
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title 信頼性の高い移動エージェントシステムの構成方法

Author(s) 新堀, 健治

Citation

Issue Date 1999-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/1235

Rights

Description Supervisor:渡部 卓雄, 情報科学研究科, 修士

A Framework for Highly Reliable Mobile Agents

Kenji Shinbori

School of Information Science,

Japan Advanced Institute of Science and Technology

February 15, 1999

Keywords: Mobile Agent,fault recovery,non-Byzantine fault,Event,CheckPoint.

1 Purpose and background

The purpose of this study is to construct a framework for highly reliable mobile agents.

In this paper, we use the term reliability to denote the characteristics of mobile agents

that they can cope with physical faults in the computer environments. When we use

mobile agent technologies in real-world applications, we must consider both security and

dependability of agents. In this paper, we handle the dependability. The mobile agents

migrate to the hosts, which are connected to the network, and do work in the various

computer environments. As for such the mobile agents must cope with the communication

faults and the hosts down. However, the mobile agents, who made by the existing mobile

agent systems, have not considered the design about the computer environment faults.

When the faults occur in the computer environments, the mobile agents can't complete

their own purpose. For example, 1) When the host down by the battery cutting, the mobile

agents become extinct. 2) When the mobile agents can't get the computer resources

that should be necessary, the mobile agents can't continue to processes. As seen from

these examples, dependability is necessary and important. When the faults occur in the

computer environments, we must propose a framework for highly reliable mobile agents,

which can detect the faults and cope with it, to solve such those problems. In this

research, the resource starvation problem of the mobile agents is handled as a fault, too.

The security of agents should not be ignored, but it is omitted in this research.

2 Coop

We designed a framework for highly reliable mobile agents called Coop. Coop is a frame-

work that the mobile agents can detect the non-Byzantine physical faults and cope with

Copyright c 1999 by Kenji Shinbori

1

it. We show the faults that Coop handles in the following. 1) When the hosts down hap-

pened. 2) When the mobile agents couldn't use the computer resources (CPU, memory

and so on) which being expected in the place of the migration. 3) When the hosts discon-

nect from the network. 4) When the mobile agents can't get the result in the time. The

mobile agents based on Coop cope with those faults in the following. In the case of one,

we are thinking about two kinds of the expectably host down or the non-expectably host

down. When the mobile agents could expect it, it is in such cases as the battery cutting,

UPS (uninterruptive power supply) doing, detachable shutdown and so on. At this time,

the mobile agents migrate to the hosts or permanent in the secondary storage. When the

mobile agents couldn't expect it, it is in such cases as the host down by the blackout and

so on. At this time, the mobile agents cope with the fault by the checkpointing. The

mobile agents do the checkpointing to create a representation of the agent's state in the

secondary storage at an interval of the constant time. After the fault recovery of the host,

the mobile agents can resume from the checkpoint (the recorded execution states). In

the case of two, the mobile agents migrate to the another host or waits for the release of

the computer resources and so on. In the case of three, we are thinking about two kinds

of the communication faults; it is before the migration or migrating. The former of the

fault recovery is that the mobile agents change the host of the migration or wait until

the communication fault is recovered. The latter of the fault recovery is that the mobile

agents make the replica in the place of sender and migrate to the host repeatedly. In the

case of four, the mobile agents can't resume permanently; the reason of the host down

isn't recovered, the execution states are broken and so on. At �rst, the mobile agents

make replica in the place of the host of the agent's owner, after that the mobile agents

migrate to another host again.

The architecture of Coop is composed by two of a) the recovery mechanism and b)

the control module. Each mobile agent has the fault recovery mechanism and migrates to

each host. The fault recovery mechanism is divided into the fault recovery methods and

the event module. The fault recovery methods cope with the fault that these are de�ned

in the agents. The event module watches the environment of the mobile agent. When

an event (fault) occurs, the event module calls a fault recovery method corresponding

to the fault. We design the fault recovery mechanism as the architecture that exibility

customization is possible. Actually, the fault recovery mechanism, which is only added

to the existential mobile agent systems, can't cope with all the faults. For example,

the mobile agents can't activate themselves from the permanent agents that recorded in

the secondary storages. Therefore, it is necessary for mobile agents to activate from the

permanent agents. The control module, which handles more than one mobile agent, is

the stationary agent and exists toward one node.

3 implement

In this research, we designed Coop, which is a Java class library, and implemented it.

The exercises, which we actually made, are the system information's acquire agent and

the circulating notice agent. The system information's acquire agent acquires each hosts

2

system information and informs the system administrator it. The circulating notice agent

realizes the circulating notice of the actual world. In addition, we designed a simple

distributed algorithm, which can cope with the crash fault, only for the cyclic mobile

agents. We implement this distributed algorithm for the components. The programmer

can choose whether this distributed algorithm is used freely. This algorithm is being

used with the circulating notice agent. The experiment platform of Coop uses Satou's

AgentSpace, which is the mobile agent system of the Java based. Coop is implemented

by using Java, but we uesed the native method at the point of the event detection, so the

executive environment is only Windows 95,98,NT4.0. Actually, Coop itself is platform

independence. We used Java on Win32 for the experiments in this research.

4 Summary

We designed Coop | a framework for highly reliable mobile agents |and implemented

it as a Java class library. Advantages of Coop are the following. 1) The architecture of

Coop doesn't depend on the platform of the mobile agent systems. 2) It is the architecture

that the customization of the fault recovery methods and the event modules is easy. 3)

Because the recovery mechanism is independent, it can be handled as a module. About

the problem of the mobile agents based on Coop, the load of event watching is high; each

mobile agent has an event module and watches the events. However, the mobile agents

with the event module can customize suitable for their own purpose. About this problem,

We consider that it is trade-o� of the exibility of Coop.

3

