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Abstract

The present study focuses on two major types of fare collection systems for

public transportations, barrier and barrier-free, and provides a mathemat-

ical framework to evaluate optimal choices between them, i.e., which sys-

tem can be more profitable for a transit agency. In particular, we consider

game-theoretic interactions between the transit agency and passengers for

the barrier-free system and suppose that frequencies of free rides of passen-

gers as well as inspections of the transit agency are given as a Nash equi-

librium. Then the optimal choice of fare collection system is described as a

subgame perfection solution in an extensive form game. We also conduct a

comparative static analysis and examine how each parameter can affect the

choice. As an application, we use the framework to explain various choices

of fare collection systems in our society depending on local circumstances or

transportation types.
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1. Introduction

There are various fare collection systems for public transportations in

the world, depending on countries and regions, types of transportations, and

so on. In this paper, we focus on two major types of them, barrier and

barrier-free, and provide a mathematical framework to evaluate in a formal

way optimal choices between them, i.e., which system can be more profitable

for a transit agency. Hence, in particular, we think of transportations such

that the choice between the two systems can potentially be worth serious

consideration, such as heavy rail, commuter rail, LRT and BRT.

While the detail of each system may always differ in each case, the two

systems we deal with in the study, the barrier system (henceforth BA) and

the barrier-free system (or the proof-of-payment system, henceforth POP),

can generally be described as follows. First, the BA system requires the

transit agency to install ticket gates, or turnstiles, and establish a clearly

defined paid area. Therefore, by its nature, all passengers need to pay for

the tickets before going on board. On the other hand, the POP system

allows the platform to be barrier-free. Passengers are required to pay for

fares legally, but not forced to do so physically. In order to crack down on

free rides, the transit agency randomly conducts inspections for the valid

proof of payment and collects fines from passengers without it1.

Since their different characteristics have different financial impacts, the

choice of fare collection system becomes an important managerial issue for

the transit agency. For example, a typical trade-off is that, in general, BA

1There is another type of fare collection system that allows on-board fare payments,

where passengers are allowed to pay for fares via inspectors or conductors on board. We

distinguish this system from POP and do not deal with it in this paper.
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requires higher capital costs for ticket gates and facilities for enclosed plat-

forms, while POP requires higher labor costs for inspections. In addition, fare

evasion may become a serious problem particularly in POP. Although there

are some reports and guidelines that discuss the issue (e.g. Toronto Transit

Commission, 2000; and Transportation Research Board, 2002), any rigor-

ous mathematical framework considering economic behaviors of the transit

agency as well as passengers has not been provided2. Our contribution is to

develop a formal and consistent perspective to deal with the issue of com-

parisons of fare collection systems.

For the purpose, assuming a simple public transportation, we model the

transit agency’s revenue and cost for each fare collection system. In partic-

ular, we assume game-theoretic interactions between the transit agency and

passengers for POP. Under the system, as the transit agency’s inspection

is conducted randomly, fare evasions of passengers become an unavoidable

issue. Indeed, according to Transportation Research Board (2002) that re-

ports the fare evasion rates of 19 transit agencies using POP in the world,

they are from 0.3% to 15.0%. There are some economic studies that discuss a

passenger’s fare evasion as her expected utility maximization (Polinsky and

Shavell, 1979; Boyd et al., 1989; and Kooreman, 1993), but they do not

consider such a game-theoretic interaction that POP can bring about, that

is, the interdependency of the frequency of free rides of passengers and that

of inspections by the transit agency. If a high volume of passengers is ex-

pected to go without tickets, the transit agency should conduct inspections

2Tirachini and Hensher (2011) discuss mathematically comparisons of fare collection

systems for buses. However the alternatives are on-board or off-board, or payment by cash

or contactless smart card etc., and they leave POP, which is of our main concern, out of

consideration, for POP is uncommon for buses.
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frequently, and on the other hand, if inspections are made so frequently, pas-

sengers would not take a risk of free ride. We formulate such a situation by

applying inspection game (Avenhaus et al., 2002; and Avenhaus, 2004) and

suppose their behaviors are given as a Nash equilibrium of the game.

On the other hand, we formulate the BA system simply by assuming that

it entails no fare evasion. Then we consider the transit agency chooses, or

should choose, the fare collection system that can be more profitable. Such

an approach that compares some systems taking into account each system’s

incentive scheme can also be considered as a comparative institutional anal-

ysis (Aoki, 2001).

Following this introduction, Section 2 provides the analytical framework,

namely, the transit agency’s profit model of each fare collection system.

Based on it, Section 3 conducts a comparative static analysis by which we

examine how each parameter can affect the optimal choice. In addition, we

specify the transit agency’s optimal choice of fare collection system as a sub-

game perfection solution in an extensive form game. Then Section 4 applies

the model to interpret our society’s various fare collection choices. Finally

Section 5 states concluding remarks and several open questions.

2. Analytical Framework

2.1. The Target and Basic Assumptions

As the target of our analysis, we suppose a simple public transportation

that connects two stations. Then we discuss the optimal choice of its fare

collection system, that is, which system, BA or POP, can be more profitable

for the transit agency.

Let us denote the fare by a(> 0). Then suppose n passengers board the

transportation per operation, from one station to another. In this paper, we
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do not discuss pricing of the fare. It is also assumed that the demand of the

transportation does not depend on the fare collection system, that is, the

both systems have common n (see also Section 5 for the assumption). We

investigate the optimal choice of fare collection system under given a and n.

Let the assessment period of the analysis be t-time operations. That is,

we evaluate the profitability of the transportation while it is operated t times.

As its revenue, we only consider revenues from fares, and fines in the case of

POP3. With regard to the cost, since our interest is in comparisons of the

two fare collection systems, we only specify additional costs that are required

for introducing either of them: we leave out the description of costs common

in the both systems such as the land cost, the construction and maintenance

cost of the rail tracks, and so on. Then the profit is the difference between

the revenue and the cost.

2.2. Barrier System

The BA system requires the transit agency to install ticket gates and

establish a clearly defined paid area. Let us denote the initial costs for them

by cs(> 0), and the operating and maintenance costs for them per operation

by cm(> 0). We suppose, for simplicity, every passenger pays for the fare,

i.e., no fare evasion under BA4.

3Some real-world transit agencies do not receive fines as their own revenues, and instead

they are collected by the courts or other relevant organizations. We, in this paper, assume

the transit agency can count all the amount of the collected fines as its own revenue.
4One may be inclined to consider the possibility of fare evasion under BA as well

because there are transit agencies using the BA system facing some levels of fare evasions

(e.g. Reddy et al., 2011). A simple way to incorporate this is assuming that the initial

investment, cs, is a decision variable for the transit agency and the fare evasion rate is

a decreasing function with respect to it, that is, ∂x/∂cs ≤ 0, where x is the fare evasion
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Hence, the revenue and the cost of BA are defined as ant and cs + cmt,

respectively, and thus the total profit during the assessment period, πBA(t),

is determined as:

πBA(t) = ant− (cs + cmt) (1)

2.3. Proof-of-payment System

The POP system does not set up ticket gates but instead requires the

transit agency to make occasional inspections for valid proof of payment.

When the system is adopted, it is physically possible for passengers to go

without tickets. Let the probability that a passenger properly buys the ticket

be p ∈ [0, 1], that is, the frequency of free ride is 1− p. On the other hand,

the transit agency makes an inspection with the probability q ∈ [0, 1]. An

inspector checks passengers on board with this frequency and collects fines

from any passenger without a ticket.

Let us denote the fine of a fare evasion by b and suppose the fine level is

determined by the transit agency. Then let us denote the inspection cost per

passenger inspected by ci. This can be understood as follows. Suppose an

inspector can inspect n′(≤ n) passengers in one operation, and let the labor

cost for it be Ci. Then ci is given as Ci/n
′. While ci is constant in the basic

model, we will explicitly describe it as a function of the passenger volume as

ci(n) in 4.2.

In the subsequent analysis, we assume b ≥ a because otherwise a pas-

rate. Then the revenue is expressed as a(1− x)nt. We note that this does not affect our

result in Section 3 significantly, but of course can make BA less attractive for the transit

agency. In reality, it is virtually impossible to predict accurately the relation of x and

cs, therefore the fare evasion rate would be estimated based on similar existing cases, for

instance.
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senger has no monetary incentive to buy a ticket. We also assume b ≥ ci

because otherwise the transit agency has no monetary incentive to make in-

spections. Furthermore, let us suppose there is an upper limit of the fine that

the transit agency can set and denote it by bmax, which would depend on local

circumstances such as laws, cultures and so on (see also 4.1). Consequently,

b ∈ [max{a, ci}, bmax].

Hence, the revenue of POP is defined as the sum of the fares and fines

collected, namely, apnt + bq(1 − p)nt, while its cost is the total inspection

cost, namely, ciqnt. Therefore, the total profit during the assessment period

under given b, πPOP (b, t), is determined as:

πPOP (b, t) = apnt+ bq(1− p)nt− ciqnt (2)

Here p and q are supposed to be interdependent. That is, if a high

volume of passengers is expected to go without tickets, the transit agency

should conduct inspections frequently, while otherwise it should decrease

inspections to save the cost. On the other hand, if the inspections are made

so frequently, passengers would not take a risk of free ride, while otherwise

the proportion of free riders would increase.

We formulate such a situation as a two-player normal form game played

by a passenger and the transit agency by applying the idea of inspection game

(Avenhaus et al., 2002; and Avenhaus, 2004) as shown in Table 1. Here we

assume that all passengers are homogenous and each passenger plays the

game with the transit agency.

a passenger \ the transit agency Inspect Not inspect

Buy ticket −a, a− ci −a, a

Free ride −b−m, b− ci −m, 0

Table 1: the inspection game
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In the inspection game, a passenger has two alternatives, or strategies: to

buy a ticket properly (Buy ticket) or to take a free ride (Free ride). Likewise,

the transit agency has two alternatives: to inspect (Inspect) or not to inspect

(Not inspect). The payoffs are defined as their monetary gains and losses

at each outcome, i.e., each combination of each player’s choice. In addition,

we take into account a passenger’s morality expressed as m in the payoff

matrix, for one may argue that a passenger’s behavior might be determined

not only by the monetary gain or loss for such a legal issue. Here m ≥
0, and −m indicates the passenger’s disutility of taking an illegal action,

which is expressed in the monetary term. Then p is the probability that the

passenger chooses “Buy ticket,” while q is the probability that the transit

agency chooses “Inspect.”

Let us suppose these probabilities are given as a Nash equilibrium of the

game. The game always has the unique Nash equilibrium given as follows:

(p, q) =

(1, 0) if a ≤ m

(1− ci
b
,
a−m

b
) otherwise

(3)

When a passenger’s morality is high enough (a ≤ m), the game has the

unique pure strategy Nash equilibrium where the passenger always chooses

“Buy ticket,” while the transit agency always chooses “Not inspect.” Other-

wise, there exists the unique strict mixed strategy Nash equilibrium, where

free rides and inspections are made stochastically. As stated in Section 1,

since the fare evasion rates in real-world transportations with POP are not

zero, it might not be realistic to assume a ≤ m. Anyway, by using the values

of p and q, the profit of the transit agency, πPOP (b, t), can be described as:

πPOP (b, t) =

ant if a ≤ m

a(1− ci
b
)nt otherwise

(4)
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As a mathematical consequence of the inspection game, we note that

the total amounts of fines taken in and the costs for inspections, i.e. bq(1 −
p)nt and ciqnt, always cancel each other out5. Furthermore, a passenger’s

expected payoff at the equilibrium is calculated as −a. This means that,

under POP, the expected travel cost for a passenger to use the transportation

depends neither on the fine level nor on the morality, and is just equal to the

regular fare. Hence the difference of fare collection system does not provide

any benefits, positive or negative, to passengers on average in our settings

(see also Section 5). On the other hand, the transit agency’s expected payoff

at the equilibrium is calculated as a(1− ci/b), which depends on how much

the fine is.

3. Results

3.1. Comparative Static Analysis

Let us denote the difference of profits of each fare collection system,

πBA(t)−πPOP (b, t), by π̄(b, t), under given b and t. Therefore, if it is positive,

BA is more profitable, while if it is negative, POP is more profitable. If it

is equal to zero, the two systems are indifferent in terms of profits. π̄(b, t) is

calculated as follows:

π̄(b, t) =

−(cs + cmt) if a ≤ m

−(cs + cmt) +
ci
b
ant otherwise

(5)

First, when a ≤ m, that is, a passenger’s morality is high enough, π̄(b, t)

is always negative, and thus POP is always better. This would be quite an

intuitive result. In this case, a passenger always buys the ticket even in the

5This has been suggested by Avenhaus (2004).
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case of POP because it is her dominant strategy. Given that no fare evasion

occurs, it is the transit agency’s optimal strategy not to inspect at all. Then,

by bringing in POP, it can just save the costs required for BA.

On the other hand, when a > m, the optimal choice depends on values

of each variable. Among them, cs, cm and b are such parameters that make

POP more competitive when those values are big, that is,

∂π̄(b, t)

∂cs
,
∂π̄(b, t)

∂cm
,
∂π̄(b, t)

∂b
< 0, (6)

while a, ci and n are such parameters that make BA more competitive when

those values are big, that is,

∂π̄(b, t)

∂a
,
∂π̄(b, t)

∂ci
,
∂π̄(b, t)

∂n
> 0. (7)

Whether ∂π̄(b, t)/∂t is positive or negative depends on other parameters.

Some of these results would be non-trivial. With respect to the fine level,

the result above, ∂π̄(b, t)/∂b < 0, is derived from ∂πPOP (b, t)/∂b > 0. This

is because the bigger b is, the higher the transit agency’s expected payoff,

which determines its profit per passenger, is at the Nash equilibrium of the

inspection game. This implies that if the transit agency introduces POP, it

should set the fine level as high as possible.

The result also tells about the impact of the fare as ∂π̄(b, t)/∂a > 0. As

mentioned in 2.3, under the POP system, the total amounts of fines taken

in and the costs for inspections cancel each other out, so the profit becomes

equal to apnt. Here, p, the probability of non-free-ride, is irrespective of the

fare as the Nash equilibrium indicates. Hence, the rate of decrease in revenue

from regular fare collections due to fare evasions is constant at 1−p, but the

amount of it becomes big, and this makes POP less attractive, as the fare

becomes high. The same thing holds for the impact of the passenger volume

and explains ∂π̄(b, t)/∂n > 0.
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3.2. Profit Maximization

Next let us consider the procedure of the transit agency’s decision making

that maximizes the total profit. When a, n, cs, cm, ci, m and t are given,

the optimal choice can be described as a subgame perfection solution in an

extensive form game depicted in Figure 1.

(Figure 1 is inserted here.)

Figure 1: Profit maximization of the transit agency: the subgame perfection

It is a two-player extensive form game played by the transit agency and

a (homogenous) passenger. In this game, the transit agency first chooses the

fare collection system, BA or POP. If the former is taken, the game ends.

Otherwise, then it decides the fine level, b ∈ [max{a, ci}, bmax]. Then under

the given b, the transit agency and a passenger play the inspection game

of Table 1, which is indicated as G(b) in the figure, where they decide the

frequency of inspections or free rides. Thus the transit agency’s payoff should

be given as its profit per passenger in this extensive form game, while it is

omitted in the figure.

Then we consider its profit maximization as follows. When POP is taken

and a particular b is given, the transit agency and a passenger behave accord-

ing to the Nash equilibrium of the corresponding inspection game as we have

supposed. Therefore, at the transit agency’s second decision node, where it

decides b, such a fine level that maximizes its own expected payoff is chosen,

given that they play the Nash equilibrium in G(b) for any b. Then, given

that they act in this way when POP is taken, the transit agency compares

the payoff of BA and the expected payoff of POP, and chooses the better

one at the first decision node. This way of solving a game is called subgame

perfection in game theory.
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This is equivalent to say as follows: the transit agency should choose BA

if π̄(b∗, t) > 0, where b∗ is the optimal fine level when POP is taken, while, if

π̄(b∗, t) < 0, it should choose POP with setting b∗ as the fine. If π̄(b∗, t) = 0,

the both systems are indifferent, if the fine is set as b∗ when POP is taken.

Based on the discussion in 3.1, b∗ is always determined as bmax, that is, it is

the fine level chosen at the second decision node if reached in the game of

Figure 1. As mentioned above, POP is always better when a ≤ m, which

implies π̄(b∗, t) < 0. On the other hand, if a > m, it depends on values of

each parameter whether π̄(b∗, t) is positive or negative.

4. Applications: Interpretations of Various Fare Collection Sys-

tems

The framework and the results can be applied to interpret various choices

of fare collection systems in the world depending on various factors. We here

show two examples. In this section, we assume a > m.

4.1. Influence of the Maximum Fine Level

First, let us consider the influence of the upper limit of the fine the transit

agency can set, bmax. This is important because it has been found in the

previous section that setting the fine as high as possible can maximize the

profit in the case of POP.

In those countries or cities where POP is common, the fine is usually as

much as tens of the fare. On the other hand, in Japan, where POP is very

uncommon, it is specified by law that the fine of a fare evasion must be less

than three times as much as the fare. Therefore it has been pointed out that

the restriction is one of reasons that POP is not popular in Japan (Nishikawa,

2007). Moreover, a very high fine may not be acceptable, or workable, in low
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income countries either because, for example, a free rider’s income may be

too low to pay for such a high fine. In those countries, if, in contrast, POP is

introduced with setting a relatively low fine, transport users whose marginal

utility of income is high might possibly be more prone to take free rides6.

In fact, POP is not very common in regions other than Europe and North

America.

Although these claims would be intuitive, we shall discuss here how our

framework can support them. Based on the discussion above, when bmax =

ka, that is, the maximum fine level is k times as much as the fare, π̄(b∗, t) =

−(cs + cmt) + cint/k. Hence we have ∂π̄(b∗, t)/∂k < 0. That is, if the other

conditions are same, then the bigger k is, the more competitive POP is.

Let us illustrate this graphically. In order for the transit agency’s choice

of POP to be optimal, π̄(b∗, t) must be negative, therefore, cint < k(cs+cmt)

must be satisfied. This means that the total inspection cost when the transit

agency makes inspections to all passengers in every operation are less than

k times as much as the total cost of BA. In Figure 2, two lines, l1 and

l2, express π̄(b∗, t) = 0, where b∗ is k1a or k2a, respectively, with k1 > k2.

Thus, when b∗ = k1a, the area between l1 and the horizontal axis indicates

where POP is superior to BA, while the area between l1 and the vertical axis

indicates where BA is better. The similar thing can be said to l2 for the case

of b∗ = k2a. Hence, when, for example, cs + cmt = c1 and cint = c2, BA is

optimal when b∗ = k2a while POP becomes optimal when b∗ = k1a.

Thus the optimal fare collection system highly depends on the maximum

6Furthermore, the rate of household consumption expenditure for transportation is usu-

ally higher in developing countries, than in developed countries (United Nations Statistics

Devision, 2013).
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fine level. This would explain one aspect of the fact that POP is uncommon

in Japan where bmax = 3a while it is often adopted in countries where bmax

is much bigger than it.

(Figure 2 is inserted here.)

Figure 2: Influence of the upper limit of the fine level on optimal choices of

fare collection systems (k1 > k2)

4.2. Dependence on Types of Transportation

Next, let us consider how the optimal fare collection system may differ

depending on types of transportation. According to Transportation Research

Board (2002, henceforth TRB), while there are always exceptions depending

on local circumstances, heavy rail systems are typically better suited to BA,

while LRT and BRT are usually better off with POP. We here discuss how

our framework can support the claim.

It says there are mainly two reasons for this: the station or platform

configuration and the expected passenger volume. First, with respect to the

platform configuration, POP, TRB says, is usually more appropriate for on-

street platforms, and thus LRT and BRT typically featuring them will be

better off with POP. This is because, for these platforms, the setup cost for

facilities to bring in the BA system becomes relatively high. For the transit

agency needs not only to install ticket gates but also to establish a clearly

defined paid area, which requires additional costs compared to adopting BA

at an enclosed station.

In our framework, this means cs is relatively big in these cases. Now

suppose cs = k′ci, that is, the setup cost of the BA system is k′ times as

much as the inspection cost per passenger inspected. Since ci is basically

determined by the labor cost of the region and thus we can naturally assume
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it does not depend on the platform type, the high setup cost of BA for on-

street platforms can be considered as k′’s being relatively big. Then π̄(b∗, t) =

−(k′ci+cmt)+ciant/b
∗, and hence ∂π̄(b∗, t)/∂k′ < 0. That is, the bigger k′ is,

the more competitive POP becomes. This result supports the TRB’s claim

that LRT and BRT that are typically operated with on-street platforms,

which make k′ relatively big, will usually be better off with POP.

Second, with regard to the expected passenger volume, TRB claims that

it is often the case that heavy rail systems have a higher volume than LRT

and BRT, and typically BA is better for the former. We have already shown

in 3.1 that the bigger n is, the more competitive BA is. But TRB’s discussion

in this regard is based on congestion in the car, which our framework does

not consider explicitly. It says that an on-board inspection requires sufficient

spaces for an inspector to walk through the car and check each traveler, and

thus, when the passenger volume is high and the car is crowded, it becomes

increasingly difficult to conduct inspections.

In order to consider such an effect explicitly, let us suppose the inspection

cost per passenger inspected is a function of the passenger volume as ci(n),

and increases with respect to it, namely ∂ci(n)/∂n ≥ 0, for sufficiently big n

such that the congestion can affect the capability of inspectors. This can be

understood as n′’s becoming small due to crowding with constant Ci. Then

π̄(b∗, t) = −(cs + cmt) + ci(n)ant/b
∗, and hence still ∂π̄(b∗, t)/∂n > 0. It

supports the TRB’s claim that heavy rail systems with a high ridership are

typically better suited to BA, while LRT and BRT with a relatively small

passenger volume will usually be better off with POP.

However, we, in this respect, also note that ci can decrease with demand

for sufficiently small n due to economies of scale. For example, suppose the

passenger volume is small enough for an inspector to inspect all the passen-
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gers on board. Then, ci(n) = Ci/n, and hence ∂ci(n)/∂n = −Ci/n
2 < 0. In

this case, ∂π̄(b∗, t)/∂n = at(ci(n) + n · ∂ci(n)/∂n)/b∗ = 0. This implies that,

when the demand is such small, change in it cannot affect the attractiveness

of a particular system.

The discussion in this section is based on comparative static analyses, so

we note that optimal fare collection systems are determined also by other

parameters, which always depend on local circumstances.

5. Concluding Remarks

The present study has discussed optimal fare collection systems by com-

paring BA and POP. By using a mathematical framework, the procedure

of a transit agency’s profit maximization has been specified as a subgame

perfection solution in a game played by the transit agency and passengers,

and we have examined how each parameter can affect the optimal choice by

a comparative static analysis.

Travel demand forecasting is widely used to estimate ridership of a transit

agency under its given level of service, and often one of its purposes is to

provide basic information for evaluation of its profitability. But, as we have

seen, the profitability may depend on the fare collection system the transit

agency uses. Therefore we consider this kind of approach to discuss impacts

of choices of fare collection systems in a formal way is also required for

rigorous feasibility studies.

Of course, transit agencies in real-world notice well the importance of

this managerial issue. For instance, Metropolitan Atlanta Rapid Transit

Authority (1993) conducts a case study that compares the two fare collection

systems when the possibility of converting from BA to POP was considered.

But it does not take into account effects of strategic interactions between
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passengers and the transit agency discussed in this paper: in the case study,

the total inspection cost is just given without considering them, and also the

financial impact of setting the fine level is not discussed rigorously. Hence

our framework can be useful at least potentially to improve precision of such

studies, and thus to help a transit agency design its transportation system.

Since our framework is based on simplified settings and assumptions,

extending or relaxing some of them should be given considerations to develop

it. We point out some open questions:

Extensions to more complicated transportation systems. Real transportations

are much more complicated in terms of routes, fare systems, fine schemes

(for POP), and so on, thus additional parameters would become required for

practical use of our framework. In order to avoid ad hoc applications, we need

to establish a general framework to discuss this issue. For example, when

the transportation network is complex, it becomes an increasingly strategic

task for the transit agency to decide the schedule of inspections such as the

timing, places, etc. This kind of problem has been studied as game-theoretic

randomized patrolling on graphs (e.g. Yin et al., 2012), and the ideas of such

studies would be useful in generalization of our approach.

Impacts on travel demands. We assumed the passenger volume, n, is given

and does not depend on the choice of fare collection system. Since the ex-

pected travel cost for a passenger under POP is equal to the regular fare

as shown in 2.3, the assumption would be innocuous in our simple formula-

tion. However, if one targets a more complicated transportation system, the

expected travel cost might become different from the fare. This means the

“expected level of service” may vary according to the fare collection system.

Therefore, particularly when there exist competing transportation modes, it
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can affect the demand of the transit agency. If such an effect is considered

as significant, the choice of fare collection system should be evaluated in

accordance with travel demand forecasting for each system.

We also note that we have ignored the influence of different boarding

time that each fare collection system may have. In general, the BA system

may cause a slowdown of passenger flow particularly when its volume is high.

This might be perceived as a decrease in the level of service by travelers and

hence affect the travel demand. Tirachini and Hensher (2011) study such a

relation of boarding time of each fare collection system and travel demands

for buses.

Behaviors in inspection games. As typical in the standard game theory, for

a Nash equilibrium to be played for sure in an inspection game, it is required

that both the transit agency and a passenger to know each other’s payoff

correctly7. The assumption, however, might be unrealistic for some parame-

ters in the payoff matrix. For example, a passenger may not know correctly

the transit agency’s inspection cost, while the transit agency may not rec-

ognize the degree of the morality of passengers. For such situations, Sasaki

et al. (2007) study inspection games considering the possibility that players

may have misperceptions about payoffs of other players. Although it would

be virtually impossible to identify how they misperceive each other, such an

approach can be useful to conduct a sensitivity analysis with regard to how

such misperceptions can affect the equilibrium, and hence the profitability of

the transit agency.

7For epistemic conditions for Nash equilibrium, see Aumann and Brandenburger (1995).
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Other objective functions. Our analysis has been conducted from the view-

point of the transit agency’s profit maximization. The reader may think of

the possibility of other objectives such as social welfare, i.e. the summation

of the profit and the user benefit. It would also be an issue to be addressed to

investigate how the difference of objective functions can influence the result.

If we assume the transit agency is still a profit maximizer, a passenger’s

expected travel cost (the amount of money she pays) for POP can be calcu-

lated as her expected payoff in the inspection game (Table 1) that reflects the

fare evasion rate, the frequency of inspections and payments of fines. Then

the user benefit can be calculated based on it8. While it has been shown

in 2.3 that the difference of fare collection system does not bring about any

user benefits in our simple settings, this might not be the case when a more

complicated situations is of interest, e.g., when each fare collection system

may have significantly different expected level of service.

Furthermore, if the transit agency is not a profit maximizer, we need

another incentive scheme of it. For example, when the transportation is

highly public, it might be designed so as to maximize the social welfare.

Then its payoff in the game of Figure 1, or possibly the game structure itself,

needs to be changed.

8We note that, from a legal or moral point of view, it might be questionable to say a

passenger’s saved money due to fare evasions is her “benefit.” In addition, if one considers

the possibility that designing a fare collection system can make a difference in a passenger’s

travel time as discussed above, the user benefit calculated here should incorporate the effect

of change in it.

19



Acknowledgement

The author is indebted to two anonymous referees for their helpful sug-

gestions.

References

Aoki, M., 2001. Toward a Comparative Institutional Analysis. MIT Press,

Cambridge.

Aumann, R. J., Brandenburger, A., 1995. Epistemic conditions for Nash

equilibrium. Econometrica 63 (5), 1161–1180.

Avenhaus, P., 2004. Applications of inspection games. Mathematical Model-

ing and Analysis 9 (3), 179–192.

Avenhaus, P., von Stengel, B., Zamir, S., 2002. Inspection games. In: Hand-

book of Game Theory vol. 3. North-Holland, Amsterdam, pp. 1947–1987.

Boyd, C., Martini, C., Rickard, J., Russell, A., 1989. Fare evasion and non-

compliance. Journal of Transport Economics and Policy 23 (2), 189–197.

Kooreman, P., 1993. Fare evasion as a result of expected utility maximization:

Some empirical support. Journal of Transport Economics and Policy 27 (1),

69–74.

Metropolitan Atlanta Rapid Transit Authority, 1993. Proof of Payment Fare

Collection Study: Report 4 Cost Comparison and Implementation Issues.

Nishikawa, T., 2007. Self-service barrier-free fare collection system and extra

fare system (in Japanese). Transport Policy Studies 10 (2), 2–6.

20



Polinsky, M. A., Shavell, S., 1979. The optimal tradeoff between the proba-

bility and magnitude of fines. American Economic Review 69 (5), 880–891.

Reddy, A. V., Kuhls, J., Lu, A., 2011. Measuring and controlling subway fare

evasion: Improving safety and security at New York City transit authority.

Transportation Research Record: Journal of the Transportation Research

Board 2216, 85–99.

Sasaki, Y., Kobayashi, N., Kijima, K., Aug. 2007. Mixed extension of hy-

pergames and its applications to inspection games. In: Proceedings of the

51st Annual Meeting of the ISSS. Tokyo, Japan.

Tirachini, A., Hensher, D. A., 2011. Bus congestion, optimal infrastructure

investment and the choice of a fare collection system in dedicated bus

corridors. Transportation Research Part B 45 (5), 828–844.

Toronto Transit Commission, 2000. TTC Fare Collection Study.

Transportation Research Board, 2002. A Toolkit for Self-Service, Barrier-Free

Fare Collection. National Academy Press, Washington, D.C.

United Nations Statistics Devision, 2013. National Accounts Statistics: Main

Aggregates and Detailed Tables, 2011.

Yin, Z., Jiang, A. X., Johnson, M. P., Tambe, M., Kiekintveld, C., Leyton-

Brown, K., Sandholm, T., Sullivan, J. P., 2012. TRUSTS: Scheduling ran-

domized patrols for fare inspection in transit systems. In: AAAI.

21


