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THE GATHERING PROBLEM FOR TWO OBLIVIOUS ROBOTS
WITH UNRELIABLE COMPASSES∗

TAISUKE IZUMI† , SAMIA SOUISSI‡ , YOSHIAKI KATAYAMA‡ , NOBUHIRO INUZUKA‡ ,
XAVIER DÉFAGO§ , KOICHI WADA‡ , AND MASAFUMI YAMASHITA¶

Abstract. Anonymous mobile robots are often classified into synchronous, semi-synchronous,
and asynchronous robots when discussing the pattern formation problem. For semi-synchronous
robots, all patterns formable with memory are also formable without memory, with the single ex-
ception of forming a point (i.e., the gathering) by two robots. (All patterns formable with memory
are formable without memory for synchronous robots, and little is known for asynchronous robots.)
However, the gathering problem for two semi-synchronous robots without memory (called oblivious
robots in this paper) is trivially solvable when their local coordinate systems are consistent, and
the impossibility proof essentially uses the inconsistencies in their coordinate systems. Motivated by
this, this paper investigates the magnitude of consistency between the local coordinate systems nec-
essary and sufficient to solve the gathering problem for two oblivious robots under semi-synchronous
and asynchronous models. To discuss the magnitude of consistency, we assume that each robot is
equipped with an unreliable compass, the bearings of which may deviate from an absolute reference
direction, and that the local coordinate system of each robot is determined by its compass. We
consider two families of unreliable compasses, namely, static compasses with (possibly incorrect)
constant bearings and dynamic compasses the bearings of which can change arbitrarily (immedi-
ately before a new look-compute-move cycle starts and after the last cycle ends). For each of the
combinations of robot and compass models, we establish the condition on deviation φ that allows
an algorithm to solve the gathering problem, where the deviation is measured by the largest angle
formed between the x-axis of a compass and the reference direction of the global coordinate system:
φ < π/2 for semi-synchronous and asynchronous robots with static compasses, φ < π/4 for semi-
synchronous robots with dynamic compasses, and φ < π/6 for asynchronous robots with dynamic
compasses. Except for asynchronous robots with dynamic compasses, these sufficient conditions are
also necessary.

Key words. mobile robot, distributed algorithm, gathering problem

AMS subject classification. 68Q85
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1. Introduction. Geometric pattern formation by anonymous mobile robots has
gained much attention [1, 2, 3, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16]. In the literature, a robot
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is represented by a point and repeatedly executes a “look-compute-move” cycle, during
which it observes the positions of all robots (look phase), computes the next position
using a given algorithm (compute phase), and moves to that position (move phase).
A robot does not have access to a global coordinate system, and all its computations
are done in terms of its local coordinate system. The robots do not have identifiers,
are not equipped with communication devices, and execute the same algorithm.

The robots’ behaviors are in general asynchronous. Their executions of the look,
compute, and move phases may be interleaved in the sense that a robot may observe,
for instance, another robot while it is moving.1 The robots are said to be semi-
synchronous when the execution of their cycles is assumed to be “instantaneous,”
which intuitively means that a robot is never observed while it is moving. Robots
are said to be synchronous if all of them always execute the instantaneous cycles
simultaneously. A robot is said to be oblivious if it has no memory to remember
its execution history and its computations depend only on what it is observing in
the current cycle. A robot is said to be nonoblivious if it has sufficient memory to
remember the whole execution history and its action can depend also on what it has
observed in the past.

The set of patterns formable by semi-synchronous oblivious robots is, by defini-
tion, a subset of the patterns formable by semi-synchronous nonoblivious robots. This
inclusion relation is proper since the point formation (i.e., the gathering) problem for
two robots is solvable for semi-synchronous nonoblivious robots, but it is unsolvable for
semi-synchronous oblivious robots, which exhibits the impact of memory in forming
a pattern [15]. Note that the gathering problem for more than two semi-synchronous
oblivious robots is solvable provided that a robot can count the number of robots
residing at the same point (i.e., detect multiple robots residing at the same point).
Interestingly, with the sole exception of gathering of two robots mentioned above, any
pattern formable by semi-synchronous nonoblivious robots is also formable by semi-
synchronous oblivious robots [17]. Thus, memory helps only in the case of gathering
two robots. All patterns formable by nonoblivious synchronous robots are formable
by oblivious synchronous robots, and little is known for asynchronous robots. These
facts motivate our study of the gathering problem for two oblivious semi-synchronous
and asynchronous robots.

The impossibility proof of the gathering problem for two oblivious semi-synchro-
nous robots relies on the “full” inconsistency of their local coordinate systems [15],
while there is a simple gathering algorithm when they are “fully” consistent. A natural
question then arises: what is the minimum magnitude of consistency between the local
coordinate systems that is necessary and sufficient to solve the gathering problem for
two oblivious robots? We answer this question in the paper for both semi-synchronous
and asynchronous robots.

To discuss the magnitude of consistency, we consider that a robot is equipped
with an unreliable compass, the bearings of which may deviate from the absolute ones
(i.e., the bearings of a global coordinate system), and we assume that the compass
determines the local coordinate system.

We consider two families of unreliable compasses with respect to the difference
of timings that a compass can change the bearings. A static compass never changes
its (possibly incorrect) bearings once an execution of algorithm starts. A dynamic
compass, on the other hand, can change the bearings arbitrary times immediately be-
fore a new look-compute-move cycle starts, after the last cycle ends. We can consider

1The robot, however, cannot determine its velocity, in particular, whether it is moving.
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a more general family of compasses which can change the bearings even during the
execution of a look-compute-move cycle. However, we do not investigate this case in
this paper, since the impossibility of gathering in this case is trivial.

To measure the magnitude of deviation of a compass from the global coordinate
system, we use the angle formed by the x-axis of the compass and the reference
direction of the global coordinate system. In this paper, we investigate the maximum
deviation that is necessary and sufficient for two oblivious robots to solve the gathering
problem. We consider each of the four combinations of robot and compass models,
and essentially show the following results:

Semi-synchronous robots with static compasses (SS). There is a gathering
algorithm for two oblivious semi-synchronous robots that uses static compasses with
maximum deviation φ if and only if 0 ≤ φ < π/2.

Semi-synchronous robots with dynamic compasses (SD). There is a gath-
ering algorithm for two oblivious semi-synchronous robots that uses dynamic com-
passes with maximum deviation φ if and only if 0 ≤ φ < π/4.

Asynchronous robots with static compasses (AS). There is a gathering
algorithm for two oblivious asynchronous robots that uses static compasses with max-
imum deviation φ if and only if 0 ≤ φ < π/2.

Asynchronous robots with dynamic compasses (AD). There is a gathering
algorithm for two oblivious asynchronous robots that uses dynamic compasses with
maximum deviation φ if 0 ≤ φ < π/6.

Note that whether 0 ≤ φ < π/6 is necessary is left as an open problem for
asynchronous robots with dynamic compasses.

The remainder of this paper is organized as follows. After a brief survey of
related works in section 2, section 3 defines formal models of robots and compasses.
We discuss the solvability of gathering by semi-synchronous and asynchronous robots
with compasses in sections 4 and 5, respectively. Finally, section 6 concludes the
paper.

2. Related works. The set of geometric patterns formable/convergable2 by
a set of anonymous semi-synchronous robots was characterized by Suzuki and Ya-
mashita for nonoblivious robots [15] and for oblivious robots [17]. From these two
studies, it turns out that memory can help with the formation/convergence of geo-
metric patterns only in very specific cases. Indeed, nonoblivious and oblivious semi-
synchronous robots can solve formation/convergence for the same set of geometric
patterns, except for the formation of a point with exactly two robots3 (i.e., the gath-
ering of two robots). As for asynchronous robots, little is known, except that the
gathering problem for more than two robots is solvable [5, 6]. These positive results
for the gathering problem rely on the ability of robots to detect multiplicity or, in
other words, the ability to count the number of robots that share a given location.
This assumption is indeed necessary. Otherwise, the gathering for more than two
robots is reducible to the problem with two robots [13].

Essentially, the difficulty in forming (and even in converging to) a pattern by
robots lies in the difficulty of breaking symmetry among the robots. In fact, any
pattern is formable, given a symmetry-breaking tool, like a compass. The use of a
compass was first introduced by Flocchini et al. [9]. They showed that asynchronous

2Formation requires that all robots form the pattern within a finite number of steps, while
convergence only requires the robots to approach the pattern asymptotically.

3Two oblivious robots can converge to a point with a naive algorithm that consists of always
moving toward the midpoint of their positions.
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robots with limited visibility can solve the gathering problem when every robot has
access to a correct compass. Souissi, Défago, and Yamashita [14] extended the above
result to the situation where compasses are eventually consistent. A compass is said
to be eventually consistent if it is unstable and inaccurate for some arbitrary long
period but eventually stabilizes to show the accurate direction.

In contrast, an unreliable compass may never correctly indicate the correct di-
rection, although its maximum deviation is bounded. This type of compass was first
introduced by Katayama et al. [12]. They showed that the gathering problem for two
oblivious asynchronous robots is solvable if their compasses are either (1) static whose
deviation is less than π/6 or (2) dynamic whose deviation is less than π/8.

Other work has focused on fault-tolerant formation/convergence for anonymous
robots. Let F be the number of faulty robots. Cohen and Peleg [7] showed that
convergence to a point is solvable for n asynchronous robots by simply converging to
their center of gravity, even if some of the robots may crash (as long as there exists a
nonfaulty robot). Bouzid, Potop-Butucaru, and Tixeuil [3, 4] proposed three Byzan-
tine resilient convergence algorithms in one-dimensional space: (1) for synchronous
robots provided n > 2F , (2) for semi-synchronous robots provided n > 3F , and (3)
for asynchronous robots provided n > 4F . Agmon and Peleg [1] showed that (1)
there is no Byzantine resilient gathering algorithm for semi-synchronous robots even
if F = 1, and (2) there is a Byzantine resilient gathering algorithm for synchronous
robots if and only if n ≥ 3F + 1.

Finally, effects of sensor/control errors in convergence to a point were discussed
by Cohen and Peleg [8] and Yamamoto et al. [16], assuming that the robots are
aware of the global coordinate system. They measured sensor/control errors by a pair
of the maximum angle and distance errors and obtained necessary and/or sufficient
conditions for robots to have a convergence algorithm in terms of the pair.

3. System model and problem definition.

Robot with compass. In this paper, we investigate an autonomous mobile
robot system R consisting of two oblivious robots r0 and r1 working in a two-
dimensional Euclidean space R

2, where R is the set of real numbers. The robots
are anonymous and do not have identifiers; the subscript i of ri is used only for the
purpose of explanation. Let ri(t) be the coordinates in the global x-y coordinate
system Z of a robot ri at time t. The configuration C(t) of R at time t is defined by
(r0(t), r1(t)).

The robots do not have access to Z, and each robot ri at time t observes, com-
putes, and moves in its local x-y coordinate system Z(i,t). The origin of Z(i,t) is
always at the current position of ri, and the direction of the x-axis corresponds to the
bearings of its compass. Z, Z(0,t), and Z(1,t) are right-handed systems. Thus, for any
point with coordinates p in Z, its coordinates Z(i,t)(p) in Z(i,t) are calculated by

Z(i,t)(p)
T = sci(t)

(
cosφi(t) sinφi(t)

− sinφi(t) cosφi(t)

)
(p− ri(t))

T ,

where the scaling ratio sci(t) (with 0 < sci(t) <∞) is the ratio of the unit length in Z
to that in Z(i,t), and the deviation φi(t) (with −π < φi(t) ≤ π) is the angle formed by
the x-axes of Z and Z(i,t). The deviation abstracts the compass, and Z(i,t)(ri(t)) = 0
always holds. Since the scaling ratio and the deviation (i.e., compass) may change as
time goes, the local coordinate system Z(i,t) may change accordingly.
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Look-compute-move cycle of robot. Each oblivious robot ri repeatedly exe-
cutes the look-compute-move cycle. The local coordinate system Z(i,t), and thus both
the scaling ratio sci(t) and the compass deviation φi(t) remain unchanged during a
cycle (i.e., from look to move).

Suppose that a robot, say, r0, starts executing the cycle at time t0. In the look
phase, r0 observes the other robot r1 and obtains the coordinates of r1’s position in the
local coordinate system Z(0,t0). We assume that this observation is an instantaneous
action; r0 obtains Z(0,t0)(r1(t)) as the result of observation, where t is a time instant
in the look phase. If the gathering has already been achieved, then r0 observes exactly
one point at the origin.4

Next, robot r0 computes, based on the coordinates Z(0,t0)(r1(t)), the coordinates
in Z(0,t0) of its next position. The algorithm is simply a total function ψ on R

2. That
is, when the compute phase finishes, r0 obtains ψ(Z(0,t0)(r1(t))) as the coordinates of
its next position.

In the move phase, r0 moves linearly toward coordinates ψ(Z(0,t0)(r1(t))) in Z(0,t0)

at a (possibly variable) finite speed that r0 cannot control. Since Z(i,t) does not change
during the look-compute-move cycle, Z(0,t0) is the current local coordinate system of
r0. The move phase may be too short for r0 to reach the next position, and thus r0
may finish the current execution of the look-compute-move cycle on the way to its
next position. We assume, however, that the move phase is long enough to move over
a small distance δ (in Z).5

We make three simplifying assumptions that incur no loss of generality. Let N

denote the set of nonnegative integers.
1. Each execution of the look-compute-move cycle starts at the time at which

the observation action is taken in the cycle.
2. The system is initialized at time 0, i.e., the first observation action is taken

by a robot at 0.
3. The set of time instants at which the robots start executions of the look-

compute-move cycle (or equivalently, the time instants at which they take
observation actions) is N. A robot is said to be activated at a time t ∈ N if it
starts executing the cycle at t.

Execution. Given an algorithm and an initial configuration C(0), let us observe
the behavior of robot system R. Let C(t) be the configuration of R at t ∈ N. An
infinite sequence E : C(0), C(1), . . . is called an execution of R. Recall that C(t) is
the configuration at time t, in which at least one robot is activated. An execution
must be fair in the sense that both robots are activated infinitely many times in any
infinite execution.

Asynchronous and semi-synchronous robots. Robots are said to be asyn-
chronous if we do not make any assumption on the execution of the look-compute-move
cycle. Thus, a robot may be moving (move phase) while the other robot starts the
look phase.

Robots are said to be semi-synchronous if every execution of the cycle is instan-
taneous. An execution of the cycle started at time t ∈ N is said to be instantaneous if
the look and the compute phases immediately finish at t and the move phase finishes
before t+ 1.

4The converse (one point at origin implies gathering) may not hold for asynchronous robots. See
the definition of the gathering problem.

5Obviously, no gathering algorithm exists if a robot can finish the move phase at any position
between the current and the next position.
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Static and dynamic compasses. A compass is a φ-compass if φ ≥ |φi(t)| for
every i ∈ {0, 1} and all t ∈ N, i.e, a compass such that the absolute value of the
deviation angle is bounded by φ. A compass is said to be static if φi(t) is constant in
t. A compass is said to be dynamic if it can change its bearings at any time t ∈ N prior
to the look phase. A φ-static compass is a φ-compass that is static and a φ-dynamic
compass is a φ-compass that is dynamic.

Gathering problem. Let L = {(p,p) : p ∈ R
2} be the set of all configurations

in which two robots are co-located. An execution E : C(0), C(1), . . . is called a
gathering execution if there are a configuration C ∈ L and a time instant f ∈ N such
that C(t) = C holds for all t ≥ f . An algorithm is said to be a gathering algorithm if for
any configuration C(0), every execution E : C(0), C(1), . . . with initial configuration
C(0) is a gathering execution.

An algorithm is given as a function and is deterministic. Nevertheless, execution E
is not uniquely determined from a given initial configuration C(0). Execution E varies
depending on many factors, e.g., when each robot is activated, how and when each
scale ratio and compass change, how far each robot moves, and so on. We consider
that all these factors are controlled by an adversary playing against the gathering
algorithm. This paper investigate the problem of designing a gathering algorithm.

Noetherian termination. The definition of a gathering algorithm is based on
the Noetherian termination. It does not request a gathering algorithm to eventually
terminate. All gathering algorithms that we present in this paper are of this type.
A stronger (and perhaps more conventional) definition additionally imposes the ter-
mination condition upon a gathering algorithm. We will observe that the gathering
algorithms for semi-synchronous robots in section 4 are transformable into gathering
algorithms satisfying the termination condition.6

4. Semi-synchronous robots with compasses. In this section, we investigate
the gathering problem for two oblivious semi-synchronous anonymous mobile robots
with static and then dynamic compasses. By definition, if the problem is solvable for
the robots with φ-dynamic compasses, it is also solvable for the robots with φ-static
compasses. We establish, for each of the static and the dynamic cases, the tight bound
on φ for the problem to become solvable.

Consider, for an algorithm, a finite execution E : C(0), C(1), . . . , C(f) with an
initial configuration C(0) and an execution E ′ : C′(0), C′(1), . . . with an initial con-
figuration C′(0). If C′(0) = C(f), then the concatenation EE ′ of E and E ′, i.e.,
C(0), C(1), . . . , C(f)(= C′(0)), C′(1), . . . , is an execution with initial configuration
C(0), since the robots are semi-synchronous.7 In this section, we implicitly rely on
this property.

4.1. Semi-synchronous robots with static compasses. We now investi-
gate the static case, i.e., the gathering problem for two oblivious robots with static
compasses under the semi-synchronous model. Since the compasses are static, let
φi(t) = φi for i ∈ {0, 1}. The following theorem is a restatement of Theorem 3.1
of [15].

Theorem 1 (see [15]). There is no gathering algorithm for two oblivious anony-
mous robots with π/2-static compasses under the semi-synchronous model.

6This transformation is not applicable to the gathering algorithms for asynchronous robots in
section 5.

7Asynchronous robots do not have this property, since a robot in E may still be engaged in its
move phase at time f .
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Fig. 1. An illustration of Algorithm Aφ
SS.

Fig. 2. The move of a robot state Rotate who looks at the other robot at p in its local coordinate
system.

We present an algorithm Aφ
SS

8 and show that it is a correct gathering algorithm
for two oblivious semi-synchronous robots with φ-static compasses, provided that
0 ≤ φ < π/2. Recall that an algorithm ψ is a total function on R

2. For any p =
(u, v) ∈ R

2 \ {0}, let arg(p) = ω be the argument (or phase) of p, i.e., 0 ≤ ω < 2π
and (u, v) = |p|(cosω, sinω). Angles are calculated modulo 2π in the sequel.

Algorithm Aφ
SS(p).

G(athered): If p = 0 then Aφ
SS(p) = 0.

A(pproach): If 0 < arg(p) ≤ π then Aφ
SS(p) = p.

R(otate): If π < arg(p) ≤ 3π/2 + φ then Aφ
SS(p) = (−|p|, 0).

W(ait): If 3π/2 + φ < arg(p) ≤ 2π then Aφ
SS(p) = 0.

Figure 1 illustrates Algorithm Aφ
SS(p). It divides the plane into four regions,

Gathered, Approach, Rotate, and Wait, and asks a robot to take the move corre-
sponding to the region to which the current position p of the other robot belongs.
Each region is specified by the angle of its boundary (except Gathered, whose region
is a singleton {0}). For example, in the case of Approach, the corresponding region is
specified by two boundary angles 0 and π. A robot moves toward the other robot in
state A (Approach), it moves westward (i.e., negative direction) on its local x-axis in
state R (Rotate), and stops in state W (Wait). The robots in state G (Gathered) are
co-located, and no further actions are necessary. Although the actions at A, W , and
G are intuitive, the action at R is less straightforward. Figure 2 illustrates the move
of a robot in state Rotate who looks at the other robot at p in its local coordinate

8SS in Aφ
SS stands for semi-synchronous robots with static compasses.
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system. We shall observe in more details how it rotates, which is the core of Aφ
SS . In

general, the state of a robot depends on both its current local coordinate system and
the current position of the other robot.

Let C(0) be a configuration and E : C(0), C(1), . . . be an execution (of Aφ
SS on

R) with initial configuration C(0), where C(t) = (r0(t), r1(t)) is the configuration at
time instant t, i.e., ri(t) (i ∈ {0, 1}) is the location of ri in Z at time t. The state pair
S(C(t)) of configuration C(t) at time t is a pair (s0, s1), where si (i ∈ {0, 1}) is the
state of robot ri at time t. As mentioned, si may depend on both C(t) and Z(i,t).

First, we confirm that state G corresponds to a “goal” configuration. Suppose
that the state of a robot, say, r0, is G at time t. Since Z(0,t)(r1(t)) = 0, r0(t) = r1(t)
and the state of r1 at t is also G. Since they do not move in the time interval [t, t+1]
regardless of whether they are activated at t, we obtain that C(t′) = C(t) ∈ L for all

t′ ≥ t. We can thus conclude that Aφ
SS is correct if there is a time instant t ∈ N such

that S(C(t)) = (G,G).
Since the state of a robot is G if and only if the state of the other robot is G, then

S(C(t)) �∈ {(G, s), (s,G)|s ∈ {A,R,W}}. By the definition of Aφ
SS , S(C(t)) = (W,W )

obviously never occurs; the execution never reaches a deadlock configuration C(t) such
that S(C) = (W,W ), in which neither robot moves.

We next examine the case in which E reaches a configuration C(t) such that
S(C(t)) ∈ {(W,A), (A,W )}. The robot in state A, say, r0, moves toward r1, while r1,
in state W , stays motionless in time interval [t, t + 1]. By definition, if the distance
between r0 and r1 is δ or less, then r0 has reached the position of r1 by t + 1 and
S(C(t+1)) = (G,G) holds. If r0 has not reached the position of r1 at t+1, S(C(t+
1)) = S(C(t)) = (A,W ) and the distance between r0 and r1 is now shorter, since the

position of r0 at t+1 lies on the line segment r0(t)r1(t). We thus conclude that Aφ
SS

is correct if there is a time instant t ∈ N such that S(C(t)) ∈ {(W,A), (A,W )}.
We have already shown that Aφ

SS is correct if S(C(0)) ∈ {(G,G), (A,W ), (W,A)}.
If S(C(0)) is in none of (G,G), (A,W ), (W,A), then the robots “rotate” the line seg-
ment r0(t)r1(t) counterclockwise until a state pair of either (A,W ) or (W,A) occurs.
This task is done by robots in the R (i.e., Rotate) state. The rest of this subsection
is devoted to showing this. We now summarize some of the basic properties observed
above.

Property 1.

1. State pair (G,G) corresponds to a goal configuration.
2. For any configuration C(t), S(C(t)) ∈ {(G,G), (A,A), (R,R), (A,R), (A,W ),

(R,A), (R,W ), (W,A), (W,R)}.
3. If a configuration C(t) such that S(C) ∈ {(A,W ), (W,A)} is reached, then a

goal configuration (G,G) will be reached eventually.

Lemma 1. Suppose that φ0 = φ1. Then Aφ
SS correctly solves the gathering

problem for two oblivious robots under the semi-synchronous model.
Proof. Recall that C(t) = (r0(t), r1(t)) is the configuration at time t. The co-

ordinates of the position of robot ri (i ∈ {0, 1}) in Z at t are denoted by ri(t) =
(xi(t), yi(t)). By Property 1, it suffices to show that E eventually reaches a configu-
ration C(f) such that S(C(f)) ∈ {(G,G), (A,W ), (W,A)} for some f ∈ N.

The state pair S(C(0)) of initial configuration C(0) must contain A as the state of
a robot because φ0 = φ1, and there is nothing to show if S(C(0)) ∈ {(G,G), (A,W ),
(W,A)}. Hence we need to prove the lemma only for configurations C(0) such that
S(C(0)) ∈ {(A,R), (R,A)}. Without loss of generality, we assume the following:

1. φ0 = φ1 = 0,
2. S(C(0)) = (R,A),
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Fig. 3. An illustration used in the proof of Lemma 1.

3. r0(0) = (x0(0), y0(0)) = 0, i.e., the position of r0 is at the origin in Z, and
4. y1(0) < 0.9

We assume that E never reaches a configuration C(f) such that S(C(f)) ∈
{(G,G), (A,W ), (W,A)} and derive a contradiction. Because x0(1) ≤ 0, y0(1) = 0 and
y1(1) ≤ 0, S(C(1)) ∈ {(G,G), (W,A), (R,A)}, which implies that S(C(1)) = (R,A),
since S(C(1)) �∈ {(G,G), (W,A)}. Hence S(C(t)) = (R,A) holds for all t ∈ N.

Note that x0(t) ≤ 0, y0(t) = 0, and y1(t) ≤ 0 hold. Let α(t) = arg(Z(0,t)(r1(t))).
By definition, π < α(t) ≤ 2π − φ. Let T = {t1, t2, . . . } be the time instants at
which r0 is activated. T is an infinite set, since the execution is fair. Obviously, by
definition α(ti) < α(ti + 1) for any i ∈ N, which implies that α(t) converges to an
angle α ≤ 2π − φ. By the definition of state R, 3π/2 ≤ α.

We now derive a contradiction. Let U = {u1, u2, . . . } be the time instants at
which r1 is activated. U is also an infinite set, since the execution is fair. Robot r1
is in state A at any time instant ui ∈ U . If r1 reaches the next position at ui + 1,
y1(ui + 1) = 0 and the state pair of C(ui + 1) is either (G,G) or (W,A), this is
a contradiction. Thus, it moves by at least δ in time interval [ui, ui + 1]. Since
3π/2 ≤ α(ui) < 2π − φ, y1(ui + 1) − y1(ui) > δ| sin(2π − φ)| (see Figure 3 for an
illustration). It is a contradiction, since y1(t) ≤ 0 for any t ∈ N.

Lemma 2. Suppose that φ0 �= φ1. Then, Aφ
SS correctly solves the gathering

problem for two oblivious robots under the semi-synchronous model.
Proof. It suffices to show, by Property 1, that E eventually reaches a configu-

ration C(f) such that S(C(f)) ∈ {(G,G), (A,W ), (W,A)} for some f ∈ N. Since
φ0 �= φ1, we assume φ0 < φ1 without loss of generality. Since φ < π/2, the angle
formed by their x-axes is less than π. Consider C(t) for any t ∈ N. Let o(t) be
the intersection of the x-axes of Z(0,t) and Z(1,t). We may assume that a robot is
not on the x-axis of the other at t, since S(C(t)) �∈ {(G,G), (A,W ), (W,A)}. Let
Z(i,t)(p) = (x(i,t)(p), y(i,t)(p)) for i ∈ {0, 1} and p ∈ R

2. By definition, for i ∈ {0, 1},
x(i,t)(o(t)) and x(i,t)(ri(t)) are the x-coordinates, in Z(i,t) at time t, of the intersection
o(t) and the position of ri, respectively. According to their relative positions on the
x-axis of Z(i,t), we partition the configurations that may occur in E into four classes:

P(ositive)P(ositive): x(0,t)(o(t)) < x(0,t)(r0(t)) and x(1,t)(o(t)) < x(1,t)(r1(t)),
P(ositive)N(egative): x(0,t)(o(t)) < x(0,t)(r0(t)) and x(1,t)(o(t)) > x(1,t)(r1(t)),
N(egative)P(ositive): x(0,t)(o(t)) > x(0,t)(r0(t)) and x(1,t)(o(t)) < x(1,t)(r1(t)),

and
N(egative)N(egative): x(0,t)(o(t)) > x(0,t)(r0(t)) and x(1,t)(o(t)) > x(1,t)(r1(t)).

Figure 4 illustrates these four cases. In the following, we show that E eventually

9Observe that the state pair of C(0) is either (G,G), (A,W ), or (W,A) if y1(0) = 0.
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Fig. 4. Illustrations of the four cases PP, PN, NP, and NN used in the proof of Lemma 2.

reaches a configuration C(f) such that S(C(f)) ∈ {(G,G), (A,W ), (W,A)}, for each
of the four cases to which C(0) may belong: PP, PN, NP, and NN.

Case NN. Suppose that C(0) is in class NN, which implies that S(C(0)) =
(R,A). In this case, by using an argument similar to the one used in the proof of
Lemma 1, we can show that E eventually reaches a configuration C(f) such that
S(C(f)) ∈ {(G,G), (W,A)}.

Case PN. Suppose that C(0) is in class PN, which implies that S(C(0)) ∈
{(R,R), (R,W )}. Since r0 goes west and r1 goes west or stays motionless and thus r0
decreases its x-coordinate and r1 does not increase its x-coordinate (without changing
their y-coordinates) in their local coordinate systems, E eventually reaches a configu-
ration C(f) in class NN. Thus, this case is reduced to Case NN.

Case NP. Suppose that C(0) is in class NP, which implies that S(C(0)) =
(A,A). Since the robots move toward each other’s position, E eventually reaches
a configuration C(f) in class PN, unless it reaches a configuration C(f) such that
S(C(f)) = (G,G) directly. Thus, this case is reduced to Case PN.

Case PP. Suppose finally that C(0) is in class PP, which implies that S(C(0)) =
(A,R). Since r0 never reaches the x-axis of Z(1,t), and r1 decreases its x-coordinate
in Z(1,t), it follows that E eventually reaches a configuration C(f) in class PN. Thus,
this case is also reduced to Case PN.

By Lemmas 1 and 2, we derive the following theorem.
Theorem 2. For any 0 ≤ φ < π/2, Algorithm Aφ

SS for two oblivious robots
that uses φ-static compasses solves the gathering problem under the semi-synchronous
model.

4.2. Semi-synchronous robots with dynamic compasses. We investigate
the gathering problem for two semi-synchronous robots with φ-dynamic compasses
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for some φ. Unlike the previous subsection, φi(t) can now vary in time, as long as
|φi(t)| ≤ φ always holds.

The proof of Theorem 3.1 of [15] shows that an algorithm solves the gathering
problem under the semi-synchronous model only if there is a configuration such that
one robot, say, r0, moves to the position of r1 while r1 stays motionless. We can
restate this condition, using the notation introduced in subsection 4.1, as follows.
A gathering algorithm is correct only if there is a configuration C such that the
corresponding state pair S(C) is either (A,W ) or (W,A). We say that a configuration
C is stable if S(C) is determined uniquely, regardless of the current local coordinate
systems Z(i,t). Following the proof of Theorem 3.1 in [15] for semi-synchronous robots,
and additionally taking into account that they have dynamic compasses, we have the
following property.

Property 2. An algorithm solves the gathering problem for two oblivious semi-
synchronous robots with dynamic compasses only if there is a stable configuration C
such that S(C) is either (A,W ) or (W,A).

Theorem 3. There is a gathering algorithm for two oblivious semi-synchronous
robots with φ-dynamic compasses, only if φ < π/4.

Proof. It suffices to show that there is no gathering algorithm for φ = π/4. We
assume that such an algorithm exists, called ALG, in order to derive a contradiction.
Then, by Property 2, there is a stable configuration C such that the corresponding
state pair S(C) is either (A,W ) or (W,A). We assume, without loss of generality,
that C = ((0, 0), (1, 0)) and S(C) = (W,A). Since C is stable and φ0(t) can be
±π/4, we have that S(C′) = S(C′′) = (W,A), where C′ = ((0, 0), (

√
2/2,

√
2/2)), and

C′′ = ((0, 0), (
√
2/2,−√

2/2)).
Consider an execution starting with initial configuration C(0) = ((0, 0), (0, 1)),

and assume that φ0(0) = π/4 and φ1(0) = −π/4. Then S(C(0)) = (W,W ), a
contradiction.

We next present Algorithm Aφ
SD and show that it is a correct gathering algorithm

for two oblivious semi-synchronous robots with φ-dynamic compasses, provided that
0 ≤ φ < π/4.10 For any p ∈ R

2 and angle ω, let ρω(p) = q, where

qT =

(
cosω − sinω
sinω cosω

)
pT ,

that is, ρω(p) is the point obtained by rotating p by angle ω with respect to the
rotation center 0.

Algorithm Aφ
SD(p).

G(athered): If p = 0 then Aφ
SD(p) = 0.

A(pproach): If π/2 + φ < arg(p) ≤ 3π/2− φ then Aφ
SD(p) = p.

W(ait): If −π/2 + φ < arg(p) ≤ π/2− φ then Aφ
SD(p) = 0.

R(otate): If π/2 − φ < arg(p) ≤ π/2 + φ or 3π/2 − φ < arg(p) ≤ 3π/2 + φ

(= −π/2 + φ), then Aφ
SD(p) = ρπ

2 +φ(p).

An illustration of this algorithm is shown in Figure 5. Like Aφ
SS , a robot moves

toward the other robot in state A (i.e., Approach) and stays there motionless in state
W (i.e., Wait). Although the action taken in state R (i.e., Rotate) seems slightly

more complex than that for Aφ
SS , the idea behind the definition is similar to Aφ

SS .
This additional complexity, illustrated in Figure 6, comes from the need to handle the

10SD in Aφ
SD stands for semi-synchronous robots with dynamic compasses.
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Fig. 5. An illustration of Algorithm Aφ
SD.

Fig. 6. The move of a robot in state Rotate who looks at the other robot at p in its local
coordinate system.

dynamic compasses. Roughly, a robot at R rotates the line segment connecting the
current robots’ positions clockwise, until its deviation from the x-axis of Z becomes
smaller than π/2− φ(> 0). Since such a configuration C is stable and S(C) is either
(A,W ) or (W,A), the gathering is eventually achieved.

Just like with Aφ
SS , the state pair (G,G) corresponds to a goal (i.e., gathered)

configuration. Unlike with Aφ
SS , the state pair (A,A) never occurs, in addition to the

state pairs in {(G, s), (s,G), (W,W )|s ∈ {A,R,W}}. Note that item 3 of Property 1

does not hold for Aφ
SD, i.e., not all configurations C, with S(C) ∈ {(A,W ), (W,A)},

are stable.
We explain the intention of the definition Aφ

SD(p) = ρπ/2+φ(p) of R. Suppose
that an execution reaches at time t a configuration C = (r0, r1), in which a robot, say,
r0, is in state R. For simplicity of explanation, assume that r0 = 0 and that y1 > 0,
where r1 = (x1, y1). Since r0 is at R, π/2 − φ < arg(Z(0,t)(r1)) ≤ π/2 + φ in Z(0,t).
As |φ0(t)| ≤ φ, π/2 − 2φ < arg(r1) ≤ π/2 + 2φ in Z. The direction θ of the next
position hence satisfies π < θ < arg(r1) + π(< 2π). Since θ < arg(r1) + π, a robot at
R, once activated, rotates the line segment r0r1 clockwise. Since π < θ, the rotation
of r0r1 never exceeds the x-axis of Z.

Theorem 4. For any 0 ≤ φ < π/4, Algorithm Aφ
SD for two oblivious robots that

use φ-dynamic compasses solves the gathering problem under the semi-synchronous
model.
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Fig. 7. Illustrations to explain why α(t) monotonically decreases, which are used in the proof
of Theorem 4.

Proof. It suffices to show that any execution E = C(0), C(1), . . . eventually
reaches a configuration C(f) such that S(C(f)) = (G,G). We assume that there
is a configuration C(0) such that there is an execution E = C(0), C(1), . . . in which
S(C(t)) �= (G,G) holds for any t. We then derive a contradiction. Let C(t) =
(r0(t), r1(t)), where ri(t) = (xi(t), yi(t)) for i ∈ {0, 1} and α(t) = arg(r1(t) − r0(t)).
If y1(0) = 0 holds, it is a contradiction since C(0) is a stable configuration such that
S(C(0)) is either (W,A) or (A,W ). Without loss of generality, we thus assume that
r0(0) = 0 and y1(0) > 0. Hence 0 < α(0) < π.

By the respective definitions of states A and R, and by the above observation
about R, we obtain that 0 < α(t + 1) ≤ α(t) for any t ∈ N. If a robot at R
is activated only a finite number of times, then there is an infinite subexecution
C(f), C(f+1), . . . such that S(C(t)) is either (A,W ) or (W,A) for any t ≥ f for some
f ∈ N—a contradiction. A robot at R is thus activated infinitely many times. Since
a robot at R rotates segment r0(t)r1(t) clockwise whenever it is activated (Figure 7),
and 0 < α(t) for all t ∈ N, then α(t) converges to an angle α > 0.

We again derive a contradiction. Since α(t) converges to α > 0 for any small
ε > 0, there is a time f ∈ N such that α(t) − α < ε for all t ≥ f . Because an
activation of r1 does not increase α(t), we may assume without loss of generality that
only r0 is activated after f . Let τ = π/2− φ(= π − (π/2 + φ)).

For convenience, imagine that r1(f) = 0 and r0(f) = (−1, 0). Since r1 is not
activated after f , r1 stays at 0. Let � (resp., �′) be a half line ended at 0 (resp.,
(−1, 0)) with π − ε (resp., π − τ) being the angle it makes with the x-axis, and let p
be the intersection of � and �′ (see Figure 8 for an illustration).

Since τ � ε, p is in the second quadrant. Let X = r0(f)(= (−1, 0)), r0(f+1), . . .
be the polygonal chain constructed from the positions of r0 after f . It is easy to
observe that X is entirely contained within the triangle formed by vertices 0,p and
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Fig. 8. An illustration of a contradictive situation in the proof of Theorem 4.

(−1, 0). This is a contradiction with the fact that |r0(t+1)−r0(t)| ≥ δ and arg(r0(t+
1)− r0(t)) ≥ π − (τ + ε), for any t ≥ f .

Remark 1. Algorithms Aφ
SS and Aφ

SD run forever. Let us modify them by replac-
ing Gathered into the following Terminate:

T(erminate): If p = 0 then terminate.

The modified Aφ
SS and Aφ

SD then eventually terminate at a gathered configuration

because the original Aφ
SS and Aφ

SD have the following property: for any execution
E : C(0), C(1), . . . , there is a time instant f ∈ N such that S(C(f)) = (G,G), and for
any f ∈ N such that S(C(f)) = (G,G), S(C(t)) = (G,G) holds for any t ≥ f .

5. Asynchronous robots with compasses. We now address the case of asyn-
chronous mobile robots. As emphasized earlier, a main difference between asyn-
chronous and semi-synchronous robots is that in the former case, a concatenation EE ′

of a finite execution E and an execution E ′ may not be a correct execution, even if the
last configuration C(f) of E is the initial configuration of E ′. This is because, due to
the asynchrony of the three phases, one of the two robots may be caught in the middle
of its move phase in C(f) in E . We say that a robot is settled at time t if (1) it is not
activated at t or (2) it is activated at t and it will not change its position until it is next
activated. Obviously EE ′ is a correct execution if both robots are settled at time f .

5.1. Asynchronous robots with static compasses. In subsection 4.1, we
presented Algorithm Aφ

SS and showed per Theorem 2 that it correctly solves the
gathering problem for two oblivious robots using φ-static compasses under the semi-
synchronous model if 0 ≤ φ < π/2. We now show that Theorem 2 can be extended to

asynchronous robots; i.e., we show that Aφ
SS correctly solves the gathering problem

for two oblivious robots using φ-static compasses under the asynchronous model if
0 ≤ φ < π/2. We then conclude by Theorem 1 that there is a gathering algorithm for
two oblivious asynchronous robots using static compasses with maximum deviation φ
if and only if 0 ≤ φ < π/2.

We keep the same notation defined in subsection 4.1 and follow the scenario
that we adopted in the proof of Theorem 2. We show the correctness of Aφ

SS under
the asynchronous model, taking into account the features that characterize an asyn-
chronous execution. Like semi-synchronous robots, S(C) �∈ {(G, s), (s,G), (W,W )|s ∈
{A,R,W}} for any configuration C. Hence the execution never reaches a deadlock
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configuration C, in which neither robot can move, before reaching (G,G). However,
unlike semi-synchronous robots, state pair (G,G) no longer characterizes a goal con-
figuration, since an asynchronous robot may still be unsettled. In other words, it may
be moving away without noticing that the gathering had just been completed.11

In order to handle such configurations C(t) at which a robot is not settled, we
also pay attention to times ai(t) and bi(t) with i ∈ {0, 1}, where ai(t) (resp., bi(t))
is the last time before (and including) t (resp., the first time after (and including)
t) at which robot ri is activated. If ri is activated at t, then ai(t) = bi(t) = t. If
ri is not activated at t, then ri is not activated in time interval (ai(t), bi(t)). Like
subsection 4.1, let us start with the simple case of φ0 = φ1.

Lemma 3. Suppose that φ0 = φ1. Then Aφ
SS correctly solves the gathering

problem for two oblivious robots under the asynchronous model.
Proof. Our proof is very similar to that of Lemma 1. Let C(0) be any initial

configuration. Consider any execution E : C(0), C(1), . . . , where ri(t) = (xi(t), yi(t))
for any i ∈ {0, 1} and t ∈ N. Except that both states of robots are G, S(C(0)) must
contain A as the state of a robot. Thus, S(C(0)) ∈ {(G,G), (A,R), (A,W ), (R,A),
(W,A)} holds.

If S(C(0)) = (G,G), then by the definition of Aφ
SS , S(C(t)) = (G,G) for any

t ∈ N, i.e., the gathering completes.
If S(C(0)) ∈ {(A,W ), (W,A)}, then only the robot with state A, say, r0, can

move (toward r1) at C(0), and thus S(C(1)) = (A,W ). Hence, E eventually reaches
a configuration C(t) (possibly after taking a number of configurations C such that
S(C) = (A,W )) such that S(C(t)) = (G,G). Let t0 be the earliest time instant t at
which S(C(t)) = (G,G) holds.

We observe that both robots are settled. The state of r1 is W at a1(t0) and hence
r1 is settled at t0. Robot r0 (whose state at a0(t0) is A) is also settled at t0 since, by

the definition of Aφ
SS , the next position of r0 at a0(t0) is the position of r1. It follows

that gathering completes, like the case where S(C(0)) = (G,G).
We continue with the cases where S(C(0)) ∈ {((A,R), (R,A)}. Like the proof of

Lemma 1, assume without loss of generality that
1. φ0 = φ1 = 0;
2. S(C(0)) = (R,A);
3. r0(0) = (x0(0), y0(0)) = 0, i.e., the position of r0 is at the origin in Z; and
4. y1(0) < 0.12

By the same argument used in the proof of Lemma 1, y1(t) ≤ 0 holds for any
t ∈ N. If y1(t) = 0 for some t ∈ N, then let t0 be the earliest time instant t at which
y1(t) = 0 holds. It follows that S(C(t0)) ∈ {(W,A), (G,G)}, and r1 is settled at t0
(because r1(t0) is the next position of r1 at a1(t0)). If r0 is settled at t0, the gathering
eventually completes since it reduces to the case where S(C(0)) ∈ {(W,A), (G,G)}.

If r0 is not settled at t0, then r0 is moving (or will move) in the negative di-
rection on its x-axis, since S(C(a0(t0))) = (R,A). Thus r0 is settled at b0(t0)
and S(C(b0(t0))) = (W,A). If r1 is settled at b0(t0), then the gathering eventu-
ally completes as discussed above. If r1 is not settled at b0(t0), then S(C(t1)) ∈
{(W,A), (G,G)} and both r0 and r1 are settled at t1, where t1 = b1(b0(t0)). There-
fore, the gathering eventually completes.

To derive a contradiction, we assume that y1(t) = 0 does not hold for any t ∈
N. By the same argument used in the proof of Lemma 1, E eventually reaches a

11We call such a configuration a pseudo-gathered configuration in the next subsection.
12The state pair of C(0) is any of (G,G), (A,W ), or (W,A) if y1(0) ≥ 0.
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configuration C(t) such that S(C(t)) = (W,A). Let t0 be the first time instant t
such that S(C(t)) = (W,A) holds. If both r0 and r1 are settled at t0, the gathering
eventually completes, leading to a contradiction. If r0 is not settled and is moving
(or will move) in the negative direction on its x-axis at t0, the gathering eventually
completes by a similar argument as above. A contradiction is thus derived.

Lemma 4. Suppose that φ0 �= φ1. Then Aφ
SS correctly solves the gathering

problem for two oblivious robots under the asynchronous model.
Proof. Again, our proof is similar to that of Lemma 2. We continue to use the same

concepts and notations but introduce them again for the convenience of the reader.
Consider any configuration C(0) and any execution E = C(0), C(1), . . . starting

at C(0), where C(t) = (r0(t), r1(t)) for any t ∈ N. We assume φ0 < φ1 without loss
of generality. Since φ < π/2, we denote by o(t) the intersection of the x-axes of Z(0,t)

and Z(1,t). Let Z(i,t)(p) = (x(i,t)(p), y(i,t)(p)) for any i ∈ {0, 1} and p ∈ R
2. By

definition, x(i,t)(o(t)) and x(i,t)(ri(t)) are the x-coordinates, in Z(i,t) at time t, of the
intersection o(t) and the position of ri, respectively.

As explained in the proof of Lemma 2, under the semi-synchronous model we
could assume without loss of generality that a robot is not on the x-axis of the other
at t. Unfortunately, in the asynchronous model, we can no longer assume this. That
is, a robot can possibly be located at o(t) at t. Taking this into account, we partition
the configurations into four classes as follows (the partition is slightly different from
the one defined in the proof of Lemma 2):

P(ositive)P(ositive): x(0,t)(o(t)) < x(0,t)(r0(t)) and x(1,t)(o(t)) < x(1,t)(r1(t)),
P(ositive)N(egative): x(0,t)(o(t)) < x(0,t)(r0(t)) and x(1,t)(o(t)) ≥ x(1,t)(r1(t)),
N(egative)P(ositive): x(0,t)(o(t)) ≥ x(0,t)(r0(t)) and x(1,t)(o(t)) < x(1,t)(r1(t)),

and
N(egative)N(egative): x(0,t)(o(t)) ≥ x(0,t)(r0(t)) and x(1,t)(o(t)) ≥ x(1,t)(r1(t))
Case NN. Suppose that C(0) is in class NN, which implies that S(C(0)) ∈

{(W,A), (R,A), (G,G)}. We can show that gathering eventually completes in the
first two cases by using arguments similar to those in the proof of Lemma 3. The last
case obviously completes gathering.

Case PN. Suppose that C(0) is in class PN, which implies that S(C(0)) ∈
{(R,R), (R,W )}. Since a robot ri at R moves in the negative direction along its
x-axis and thus decreases its x-coordinate (without changing its y-coordinate) in its
local coordinate system, E eventually reaches a configuration C(f) in class NN for the
first time at f .

If both robots are settled at f , the case is reduced to Case NN. If r1 is settled at f ,
the case is also reduced to Case NN, as follows: C(0) is in class PN, S(C(0)) = (R,R)
or (R,W ), only r0 is activated at time 0, and r1 is activated at time 1 while r0
is still moving. Finally, if r0 is settled at f , consider the time b1(f) at which r1
is activated next time after f . It is easy to observe that C(b1(f)) is in NN and
S(C(b1(f))) ∈ {(W,A), (R,A)}. Since r1 is settled at b1(f), as above, the case is
reduced to Case NN.

Case NP. Suppose that C(0) is in class NP, which implies that S(C(0)) ∈
{(A,A), (W,A)}. If S(C(0)) = (W,A), then obviously the gathering eventually com-
pletes. By arguments similar to those used to show Case PN and Lemma 2, the case
is reduced to Case NN, or else gathering completes.

Case PP. Suppose that C(0) is in class PP, which implies that S(C(0)) = (A,R).
Applying arguments similar to Case PN and the proof of Lemma 2, the case is reduced
to Case PN, unless gathering completes.

By Lemmas 3 and 4, we have the following theorem.
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Fig. 9. An illustration of Algorithm Aφ
AD.

Theorem 5. For any 0 ≤ φ < π/2, Algorithm Aφ
SS for two oblivious robots using

φ-static compasses solves the gathering problem under the asynchronous model.
Remark 2. At the end of section 4, we modified Aφ

SS by replacing the action

Gathered into Terminate, and we showed that the modified Aφ
SS is a gathering al-

gorithm for semi-synchronous robots with the termination condition. The modified
Aφ

SS , however, is not a correct gathering algorithm for asynchronous robots, as the
following counterexample shows. Let C(0) = ((0, 0), (0,−1)) and suppose that the
unit distances of Z and Z(i,t) are the same, i.e., sci(t) = 1 for all i ∈ {0, 1} and t ∈ N

and that the compasses have no deviation, i.e., φ0 = φ1 = 0. Then S(C(0)) = (R,A).
Consider the following scenario:

Time 0: r0 and r1 are activated, where S(C(0)) = (R,A).
Time Interval (0,1): r1 moves and reaches (0, 0), but r0 does not move.
Time 1: r1 is activated, where S(C(0)) = (G,G). Then r1 halts.
Time Interval (1,2): r0 moves and reaches (−1, 0).
Time 2: r0 is activated, where S(C(2)) = (W,A). Since r1 has terminated,

neither robot can move.
This shows that the modified Aφ

SS is not a correct gathering algorithm for asyn-
chronous robots.

5.2. Asynchronous robots with dynamic compasses. We present a gath-
ering algorithm Aφ

AD for two oblivious asynchronous robots using dynamic compasses
and show its correctness, provided 0 ≤ φ < π/6.13

Algorithm Aφ
AD(p).

G(athered): If p = 0 then Aφ
AD(p) = 0.

A(pproach): If 2π/3 + φ ≤ arg(p) < 3π/2 then Aφ
AD(p) = p.

W(ait): If −π/2(= 3π/2) ≤ arg(p) ≤ π/3− φ then Aφ
AD(p) = 0.

R(otate): If π/3− φ < arg(p) < 2π/3 + φ then Aφ
AD(p) = ρ 2π

3 +2φ(p).

Figures 9 and 10 illustrate Algorithm Aφ
AD and the move of a robot in state

R (Rotate) who looks at the other robot at p in its local coordinate system under

Algorithm Aφ
AD, respectively. We show the correctness of Aφ

AD.

Theorem 6. For any 0 ≤ φ < π/6, Algorithm Aφ
AD for two oblivious robots using

φ-dynamic compasses solves the gathering problem under the asynchronous model.

13AD in Aφ
AD stands for asynchronous robots with dynamic compasses.
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Fig. 10. The move of a robot in state Rotate who looks at the other robot at p in its local

coordinate system under Algorithm Aφ
AD.

Proof. Consider any configuration C(0) and any execution E = C(0), C(1), . . .

of Aφ
AD with initial configuration C(0). For any t ∈ N, let C(t) = (r0(t), r1(t)) and

ri(t) = (xi(t), yi(t)). By the definition of Aφ
AD, we have S(C(t)) ∈ {(G,G), (A,W ),

(W,A), (A,R), (R,A), (W,R), (R,W )} for any t ∈ N. In the following, we show that
E is a gathering execution.

A configuration C(t) such that S(C(t)) = (G,G) is said to be pseudo-gathered
if S(C(t′)) �= (G,G) for some t′ > t or, equivalently, if a robot is not settled at t.

Unlike semi-synchronous robots’ execution, E (of Aφ
AD) may reach a pseudo-gathered

configuration.
Suppose that C(t) is a pseudo-gathered configuration and a robot, say, r0, is not

settled. Since the state of r1 is G (i.e., stay motionless), the execution can reach the
same configurationC(t+1) even if r1 is not activated at t. Formally, if C(t) is a pseudo-
gathered configuration, then E ′ = C(0), C(1), . . . , C(t − 1), C(t + 1), C(t + 2), . . . is

also an execution of Aφ
AD.

The proof is by contradiction. We assume that E is not a gathering execution and
derive a contradiction. If E is not a gathering execution, then there is an execution
E ′ such that it is not a gathering execution and does not contain a pseudo-gathered
configuration. Without loss of generality, we also assume that pseudo-gathering exe-
cutions never appear in E .

If y0(0) = y1(0), since 0 ≤ φ < π/6, C(0) is stable and S(C(0)) ∈ {(A,W ),

(W,A), (G,G)} by the definition of Aφ
AD. Since the case where S(C(0)) = (G,G)

is trivial, let us assume, without loss of generality, that S(C(0)) = (A,W ). Then

obviously, r0 always moves toward r1 by the definition of Aφ
AD and the gathering

eventually completes. We thus assume y0(0) < y1(0) without loss of generality.

To show the correctness of Aφ
SD in subsection 4.2, we observed that a robot at R

rotates the line segment connecting the current robots’ positions clockwise until the
state pair becomes either (W,A) or (A,W ). The scenario of the correctness proof of

Aφ
AD is similar. Define α(t) = arg(r1(t)− r0(t)), provided that y0(t) < y1(t).

For the time being, we assume (1) y0(t) < y1(t) for any t ∈ N (and hence 0 <
α(t) < π), and (2) 0 < α(t + 1) ≤ α(t). The verification of their correctness is the
core of the proof and will be given later.

Obviously, α(t) converges to an angle α ≥ 0 (under the above two assumptions).
Indeed, α = 0; that is, α(t) converges to 0. To observe this, let us assume that
α > 0. Then we can derive a contradiction by an argument identical to the last three
paragraphs of the proof of Theorem 4.
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When α(t) ≈ 0, by the definition of Aφ
AD, C(t) is stable14 and S(C(t)) = (W,A).

We now show that the gathering eventually completes from such C(t), which contra-
dicts the assumption that E is not a gathering execution.

Suppose that E eventually reaches a configuration C(t) such that α(t) ≈ 0. Since
α(t) ≈ 0, C(t) is stable and S(C(t)) = (W,A). Moreover, C(t′) is stable and
S(C(t′)) = (W,A) for all t′ ≥ t. Let f = max{b0(t), b1(t)}. Then, r0 is settled
after (and including) time f . By definition, E eventually reaches (G,G).

Now we return to the verification of the two assumptions mentioned above. That
is, we prove (1) y0(t) < y1(t) and (2) 0 < α(t+ 1) ≤ α(t) for any t ∈ N.

To this end, we still need a few more concepts. Let si(t) be the state of robot ri
at time t. That is, letting S(t) = S(C(t)), S(t) = (s0(t), s1(t)). Since a robot, say,
r0, may not be settled at t, s0(t) may not coincide with the action s∗0(t)(= s0(a0(t)))
that r0 is engaging at t. (For consistency, we assume that s∗i (t) = W if robot ri has
never been activated.) Let S∗(t) = (s∗0(t), s

∗
1(t)) = (s0(a0(t)), s1(a1(t))).

Suppose that y0(t) < y1(t). We partition the working space R
2 of the robots

into two half planes delimited by the line L connecting their positions. Recall that
α(t) is the angle that L forms with the x-axis of Z. We assume that both half planes
contain L as a part and denote by Γ0(t) (resp., Γ1(t)) the left-hand (resp., right-hand)
half plane of L. Robot ri may or may not be activated at time t. However, if ri is
activated, it calculates and moves toward the next position, the coordinates of which
are expressed by di(t) in Z.

15

As mentioned, we may assume y0(0) < y1(0) without loss of generality. We then
prove the following four statements. For any t ≥ 1,

1. y0(t) < y1(t),
2. 0 < α(t) ≤ α(t− 1),
3. di(t) ∈ Γi(t) for i ∈ {0, 1}, and
4. S∗(t) �= (A,A).

Recall that we assume that E is not a gathering execution and does not contain
a pseudo-gathered configuration. The proof is by induction on t. Since the base case
is obvious, let us concentrate on the induction step.

(A) First, we show y0(t) < y1(t). In the proof, we implicitly use the fact that
R always decreases the robot’s y-coordinate. Assume that y0(t) ≥ y1(t) to derive
a contradiction. Assume first that r0 is activated at t − 1 (r1 may or may not be
activated at t− 1). Let v = a1(t− 1) ≤ t− 1. Since y0(v) < y1(v), s1(v) ∈ {A,W}. If
s1(v) =W , then y1(t) = y1(t− 1). Since r0 is activated at t− 1, y0(t) ≤ y1(t− 1) and
the equality holds only if s0(t−1) = A. If s0(t−1) = A, and y0(t) = y1(t−1) = y1(t),
then S(t) = (G,G) (since y0(t − 1) < y1(t− 1)), a contradiction. If s1(v) = A, since
S∗(u) �= (A,A) for all v ≤ u ≤ t − 1, s∗0(u) ∈ {R,W} for all v ≤ u ≤ t − 1, which
implies that y0(t) ≤ y0(v) ≤ y1(t). If y0(t) = y0(v) = y1(t), then we can conclude
S(t) = (G,G), a contradiction. If y0(t) < y0(v) or y0(v) < y1(t), it directly implies
y0(t) < y1(t), a contradiction.

Assume next that r1 is activated at t− 1. Let v = a0(t− 1) ≤ t− 1. If s0(v) = R,
then y0(t) < y0(t − 1) ≤ y1(t), a contradiction. If s0(v) = W , then y0(v) = y0(t) =
y0(t − 1) < y1(t − 1), and a contradiction is derived, since s1(t − 1) ∈ {A,W} and
thus y0(t) = y1(t) implies S(t) = (G,G). If s0(v) = A, since S∗(u) �= (A,A) for all

14Recall that a configuration C is said to be stable if S(C) is determined uniquely, regardless of
the current local coordinate systems Z(i,t).

15The coordinates of the next position in Z(i,t) are Aφ
AD(p), where p represents the coordinates

of the other robot in Z(i,t).
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v ≤ u ≤ t−1, s1(u) �= A, which implies that s1(u) is alwaysW , a contradiction, since
y0(t) ≤ y1(v) = y1(t) and y0(t) = y1(t) implies S(t) = (G,G).

(B) Second, we show 0 < α(t) ≤ α(t − 1). If both robots are settled at t − 1,
then the claim is obvious, since di(t − 1) ∈ Γi(t − 1) for i ∈ {0, 1}, y0(t) < y1(t),
0 < α(t) ≤ α(t− 1), and S(t) �= (G,G).

If robot r0 is not settled at t−1, then d0(a0(t−1)) ∈ Γ0(a0(t−1)) and α(t−1) ≤
α(a0(t−1)), which implies that d0(a0(t−1) ∈ Γ0(t−1). Then, by the same argument,
0 < α(t) ≤ α(t − 1), since y0(t) < y1(t). The case in which r1 is not settled at t− 1
is symmetrical.

(C) Third, we show di(t) ∈ Γi(t) for i ∈ {0, 1}. Since we showed y0(t) < y1(t) in

(A) and 0 ≤ α(t) < α(t− 1) in (B), the claim is obvious by the definition of Aφ
AD.

(D) Finally, we show S∗(t) �= (A,A). There are two cases to be considered.
Assume first that r0 is activated at t. Since s0(t) = A, 2π/3 ≤ α(t) < π (because
y0(t) < y1(t)). Let v = a1(t) ≤ t − 1. Since s1(v) = A, 0 < α(v) ≤ π/2 + φ. Since
π/2 + φ < 2π/3 (because φ < π/6), a contradiction is derived, since α(t) ≤ α(v).

Next, assume that r1 is activated at t. Let v = a0(t) ≤ t−1. Since S∗(u) �= (A,A)
for any v ≤ u ≤ t− 1, s0(v) = A, and s1(u) =W for any v ≤ u ≤ t− 1 (since r1 can
take either A or W ), a contradiction.

6. Concluding remarks. This paper investigates the gathering problem for
two oblivious anonymous mobile robots under disagreement of local coordinate sys-
tems. To discuss the magnitude of consistency between the local coordinate systems,
we assumed that each robot is equipped with an unreliable compass, the bearings of
which may deviate from an absolute reference direction, and that the local coordi-
nate system of each robot is determined by its compass. We considered four classes
of robot systems, which are specified by the combination of synchrony assumption
(semi-synchronous/asynchronous robots) and compass models (static/dynamic), and
established the maximum deviation φ allowing an algorithm to solve the gathering
problem for each class: φ < π/2 for semi-synchronous and asynchronous robots with
static compasses, φ < π/4 for semi-synchronous robots with dynamic compasses, and
φ < π/6 for asynchronous robots with dynamic compasses. Except for asynchronous
robots with dynamic compasses, these sufficient conditions are also necessary. As for
a necessary condition on φ for asynchronous robots with dynamic compasses we could
show that φ < π/6 is necessary for almost all cases and thus conjecture it and would
like to leave it as a challenging future work. The results are summarized in Table 1.

Conjecture 1. Condition φ < π/6 is necessary for asynchronous oblivious
robots with dynamic compasses to have a gathering algorithm.

Remarks 1 and 2 emphasize that the modified Aφ
SS is a gathering algorithm for

semi-synchronous robots with the termination property but is not for asynchronous
robots. An interesting question thus is to ask if there is a gathering algorithm for
asynchronous oblivious robots with the termination property. The gathering process
with termination property could be viewed as a process of obtaining a point that the
robots will gather as their common knowledge, and common knowledge is in general
impossible to obtain under asynchronous settings. The plausible answer is thus no,
and we would like to conjecture it. However, in order to complete a proof, we first need
to deeply understand why gathering with termination is possible for semi-synchronous
robots, although they share some asynchronous nature with asynchronous robots.

As a final note, in [17] the authors show that there is no gathering algorithm for
oblivious robots under the semi-synchronous model even if the symmetricity of the
initial configuration is 1 (i.e., even if the deviation of their local coordinate systems
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Table 1

Summary of results about two oblivious robots gathering with unreliable compasses.

Compass

Static Dynamic

Timing model
Semi-synch.

Possible φ < π/2 (Sec. 4.1) φ < π/4 (Sec. 4.2)

Impossible φ ≥ π/2 ( [13, 15]) φ ≥ π/4 (Sec. 4.2)

Asynchronous
Possible φ < π/2 (Sec. 5.1) φ < π/6 (Sec. 5.2)

Impossible φ ≥ π/2 (deduction) φ ≥ π/4 (deduction)

is less than π). We would like to note that this fact does not contradict Theorem 2

since Algorithm Aφ
SS relies on the existence of upper bound φ.
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