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Chapter 1

Introduction

It had been argued many times from Newton’s time whether a light is a particle or a
wave, but, the wave theory had been the mainstream until the end of 19th century because
of the Huygens’ theory of interference and the triumph of Maxwell’s electromagnetics. In
the beginning of this century, however, this argument appeared again as a very important
problem of physics.

It’s origin was the spectral distribution problem of blackbody radiation. About spectral
distribution of lights emitted from heated blackbodies, there had been formulas obtained
from Maxwell’s electromagnetics, but they agree with the observational results only in the
region of the short and long wave length, and there had not been obtained such a formula
that agrees with the whole region of wave length, by using classical physics(Newton’s
mechanics and Maxwell’s electromagnetics).

One more difficult problem was to explain the stability of materials. It was known
such a picture from atomic experiments that an atom consists of a heavy, positive charged
nucleus and negative charged electrons which surround the the nucleus like planets. In
this picture, however, electrons emit electromagnetic waves because of their accelerated
motions, then they lose their kinetic energies and fall in to the nucleus. This means that
every material collapses in a short time, contradicting our experiences. Moreover, in this
picture, the spectra of the electromagnetic waves emitted by the electrons have to distribute
continuously, but experiments show their discrete distributions.

In order to solve these problems, in 1900 M.Planck introduced the quantum hypothesis:

enerqgy of electromagnetic radiation is emitted and absorbed only in the forms of discrete
quanta.

This is the start of quantum mechanics.

On the other hand, from electron diffraction experiments on crystals, it appeared that
every particle like an electron also shows features of a wave. Nowadays, it is known that
every material has a wave—particle duality, i.e., a particle whose energy £ and momentum



p also has features of a wave whose angular frequency w and wave number k, and they are
related

E = hw, p = hk.

The formulas above is called “Einstein - de Bloglie’s relation” and A = 1.054 x 10~ %"erg-sec
is the “Planck’s constant”.

It is quantum mechanics that was born to treat phenomena which cannot be explained
by classical physics. At first it was introduced as matrix mechanics by W.Heisenberg in
1925, and next, introduced as wave mechanics by E.Schrodinger in 1926. These two theo-
ries are quite different each other in their formalism, but afterword, J.von.Neumann gave
an unified interpretation of them by using Hilbert space theory. According to it, quantum
mechanics has the following axioms([10],[11],[13]).

Axiom 1

The state of a physical system is represented by an unit vector of a complex Hilbert space
H. This vector is called “state vector”. Provided that state vectors v € H and atp € H
represent the same state for an arbitrary complex number o with |a| = 1.

Axiom 2
A physical quantity — sometimes called “observable” — 1is represented by a self adjoint
operator on H.

Axiom 3

For a state vector 1) and an observable A, the expected value of A is given by the inner
product < ¢7A¢ > of two vector i and qu, where A is the self adjoint operator that cor-
responds to the observable A.

In addition to these axioms, the foundation of quantum mechanics consists of some
physical principles, say, the law of the time development of ¥ or the method to construct
Hamiltonian of Schrodinger equation, but we shall not discuss such details.

What is important here is that observables are represented by operators on Hilbert space
and these operators do not commute in general, i.e., if A and B are such operators, then
in general

AB # BA.
It follows that < ¢, ABt >#< 1, BAy >, and this means that experimental results(informations
about a physical system) depend on the order of the experiment of A and that of B.



In fact, about some particle, say an single electron, the operator & of coordinate = and
the operator p of coordinate p satisfies Zp — pz = ih, and this relation yields that for
standard deviations Az, Ap of z and p

1
Az - Ap > ih. (1.1)

Namely, for this pair of physical quantities, there exists a “limit” such that we cannot
know more precisely about the physical system. This is an example of the well-known
“Heisenberg’s uncertainty principle”.

Meanwhile, a similar uncertainty is found in a kind of experiment on automata, i.e., the
order dependency of experiments appears and there exists a “limit” concerning what we
can know about automata.

“The state decision problem” is such an example of automata experiments. Let us con-
sider that an automaton with an output function is contained in a black box and we will
apply input words and observe its output words. At any time, the automaton is in one
of its states, and the state decision problem is to determine by experiment — observing
input-output behavior — which state the automaton currently in. An important property
in this experiment is that if we apply some input words, then the automaton transits from
the current state to another one. Therefore, the experimental results(informations about
the automaton) are depend on the order of experiments. Moreover, the state decision prob-
lem is not always solvable, i.e., there exist a “limit” for the informations about the current
state. In 1956 E.F.Moore pointed out these facts quite analogous to quantum physical ex-
periments, and afterword, in 1971 J.H.Conway called them “Moore’s uncertainty principle”.

In this thesis, we take examples from physical experiments and automata ones, and
discuss algebraically the relations of informations obtained by experiments. Such a study
about quantum physical experiments are well-known as quantum logics. If we start from
the axioms above and construct quantum logics as algebras of the self adjoint operators on
Hilbert space, the logics appears to be orthomodular lattices([1],[7]).

Similarly, there exists a way for the state decision problem, which start from partitions
of a state set of an automaton and make use of Hilbert space theory. Such a study is called
“automaton logics” or “partition logics”([2],[4]).

But we do not take such a “top-down” style. Instead, we take a “bottom-up” style i.e.,
we begin with to investigate the features of experiments and then unify them like as physi-
cists make a theory from a collection of physical experiments. A merit of our style is in a
possibility to treat uniformly all kinds of experiments or observations which contains not
only physical experiments, but also automata experiments and so on.



Now, in Chapter 2, we will give a basic notion of an orthomodular poset etc., and provide
the proof of “loop lemma” and introduce “Greechie diagram”. These are useful methods
to investigate properties of a system of Boolean algebras.

In Chapter 3, we take examples of physical experiments and introduce operational logics,
which are methods to treat experiments set theoretically. Making use of Greechie diagram,
we show that an operational logic is generally an orthoposet, and becomes an orthomod-
ular poset or an orthomodular lattice under some conditions. We also shows examples of
physical experiments corresponding to these algebras.

In Chapter 4, we will give definitions of automata with output functions and introduce
procedures to minimize or equivalently transform automata. Next, we show examples of
the state decision problems, and making use of operational logics, investigate algebraic
structures of the problems. In addition, we discuss about the origin of Moore’s uncertainty
in detail. Heisenberg’s uncertainty is one of the laws of nature. Contrary, automata are
artificial objects, and therefore it is worth considering the origin of Moore’s uncertainty. We
will give the definition of an “uncertainty of the state decision problem” and show several
theorems which provide the relation between an uncertainty and a minimal property of
automata and so on. Moreover, we will define a “degree of uncertainty”. By this definition,
we can discuss quantitatively about Moore’s uncertainty and show an inequality analogous
to the Heisenberg’s one(expression (1.1)).



Chapter 2

Orthomodular law and Greechie
diagram

2.1 Poset and orthomodular law

A partially ordered set(poset) is a set P with a partial order <. A bounded poset P is
a poset which has a least element 0 and a greatest element 1, such that 0 < a < 1 holds
for all a € P.

For a,b € P, the supremum of a and b(denoted by a V b) is an element satisfying the
following conditions:

(i)a<aVbandb<aVb,

(ii) forc € P,ifa<cand b < ¢, thenaVvb<ec.
Similarly, the in fimum of a and b(denoted by a A b) is an element satisfying the following
conditions:

(i) anb<aand aAb<b,

(ii) for c € P,if ¢ < a and ¢ < b, then ¢ < a Ab.

By definition, it is clear that a Vb= bV a and a A b = b A a. The associativity also holds
ie,aV(bVe)=(aVb)Vcand aA (bAc)=(aAb)Ac. Thesupremum and the infimum
do not always exist in P for an arbitrary pair a,b € P.

Definition 2.1.1 (orthocomplimentation, orthopoet)

Let (P, <) be a bounded poset and a,b € P. An orthocomplimentation on P is an unary
operation ' on P satisfying

(i) if @ < b, then V' < d/,

(ii) " = q,



(iii) the supremum a V @ exists and a V o’ = 1.
An orthoposet is a bounded poset with an orthocomplimentation.

Let P be an orthoposet and a,b € P. Then the following proposition is fundamental.

Proposition 2.1.2
(i) If aV b exists, (aVb) =a AV. (de Morgan’s law)
(i) 1' =0 and 0 = 1.
(111) a N a' = 0.

[Proof]

(i) Since a < a V b, we have (a V b) < d(by Definition 2.1.1(i)). Similarly, we have
(aVb) <V. Ifc<d,b, then a < and b < . Therefore a Vb < ¢ and ¢ < (aVb)y
(i) 0=1A0=(1V0) =1 and by Definition 2.1.1(iii) we have 0' = 1" = 14

(iii) By Definition 2.1.1(i) and (iii), a A @’ = (¢’ Va) =1 = 04

The relation orthogonal L for elements a,b of an orthoposet P is defined by a L b if
a < b holds.

Proposition 2.1.3
Let P be an orthoposet and x € P. Then x L x if and only if x = 0.

[Proof]
If x L x, then < 2/. Hence, we have x = x Az < z Az’ = 0. Conversely, it is clear
that 0 <1=0"and 0 L O

Definition 2.1.4 (orthomodular poset)
An orthomodular poset(OM P) P is an orthoposet P satisfying
(i) if @ L b, then the supremum a V b exists in P,
(ii) @ < b implies b = a V (a’ A D). (orthomodular law)

Proposition 2.1.5
Let P be an OMP. If a,b € P and a L b, then (aV b) A’ =Db.

[Proof]
Since a L b, a < V' holds, and by the orthomodular law, we have b’ = aV (a’ Ab'). Making
use of de Morgan’s law, we obtain b = a’ A (a V b)4



Proposition 2.1.6
Let P be an OMP. The orthomodular law is equivalent to each of the following conditions:
(i) if a,b € P and a L b, then (aV b) AV = a;
(ii) if a,b € P and a L b, then the assumption a Vb =1 implies a =V,
(73 )if a,b € P and a < b, then the assumption o' Ab =0 implies a = b.

[Proof]
(1) According to Proposition 2.1.5, the orthomodular law yields (i). Let us assume the
validity of condition (i). Assume also that a < b. Then a L ¢’ and therefore, (b'V a)Ad' =
b'(condition (i) holds for ¥’ and a). Hence, we obtain b = a V (b A @), which is the ortho-
modular law g
(ii),(iii) We easily see that the conditions (ii) and (iii) are equivalent. If a < b, the ortho-
modular law yields b = a V (a’ A b). Therefore, if o’ Ab = 0, we obtain a = b, and condition
(iii) holds.

Conversely, if a < b, o’ Ab exists. Since a’ Ab < b, we have the inequality a V (' AD) < b.
Thus

(aV(dAD) ANb=d AN(aVV)ANY =(ad AD)A(a V) =0.
Therefore if condition (iii) holds, and we obtain b =a V (a' A b)4

Definition 2.1.7 (lattice)
A lattice is a poset (P, <) such that for any a,b € P, the supremum a V b and infimum
a N b exist inP.

Definition 2.1.8 (orthomodular lattice)
An orthomodular lattice(OML) is an OMP which is also a lattice.

Definition 2.1.9 (Boolean algebra)

A Boolean algebra is a lattice L with orthocomplementation ' and satisfying

(i) for all a € L, there exists a' in L,

(ii) for all a,b,c € L, (aVb)A(aVec)=aV(bAc)and (a Ab)V(aAc)=aAn(bVe).
(distributive law)

Definition 2.1.10 (subalgebra, block)

A subalgebra M of an algebra P is a subset M of P which is closed under the operations’,
V, A and which contains 0 and 1. A block of an algebra P is a maximal Boolean subalgebra
of P.



2.2 Loop lemma

In this section we will introduce the “pasting” technique to construct an algebra from a
system of Boolean algebras.

Definition 2.2.1 (atom, coatom)

Let L be an orthoposet. A nonzero element a € L is called an atom in L if the inequality
b < a for b € L implies ether b = 0 or b = a. Dually, an element a € L is called a coatom
in L if o’ is an atom of L.

Definition 2.2.2 (almost disjoint system)

Let B be a system of Boolean algebras. We say that B is almost disjoint if for any pair
A, B € B one of the following condition is satisfied:

(i) A= B;

(i) AnB={0,1}

(ii)A N B = {0,1,z,2'}, where z is an atom in both Boolean algebras A and B, and
moreover, 0 =04 = 0, 1 =14 = 15 and 2’ = 2’4 = 2'8(here the indices indicate that the
operations belong to the respective Boolean algebra).

Definition 2.2.3 (loop of order n)

Let B be an almost disjoint system of Boolean algebras. A finite sequence { By, By, ....., Bo_1}

of elements of B is called a loop of order n (n > 3) if the following conditions are satisfied
(the indices are understood modulo n):

(i) for any 7 € {0,1,.....,n — 1} we have B; N B;1; = {0, 1, z;, .}, where x; is an atom in
both algebras B; and B, 1;

(i) if j ¢ {¢ — 1,4, 4 1}, then B,Nn B; = {0,1};

(iii) we have B; N B; N B, = {0, 1} for distinct indices 1, j, k.

Observe that every loop {Bg, By, ....., B,_1} uniquely determines a sequence of atoms
{eo, €1, ey €n_1}, Where e; is an atom belonging to both B; ; and B;(0 < i <n—1). Then
we have the following lemma.

Lemma 2.2.4

Let B be an almost disjoint system of Boolean algebras and { By, By, ....., By, 1} be a loop
of order n. Let e; is an atom belonging to both B; 1 and B; (0 <i¢ < n —1 and the indices
are understood modulo n). Then e; L e;,1.



[Proof]

Since B;_1 N B; = {0,1,¢;,¢;} and B;N Bi1q = {0,1,e;41,€,,,}, € and e;;; are atoms of
B;. Since B; 1N B; N B;y1 = {0, 1}, we have e; # €;11. Thus, ¢; A e;1; = 0 and

ei<e Ve = (Ve )A(e Ve ) =(eAey1) Ve, =e,.
Therefore we obtain e; L e;.1.4

Proposition 2.2.5

Let B be an almost disjoint system of Boolean algebras. Put L = |JB and define the
relation < as follows:

x <y i L if and only if there exists a B € B such that x,y € B and x <g y.
Similarly, we define the operation ' in L by putting ' = x'®, where B € B and = € B.
Then < is a partial order and the operation’ is an orthocomplementation.

[Proof]

We first consider the operation ’. Since B is an almost disjoint system, we have the
equality 14 = 1 for any A,B € B. Also 24 = 2'5 for any z € AN B. Thus, ' is an
orthocomplimentation on L.

Next, let us check that the relation < is a partial order.

(i)reflexivity

r < zif and only if z <4 x(z € A), thus reflexivity is clearly valid.
(ii)transitivity

Suppose that © < v and v < w. If there is a Boolean algebra A € B such that {u,v,w} C
A, then u < w, in view of the transitivity of the relation <,. If this is not the case, then
there exist two Boolean algebras A, B € B such that u <4 v and v <p w(i.e.,, v € AN B).
If v is either 0 or an atom, then we obtain v € {0,v} C A. If v is either 1 or a coatom,
then we obtain w € {1,v} C B. In both case u < w is valid.

(iii)antisymmetry

Suppose that z <4 y and y <p x for two elements A, B € B. If A= B, then z = y. If
A # B, then z,y € AN B. Moreover, if x or y equals to 0 or 1, then z = y. Suppose that
z,y € AN B\{0,1}. Then {z,y} C {z,2'}, where z is the only atom belonging to both
A and B. Since z and 2z’ are incomparable in any B € BB, we obtain either v = 2z = y or
xz = 2z = y. In any case we have © = y, thus antisymmetry is valid.g

Theorem 2.2.6 (loop lemma(Greechie))

Let B be an almost disjoint system of Boolean algebras. Put L = JB. Then

(i) L is an OMP if and only if the system does not contain a loop of order 3;

(11)L is an OML if and only if the system does not contain either a loop of order 3 or a
loop of order 4.

10



[Proof]

We have shown above that L is an orthoposet.

(i) Let L be an OMP. Suppose that B contains a loop of order 3, say {By, B, B2}. Let
{eo, €1, €2} be the triple of atoms which correspond to this loop(i.e., e; is the atom common
to By, Biy1, where ¢ € {0,1,2} modulo 3). We have the inequality ey < €}, and therefore,
ey V e exists in L. Suppose that ¢y V e; = 1. Then ¢y = €/, and by Lemma 2.2.4
we have e; < ¢, therefore e; < e5. We have also e; < ef, thus, e, = 0, and this is
contradiction. Suppose, on the other hand, that e; V e; # 1. Since ey < €, and e; < €,
we obtain ey V e; < €. This means that there exists a Boolean algebra B € B such that
{eh,eo Ver} C B. If ey V e; is a coatom, then we have e, = eg V e;. This implies that
es € By and therefore, e, € By N By N By, a contradiction with the definition of a loop
in B. If eqg V €7 is not a coatom, then by the definition of the almost disjoint system, B,
is the only element of B which contains ey V e;. Thus, B; has to contain €, too, because
otherwise the elements eq V eq, €}, are incomparable(i.e., B = By). Hence we obtain e; € By
and we have shown that B cannot contain a loop of order 3.

Conversely, suppose now that B does not contain a loop of order 3. We need to show
that L also fulfills the following conditions:

(1) if a,b € L and a L b, then a V b exists in L,

(2)if a,b € L and a < b, then b=aV (a A D).

Let us first check condition (1). If a L b, there exist a Boolean algebra B € B which
contains a and b. Suppose that there exist ¢ € L such that a < ¢,b < c and ¢ ¢ B. Then
there exist By, By € B such that {a,c} C By, {b,c} C Bsy. Since B is an almost disjoint
system, we have BN B; = {0,1,q,d'}, BN By = {0,1,b,0'}, BN By = {0,1,¢,'}, and
this yields { B, By, B2} is a loop of order 3, contradicting our assumption. Therefore a,b, ¢
are elements of a single Boolean algebra B. Hence a Vg b is the supremum of a and b in L.
Condition (2) is clearly holds because by the discussion above, a,b,a,a’ A b are elements
of a single Boolean algebra.g

(ii) By (i), no OML contains a loop of order 3. Suppose L contains a loop { By, By, Bz, B3} of
order 4 with the atoms eg, e3 € By, eg,e1 € B1, e1,e5 € By, e5,e3 € B3. Obviously eg, e5 <
el, e hold, and eq and ey(€] and €}) are incomparable. Therefore, if g, e, < g < €/, €5 hold
for some g in L, then g is not an atom or a coatom of L. Thus, there is exactly one Boolean
algebra A € B containing all these elements. In this case {0, 1, ey, e3,€}, €5} C AN By and
this implies A = By because B is an almost disjoint system. Then By N B, contains eo,
contradicting By N By = {0, 1}. Therefore eg V e5 does not exist in L.

Conversely, let the least order of the loops in L be at least 5. Then by (i), L is an
OMP. Take two elements a,b € L. We will show that the supremum a V b exists in L.
We may(and will) assume that {a,b} N {0,1} = ¢ and a # b. If there is B € B such that
{a,b} C B, by (i), there exist a Vb = aVpbin L. Suppose that the elements a,b do not
belong to a single B € B. Let ¢ € L be an element such that a < ¢ and b < ¢. Then ¢
has to be a coatom or 1. Suppose that there are two distinct coatoms ¢y, co € L such that
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{a,c1} C By, {b,c1} C By, {b,c2} C By, {a,c2} C Bs. It follows that {By, By, Bz, B3} is
a loop of order 4, contradicting our assumption. Thus there are only two possibilities —
either there exists exactly one coatom ¢ € L such that a < c and b < ¢, or there exists no
such coatom. In the former case we obviously have a V b = ¢, and the latter case we have
aVb = 1. We have shown that the supremum aVb always exists and, therefore, L is a lattice.g

2.3 Greechie diagram

Definition 2.3.1 (Greechie logic)

An algebra L is called a Greechte logic if the following conditions are satisfied:

(i) every element of L can be written as a supremum of at most countably many mutually
orthogonal atoms in L;

(ii)the collection of all blocks in L forms an almost disjoint system.

There is an useful way of exhibiting the Greechie logics, by drawing their Greechie diagrams.
A Greechie diagram consists of points and lines. The points represent the atoms in the
logic and lines link the points belonging to a block.

For instance, Figure 2.1.1a is the Greechie diagram of the Boolean algebra exp{1, 2, 3}(of
all subsets of the set {1, 2, 3}) and the same Boolean algebra would be represented by Figure
2.1.1b and 1c. Figure 2.1.2 and Figure 2.1.3 represents the Boolean algebra exp{1, 2, 3, 4, 5}
and expN respectively. Figure 2.1.4 represents the Greechie logic exp{a, b, c}Uexp{c, d, e}
where ¢ is a common atom of two Boolean algebras.

Greechie diagrams allow us to detect the presence of the loops of order 3 or 4. A loop of
order 3 shows up a “triangle” and a loop of order 4 as a “square”. Figure 2.1.5 does not
define an OMP. Figure 2.1.6 defines an OMP, but it is not a lattice.

12
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Figure 2.1: Examples of Greechie diagrams
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Chapter 3

Physical experiments and
Operational logics

3.1 Manuals of experiments

A “physical system” is anything on which we perform experiments. Examples of physical
systems are planets, an atom, a magnetic fields, the entire universe, etc.

Let us consider a physical system consisting of a firefly in a box(see Figure 3.1). This
box has a clear plastic window at the front and another one side. Suppose each window
has thin vertical line drawn down the center to divide the window in half. Place a firefly
in the box.

We shall consider two experiments on the system. Experiment F is: Look at the front
window. The outcomes of F will be:

Figure 3.1: A physical system consisting of a box with two windows and a firefly inside.

14



Figure 3.2: The “bow-tie” manual.

[ = see a light in the left half of the window,
r = see a light in the right half of the window,
n = see no light.

Let us denote this experiment by F = {l,7,n}. A second experiment F is: Look at the
side window. The outcomes of F' will be:

f = see a light in the front half of the window,
r = see a light in the back half of the window,
n = see no light.

Let us denote this experiment by F' = {f,b,n}.

In Figure 3.2 we show a diagram that illustrates our experiments and their outcomes.
We can see the two experiments as two sets which contain a common element n. This gives
us a key concept to treat physical experiments set theoretically.

Our approach to quantum logics is based on a manual, which is a set theoretical repre-
sentation of laboratory experiments. Let us start with the following definitions.

Definition 3.1.1 (quasimanual, experiment, outcome, event)
(i) A quasimanual @ is a nonempty collection of nonempty sets called experiments.
The members of the experiments are called outcomes. The set of all outcomes is denoted
(ii) An event in quasimanual @ is a subset of an experiment in Q.

We say we test for event A by performing an experiment that contains A. If we test for
A and obtain an outcome in A, we say event A occured.

Definition 3.1.2 (orthogonal complements)
Suppose () is a quasimanual.

15



(i) Two events A, B in @Q are said to be orthogonal, denoted A L B, if they are disjoint
subsets of a single experiment in Q. (For outcomes z and y of @ we write z L y to mean
[} L {y})

(ii) If A, B are orthogonal events in @ and A U B is an experiment in @, then we say
that A and B are orthogonal complements in (). We denote this by AocB.

The relation AocB means that if event A occurs then event B never occurs, and vice
versa. In what follows, we use a symbol U for disjoint union.

Definition 3.1.3 (manual)
A manual is a quasimanual M which satisfies the following conditions:
(i) If A, B, C, D are events in M with AocB, BocC, and CocD, then A L D;
(i) f E,F € M and E C F, then £ = F.

Property (ii) ensures that experiments are maximal events.

We shall discuss about the rationale for property (i) by referring to Figure 3.3. Suppose
we test for event A by performing experiment £, and A occurs. Then we know that B
did not occur. Thus, if we had performed experiment F, then C' would have occurred; so
if we had performed experiment G, event D could not occur. In summary, if we test for
A, and A occurs, then testing for D would result in D not occurring. A similar reasoning
shows that if D occurs when tested, then A cannot occur when tested at the same time.
Therefore it is natural to require that there is a single experiment H that contains A and
B,sothat A L Din M.

Definition 3.1.4 (operationally perspective)
If M is a manual, A, B, and C' are events in M, and AocB and BocC', then we say that
A and C are operationally perspective, which we denote by AopC'.

AopC means that if A occurs then C' occurs, and vice versa.
Lemma 3.1.5

If A is an event in M, then AopA.

[Proof]
Let FE be an experiment which contains A. Then AocE\A and F\AocA. Hence AopAyg
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Figure 3.3: Property (i) of experiments

3.2 Operational logics

Definition 3.2.1 (implication)
If M is a manual and A and B are events in M, then we say A implies B, denoted by
A <. B, if and only if there is an event C' with C' L A and (AU C)opB.

A <. B means that if A occurs, then B necessarily occurs.

Lemma 3.2.2
The relation <. is a preorder on the collection of events in M.

[Proof]

(i)reflexivity
¢ LA (AU ¢)ocE\A and E\AocA. Hence A <. A.

(ii)transitivity
Suppose that A <, B and B <, C. Then there exist events U and V such that
UL Aand (AUU)opB,
V 1L B and (BUV)opC.

These expressions mean, respectively, there exist events K and L such that
(AUU)ocK, KocB and
(BUV)ocL, LocC.

Then (V U L)ocB, and by Definition 3.1.3(i), we have (VUL) L (AUU). Therefore, A, U,
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V and L are disjoint subsets of a single experiment £, and there exists an event W disjoint
from these four events such that ALUUUV ULUW = E. Then (AL (UUV UW))ocL
and since LocC, we have (AU (U UV UW))opC. Hence, A <. C'y

Lemma 3.2.3
Let A and B are events in a manual M. If A C B, then A <. B.

[Proof]
B\A 1 A and (AU B\A)= BopB. y

Definition 3.2.4 (logical equivalence)

If M is a manual and A and B are events in M, then we say A is logically equivalent
to B, denoted A « B, if and only if A <, B and B <, A.

A < B means that B occurs whenever A occurs, and vice versa.

Lemma 3.2.5
The relation < s an equivalence relation on the set of events in a manual.

[Proof]
(i)reflexivity
Since A <. A, A «— A is satisfied.
(ii)transitivity
If A— Band B« (C,then A<, B, B<,A, B <., and C <, B. Since <. is a
preorder, we have A <., C and C' <. A, hence A — C.
(iii)symmetry
By definition, if A < B, then A <. B and B <., A. Hence B < A.

Lemma 3.2.6
(i) If A,B are events in M, then AopB if and only if A — B.
(i) If E,F € M, then E < F.
(111) If A is an event in M and E,F € M, with ACE and A C F, then E\A < F\A.

[Proof]
(i) If AopB, then ¢ L A, (AU ¢)opB. Therefore A <, B. Moreover, if AopB, there exists
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an event C' such that AocC and C'ocB. Then BopA and B <., A. Therefore if AopB, then
A<~ B.

Conversely, if A <., B and B <. (), according to the proof of Lemma 3.2.2, there exist
five disjoint sets A, U, V, L and W such that (AU U)opB, (AU (U UV UW))ocL and
LocC. If A = C, by Definition 3.1.3(ii), we obtain (AU (U UV UW))UL = AU L. Hence
U=V =W = ¢ and AopB 4
(ii) If E and F' are two events in a manual M, Eocg and ¢ocF, hence FopF. By the part
A of this lemma, we have I/ < [y

(iii) Since E\AocA and AocF\ A, we have E\ AopF\ A. Therefore E\A — F\ Ay

Definition 3.2.7 (operational logic)
Suppose M is a manual.
(i) If A is an event in M, then we define

[A]:={B|B is an event in M and A < B},

and we call [A] the logical proposition determined by A. We say we test for proposition [A]
if we test for any events in M logically equivalent to A. An event used to test for [A] confirms
that [A] is true (resp.false) if the event occurs (resp.does not occur). For outcome z we
write [z]| for [{z}].

(i1) We define II(M):={[A]| A is an event in M }.

(iii) We define

[A] < [B] if and only if A <, B,

in which case we say [A] implies [B].

(iv) For [A] € II(M), we define the orthocomplement of [A] by [A] = [E\A], where E is
any experiment in M with A C F.

(v) If [A],[B] € (M), we say that they are orthogonal, denoted by [A] L [B] if and
only if [A] < [B]".

(vi) The set II(M ), together with the implication < and orthocomplementation ’ is called
the operational logic of manual M.

If [A] < [B], then a test for [A] which confirms that [A] is true at the same time confirms
that [B] is true. That is why we use the word “implies” to express the relation [A] < [B].

Lemma 3.2.8

(i) [E] = [F].
() [E\A] = [F\A].
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[Proof]
These are immediately obtained by Lemma 3.2.6.

Theorem 3.2.9
(1) The relation < is a partial order on the set II(M).
(i1) [A] < [B] if and only if [BY < [A]
(i) [A]" = [A].

[Proof]

(1) Since <, is a preorder, we have to check only the antisymmetry of <. If [A] < [B] and
[B] < [A], then A <. B and B < A. Hence A < B and by definition [A] = [B]4

(ii) By definition [A] < [B] if and only if A <. B. Then there exist experiments F and F
such that AUKUL = F and LUB = F, where A, B, K and L are mutually disjoint. Then
L =F\B, (F\BUK)ocA and AocE\A. Hence (F\BU K)opE\A and then F\B <. E\A.
Therefore [B]' < [A]'

(iii) Let E, F' be two experiments. Suppose A C E and E\A C F. Then using Lemma
3:2.8(i), [A]" = [F\(E\A)] = [E\(F\A)] = []

Lemma 3.2.10
[A] L [B] if and only if A L B.

[Proof]

If [A] L [B], then A <. F\B, where F is an experiment which contains B. Therefore
there exist events K, L such that (A U K)ocL and LocE\B, where A, B, K and L are
mutually disjoint. Since £\ BocB, we have (AU K) L B(by Definition 3.1.3(i)). Therefore
Al B.

Conversely, if A L B, there exist an event C such that C' L A and (AU C)ocB. Since
BocE\ B, we have (AU C)opE\B. Therefore A <. E\B.y

Proposition 3.2.11
(M) has the least element [¢] and the greatest element [E].

[Proof]

Let A is an event in manual M. Then there exist some experiments that contain A. Let
us choose one of them, say F. For ¢ and A, A L ¢, (¢ A)opA. Hence ¢ <, A. For A and
E, E\A L A /(AU E\A)opE. Hence A <., E. Therefore ¢ <, A <., E and by definition
[¢] < [A] < [E]. By Lemma 3.2.8, all experiments are logically equivalent. Therefore I1( M)
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has the least element [¢] and the greatest element [E]. 4

We introduce a binary operation V such that [A] V [B] is a supremum of both [A] and
[B] by partial order <. [A] V [B] does not exist for every pair of elements. But following
proposition is valid.

Proposition 3.2.12
[A]V [A]" = [E].

[Proof]

If [A] < [X] and [A]" < [X], then [X] < [A] < [X]. Hence [X]' L [X] and this
means E\X and F\X is disjoint. Therefore X = E and there exists only one element
(Al vV [A] = [E]

By Theorem 3.2.9, Proposition 3.2.11 and Proposition 3.2.12; an operational logic is an
orthoposet in general.

Theorem 3.2.13
If @ manual M contains only one experiment E, <. is an inclusion and’' is a comple-
mentation in E. Moreover the operational logic (II(M),<,") is a Boolean algebra.

[Proof]

It is obvious that ' is a complementation in £. If A <, B, there exist events C' and D
such that C' L A, (AU C)ocD and DocB. By assumption A, B, C, D are disjoint subsets of
E. Hence AUC = B and A C B. Therefore II(M) is the power set of E and (II(M), <))
is a Boolean algebra.

3.3 Examples

We can see a manual as a system of Boolean algebras. We shall introduce some examples
of manuals related to certain cases of Greechie diagrams.

Example 3.3.1

A firefly is in a triangle box. These experiments consists a manual which is represented
by the triangle Greechie diagram. The operational logic of this manual is merely an ortho-
poset. (See Figure 3.4 and 3.5.)
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Three experiments

(
’/ﬁ A={nA, IA, rA}={nA, B, rA}

|

| B={nB, IB, rB}={nB, rC, rB}
1

I C={nC, IC, rC}={nC, rA, rC}
|

1

I

|

Figure 3.4: A firefly in a triangle chamber. There are three experiments A, B and C'.

manual

Hasse diagram
nC
rc rA B nB rC nC TrA’ nA'
B A
4)(‘
4“.
nB B nA V

Greechie diagram B nB rC nC rA nA

rc nC rA
®
0
nB nA
B

Figure 3.5: The manual, Greechie diagram and Hasse diagram of the triangle chamber
experiment.
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Four experiments

A={nA, IA, rA}={nA, B, rA}
B={nB, IB, rB}={nB, rC, rB}
C={nC, IC, rC}={nC, rD, rC}
D={nD, ID, rD}={nD, rA, rD}

D

rA

Figure 3.6: A firefly in a square chamber. There are four experiments A, B, C and D.

Example 3.3.2
A firefly is in a square box. These experiments consists a manual which is represented

by the square Greechie diagram. The operational logic of this manual is an OMP, but not
a lattice. (See Figure 3.6 and 3.7.)

Example 3.3.3
A firefly is in a pentagon box. These experiments consists a manual which is represented

by the pentagon Greechie diagram. The operational logic of this manual is an OML. (See
Figure 3.8 and 3.9.)
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Hasse diagram

rA’ nA’ rB nB" rC nC D nl

Greechie diagram

rc nC rD rA nA rB nB rC nC rD nD

B nA rA

Figure 3.7: The manual, Greechie diagram and Hasse diagram of the square chamber
experiment.

rB
rA

Figure 3.8: A firefly in a pentagon chamber. There are five experiments A, B, C'; D and
E.
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manual Greechie diagram
nC D nD D

nC nD

rA
rB B nA TA

nA

Figure 3.9: The manual and Greechie diagram of the pentagon chamber experiment.
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Chapter 4

Automata experiments

4.1 Moore and Mealy automata

An alphabet is a finite nonempty set. The elements of an alphabet are called symbols.
A word is a finite(possibly empty) sequence of symbols. ¥* denotes the set of all words
over an alphabet 3. The empty word is denoted by e.

Definition 4.1.1 (Moore Automaton)

A Moore Automaton is a five-tuple M = (Q, X, A, 6, A), where:

(i) @ is a finite set, called the state set.

(ii) ¥ is an alphabet, called the input alphabet.

(iii) A is an alphabet, called the output alphabet.

(iv) 6 is a mapping @ X ¥ to @, called the transition function.

(v) Ais a mapping @ to A , called the output function.

Let us sketch the appropriate picture informally. At any time, the automaton is in a
state ¢ € @, emitting the output A(q) € A. If an input a € ¥ is applied to the automaton,

in the next discrete time step the automaton instantly assumes the state p = 6(¢q,a) and
emits the output A(p).

Definition 4.1.2 (Mealy Automaton)
A Mealy Automaton is a five-tuple M = (Q, X, A, 8, \), where:
(i) Q is a finite set, called the state set.
(ii) ¥ is an alphabet, called the input alphabet.
(iii) A is an alphabet, called the output alphabet.
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(iv) 6 is a mapping Q x X to Q, called the transition function.
(v) Ais a mapping Q X ¥ to A, called the output function.

A Mealy automaton emits the output at the instant of the transition from one state to
another. The output depends both on the previous state and on the input.

We define a mapping 5 Q X X" — @ as follows:

(i) 8(q.€) :=q; _
(ii) 8(q, aw) := 6(6(gq,a),w) for w € ¥* a € X.

We also extend the output function A to a mapping A Q x X* — A* as follows. Let
a1, ..., 4y € 2. We define:
For Mpore automata,

(i) Alg,€) == Alg);

(i) Mg, aw) := N@)A(8(q, ),

(Explicitly, A(q, a;...a,) = (g
For Mealy automata,

(i) Mg e) =¢; )

(ii) A(q,aw) := (g, &) \(5(g; ), w).

(EXpliCiﬂ% (Qaal ) (Q7a'1) (6(% a1)7a2)mﬂ]])‘(6(% a’l---anfl)7a’n)‘)

)

)-
M6(q, a1))A(6(q, araz))TMDA(6(q, a1...ax).)

In the following, we use ¢ in place of S(Iespectively A in place of 5\) so far as we don’t
confuse them.

Definition 4.1.3 (equivalence of states)
Let p,q be any two states belonging to the state set (). We say p s equivalent to gq,
denoted p = ¢, if and only if

Vw € ¥* A(p, w) = A(q, w). (4.1)
We define [g] := {p € Q,p = ¢}, and call it equivalence class of Q.We also define the
quotient set of Q by = as Q/ =:={[¢] | ¢ € Q}.
We shall define a somewhat weaker equivalence property as follows.

Definition 4.1.4 (w-equivalence of states)
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Let p, g be any two states belonging to the state set Q). We say p is w — equivalent to q,
denoted p =, ¢, if and only if, for an input word w € ¥*,

Ap,w) = Mg, w). (4.2)

We define [¢|, := {p € Q,p = ¢}, and call it w — equivalence class of Q. We also define
the quotient set of @ by =, as Q/ =,:= {[¢w | ¢ € @}

Lemma 4.1.5
The relations =, and = are equivalence relations.

[Proof]

(i)symmetry: If p =, g, then A(q, w) = A(p, w). Therefore ¢ =, p.

(il )reflexivity: Obviously A(¢, w) = (g, w), hence, ¢ =,, q.

(il )transitivity: If p =, g and ¢ =, 7, then A(p,w) = A(q, w) = A(r,w), therefore p =, 7.
For the relation =, the proof is similar.g

It is clear that if p = ¢, then p =, ¢, and therefore [¢] C [¢],, for all w € ¥*.

Definition 4.1.6 (minimal automaton)
We call an automaton minimal if any two distinct states of the automaton are not
equivalent, i.e.;
Vp,q € Q,p # ¢,Fw € I, A(p, w) # Mg, w). (4.3)

Definition 4.1.7 (equivalence of automata)

Let M7 = (Q1,%,A,61,\1), My = (Q2,%,A,62,X2) be two automata of the same
type(both are either Moore or Mealy automata).

A state ¢; € @ is said to be equivalent to a state ¢o € ()2 if and only if

Yw € E*, /\1(q1,w) = )\2(Q2,w). (44)

The two automata M; and M, are said to be equivalent if for each state g; € ) there
exists an equivalent state go € ()2, and, conversely, for each state go € ()2 there exists an
equivalent state ¢; € Q1.

Theorem 4.1.8
Let M = (Q,%,A,8,)\) be a Moore or Mealy automaton. Then there exists a minimal
automaton equivalent to M.
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[Proof]

Put M™ = (Q/ =,%,A,6™,A™). Define §™([q],a) = [6(g,a)] for all a € X. If M is a
Moore automaton, define A™([q]) = A(¢q). If M is a Mealy automaton, define A™([q],a) =
Mg, a). According to the construction, M™ is minimal. Every state ¢ € @) is equivalent to
the state [¢] € Q/ =. Therefore, also M and M™ is equivalent .y

Now, let M; be a Moore automaton and M, be a Mealy automaton. There can never
be equivalence in the above sense between these automata because the output of a Moore
automaton to the input w € ¥* contains one more symbol than the output of the Mealy
automaton. However, we may neglect the first output symbol of a Moore automaton
M =(Q,%,A,6,\) by using a reduced output function ' : @ x ¥* — A* defined by

N(q, ol a,) = A(6(q, ar))ADA(8(q, oD a,,))
(e A\(g ) = Ma)¥(g, w).

Then we have the following theorems, equating the Moore and Mealy automaton.

Theorem 4.1.9
Let My =(Q, %, A, 61, A1) be a Moore automaton. Then there exists a Mealy automaton
My equivalent to M.

[Proof]

Put My = (Q, %, A, 61, \2), where Ay(g,a) = A(6(g,a)) for any ¢ € @ and any a € 3.
Then the two automaton are equivalent. In fact, for an input word a;a4I1] a,, putting
6(gi—1,0a:) = qi(1 <4 < n),

/\1(‘107 aq a4l an) = /\1((10))\1(91)/\1((12)@]]]/\1(%)7

Aa(go, mradll an) = A1(g1) A (g2)0A (gn),
hence Xl(QO: ayasll] an) - A2(Q07 ayasll] an)' 1

Theorem 4.1.10
Let My = (Q, X, A, 61, 1) be a Mealy automaton. Then there exists a Moore automaton
My equivalent to M;.

[Proof]
Put My = (Q x A, X, A, b2, \s). Define 65((q, z),a) = (61(q, a), A\1(g,a)) and A2((gq,2)) =
z for any (¢,z) € @ X A and a € ¥. Then, the states ¢ € Q of M; and (¢,z) € Q@ X A, z
arbitrary, of M, are equivalent. Therefore, also M; and M, are equivalent. In this case,
M(qo, aradld an) = A1(go, a1)A1(qr, a2)dA1 (gn—1, @y ),
A2(qo, aradld an) = A2((go, z))A1(0, a1) A1 (g1, a2)TDA (g1, an),
hence A1(qo, @140 a,,) = A5(qo, aradll ay,). §
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g4 /1

01 0,1

q3./0 1 ¢ g2/C

Figure 4.1: Moore’s uncertainty automaton.

4.2 State decision problem of automata

In what follows we assume that we are dealing with a Moore or Mealy automaton, which
is contained in a black box with input-output interface. Thus, we are only allowed to
observe the input and output words associated with the box. We suppose, however, that
we know the transition table of considering automaton(i.e., the five-tuple(Q, X, A, 6, A)).

Let us consider the Moore automaton of Figured.1. KEvery vertex is labeled by a pair
(¢/x), ¢ € {q1, G2, G35, a}(= @), = € {0,1}(= A), and this means A(q) = . For example, if
the current state is ¢; and we apply input 0, then the automaton emits 0 as a free output,
and after the transition g; to ¢4, it emits 1. Consequently we observe the output word 01.

This automaton is minimal because,

Maa, €) =1 # Mqi2,3:€) = 0;

Aq1,0) = 01 # A(ge,0) = 00;

AMq1,1) = 00 # A(gs, 1) = 01;

Mgz, 0) = 00 # A(gs,0) = 01.

Suppose that we don’t know which the current state ¢ is. How we can know it? This
is called “the state decision problem” of automata. To decide ¢, we shall perform some
experiments on the automaton, i.e., apply some input words.

If the free output is 1, we can say ¢ = ¢4 so that we need not to perform any experiment.
If the free output is 0, we can only know ¢ € {q1, 2, g3}, and to know more detail, we have
to perform some experiment.

Let us apply the input 0. If we observe the output 0, then ¢ = ¢», and the problem is
solved. If the output is 1, however, we cannot know more detail, because in either case of
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input\| g1 g2 q3 g4 input\| g1 g2 g3 g4

0 4 1 4 2 0 a b ac
1 3 3 4 2 1 a ab c
Transition Function Output Function

O/a, 1/b

Figure 4.2: Mealy’s uncertainty automaton.

g = q1 or ¢ = g3, after applying the input 0, the current state transits to g4 so that any
consequent input gives us the same output words.

Any experiment which begins with the input O(we shall call it “experiment F(0)”) can-
not distinguish ¢; from ¢s. Similarly, any experiment which begins with the input 1(
“experiment F(1)”) cannot distinguish ¢; from g,. This phenomenon is called “Moore’s
uncertainty principle”.

One more example is drawn in Figure4.2. This is a Mealy automaton which has the
same type problem as the Moore automaton of Figure4.1. Every edge is labeled by a pair
(u/x), where u € {0,1}(= ¥) and = € {a,b,c}(= A). This automaton is minimal, and
also in this case, experiment E(0) cannot distinguish ¢; from ¢z, and experiment F(1)
cannot distinguish ¢; from ¢,. (Note that we do not say that these two automata above
are equivalent. We only say that they have the same type problem about uncertainty.)

The types of experiments that we can perform are limited by the number of identical
copies of the automaton we have available for investigation. Usually, when we are carrying
out an experiment, we assume that only a single copy of the automaton is available. Such an
experiment is called a simple experiment. On occasion, however, we have several identical
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13 12
13 12 {13} {12

4 {4
{2 {3}
{3} {2

Figure 4.3: The “bow-tie” manual and Greechie diagram.

copies of the automaton or a single automaton with a “reset” button. Experiments that
take advantage of the ability of effectively more than one copy of an automaton are called
multiple experiments.

In the following, we shall discuss about only simple experiments in view of the correspon-
dence to quantum physical experiments, because, in quantum physics, it is a fundamental
condition that we cannot reset a physical system after performing any experiments.

4.3 Operational logics of automata experiments

In the above two examples, by the experiment F(0), we can know ¢ € {q1,¢3} or ¢ € {¢2}
or ¢ € {qa}. We shall denote this £(0) = {{1,3},{2},{4}}. Using the terms of operational
logic, outcomes of experiment E(0) are

{1,3}, {2}, {4}
and events of E(0) are

¢, {1,3}, {2}, {4}, {{1,3}.{2}}, {{1.3}.{4}}, {{1,3}.{2}.{4}}.

Stmilarly B(1) = {{1,2},{3}.{4}},
its outcomes are

{12}, {3}, {4}
and its events are

& (1.2}, (31, {41, H{1L2L 31, {12044}, (121030 (4) ).

E(0) and E(1) contains a common element {4}, and we can write their “bow-tie” man-
ual, Greechie diagram(see Figure4.3) and Hasse diagram(see Figure4.4). follows. In this
case, the operational logic becomes an orthomodular lattice.

Let us introduce two more examples. Figure4.5 is a Mealy automaton with four states
and three experiments

E(0) = {{1,2}, {3}, {4}},
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[{1.3},2,4]=[{1,2},3,4]

)

{13r=[24 [r=[{13}4  [4'=[{13}.2=[{1.2.3] [&'=[{12}.4 [{L123]7=[{3}.{4]

:

{13} [2] 4 {12]

(3

0

Figure 4.4: Hasse diagram.

B(1) = {{1,3},{2},{4}},

B(2) = {{1,4}, {2}, {3}}.

The manual and Greechie diagram are drawn in Figure4.6, and the operational logic of
these experiments becomes an orthoposet.

Figure4.7 is a Mealy automaton with five states and four experiments
E(0) = {{1,2,3},{4},{5}},
E(1) = {{1,3,4},{2},{5}},
E(2) = {{1,4,5},{2},{3}},
E(3) = {{1,2,5},{3}, {4}}.
The manual and Greechie diagram are drawn in Figure4.8, and the operational logic of
these experiments becomes an orthomodular poset.

4.4 Origin of Moore’s uncertainty

Heisenberg’s uncertainty is one of the laws of nature and we have to accept it. But
automata are artificial objects, and therefore it is worth considering the origin of Moore’s
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input\| g1 g2 g3 g4 input\| g1 g2 g3 g4

0 |gl g1 g1 a1 0|a abec
1 |92 g2 92 g2 1 a b ac
2 103 g3 g4 a3 2 a b c a
Transition Function Output Function

O/a® 1a @@”b

O/a

1l/a

o/b
O/c 2la 2/b

2/
C— @

2/c

Figure 4.5: Mealy automaton with three experiments.

{4
{12 {13}
@-
{3} {14 {2}
{14
Manual Greechie diagram

Figure 4.6: Manual and Greechie diagram of three experiments.
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input\] g1 g2 g3 g4 g5 input\] g1 g2 g3 g4 g5
0 gl gl g1 o5 @5 0 a a a b c
1 02 92 g2 g2 g2 1 a b a a c
2 g3 g3 g3 g3 g3 2 a b c a a
3 | g4 g4 g4 g5 o4 3 a a b c a
Transition Function Output Function
O/a @
la
e (@ ) ub
0/b )
3lc 2/,
3/a
3/a
3/b
Q (99
2/a

2/c

Figure 4.7: Mealy automaton with four experiments.
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{1,4,5} {3}

@ ®
® 125
L o
{123} {4}
(1,23}
Manual Greechie diagram

Figure 4.8: Manual and Greechie diagram of four experiments.

uncertainty.
According to the discussion in Section 4.3, it seems proper to define an uncertainty of
the of the state decision problem as follows.

Definition 4.4.1 (uncertainty of the state decision problem)

For an automaton M = (@, X, A, 6, \), we shall say the state decision problem has an
uncertainty, or simply say the automaton M 1is uncertain if the following condition is
satisfied.

Yw € £*,3p,q € Q,p # ¢, \(p,w) = (g, w). (4.5)

We shall say the automaton is decidable if it is not uncertain.

The negation of the condition(4.5) is

Jw € ¥%,Vp,q € Q,p # ¢, \(p, w) # Mg, w). (4.6)

This means there exists at least one word to distinguish all different states, therefore the
state decision problem is solvable.

If the automaton is not minimal, there exist at least two equivalent states, say p, ¢, and
Vw € ¥*, A(p,w) = A(g, w). Hence the condition(4.5) is satisfied and we have the following
lemma.

Lemma 4.4.2
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If the automaton is not minimal, then it is uncertain. In other words, if the automaton
18 decidable, then it s minimal.

For uncertain automata, we have following theorems.

Theorem 4.4.3
Let M = (Q,%,A,6,)) be a minimal Moore automaton. Then M is uncertain if the
following condition is satisfied.

Va € ¥,3p,q € Q,p # ¢, A(p) = A(g) and é(p,a) = 6(q, a). (4.7)

= A(¢) and Va € X, 6(p, a) = 6(q, a), for arbitrary v’ € X*,

= A(p)A(é(p, a), w')
= Mg)A(é(g, a), w')
= A(g, aw’).

Together with A(p, €) = A(p) = A(q) = A(g, €) , the condition (4.5) is satisfied .y

Theorem 4.4.4
Let M = (Q,X,A,6,\) be a minimal Mealy automaton. Then M is uncertain if the
following condition is satisfied.

Va € X,3p,q € Q,p # q,Mp,a) = Mg, a) and é(p,a) = 6(g; a). (4.8)
[Proof]
If \M(p,a) = Xg,a) and Ya € ,6(p,a) = 6(q,a), for arbitrary w’ € X*,
Ap, aw")

= Ap, a)A(8(p,a), w")
= Mg, a)A\(6(q,a),w")
= Mg, aw’).
Together with A(p, €) = A(q, €) = ¢, the condition (4.5) is satisfied g

Theorem 4.4.5
Let My be a minimal and uncertain automaton, and My be an automaton equivalent to
M. Then M, s also uncertain.
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[Proof]
Let us put M; = (Q1, 3, A, 61, A1) and My = (Q2, X, A, b2, Xp). If M is uncertain, then

Yw € ¥*,3p1, 1 € Q1,1 # q1, Mp1, w) = Ai(q1, w).

By Definition 4.1.7, there exist p2, g2 € Q2 equivalent to py, ¢; respectively, and As(ps, w) =
Aa(q2, w). Since M; is minimal, ps # @2, and then the condition

Vw € ¥*,3pa, g2 € Q2, P2 # 2, A2(p2, w) = A2(ga, w)

is satisfied. Therefore, M5 is also uncertain.y

Hence, if M; is minimal and uncertain automaton, then there exists no decidable au-
tomaton M, which is equivalent to M;. (Intuitively speaking, we cannot “eliminate” the
uncertainty of M;.)

To be noted, the equivalence between a Moore automaton and a Mealy type one is de-
fined by the reduced output function.

Let us discuss about a “degree of uncertainty” of an automaton. In the following, we
use the symbol |A| to denote the number of elements of the set A.

Definition 4.4.6 (degree of uncertainty)
Let M = (Q,%,A,4,A) be an automaton. An input word w € X* determines a w-
equivalent class [g],, which is a subset of Q. We define

d(M,w) := max|[gls| - 1 (4.9)

and call it the degree of uncertainty of M for w. Moreover, we define

d(M) := min d(M,w) (4.10)

wex*

and call it the degree of uncertainty of the automaton M.

For example, let us introduce a Mealy automaton M shown in Figure 4.9. This au-
tomaton is decidable because we can distinguish all three states by applying input word
wo which is an arbitrary word beginning with 0. But, if we apply wi(an arbitrary word
beginning with 1), ¢; and ¢z becomes indistinguishable. For this automaton,

d(M,wy) = max _|[qlw,| —1 =0,
q€{q1,92,93}
d(M,wy) = max _|[qlu,| — 1 =1,

9€{q1,92,93}
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Figure 4.9: An example of a decidable Mealy automaton.

and the degree of uncertainty of this automaton is

d(M) = min_{d(M,wp),d(M,w)} =0.

wo , w1 €3*

Let My, Ms be two automata. If d(My) < d(M,), we say My is more uncertain than My,
or M; is less uncertain than M.

If d(M;) = d(M,), we say My and My have the same uncertainty.

Theorem 4.4.7
(i) Let My be an uncertain Moore automaton and My be a Mealy automaton equivalent to
M, made by the procedure in Theorem 4.1.9. Then M, and M, have the same uncertainty.
(ii) Let My be an uncertain Mealy automaton and My be a Moore automaton equivalent
to My, made by the procedure in Theorem 4.1.10. Then My is more uncertain than M;.

[Proof]
Let us put M; = (Q1,%, A, 61, A1) and My = (Q2, X, A, b2, A2). If M; is uncertain

Vw € ¥*,dp1, q1,p1 # ‘117/\1(171,10) = /\1(91,10),

and by Definition 4.1.7, for each state ¢; € ()1, there exist an equivalent state ¢, € Qo.
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(i) By the procedure in Theorem 4.1.9, @; = @2 and the correspondence between the
equivalent states g1 € @1 and ¢o € (), is bijective. Hence for all w € ¥* and for all
¢ € Q1,2 € Q2 , |[¢1]w] = |[e2]w|, and we have d(M;) = d(Ms). Therefore M; and M,
have the same uncertainty.g

(ii) By the procedure in Theorem 4.1.10, for ¢; € @1, the equivalent states of Q5 = Q1 XA
is (¢, z), where z is an arbitrary symbol of A. Hence |[¢2]w| = |[¢1]w| X |A] > |[g1]w] for all
w € ¥* and for all, ¢ € Q1,42 € Q2, and we have d(M;) < d(Mz). Therefore M, is more
uncertain than M

Theorem 4.4.8
Let M = (Q,%,A,8,\) be a Moore or a Mealy automaton and M™ is a minimal au-
tomaton equivalent to M. Then M™ 1is less uncertain than M.

[Proof]
By Theorem 4.1.8, M™ = (Q/ =, %, A, 6™, \™) where A™([q], w) = Mg, w) for all w € ¥*,
and every state ¢ € @ is equivalent to the state [¢] € @/ =. By definition,

dM™) = min max|[/g].| -1
dM) =  min maxifgl.| -1

For p,q € @), we have

[p] € [lglle & A™([p],w) = A"([p], w)
& Ap,w) = A(q,w))
& pE€ [glu

Thus, for p' € Q, [p] = [p'] and [p], [p'] € [[¢]]w if and only if p = p’ and p,p’ € [g]... Hence,
we obtain |[[¢q]].| = |[¢]lw/ = |, and this yields |[[¢]]»| < |[¢]w]| for all ¢ € @ and all w € T*.
Thus, we have d(M™) < d(M), and therefore M™ is less uncertain than M.y

By this theorem, we can say in general that if we minimize an automaton, then the
degree of uncertainty decreases.
For a degree of uncertainty, we have the following theorem.

Theorem 4.4.9
An automaton M = (Q, X, A, 8, \) is decidable if and only if d(M) = 0.

[Proof] If M is decidable, then there exists at least one input w € ¥* such that

Vp,q € Q,p # ¢, \(p,w) # Mg, w). (Condition (4.6))
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Thus, for this word w, @/ =,= @ and |[g],| = 1 for all ¢ € Q. Therefore d(M) = 0.
Conversely, if d(M) = 0, there exists at least one input word w € ¥* such that d(M,w) =

0. Thus, by the definition of d(M, w), we have |[¢],,| = 1 for all ¢ € @, and this means that
for this w,

Vp,q € Q,p # ¢, \(p,w) # A(q, w).
Therefore M is decidable g

Corollary 4.4.10
An automaton M = (Q, X, A, 6, \) is uncertain if and only if d(M) > 1.

[Proof]
For the proof, it is sufficient to take the negation of Theorem 4.4.9. If M is uncertain,
d(M) # 0. By definition, d(M) > 0, and therefore we have d(M) > 14
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Chapter 5

Concluding remarks

5.1 Features of uncertainty

Let us discuss about the difference between the quantum physical uncertainty and the
Moore’s uncertainty.

In the former case, for example, the coordinate of an single electron has a distribution
in the physical space with some probability, and does not have an unique value. This kind
of uncertainty is called ontological uncertainty. *

In the latter case, the state of an automaton is just one of the state in ), but we have no
experiment to decide it. This kind of uncertainty is called epistemic uncertainty. Some
people call it undecidability or indeterminancy and distinguish it from uncertainty.

For Moore’s uncertainty principle, we obtained

d(M) > 1

if and only if the automaton M is uncertain. This is analogous to Heisenberg’s uncertainty
principle, and in the expression above, the constant “1” plays a similar roll to the Planck’s
constant 7i(see expression (1.1)).

5.2 Quantum physical experiments

L A.Einstein disliked the existence of this uncertainty in the theory of quantum physics and said “God
doesn’t play a dice”.
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In Chapter 3, we proved that an operational logic is in general an orthoposet, and as
such an example, making use of loop lemma(Theorem 2.2.6), we introduced the firefly
experiment in a triangle chamber(Example 3.3.1).

Let us take this example again. This experiment is not a quantum physical one, in sense
of that there exists “physically” possible experiments to know the more details about the
considering physical system.

In the Example 3.3.1, the operational logic becomes an orthoposet because such a condi-
tion exists that we cannot perform three experiments E(0), E(1) and E(2) simultaneously.
But, this condition is physically eliminative by the following procedures.

(i) Posting three experimenters, one at each window, and assuming that they can com-
municate instantaneously.

or
(ii) Taking off the cover of the chamber and looking into the system from the top of it.

These procedures are physically possible, and if we do so, the experiment becomes a
classical one. The experiment consists of four outcomes;

e n = see no light,

e 74 = see a light in a right half of window A (or a left half of window C),
e 75 = see a light in a right half of window B (or a left half of window A),
e 7o = see a light in a right half of window C (or a left half of window B).

The manual and the Greechie diagram of it are shown in Figure 5.1 and the operational
logic is a Boolean algebra.
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Figure 5.1: The classical manual and Greechie diagram of the triangle chamber experiment.

Thus, we have the following conclusion.
If quantum logics are OMLs, quantum physical experiments satisfies some conditions.

Especially, for any combination of quantum physical experiments, their Greechie diagrams
must not contain either a loop of order 3 or loop of order j.

This seems a very difficult problem depending on quantum physics, and to prove it, we
have to investigate the properties of all quantum physical experiments.
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