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Quantum mechanics, which began with M.Planck’s “quantum hypothesis” in 1900,
has the following axioms.

Axiom 1

The state of a physical system 1is represented by an unit vector of a complex Hilbert
space H. This vector is called “state vector”. Provided that state vectors ¥ € H and
ay € H represent the same state for an arbitrary complex number o with |af = 1.

Axiom 2
A physical quantity — sometimes called “observable” — is represented by a self adjoint
operator on H.

Axiom 3
For a state vector ¢ and an observable A, the expected value of A is given by the inner
product < v, A > of two vector v and Az/), where A is the self adjoint operator that

corresponds to the observable A.

What is important here is that self adjoint operators do not commute in general,

e., if A and B are such operators, then < ¢,AE’1/J >#EL ¢,E’fh/1 >. This means that
experimental results depend on the order of the experiment of A and that of B. In fact,
about an single electron, the operator & of coordinate x and the operator p of coordinate
p satisfies #p — p& = ih (A = 1.054 x 107 %*"erg-sec is the “Planck’s constant”), and this
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relation yields that for standard deviations Az, Ap of z and p
1
Az - Ap > 57’1 (1)

Namely, for this pair of physical quantities, there exists a “limit” such that we cannot
know more precisely about the physical system. This is an example of the well-known
“Heisenberg’s uncertainty principle”.

Meanwhile, a similar uncertainty is found in a kind of experiment on automata. “The
state decision problem” is such an example of automata experiments. Let us consider
that an automaton with an output function is contained in a black box and we will apply
input words and observe its output words. At any time, the automaton is in one of its
states, and the state decision problem is to determine by experiment — observing input-
output behavior — which state the automaton currently in. An important property in
this experiment is that if we apply some input words, then the automaton transits from
the current state to another one. Therefore, the experimental results(informations about
the automaton) are depend on the order of experiments. Moreover, the state decision
problem is not always solvable, i.e., there exist a “limit” for the informations about the
current state. In 1956 E.F.Moore pointed out these facts quite analogous to quantum
physical experiments, and afterword, in 1971 J.H.Conway called them “Moore’s uncer-
tainty principle”.

In this thesis, we take examples from physical experiments and automata ones, and
discuss algebraically the relations of informations obtained by experiments. Such a study
about quantum physical experiments are well-known as quantum logics. If we start from
the axioms above and construct quantum logics as algebras of the self adjoint operators
on Hilbert space, the logics appears to be orthomodular lattices([1],[3]).

Similarly, there exists a way for the state decision problem, which start from partitions
of a state set of an automaton and make use of Hilbert space theory. Such a study is
called “automaton logics” or “partition logics”([4],[5]).

But we do not take such a “top-down” style. Instead, we take a “bottom-up” style
i.e., we begin with to investigate the features of experiments and then unify them like as
physicists make a theory from a collection of physical experiments.

Now, in Chapter 2, we will give a basic notion of an orthomodular poset etc., and
provide the proof of “loop lemma” and introduce “Greechie diagram”. For a system of
Boolean algebras B = {By, By, ....B,_1}, we define a partial order and an orthocomple-
mentation on L = |JB as follows;

e z <yin L if and only if there exists a B € B such that z,y € B and z <p v.
o ' = 2' where B € Band z € B.

By this definition we can see L = [JB as an algebra, and loop lemma is a method to
investigate the algebraic property of L. Greechie diagram is also such a visual method.



In Chapter 3, taking examples of physical experiments, we define an experiment as a
set which elements are called outcomes. We define a manual as a system of experiments
satisfying a certain properties. A manual provides a whole property of experiments which
we will perform.

We shall call a subset of a experiment in a manual event and it corresponds to an
experimental result. By these definitions, we can treat physical experiments set theoreti-
cally.

Moreover, we define properly an orthocomplementation for each event and partial order
between two events. These correspond to “negation” and “implication” respectively, i.e.,
for events A, B;

o A’ < event A does not occur,
o A < B <= if event A occurs, then event B occurs.

Thus, we can see a manual as an algebra and call it an operational logic. Making use
of Greechie diagram, we show that an operational logic is generally an orthoposet, and
becomes an orthomodular poset or an orthomodular lattice under some conditions. We
also shows examples of physical experiments corresponding to these algebras.

In Chapter 4, we will give definitions of automata with output functions and introduce
procedures to minimize or equivalently transform automata. Next, we show examples of
the state decision problems, and making use of operational logics, investigate algebraic
structures of the problems. We also give examples of the state decision problems corre-
sponding respectively to orthoposet, orthomodular poset, or orthomodular lattice.

In addition, we discuss about the origin of Moore’s uncertainty in detail. Heisenberg’s
uncertainty is one of the laws of nature and we have to accept it. Contrary, automata are
artificial objects, and therefore it is worth considering the origin of Moore’s uncertainty.
We will give the definition of an “uncertainty of the state decision problem” as follows.

Definition (uncertainty of the state decision problem)
If an automaton satisfies the following condition, we shall say the state decision problem
has an uncertainty, or simply say the automaton is uncertain .

e For any input words, there exist at least two distinct states, and they give the same
output word.

We shall say the automaton is decidable if it is not uncertain.
By this definition, we can obtain the following theorems.
Lemma
If the automaton is not minimal, then it is uncertain. In other words, if the automaton

is decidable, then it is minimal.

Theorem



An automaton is uncertain if for all input symbols, there exists at least two distinct
states such that they gives the same output symbol and they transit to the same state.

Theorem
Let M; be a minimal and uncertain automaton, and M be an automaton equivalent
to M;. Then M, is also uncertain.

Moreover, we define properly a “degree of uncertainty” and discuss quantitatively
about Moore’s uncertainty. If we denote a degree of uncertainty of an automaton M by
d(M), we can obtain the following theorems.

Theorem
An automaton M is decidable if and only if d(M) = 0.
Corollary
An automaton M is uncertain if and only if d(M) > 1.

The inequality in this corollary is analogous to the Heisenberg’s one(expression (1).

We can show that for an automaton My, if we make an automaton M, equivalent to
M, d(M;y) = d(M;) does not always holds, and d(M;) < d(M-) and d(M;) > d(M,) pos-
sibly occurs depending on the procedure to construct M;. We can also show the following
theorem.

Theorem
Let M is an automaton and M™ is a minimal automaton equivalent to M. Then

d(M™) < d(M) holds.
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