
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title 関数型プログラムにおけるプログラム変換の研究

Author(s) 村島, 康哲

Citation

Issue Date 1999-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/1257

Rights

Description Supervisor:外山 芳人, 情報科学研究科, 修士



Program Transformation in Functional Programs

Yasunori Murashima

School of Information Science,

Japan Advanced Institute of Science and Technology

February 15, 1999

Keywords: program transformation, functional program, deforestation.

Program transformation aims at a generation of a more e�cient program than an

original one with preserving semantics. In program transformation, two properties are

important. One is correctness that is de�ned by preserving semantics and improving

e�ciency. The other is termination. If program transformation does not terminate,

it does not make sense. Program transformation contributes not only to increase the

productivity of software but also to develop new algorithms.

In functional programming, program is made by composing small and basic functions.

Most of basic functions are de�ned on such data structures as tree or list. Composing func-

tions produces many intermediate data structures. These intermediate data structures

cause loss of e�ciency. In order to eliminate them, Wadler (1990) proposed deforestation.

Many researches on deforestation are discussed on lazy evaluation languages. How-

ever, deforestation on eager evaluation language has not been fully studied since some

transformation rules destroy correctness.

Saga (1998) proposed partial evaluative deforestation that guaranteed termination of

the transformation procedure and equivalence of transformed programs. Partial evaluative

deforestation works on eager evaluation languages. His result shows that deforestation is

e�ective in eager evaluation languages, though partial evaluative evaluation is not con-

sidered e�ectiveness.

In most results on deforestation, whether on eager or lazy evaluation languages, the

occurrences of variables are too severe; the occurrence of the same variables in right-hand

side of function de�nition is at most one. It is an obstacle to 
exibility of programming.

In this paper, we propose blazed deforestation for eager evaluation that guarantees

termination and correctness of transformations. Our procedure is designed based on

Wadler's blazed deforestation.

Wadler's blazed deforestation (WBD) has the following merit.

Copyright c
 1999 by Yasunori Murashima

1



� WBD allows existence of terms as intermediate data that does not cause inconve-

nience such as integer or Boolean values; It also allows variables that stands for

such terms to exist more than once in the right-hand side of a function de�nition.

Therefore, it can make programs more 
exibly.

WBD has a merit compared to partial evaluative deforestation.

� A language that partial evaluative deforestation deals with needs to provide prim-

itive functions such as \+" and \�" as recursively de�ned programs. On the other

hand, a language that WBD deals with can take them as library functions. There-

fore, WBD can works on more realistic programming languages than partial evalu-

ative deforestation does.

WBD has merits explained above, but it cannot be applied to programs on eager

evaluation languages, because there exist some rules that do not hold correctness. Fur-

thermore, WBD restricts on the occurrence of variables standing for terms such as tree

and lists.

To solve these problems, in this study, we specify the rules that do not guarantee

correctness in eager evaluation. It becomes clear that correctness does not hold for unfold

and substitution. We show that correctness is regained by doing next two operations in

such the cases.

� Add a condition in order to know whether the transformation rule is applicable. In

lazy evaluation, there need not to give such conditions to ensure correctness, but in

eager evaluation, the condition is indispensable.

� After transformation steps, a new operation to introduce a new function is applied.

Correctness holds by doing this operation.

To remove the linearity restriction, we propose a new method based on that proposed

by Wadler for WBD. When unfolding rule is applied, We use a Let expression to avoid

repeated computations before unfolding. Furthermore, taking advantage of the merit of

the eager evaluation strategy, we propose the method that uni�es the occurrences of the

same term into one occurrence so that the term is evaluated only once. Deforestation is

a method that eliminates intermediate data structures, but in strict evaluation strategy,

it appears that correctness holds by making use of intermediate data structures actively.

The method unifying the same terms are done unless correctness is destroyed.

In this study, termination and correctness of the procedure of blazed deforestation for

eager evaluation are proved. However, a general rate of e�ciency cannot be discussed,

because e�ciency depends on the size of input data.

As described above, blazed deforestation for eager evaluation is proposed, and its

e�ectiveness, problems and solutions are discussed. This study is hopeful that it is e�ective

in expanding deforestation for eager evaluation, such as study on higher-order functions.

2


