JAIST Repository

https://dspace.jaist.ac.jp/

Title	思考スキルの組織間移転を通じた暗黙知創造のモデル 電子機器受託生産企業の事例研究
Author(s)	瀬川,良久;井川,康夫
Citation	日本MOT学会誌, 2: 9-18
Issue Date	2014
Туре	Journal Article
Text version	publisher
URL	http://hdl.handle.net/10119/12361
Rights	Copyright (C) 2014 日本MOT学会. 瀬川良久, 井川康夫, 日本MOT学会誌, 2, 2014, pp.9-18.本著作物は日本MOT学会の許可のもとに掲載するものです。
Description	

日本 MOT 学会による査読論文(2014-2)

思考スキルの組織間移転を通じた暗黙知創造のモデル 一電子機器受託生産企業の事例研究—

A Model of Tacit Knowledge Creation through Organizational Transfer of Skill to Think: Case Study of an Electronics Manufacturing Service Firm

瀬川 良久/井川 康夫 Yoshihisa Segawa and Yasuo Ikawa

要旨

本論文では、新製品の開発から海外工場での生産に至る電子機器のアウトソーシング業務を分析し、優れた視点が助言という形で組織間移転を繰り返し、相手の組織に気付きを与え、新たな知識を導くことで競争優位を形成する暗黙知創造のモデルを提案する。

ABSTRACT

This paper provides a model of tacit knowledge Creation for competitive advantage through repeats of organizational transfer of superior viewpoints in the form of suggestions. This process creates newly developed knowledge in the other parties, which was confirmed by the analysis of routine activities in the outsourcing business of electronics products in its flow from the development to the volume production in overseas plants.

キーワード:暗黙知、思考スキル、知識創造、競争優位

1. はじめに

新製品の開発では、コスト、性能、品質および生産性の最適化をより短期間に行うために、設計、試作、そして生産までの一連の作業を同じ工場内の同一組織で一貫して行うことが理想である。しかしながら、昨今の電子業界では、ニーズの多様化と急速なグローバル化が同時に進行し、企業は研究開発やマーケティングに経営資源を集中し、生産を専門に受託するEMS(Electronics Manufacturing Service)企業に生産の一部を分担して行うケースが増えている(安藤、2002)。こうした環境の変化に伴い、企業は、地理的に分散した組織間で技術の移転を行う機会が増え、従来のやり方ではより多くの時間と労力、すなわちコス

トがかかるという問題を抱えている。

A社は、2000年に日本に設立されたアメリカ系 EMS(電子機器の受託生産)企業で、従業員数は、2001年初めの2名から現在では40名に増え、日本での取引が始まった2003年以降の取り扱い金額は、累計で1,000億円を超えている。しかし、最近になって、スマートフォンやタブレットなど単品を大量に生産する分野では、韓国や中国のメーカー、あるいは台湾のEMS企業が世界市場でシェアを急速に拡大している。A社は、これら新興勢力に対抗し、より複雑な製品の生産を請け負うことで、日本の顧客企業と一緒に成長しようとしているが、単品を大量に生産する案件が減少したことで業績が伸び悩む一方で、複数の海外工場で生産を請け負う多品種少量案件が増え、技術移転を

推進するためのマンパワーの不足が問題になっている。

技術移転とは、ノウハウなど個々人に備わった知識やマニュアルなどの可視化した知識を技術の送り出し手から受け手に移転することである。知識移転に関する先行研究では、課題を与えられた知識の送り出し手が、過去の経験(暗黙知)からソリューションを導き、助言(形式知)の形で知識の受け手に伝え、知識の受け手が助言の背景にある暗黙知に気付き、課題の解決に応用することで最適な知識を導くとする、共活性化と表現できる暗黙知の移転のメカニズム(Segawa & Ikawa、2012)を示しているが、知識の受け手が暗黙知を獲得して活用する過程で、新たな知識を導いているか否かについては触れていない。

本研究の目的は、A社が過去10年間に行った取引のなかから、技術移転が円滑に行われた成功例と難航した失敗例を分析し、知識の受け手による暗黙知の獲得と活用のメカニズムを明らかにすることで、実務上の問題を解決する方法を導き、競争優位を形成する知識創造の新たな理論モデルを提案しようとするものである。この目的を達成するために、メジャーリサーチクエスチョン「A社は、どのように競争優位を形成しているか?」と、3つのサブシディアリーリサーチクエスチョン、1)「A社は、どのように他社と差別化をはかっているか?」、2)「顧客企業と海外の系列工場は、どのようにA社の技術力を活用しているか?」、3)「成功事例と失敗事例での技術移転には、どのような違いがあるか?」を設定する。

2. 先行研究レビュー

EMS に関する先行研究では、Sturgeon (2002) が、 グループ内に複数の系列企業を保有する電機メーカー に関して、製品開発、部材の調達、生産、販売、アフ ターサービスまでの一連の業務をすべてグループ内で 行う垂直統合と、一連の業務から部材の調達と生産を 切り離して EMS 企業にアウトソースする水平分業の モデルを示し、比較検討を行っている。稲垣(2001) は、アメリカの EMS 企業が、この水平分業のモデル を 1990 年代に欧米のパソコンや通信機器メーカーの 工場を買収することによってグローバル化し、共通 の生産システムと設備を導入して様々な電子機器の生 産を請け負い、メーカーである顧客企業は、EMS企 業に生産をアウトソースすることで、固定費を圧縮 し、余力を製品開発、販売およびサービスの強化に振 り向けることで競争力を発揮していると述べている。 Sturgeon & Lee (2001) は、グローバルな拠点で生 産を専門に請け負う EMS 企業に対し、台湾の ODM (Original Design Manufacturer) 企業は、パソコンな どモジュール化が進んだ製品のアウトソーシングに特 化し、台湾や中国の工場で設計から生産まで請け負っ

ていると述べている。Zhai, Shi & Gregory (2005) は、2003年までアメリカ企業が EMS 業界を牽引してきたが、2004年を境に台湾などのアジア地域の企業が市場シェアでアメリカ企業を上回り、急成長していると述べている。これら EMS に関する先行研究では、知識移転とこれに関連する移転先での新たな知識創造についての論考は存在しない。

暗黙知の移転、および知識創造に関する先行研究では、 Polanyi (1966) は、「人は話すことができる以上のこと を知っている (we can know more than we can tell)」とい う表現で暗黙知の存在を明らかにした。例えば、自転車に 乗ることができる人は、「サドルに座ってハンドルを握り、 バランスをとりながらペダルをこぐ」という動作を言葉で 表現して初心者に教えることができる。しかしながら、初 心者は、このように言葉で表現できる知識だけではスムー スに自転車を操ることはできない。つまり、経験者は、言 葉で表現できること以上の感覚的な知識を持っているので スムースに自転車を操れるのであり、そのような感覚的な 知識は言葉で表現できないばかりか本人もその知識を自覚 していないことのほうが多い。初心者は、自ら実習と失敗 を繰り返しながらこうした感覚的な操作法を習得し、やが てスムースに自転車を操れるようになる。このように知識 は、言葉やマニュアルなどで表現できる形式知と言葉で表 現できない感覚的な暗黙知に分けることができる。Nonaka & Takeuchi(1995)は、形式知と暗黙知の継続的な相互変 換が新しい知識を生成するとする SECI モデルを提唱してい る。Nonaka, Toyama & Konno (2000) は、暗黙知と形式 知の相互変換が行われる「場」の考え方を示し、暗黙知は、 同じ場と経験を共有することで個人から個人、個人か ら組織、さらに異なる組織に移転すると述べている。 野中・遠山・平田(2010)は、暗黙知に「ノウハウな どの行動スキル」だけではなく、「思いや視点などの思 考スキル」が含まれると述べている。このようなスキ ルは、暗黙知として他者に一緒に移転すると考えられ ているが、「行動スキル」が形式知に変換され表出する 過程があるのに対し「思考スキル」は暗黙知のまま変 換されずに表出しないことが多く、この「思考スキル」 をどのように取り扱うかが今後の研究上の課題である と述べている。金網(2009)は、多国籍企業の本社と 現地の組織間における知識移転を分析し、知識の供給 者と受容者の「価値認識の違いを補完」する「信頼関係」 が暗黙知の移転に重要であると述べている。Cassiman & Veugelers (2004)、Dhanaraj, & Lyles 他 (2004)、 Mowery & Oxley 他 (1996)、Osterloh & Frey (1999) も同様に、暗黙知の移転には「信頼関係」が重要であ ると指摘している。Zahara & George (2002) は、知 識の獲得に着目し、受け手の吸収能力が知識を活用す る上で重要な役割を担っていることを示し、McEvily & Zaneer (1999) は、知識を外部から獲得するには知識 が存在するネットワークとの緊密な相互関係が重要であると述べている。浅川(2009)は、これら先行研究に依拠して海外 R&D 拠点の研究活動を分析し、知識の吸収能力が高い現地拠点では、本社との関係で自律性を確保し、知識創造を伴う研究を行う傾向にあると指摘し、さらに、現地拠点に高い吸収能力が備わっている場合に限り、現地国および他国の大学と連携して知識を吸収する傾向にあることを示している。

3. 研究の方法

研究方法は、Eisenhardt(1989) が示した事例研究 から理論構築までのプロセス、すなわち、リサーチク エスチョンの設定、事例の抽出とデータ収集、分析と 仮説の生成、フィールドでのデータ収集(インタビュ ー調査)、データの分析、仮説の検証と理論構築、先 行研究との比較、というプロセスに従って結論を導く。 具体的には、顧客企業、A 社および海外の系列工場の 間で技術移転が円滑に行われた取引と難航した取引を 抽出し、電子メールの履歴と議事録を収集する。収集 したデータを分析し、仮説を生成し、関係者にインタ ビュー調査を行う。インタビュー調査の結果を分析し てリサーチクエスチョンの解答を導く。事例の裏に潜 む共通のメカニズムを明らかにし、理論を構築して仮 説の検証を行う。最後に、先行研究との比較から類似 点と相違点を明らかにして仮説モデルを提案し、理論 的含意と実務的含意を提示する。

4. 分析と考察

4.1 A 社の会社概要

A 社の米国本社は、世界の EMS 企業上位 5 社 (年 商 5,000 億円以上) のなかの 1 社で欧米、東欧、中東、 中南米、アジア、中国など世界の主要地域に工場を保 有し、様々な電子機器の生産を請け負っている。A社 は、2001年に米国系 IT 企業の日本法人 B 社の実装 基板(電子部品を組み付けたプリント回路基板)の開 発部門の買収によって、年商数百億円のビジネスを吸 収し、最終的に25名の技術者を獲得した。25名の なかには、B社がメインフレームコンピュータを手が けていた時代に入社し、様々な部署で30年以上の経 験を積んだ5名のベテラン技術者がいて、ノートPC とハードディスクドライブの設計を行うB社の別の 部門から、実装基板の設計と試作を請け負い、その生 産技術を海外の委託先工場に移管するという業務を行 っていた。A社は、彼らの経験を生かし、顧客企業で の製品開発の支援を行い、確立した技術を社内の海外 工場に移管して生産を請け負うという業務を行ってい る。このように日本で試作を行う取引は、A 社の過去 10年間の累計取り扱い金額の80%を占め、今後も拡 大する見通しになっている。一方、A社の取引のなか

には、顧客企業の要求により、日本で試作を行わずに、 すでに開発が完了している製品を、加工費と物流コストが最適な社内の海外工場で生産を請け負う、という 取引もあるが、取り扱い金額は多くない。

4.2 技術移転の分析と事例の抽出

ここでは、A 社の過去 10 年間の取引のなかから、中国の系列工場(以降中国工場と表記)に対する技術移転8件を抽出し、電子メールの履歴、議事録および生産システムのデータを収集して作業工程の分担と移転期間を分析する。先行研究では、知識の受け手の吸収能力が高いほど知識を活用できる(Zahara & George、2002)と述べているが、8 件の技術の受け手は同じ中国工場であり、組織としての吸収能力は同一と見なすことができる。分析は、以下の通り、15のチェック項目を設けて行った。

①生産開始から品質安定までの期間:中国工場では、すべての実装基板をバーコードとITで一元管理し、関係者が生産工程内の仕掛かりの状態をリアルタイムにパソコンの画面で確認できるシステムになっている。品質安定期の算出は、このIT管理システムのデータの履歴に基づき、生産開始から工程内の良品率が社内で定めたレベルに達するまでの期間と品質トラブルに関する電子メールのやり取りがなくなった時期を加味して割り出し、この期間が短いほど技術移転が円滑に行われ、長いほど技術移転が難航したことを示すデータとして採用した。

②加工作業の難易度:品質が安定するまでの期間の長さに、作業の難易度が影響を及ぼすことがある。よって、A社のベテラン技術者にそれぞれの加工作業の難易度を高、中、低のランクに分けてもらった。

③設計:A 社および中国工場は EMS 企業なので、すべて顧客企業が行っている。

④基板メーカーとの技術擦り合わせ:設計データに基 づきプリント回路基板メーカーと技術的な擦り合わせ を行う作業。

⑤設計検討用サンプルの試作:設計データに基づき試験的に少量の生産を行う作業。

⑥設計改善提案:設計検討用サンプルの試作の結果に 基づき、問題点を発見し、改善策を提案する作業。

⑦検査装置の製作・設置:検査装置とは、生産現場に 設置し、実装基板あるいは製品を生産した後に、電気 的に正しく機能するか否かをチェックし、出荷前に合 否判定を行う装置。

⑧中国工場への技術移転:中国工場の技術者のトレーニング、技術データの伝達。

⑨生産マニュアルの作成:作業手順書、品質管理のフローチャートなどの作成。

⑩生産用冶工具の製作:生産に必要な工具や特殊作業の効率をあげるための冶具の考案と製作。

⑪生産設備の配置とラインの考案:効率的な生産を行うための設備の配置、生産ラインの構成を考案し、作業現場のセットアップを行う作業。

⑩生産開始前の試作・トレーニング:生産ラインでの 少量の生産、作業性の確認と作業員のトレーニング。

③品質管理:生産現場での日々の品質管理業務。

④部品購買:中国工場が部品サプライヤーから直接購入するケースと顧客企業が部品を購入して中国工場に供給するケースがある。

⑤生産・納期管理:顧客企業の要求納期にあわせ、生産と出荷の管理を行う業務。

表1は、③から⑤までの作業を、顧客企業が行っていれば黒丸(●)、A社が行っていれば白二重丸(◎)、中国工場が行っていれば白丸(○)に分けて示したもので、生産開始から品質安定までの期間は、黒丸が多いほど長く、少ないほど短くなっていることが見て取れる。すなわち、中国工場に技術を移転して生産を行う取引では、顧客企業が作業を行って中国工場を管理する項目が多いほど技術移転が難航している。一方、A社が顧客企業の設計業務を支援し、中国工場に技術を移管し、中国工場が生産の準備を行う取引では、たとえ難易度が高い加工作業であっても技術移転が円滑に行われているという結果になっている。

C社とD社の技術移転は、基板実装の技術的な難易度が高いにもかかわらず、8社の中で最も早く行われている。それに対し、J社の技術移転は、同じ基板実装で技術的な難易度が高くないのに、移転期間が長くなっている。また、H社とI社の技術移転は、技術的な難易度が高く、期間も長くなっているが、H社の製品の生産は、基板実装からシステムの組立まで一貫して行う作業で、I社の製品の生産は、目視で調整を行いながら手作業でモジュールの組立を行う作業である。よって、同じ生産品目のC社、D社、およびJ社の取引を比較検討の対象とし、H社とI社の取引は、特殊な作業を伴う技術の移転になっていることを勘案し、傾向を見るための参考データとしての扱いにとどめ、比較検討の対象から外すことにした。

4.3 事例の分析と仮説の生成

ここでは、技術移転の成功例としてC社とD社、 失敗例としてJ社の取引を抽出して比較分析を行い、 その結果から仮説を生成する。

A社は、2003年と2004年にC社とD社からデジタルカメラに組み込む実装基板の受託生産ビジネスを獲得した。C社とD社(以降顧客企業と表記)は、小型で薄いスタイリッシュなデジタルカメラにより多くの機能を組み込むという設計上の目標を持っている。したがって、カメラに組み込まれる実装基板の設計は、より小さくて薄い形状の基板に、より多くの電子部品

表 1 技術移転の作業分担と移転期間

■ 顧客企業○ A社○ 中国	工場
--	----

作業項目	C社	D社	E社	F社	G社	H社	I社	J社
製品用途	デジタルカメラ		PC用 電池	血糖 値計	液晶 電源	通信 機器	DVDピック アップ	ゲーム 機
① 生産開始から品質安定までの期間	1ヶ月	1ヶ月	2ヶ月	3ヶ月	3ヶ月	4ヶ月<	4ヶ月<	4ヶ月<
② 加工作業の難易度	高	高	低	低	低	高	高	中
③ 設計	•	•	•	•	•	•	•	•
④ 基板メーカーとの技術擦り合わせ	0	0	•	•	•	•	•	•
⑤ 設計検討用サンプルの試作	0	0	0	•	•	•	•	•
⑥ 設計改善提案	0	0	0	•	•	•	•	•
⑦ 検査装置の製作・設置	0	0	0	0	•	•	•	•
⑧ 中国工場への技術移管	0	0	0	0	•	•	•	•
⑨ 生産マニュアルの作成	0	0	0	0	•	•	•	•
⑩ 生産用冶工具の製作	0	0	0	0	0	0	•	•
⑪ 生産設備の配置とラインの考案	0	0	0	0	0	0	•	•
⑫ 生産開始前の試作・トレーニング	0	0	0	0	0	0	•	•
⑬ 品質管理	0	0	0	0	0	0	0	0
⑭ 部品購買	0	0	0	0	0	0	0	0
⑤ 生産·納期管理	0	0	0	0	0	0	0	0

成する上でのリスクは、実装基板の密度が高まること で発生する半田不良や、薄いサイズの基板が電子部品 の組み付け工程で歪むことが原因で発生する実装上の 不良など、生産現場でのトラブルが増えることである。 A社と顧客企業の共通の課題は、設計上でこの副作用 を抑えながら実装基板の高密度化を追求することであ る。C社とD社の取引では、A社が顧客企業から設計 の原案を入手し、プリント回路基板メーカーと技術の すり合わせを行い、最適な基板のサイズと形状を顧客 企業に提案する作業から行っている(表 1、④)。顧客 企業は、A社の提案を取り入れ、設計の初期データを 完成し、A社は、データに基づきサンプルの試作を行い、 生産技術上の問題をミニマイズするための設計改善提 案を顧客企業に提出している。A社は、この作業を顧 客企業と数回繰り返し、完成した設計データを中国工 場に移管し、生産を行い、顧客企業は、中国工場が生 産した実装基板をカメラに組み込んで完成品にしてい る。顧客企業とA社は、このような製品開発を6ヵ月 サイクルで春と秋の新製品の発売に向けて行い、中国 工場は、A 社の技術移管から 1 ヵ月以内に大量生産を 行っている。A 社は C 社から 35 機種、D 社から 22 機 種のサンプルの試作と生産を請け負ったが、開発日程、 品質、および納期で問題を起こしたことは一度もない。 一方、J社との取引は、すでに開発が終わった実装 基板の生産を日本から加工費が安い中国工場に移管 し、J社が指定する仕向け先に納入するというもので ある。したがって、製品の設計、基板メーカーとの技 術のすり合わせ、設計検討用サンプルの試作、設計改 善提案、検査装置の製作は、先に」社が行い完了して いる。J社は、自社の技術チームを中国工場に6ヵ月 間派遣して技術移管を行っている。生産マニュアル、 生産用治工具は、先に」社が使っていたものを流用し、 J社の技術チームが生産設備の配置、ライン構成を考 え、陣頭指揮をとって作業現場のセットアップ、生産 前の試作および作業員のトレーニングまで行ってい る。また、部品は、J社が購入して中国工場に供給し、 生産開始後の品質管理も」社が継続して行った。結果 として、中国工場では、生産開始から品質安定までの

を組み付けることを目指すものとなる。この目標を達

技術移管が円滑に行えたC社、D社の取引と難航したJ社の取引の大きな違いは、A社が顧客企業の設計業務と中国工場に対する技術移管に関与しているか否かである。インタビュー調査では、D社の購買課長が「A社は、競合する外資系EMS企業2社、日系の委託先2社に比べ、素早い対応と手離れがよいことでは群を抜いていた。よって、難易度の高いメイン基板の実装は、

期間が5ヵ月かかり、その後も品質や納期問題が頻

繁に起こり、品質、コスト、納期の改善が思うように

進まず、J社との取引は、2年で終わっている。

すべて A 社に任せた(4.4 項、表 2、③)」と述べている。 すなわち、設計支援と技術移管の業務を通じた A 社と 顧客企業、および、A 社と中国工場の相互関係のなか に、競争優位を形成する何かが内在しているとみなす ことができる。以上の分析結果から生成される仮説は、 「A 社は、顧客企業の設計を支援し、海外工場に技術を 素早く、円滑に移転する業務を通じて、他社と差別化 をはかり、競争優位を形成している」である。

4.4 インタビュー調査の方法と内容

ここでは、インタビュー調査の具体的な方法を示し、 調査内容を表2にまとめて提示する。

インタビュー調査の対象者は、実際の実務の運営に 関わり、重要な役割を担っている関係者を対象に、成 功事例での技術の送り出し手として、A社のベテラ ン技術者 (a)、(b)、(e) の3名、技術の受け手として、 顧客企業から C 社の設計チームリーダー、技術課長、 D社の購買課長の3名、中国工場からA社でトレー ニングを受けた経験のあるラインリーダー(c)と(d) の2名(中国人)を選定し、インタビューを行った。 失敗事例では、J社に対するインタビュー調査がかな わなかったので、技術の受け手である中国工場を訪問 し、J社とD社を担当したA社のテスト技術技師(A 社から中国工場に出向)、さらにJ社、C社およびD 社を担当した中国工場のプログラムマネジャー(中国 人) を選定し、インタビューを行った。調査の方法は、 「他社との比較でA社の優れた点、劣る点」「設計支 援活動、技術移転の進め方」などの質問事項を事前に 調査対象者に通知し、半構造化インタビューの形で、 通知した質問に対する調査対象者の答えによってさら に詳細にたずねていくという方法で行った。インタビ ューの内容は、それぞれ調査対象者の了解を得て電子 レコーダーに録音し、全文を書き起こしてデータ化し、 データの中から必要な箇所を抽出してまとめた。

4.5 事例の検討と仮説の検証

ここでは、4.4 で示した調査内容の検討を行い、リ サーチクエスチョンの解答を導き、仮説を検証する。

■サブシディアリーリサーチクエスチョン(3):「成功事例と失敗事例での技術移転には、どのような違いがあるか?」

成功事例では、A 社の熟練者は、サンプルの試作を通じて実装上の設計改善案を提案書という形で顧客企業に提出し、実際の調整作業は、顧客企業に一任している(表 2、⑤)。また、顧客企業が A 社の提案をリジェクトした項目は、A 社が作業方法で工夫を行い、リスクをミニマイズしている(表 2、⑥)。顧客企業は、サンプルの試作を A 社に一任し、提案書で A 社から指

表2 インタビュー調査の内容

質問	インタビュー調査結果
(C社とD社の取引) 顧客満足度の観点から他社と 比べ、A社の優れた点と劣る 点は?	① C 社設計チームリーダー ¹ : A 社からサンプルの試作の結果として大量生産時の品質や生産性を加味した形での提案を設計の初期段階でもらえるので設計の変更点数も少なくなり助かっている。試作を数回やっているが、試作ごとに A 社から問題点のレポートが入り、次の設計にスムースにフィードバックができるので助かっている。 ② C 社技術課課長 ² : A 社のベテラン技術者の技術的な裏付けの取り方は非常に参考になる。指摘されれば「なるほどな」と思えるところをしっかり押さえているので助かっている。たとえば、サンプルの試作で部品の組み付けの位置を変えたときに、将来の生産で何が起こるかを検証し、問題点と対策を提案するというやり方は、他社ではやっていない。 ③ D 社購買課長 ³ : A 社は他社に比べて、すばやい対応と手離れがよいということでは群を抜いていた。たとえば何か問題が起きたときに対処法を考え出して、D 社の中国工場と直接打ち合わせをして解決してしまうということは他社にはできない。安心して任せられるということで、メイン基板(最も難易度の高い基板実装)の取引は、すべて A 社に委託した。他の外資系大手EMS 企業 K 社と L 社、および日本の委託先 M 社と N 社は、簡単な基板実装でも問題ばかり起こして D 社の設計や生産技術チームは非常に苦労した。
(C社・D社の取引) 顧客企業に対する設計支援の 業務はどのように行っている か?	④ A 社ベテラン技術者 (a) 4 : 設計改善の活動は、我々が過去にやってきたことから「こういう場合は、こうでなければいけない」ということがあり、それを今の製品に対してやっているだけのこと。 ⑤ A 社ベテラン技術者 (a) 5 : 我々は、基板実装の設計について経験があるが、顧客は電気回路だけではなくデジカメの光学ユニットや機構(ボディー)についての設計も行っている。我々は、手取り足取り教えるのではなく、生産技術の視点から実装基板の設計に限定して顧客に助言を行っている。顧客は、その助言に基づき、自分たちの目で他に関連する部分を調整して設計を仕上げている。 ⑥ A 社ベテラン技術者 (b) 6 : 我々の仕事は、顧客が求める設計上の要求と我々が求める理想的な生産技術の間で妥協点を見つけること。サンプルの試作を通じて設計変更の提案書を顧客に提出しているが、そのすべてを顧客が受け入れているわけではない。顧客がリジェクトした項目は、B 社時代の経験であったり、今まで A 社でやってきたことなどを応用し、実装機で調整したり、冶具で問題を抑え込んだりしてリスクをミニマイズしている。
(C社・D社の取引) A社から中国工場にどのよう に技術を移管しているか?	⑦ A 社ベテラン技術者 (a) ⁷ : 試作の最終段階で中国工場の技術者を A 社に呼んでトレーニングを行っている。作業はすべて中国工場の技術者に任せ、質問されたことだけに答えている。全て教えると自分で考えることをしなくなり、中国工場の生産現場を熟知している彼らにしか見えないことを見逃すおそれがある。よってあえて手取り足取り教えることはしていない。彼らは、大量に生産するラインで我々と違った経験を積んでいる。 ⑧ A 社ベテラン技術者 (b) ⁸ : 中国の技術チームは、大量生産の現場をよく知っているという点で我々より優れていると思う。しかし、設計と生産技術の両方を見る目は、私たちのほうが優れている。中国チームに対する技術移管は、手取り足取り教える必要はない。新しい技術を取り入れた製品の試作を行うときに、トレーニングを1回やれば十分である。中国チームは、毎回 A 社でのトレーニングが終わったら工場に戻り、自分で生産の立ち上げを行っている。時々 E メールや電話でやり取りをするくらいで、それでうまくいっている。

(C社・D社の取引)

中国工場は、A社からどのように技術移管を受けているか?

⑨中国工場ラインリーダー $(c)^9$: 中国工場で生産を始める前に、A 社を訪問して 1 週間のトレーニングを受けている。一番重要なことは、歩留まりを考えながら少量のサンプルの試作の時と量産の時とそれぞれ異なる要因を見つけること。我々は、そのような相違点について A 社のベテラン技術者からサジェスチョンを受け、意見交換をしている。トレーニングが終わったら帰国し、工場の生産ラインで自分たちだけでサンプルの試作を行い、生産準備を進めている。

⑩中国工場ラインリーダー (d)¹⁰: 我々は大量生産での経験は豊富であるが、設計と生産技術の両方に関連した問題を見つけることは得意でない。トレーニング期間中に、そのようなポイントについて A 社のベテラン技術者からサジェスチョンを受け、工場に戻って試作、量産というステップを通じて自分で考えて現場の生産技術に生かしている。

(C社とD社の取引)

顧客企業と中国工場は、A社の提案をどのように活かしているか?

① A 社ベテラン技術者 $(e)^{11}$:顧客は、A 社の提案を自分流に活用し、次の新製品の設計に最初から取り入れ、独自に調整を行った初期データを A 社に提出している。但し、顧客の設計の担当者が変わると、そうならないことがあり、そのときは都度指摘している。

② A 社ベテラン技術者 (e)¹²:中国工場に技術移管を行い、生産が始まったところで定期的に中国工場に出張し、現場の視察を行っている。中国工場は、独自に生産工程での工夫を行っていて、サンプルの試作で我々が想定した歩留まりを遥かに超える良品率を達成していることに驚くことが何度もあった。

J社の取引は、C社とD社の取引との比較で、どのような違いがあるか?

③ A 社テスト技術・技師 ¹³: J 社は、中国工場の人と機械を借りて品質のコントロール、プロセスのコントロール、部品の管理、出荷計画、すべてを管理して、「おまえらこれでやれ」という姿勢で中国工場に乗り込んできたという感じだった。中国工場は、J 社との取引を通じて日本的なプロセスの管理の仕方や技術的なスキルを身に付けたが、J 社の指示系統は一本ではなく、色々な部署から異なる指示が出て現場が混乱した。D 社は、基本的に全部 A 社に任せ、顧客とベンダー以上の関係になり、我々から D 社に指摘をしてラフな議論ができた。中国工場で生産が始まり、何か問題があっても基本的に D 社は我々に任せてくれた。だから A 社の試作から中国工場の生産移管が非常にスムースにいったような気がする。D 社はうまく A 社を利用したと思う。

⑭中国工場プログラムマネジャー 14 : J 社は我がままで、指揮命令系統に明確なルールがなく、現場が混乱したことで生産を始めてもなかなかうまくいかなかった。C 社や D 社は A 社に任せてお互いにないものを補い一緒に仕事をするという姿勢だったので生産立ち上げがうまくいった。

《表内注釈》

- 1 2009 年 12 月 4 日、C 社設計チームリーダー、C 社会議室、筆者によるインタビュー
- 2 2009 年 11 月 20 日、C 社技術課課長、会食場所、筆者によるインタビュー
- 3 2009 年 12 月 2 日、D 社購買課長、会食場所、筆者によるインタビュー
- 4 2009 年 11 月 26 日、A 社生産技術部長、会食場所、筆者によるインタビュー
- 5 2012 年 8 月 22 日、A 社生産技術部長、会食場所、筆者によるインタビュー
- 6 2012 年 9 月 21 日、A 社 New Product Introduction センター長、NPI 現場、筆者によるインタビュー
- 7 2012 年 8 月 22 日、A 社生産技術部長、会食場所、筆者によるインタビュー
- 8 2012 年 9 月 21 日、A 社 New Product Introduction センター長、NPI 現場、筆者によるインタビュー
- 9 2010 年 1 月 27 日、中国工場ラインリーダー c (中国人)、工場会議室、筆者によるインタビュー
- 10 2012 年 9 月 21 日、中国工場ラインリーダー d (中国人)、NPI 現場、筆者によるインタビュー
- 11 2013年11月25日、A 社生産技術課長、電子メールで質疑応答
- 12 2013 年 11 月 25 日、A 社生産技術課長、電子メールで質疑応答
- 13 2010年4月21日、A 社テスト技術技師、中国工場会議室、筆者によるインタビュー
- 14 2010 年 4 月 21 日、中国工場プログラムマネジャー(中国人)、工場会議室、筆者によるインタビュー

摘を受けた改善案を設計に取り入れ、その結果に満足 している(表2、①②)。一方、A 社は、設計が完成 し、最終の試作を行う段階で、中国工場の技術者にト レーニングを行っているが、すべての作業を彼らに任 せ、あえて手取り足取り教えることは行っていない(表 2、⑦⑧)。A 社は、将来の大量生産で起こりうる問題 について中国工場の技術者に助言を行うが、生産に向 けた準備はすべて中国工場に任せている(表2、⑧)。 中国工場の技術者は、中国に戻り、トレーニングでの 経験とA社から指摘を受けた助言を応用して、独自に 生産の準備を行っている(表2、⑨⑩)。一方、失敗事 例では、J社は、中国工場に自社の技術チームを派遣し、 すべての管理を行うことで、技術を移転し、中国工場 は、J社の日本的な管理法や技術上のスキルを身につ けた。しかし、」社の完全すぎる管理は、中国工場に 高圧的な印象を与え、また、J社の様々な部署が出し た統一性のない異なる指示が、現場に混乱を与え、技 術移管が難航した(表2、③④)。以上の検討結果から 導かれるサブシディアリーリサーチクエスチョン(3) の解答は、「成功事例では、顧客企業、A社および中国 工場は、信頼関係を築き、相手が行う作業は、すべて 相手に任せることで技術移転を円滑に行えたが、失敗 事例では、A社と中国工場は、顧客企業の管理方法に 不満を持ち、顧客企業から吸収した技術を活用して自 ら問題を解決することができなかった」である。

■サブシディアリーリサーチクエスチョン (2):「顧客企業と海外の系列工場は、どのように A 社の技術力を活用しているか?」

成功事例では、A社の設計改善提案が顧客企業に気 付きを与え、顧客企業は、独自に次の設計に活用して 調整を行い、生産技術上の問題を設計上で解決する新 たなノウハウを見出すことで業務の効率を高めている (表2、①⑪)。一方、中国工場では、A社でトレーニ ングを受けた技術者が、対話を通じて受け取ったA社 の熟練者の助言を活用し、生産工程で新しいノウハウ を確立することで、A社が想定したレベルを遥かに超 える良品率を達成している(表2、⑫)。すなわち、顧 客企業と中国工場は、A社の熟練者の経験に導かれた 優れた視点を活用し、新たな知識を導いているとみな すことができる。優れた視点とは、優れた経験を通じ て備わった「こういう場合は、こうでなければいけない」 (表2、④) という感覚的なもので、指摘されれば「な るほどな」(表2、②)という気付きを知識の受け手に 与える暗黙知とみなすことができる。以上の検討結果 から導かれるサブシディアリーリサーチクエスチョン (2) の解答は、「顧客企業と中国工場は、対話や提案書 のやり取りを通じ、助言の背景にある A 社の熟練者の 優れた視点を獲得し、独自に活用することで、新たな ノウハウを導き問題解決の能力を高めている」である。

■サブシディアリーリサーチクエスチョン (1):「A 社は、どのように他社と差別化をはかっているか?」 A 社は、M&A を通じ、B 社から生産技術上の問題を設計上で解決する視点をもった熟練技術者 5 名を吸収した (前節 4.1)。A 社は、彼らの経験を生かし、設計検討用のサンプルの試作を行い、将来の生産で何が起こるか検証し、問題点と対策を顧客企業に提案しているが、他社は、そのような活動を行っていない(表2、②)。以上の検討結果から導かれるサブシディアリーリサーチクエスチョン (1) の解答は、「A 社は、生産を専門に請け負う EMS 企業でありながら、M&Aで生産技術上の問題を設計上で解決する視点を持った熟練技術者を獲得し、顧客企業の設計業務の支援を行うことで、他社と差別化をはかっている」である。

■メジャーリサーチクエスチョン: 「A 社は、どのように競争優位を形成しているか?」

成功事例は、いずれも6ヵ月サイクルで行う製品 開発で高密度化が進行し、技術的な難易度が持続的に 高まるビジネスである(前節 4.3)。A 社は、海外工 場に対する技術移転で素早い対応と手離れの良さでは 群を抜き、顧客企業が安心して生産を委託できるパ ートナーになっている。それに対し、競合する外資 系 EMS 企業 2 社と日系の委託先 2 社は、海外工場に 技術を移転する過程で頻繁に生産上のトラブルを起こ し、問題の解決に顧客企業を巻き込み苦労をかけてい る(表2、③)。以上の分析結果とリサーチクエスチ ョン(1)(2)(3)の解答から導かれるメジャーリサ ーチクエスチョンの解答は、「A社は、技術的な難易 度が持続的に高まる EMS ビジネスで、優れた視点を 助言の形で技術の移転先に伝え、移転先がその視点を 活用し、問題の解決能力を高めるという相互関係を築 き、製品開発と海外工場に対する技術移転を効率的に 行うことで、他社と差別化をはかり、競争優位を形成 している」である。

以上のリサーチクエスチョンの解答から、前節 4.3 で生成した仮説、「A 社は、顧客企業の設計を支援し、海外工場に技術を素早く、円滑に移転する業務を通じて、他社と差別化をはかり、競争優位を形成している」は、検証できたとみなすことができる。

4.6 考察

ここでは、前節の事例の検討と仮説の検証結果から 共通の理論を導き、先行研究と比較して類似点と相違 点を明らかにする。

先行研究では、信頼関係が暗黙知の移転に重要(金網、2009)であり、暗黙知は、信頼関係のもとで

同じ場と経験を共有することで移転する(Nonaka, Toyama & Konno、2000) が、暗黙知のなかでも思 いや視点などの思考スキルは、知識の受け手に移転 しても表出しないことが多い(野中・遠山・平田、 2010)と述べている。これに対し、成功事例では、 知識の送り出し手と受け手は信頼関係を築き、受け手 は助言の背景にある送り出し手の優れた視点、すなわ ち思考スキルに気付き、独自に活用している。一方、 失敗事例では、知識の受け手は、送り出し手が手取り 足取り教えることでノウハウを吸収したが、送り出し 手の管理方法に不満を待ち、優れた視点を見逃してい る。この結果は、信頼関係が暗黙知のなかでも思考ス キルの移転に極めて重要であるという類似点を示すの と同時に、送り出し手が手取り足取り教えることは、 受け手側の行動スキルの獲得を促進するが、思考スキ ルの獲得を阻害することを示唆しており、この点につ いては、新たな発見事項といえるであろう。

次に、先行研究では、知識創造は、形式知と暗黙知 が継続的に相互変換を繰り返すことで起こり(Nonaka & Takeuchi、1995)、知識の受け手の吸収能力が高い ほど知識の活用能力も高くなる(浅川、2009)と述 べているが、暗黙知のなかでも優れた視点の獲得と活 用によって知識創造が起こるというメカニズムは示し ていない。これに対し、成功事例では、知識の受け手 が送り出し手の助言(形式知)の背景にある優れた視 点(暗黙知)に気付き、活用することで、新しいノウ ハウ(暗黙知)を確立している。一方、失敗事例では、 知識の受け手が、送り出し手の優れた視点(暗黙知) を見逃したために、新しいノウハウ(暗黙知)を確立 できなかった。この結果は、知識の受け手が送り出し 手から同じノウハウを獲得しても、送り出し手の優れ た視点に気付かなければ新しい暗黙知を生みだすこと はできない。換言すれば、暗黙知の創造が、知識の受 け手が送り出し手の優れた視点を獲得し活用する過程 で起こること、を示唆するものであり、新たな発見事 項とみなすことができる。

4.7 仮説モデル

ここでは、前節で示した発見事項に基づき、暗黙知の非創造型移転と創造型移転のモデルを図1と図2に示す。

5. 結論

前節の図1と図2に示したモデルの理論的含意および実務的含意は、次のように表現できる。

5.1 理論的含意

先行研究では、知識の受け手と送り出し手が経験を 共有し、暗黙知と形式知の継続的な相互変換の反復に

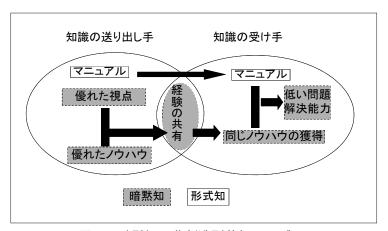


図1 暗黙知の非創造型移転のモデル

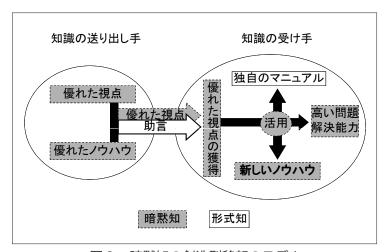


図2 暗黙知の創造型移転のモデル

よって知識創造が起こることを示し、暗黙知にノウハ ウなどの行動スキルだけではなく、思いや視点などの 思考スキルが含まれ、思考スキルが知識の送り出し手 から受け手に移転しても表出しないことが多いと述べ ている。それに対し、本論文では、知識の受け手と送 り出し手が経験を共有しても、知識の受け手が送り出 し手の優れた視点に気付き活用しなければ新しいノウ ハウは生成されないが、知識の受け手が送り出し手の 助言(形式知)の背景にある優れた視点(思考スキル =暗黙知) に気付き、独自に活用すれば、新しいノウ ハウ(行動スキル=暗黙知)が生成され、知識の受け 手の問題解決の能力が高まることが明らかになった。 すなわち、暗黙知の移転には、知識の受け手が送り出 し手から同じ行動スキルを獲得する非創造型移転と思 考スキルの獲得と活用を通じて新たな行動スキルを生 み出す創造型移転がある。

5.2 実務的含意

より複雑な製品の生産を複数の海外工場で請け負う EMS ビジネスでは、生産技術上の問題を設計上で解 決する視点をもった技術者が、顧客企業と海外工場の 技術者に優れた視点を伝授することで問題解決の能力を高める関係を築くことができる。複数の海外工場に対する技術移転は、優れた視点をもつ技術者が各工場において知識の吸収能力が高い技術者を選び、遠隔操作による助言を通じて優れた視点を伝授し、海外工場の技術者がその視点を現場で独自に活用し、新たなノウハウを確立するという方法によって効率的に行うことができる。すなわち、思考スキルの組織間移転を通じた暗黙知創造の実践が、効率的な製品開発と技術移転を可能にし、競争優位形成の一助になる。

6. おわりに

海外でアウトソーシング業務を進める企業は、今後 ますます多くなると予想され、したがって、地理的に 分散した組織間で効率的な知識移転を行うための研究 は、ますます重要になってくると予想される。今まで の知識移転の研究は、暗黙知の移転や、暗黙知と形式 知の継続的な相互変換で起こる知識創造のメカニズム を示しているが、暗黙知のなかでも思考スキルの獲得 と活用に着目した研究は少なかった。本論文では、知 識創造は、知識の受け手が、送り出し手の優れた視点 を獲得して活用する過程で起こることを明らかにし た。しかし、暗黙知は、本人も気付かない感覚的な知 識であり、暗黙知の移転を通じた知識創造を、インタ ビュー調査だけで客観的に分析する方法には限界があ る。本論文で明らかにしたことを、実務で実践し、ア クションリサーチという方法でさらに研究を深める必 要があると考える。また、本論文で明らかにした暗黙 知の創造には、知識の送り出し手と受け手の双方の知 識レベルが高いことが必要で、その結果として知識創 造が起きるという新たな仮説が生成される。この点に ついては、今後の研究に委ねたい。

(せがわ よしひさ、いかわ やすお)

《参考文献》

- ・淺川和宏 (2009)「日本企業の R&D 国際化における 現状と課題」『RIETI Discussion Paper Series 10-J-007』2000.12,pp.1-56.
- ・安部忠彦 (2002)「日本のエレクトロニクス産業の 競争力向上に向けて」『Economic Review』 2002.1, pp. 10-29.
- Cassiman, B. and R. Veugelers (2004) "In search of Complementarity in the Innovation Strategy: Internal R & D and External Knowledge Acquisition," IESE Business School and University of Leuven, pp. 2-38.
- Dhanaraj,C, M.A. Lyles, S.A. Marjorie, H.K. Steensma and T. Laszlo (2004) "Managing tacit and explicit knowledge transfer in IJVs: the role of relational embeddedness and the impact on performance," Journal of International Business Studies, 35, pp.

428-442.

- Eisenhardt, K.M. (1989) "Building Theories from Case Study Research," The Academy of Management Review, Vol. 14, No.4, pp. 532-550.
- ・稲垣公夫 (2001) 『EMS 戦略―企業価値を高めるアウトソーシング―』、ダイアモンド社.
- ・金綱基志 (2009) 『暗黙知の移転と多国籍企業』、立 教大学出版会.
- McEvily,B. and Zaheer,A.(1999)" Building ties: A source of firm heterogeneity in competitive capabilities," Strategic Management Journal, 20(12), pp.1133-1156
- Mowery, D.C., J.E. Oxley and B.S. Silverman (1996)
 "Strategic Alliance and Interfirm Knowledge Transfer," Strategic Journal, Vol. 17, pp. 77-91.
- Nonaka, I and H. Takeuchi (1995) "The knowledge creating Company," Oxford University Press.
- Nonaka, I, R. Toyama and N. Konno (2000) "SECI, Ba and Leadership: a Unified Model of Dynamic Knowledge Creation," long Range Planning, Vol33, pp. 5-34.
- 野中郁次郎・遠山亮子・平田透 (2010) 『流れを経営する』、東洋経済新報社, pp. 26-27.
- Osterloh, M and B.S. Frey (1999) "Motivation Knowledge Transfer and Organizational Form," Institute of Empirical Research in Economics University Zurich Working Paper Series, ISSN1424-0459.
- Polanyi. M (1966) "The Tacit Dimension," Doubleday & Company, Inc.
- Segawa, Y. and Y. Ikawa (2012) "Tacit Knowledge Transfer through Co-activation: A Case Study of Design and Support by an Electronics Manufacturing Service Firm." 2012 Proceedings of PICMET' 12, pp. 412-418.
- Sturgeon, Timothy J & Lee, Ji-Ren (2001) "Industry Co-Evolution and the Rise of a Shared Supply-Base for Electronics Manufacturing," Massachusetts Institute of Technology Working Paper,IPC-01-003.
- Sturgeon, Timothy J (2002) "Modular Production Networks: A New American Model of Industrial Organization," Massachusetts Institute of Technology Working Paper, IPC-02-003.
- Zahara, S. and George, G. (2002) "Absorptive capacity: a review, re-conceptualization, and extension," Academy of Management Review, 27(2), pp.185-203
- Zhai, Endong, Shi, Yongjiang & Gregory, Mike(2005)
 "The growth and capability development of electronics manufacturing service (EMS) companies,"
 Department of Engineering, University of Cambridge, UK, International Journal of Production Economics,vol107,pp.1-19.