness, RCA_0^*/WKL_0^* could also be replaced in the statement of the theorem by $RCA_0^* + PRA/WKL_0^* + PRA$, where PRA is primitive recursive arithmetic.

4 Characterizations: exceptions

In this section, we give a precise statement of Theorem 2, and prove Theorems 2 and 3.

Theorem 2 (restated). There exists a Δ_0 formula $\Xi(x)$ defining a (polynomial-time recognizable) set of $\Sigma_1^1 \wedge \Pi_1^1$ sentences such that RCA₀* proves: "for every \mathbb{A} , \mathbb{A} is isomorphic to $\langle \mathbb{N}, S, 0 \rangle$ if and only if $\mathbb{A} \models \xi$ for all ξ such that $\Xi(\xi)$ ".

This is our formulation of "there exists a set of second-order sentences which provably in RCA_0^* categorically characterizes the natural numbers". Note that a characterization by a fixed set of standard sentences is ruled out by Theorem 1 (and a routine compactness argument).

Proof of Theorem 2. We will abuse notation and write Ξ for the set of sentences defined by the formula $\Xi(x)$. Let Ξ consist of the sentence ξ from Lemma 5 and the sentences

$$\exists a_0 \exists a_1 \dots \exists a_{x-1} \exists a_x [a_0 = c \land a_1 = f(a_0) \land \dots \land a_x = f(a_{x-1})],$$

for every $x \in \mathbb{N}$. (Note that in a nonstandard model of RCA_0^* , the set Ξ will contain sentences of nonstandard length.)

Provably in RCA₀*, a structure \mathbb{A} satisfies all sentences in Ξ exactly if it is a Peano system almost isomorphic to \mathbb{N} such that for every $x \in \mathbb{N}$, $f^x(c)$ exists. Clearly then, \mathbb{N} satisfies all sentences in Ξ . Conversely, if \mathbb{A} satisfies all sentences in Ξ , then $J(\mathbb{A}) = \mathbb{N}$ and so \mathbb{A} is isomorphic to \mathbb{N} .

Theorem 3. There is a Σ_2^1 sentence which is a categorical characterization of $\langle \mathbb{N}, S, 0 \rangle$ provably in RCA $_0^* + \neg WKL$.

Before proving the theorem, we verify that the theory it mentions is a Π_2^1 -conservative extension of RCA₀*.

Proposition 11. The theory $RCA_0^* + \neg WKL$ is a Π_2^1 -conservative extension of RCA_0^* .

Proof. Let $\exists X \, \forall Y \, \varphi(X,Y)$ be a Σ_2^1 sentence consistent with RCA₀*. Take $\langle M, \mathscr{X} \rangle$ and $A \in \mathscr{X}$ such that $\langle M, \mathscr{X} \rangle \models \mathsf{RCA}_0^* + \forall Y \, \varphi(A,Y)$. Let $\Delta_1(A)$ - \mathfrak{Def} stand for the collection of the $\Delta_1(A)$ -definable subsets of M. $\Delta_1(A)$ - $\mathfrak{Def} \subseteq \mathscr{X}$, so obviously $\langle M, \Delta_1(A) - \mathfrak{Def} \rangle \models \mathsf{RCA}_0^* + \forall Y \, \varphi(A,Y)$. Moreover, by a standard argument, there is a $\Delta_1(A)$ -definable infinite binary tree without a $\Delta_1(A)$ -definable branch, so $\langle M, \Delta_1(A) - \mathfrak{Def} \rangle \models \neg \mathsf{WKL}$.

Proof of Theorem 3. Work in RCA₀* + ¬WKL. The sentence ψ , our categorical characterization of \mathbb{N} , is very much like the sentence ξ described in the proof of Lemma 5, which expressed almost isomorphism to \mathbb{N} . The one difference is that the Σ_1^1 conjunct of ξ :

there exists a discrete linear ordering \leq for which c is the least element and f is the successor function,

is strengthened in ψ to the Σ_2^1 sentence:

there exist binary operations \oplus , \otimes and a discrete linear ordering \leq such that \leq has c as the least element and f as the successor function,

 \oplus and \otimes satisfy the usual recursive definition of addition and multiplication, and such that $I\Delta_0 + exp + \neg WKL$ holds.

 $I\Delta_0 + \exp$ is finitely axiomatizable [GD82], so there is no problem with expressing this as a single sentence. Note that ψ is Σ_2^1 .

Since $\neg WKL$ holds, the usual +, \cdot and ordering on $\mathbb N$ witness that $\mathbb N$ satisfies the new Σ_2^1 conjunct of ψ . Of course, $\mathbb N$ is a Peano system almost isomorphic to $\mathbb N$, and thus it satisfies ψ .

Now let $\mathbb A$ be a structure satisfying ψ . Then $\mathbb A$ is a Peano system almost isomorphic to $\mathbb N$, so we may consider $J(\mathbb A)$. As in the proof of Corollary 8, we can show that the canonical isomorphism between $\mathbb A$ and $J(\mathbb A)$ has to map $\mathbb A$, $\mathbb A$ witnessing the Σ_2^1 conjunct of $\mathbb A$ to the usual $+,\cdot,\leq$ restricted to $\mathbb A$. This guarantees that $J(\mathbb A)$ is closed under exp, because the Σ_2^1 conjunct of $\mathbb A$ explicitly contains $\mathbb A$ moreover, Corollary 8 implies that $J(\mathbb A)$ cannot be a proper cut, because otherwise $\mathbb A$ with the additional structure given by $\mathbb A$, $\mathbb A$ would have to satisfy WKL. So, $J(\mathbb A) = \mathbb N$ and thus $\mathbb A$ is isomorphic to $\mathbb N$.

5 Characterizations: exceptions are exotic

To conclude the paper, we prove Theorem 4 and some corollaries.

Theorem 4. Let T be an extension of RCA_0^* conservative for first-order $\forall \Delta_0(\Sigma_1)$ sentences. Let η be a second-order sentence consistent with WKL_0^* + superexp. Then it is not the case that η is a categorical characterization of $\langle \mathbb{N}, S, 0 \rangle$ provably in T.

Proof. Let $\mathcal{M} = \langle M, \mathcal{X} \rangle$ be a countable recursively saturated model of WKL₀* + superexp + η .

Tanaka's self-embedding theorem [Tan97] is stated for countable models of WKL₀. However, a variant of the theorem is known to hold for WKL₀* as well:

Tanaka's self-embedding theorem for WKL₀* (Wong-Yokoyama, unpublished). *If* $\mathcal{M} = \langle M, \mathcal{X} \rangle$ *is a countable recursively saturated model of* WKL₀* *and* $q \in M$, *then there exists a proper cut I in M and an isomorphism* $f : \langle M, \mathcal{X} \rangle \to \langle I, \mathcal{X}_I \rangle$ *such that* f(q) = q.

This can be proved by going through the original proof in [Tan97] and verifying that all arguments involving Σ_1^0 induction can be replaced either by $\Delta_0^0(\exp)$ induction plus Σ_1^0 collection or by saturation arguments¹. A refined version of the result was recently proved by a different method in [EW14].

Thus, there is a proper cut I in M such that $\langle M, \mathscr{X} \rangle$ and $\langle I, \mathscr{X}_I \rangle$ are isomorphic. In particular, $\langle I, \mathscr{X}_I \rangle \models \eta$.

Let $a \in M \setminus I$. Define the cut K in M to be

$${y: \exists x \in I (y < \exp_{a+x}(2))}.$$

Since $\exp_{2a}(2) \in M \setminus K$, the cut K is proper and hence $\langle K, \mathscr{X}_K \rangle \models \mathsf{WKL}_0^*$. The set I is still a proper cut in K, because $a \in K \setminus I$. Furthermore, I is Σ_1 -definable in K by the formula $\exists x \exists y (y = \exp_{a+x}(2))$.

T is conservative over RCA $_0^*$ for first-order $\forall \Delta_0(\Sigma_1)$ sentences, so there is a model $\langle L, \mathscr{Y} \rangle \models T$ such that $K \preccurlyeq_{\Delta_0(\Sigma_1)} L$. We claim that in $\langle L, \mathscr{Y} \rangle$ there is a Peano system $\mathbb A$ satisfying η but not isomorphic to $\mathbb N$. This will imply that T does not prove η to be a categorical characterization of $\mathbb N$. It remains to prove the claim.

We can assume that η does not contain a second-order quantifier in the scope of a first-order quantifier. This is because we can always replace first-order quantification by quantification over singleton sets, at the cost of adding some new first-order quantifiers with none of the original quantifiers of η in their scope.

Note that $\langle K, \mathscr{X}_K \rangle$ contains a proper Σ_1 definable cut, namely I, which satisfies η . Using the universal Σ_1 formula, we can express this fact by a first-order $\exists \Delta_0(\Sigma_1)$ sentence η^{FO} . The sentence η^{FO} says the following:

there exists a triple " Σ_1 formula $\varphi(x, w)$, parameter p, bound b" such that b does not satisfy $\varphi(x, p)$, the set defined by $\varphi(x, p)$ below b is a cut, and this cut satisfies η .

To state the last part, replace the second-order quantifiers of η by quantifiers over subsets of $\{0,\ldots,b-1\}$ (these are bounded first-order quantifiers) and replace the first-order quantifiers by first-order quantifiers relativized to elements below b satisfying $\varphi(x,p)$. By our assumptions about the syntactical form of η , this ensures that η^{FO} is $\exists \Delta_0(\Sigma_1)$.

L is a $\Delta_0(\Sigma_1)$ -elementary extension of K, so L also satisfies η^{FO} . Therefore, $\langle L, \mathscr{Y} \rangle$ also contains a proper Σ_1 -definable cut satisfying η . The Peano system corresponding to this cut via Lemma 7 also satisfies η , but it cannot be isomorphic to \mathbb{N} in $\langle L, \mathscr{Y} \rangle$, because its internal cardinality is a proper cut in L. The claim, and the theorem, is thus proved.

¹The one part of Tanaka's proof that does require Σ_1^0 induction is making f fix (pointwise) an entire initial segment rather than just the single element q. See [Ena13].

Remark. The assumption that η is consistent with WKL $_0^*$ + superexp rather than just WKL $_0^*$ is only needed to ensure that there is a model of RCA $_0^*$ with a proper Σ_1 -definable cut satisfying η . The assumption can be replaced by consistency with WKL $_0^*$ extended by a much weaker first-order statement, but we were not able to make the proof work assuming only consistency with WKL $_0^*$.

One idea used in the proof of Theorem 4 seems worth stating as a separate corollary.

Corollary 12. Let η be a second-order sentence. The statement "there exists a Peano system \mathbb{A} almost isomorphic but not isomorphic to $\langle \mathbb{N}, S, 0 \rangle$ such that $\mathbb{A} \models \eta$ " is Σ_1^1 over RCA_0^* .

Proof. By Lemma 7, a Peano system satisfying η and almost isomorphic but not isomorphic to \mathbb{N} exists exactly if there is a proper Σ^0_1 -definable cut satisfying η . This can be expressed by a sentence identical to the first-order sentence η^{FO} from the proof of Theorem 4 except for an additional existential second-order quantifier to account for the possible set parameters in the formula defining the cut.

Theorem 4 also has the consequence that if we restrict our attention to Π_1^1 -conservative extensions of RCA $_0^*$, then the characterization from Theorem 3 is not only the "truest possible", but also the "simplest possible" provably categorical characterization of \mathbb{N} .

Corollary 13. Let T be a Π_1^1 -conservative extension of RCA $_0^*$. Assume that the second-order sentence η is a categorical characterization of $\langle \mathbb{N}, S, 0 \rangle$ provably in T. Then

- (a) η is not Π_2^1 ,
- (b) T is not Π_2^1 -axiomatizable.

Proof. We first prove (b). Assume that T is Π_2^1 -axiomatizable and Π_1^1 -conservative over RCA $_0^*$. As observed in [Yok09], this means that $T + \mathsf{WKL}_0^*$ is Π_1^1 -conservative over RCA $_0^*$, so T is consistent with WKL $_0^*$ + superexp. Hence, Theorem 4 implies that there can be no provably categorical characterization of $\mathbb N$ in T.

Turning now to part (a), assume that η is Π_2^1 . Since T is Π_1^1 -conservative over RCA₀* and proves that $\mathbb{N} \models \eta$, then RCA₀* + η must also be Π_1^1 -conservative over RCA₀*. But then, by a similar argument as above, η is consistent with WKL₀* + superexp, which contradicts Theorem 4.

Acknowledgement. We are grateful to Stephen G. Simpson for useful remarks and to an anonymous referee for comments which helped improve the presentation.

References

- [Ena13] A. Enayat, *A new proof of Tanaka's theorem*, New Studies in Weak Arithmetics (P. Cégielski et al., ed.), CSLI Lecture Notes, vol. 211, 2013, pp. 93–102.
- [End09] H. B. Enderton, Second-order and higher-order logic, The Stanford Encyclopedia of Philosophy (2014 edition) (E. N. Zalta, ed.), 2009, url: http://plato.stanford.edu/entries/logic-higher-order/.
- [EW14] A. Enayat and T. L. Wong, *Model theory of* WKL₀*, to appear, 2014.
- [GD82] H. Gaifman and C. Dimitracopoulos, Fragments of Peano's arithmetic and the MDRP theorem, Logic and Algorithmic, Monographie de l'Enseignement Mathématique, Université de Genève, 1982, pp. 187–206.
- [HP93] P. Hájek and P. Pudlák, *Metamathematics of First-Order Arithmetic*, Springer-Verlag, 1993.
- [Pud85] P. Pudlák, *Cuts, consistency statements, and interpretations*, Journal of Symbolic Logic **50** (1985), 423–441.
- [Sim09] S. G. Simpson, *Subsystems of Second Order Arithmetic*, Association for Symbolic Logic, 2009.
- [SS86] S. G. Simpson and R. L. Smith, *Factorization of polynomials and* Σ_1^0 *induction*, Annals of Pure and Applied Logic **31** (1986), 289–306.
- [SY13] S. G. Simpson and K. Yokoyama, *Reverse mathematics and Peano cate-goricity*, Annals of Pure and Applied Logic **164** (2013), no. 3, 284–293.
- [Tan97] K. Tanaka, *The self-embedding theorem of* WKL₀ *and a non-standard method*, Annals of Pure and Applied Logic **84** (1997), 41–49.
- [Vää12] J. Väänänen, Second order logic or set theory?, Bulletin of Symbolic Logic **18** (2012), 91–121.
- [Yok09] K. Yokoyama, On Π_1^1 conservativity of Π_2^1 theories in second order arithmetic, Proceedings of the 10th Asian Logic Conference (C. T. Chong et al., ed.), World Scientific, 2009, pp. 375–386.