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Abstract

Solving polynomial constraints is raised from many applications of Software Verification
such as round-off/over-flow error analysis, automatic termination proving or loop invariant
generation. Although in 1948, Tarski proved the decidability of polynomial constraints
over real numbers, the current complete method named Quantifier Elimination by Cylin-
drical Algebraic Decomposition has the complexity of doubly-exponential with respect to
the number of variables which remains as an impediment. Interval Constraint Propaga-
tion (ICP) which uses the inequalities/equations to contract the interval of variables by
removing the unsatisfiable intervals is an efficient methodology because it uses floating
point arithmetic. However the number of boxes (combination of intervals of variables)
may grow exponentially.

This thesis presents strategies for efficiency improvement and extensions of an SMT
solver named raSAT for polynomial constraints. raSAT which initially focuses on poly-
nomial inequalities over real numbers follows ICP methodology and adds testing to boost
satisfiability detection. In this work, in order to deal with exponential exploration of
boxes, several heuristic measures, namely SAT likelyhood, sensitivity, and the number of
unsolved polynomial inequalities, are proposed. From the experiments on standard SMT-
LIB benchmarks, raSAT is able to solve large constraints (in terms of the number of
variables) which are difficult for other tools. In addition to those heuristics, extensions
for handling equations using the Intermediate Value Theorem and handling constraints
over integer number are also presented in this thesis. The contributions of this work are
as follows:

1. Because the number of boxes (products of intervals) grows exponentially with re-
spect to the number of variables during refinement (interval decomposition), strate-
gies for selecting one variable to decomposed and selecting one box to explore play
a crucial role in efficiency. We introduce the following strategies:

• Selecting one box. The box with more possiblity to satisfy the constraint
is selected to explore, which is estimated by several heuristic measures, called
SAT likelyhood, and the number of unsolved polynomial inequalities.

• Selecting one variable. The most influential variable is selected as priority in
approximation and refinement process. This is estimated by sensitivity which
is determined during the approximation process.

2. Two schemes of incremental search are proposed for enhancing solving process:
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• Incremental deepening. raSAT follows the depth-first-search manner. In
order to escape local exhaustive search, it starts searching with a threshold that
each interval will be decomposed no smaller than it. If neither satisfiability nor
unsatisfiability is detected, a smaller threshold is taken and raSAT restarts.

• Incremental widening. Starting with a small intervals, if raSAT detects
UNSAT, it enlarges input intervals and restarts. This strategy is effective in
detecting satisfiability of constraints because small intervals reduce the number
of boxes after decomposition.

3. Satisfiability confirmation step by an error-bound guaranteed floating point package
iRRAM2, to avoid soundess bugs caused by roundoff errors.

4. This work also implemented the idea of using Intermediate Value Theorem to show
the satisfiability of multiple equations which was suggested in [10].

5. raSAT is also extended to handle constraints over integer numbers by simple ex-
tension in the approximation process.

2http://irram.uni-trier.de
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Chapter 1

Introduction

This chapter is going to introduce about polynomial constraints and present the overview
of our approach to handle them. Solving polynomial constraints has many application in
Software Verification, such as

• Locating roundoff and overflow errors which is our motivation [14, 15].

• Automatic termination proving which reduces termination detection to finding
a suitable ordering [12], e.g., TTT2

1, AProVE2, that leads to polynomial constraints.

• Loop invariant generation [2, 19] is reduced to solving polynomial constraints
over coefficients of invariant template.

1.1 Polynomial Constraint Solving

Polynomial constraint solving over real numbers aims at computing an assignment of
real values to variables that satisfies given polynomial inequalities/equations. If such an
assignment exists, the constraint is said to be satisfiable (SAT) and the assignment is
called SAT instance; otherwise we mention it as unsatisfiable (UNSAT).

Example 1.1.1. The constraint x2 + y2 < 1 ∧ xy > 1 is an example of an unsatisfiable
one. While the set of satisfiable points for the first inequality (x2 + y2 < 1) forms the read
circle in Figure 1.1, that for the second forms the blue area. Because these two areas do
not intersect, the conjunction of two inequalities is unsatisfiable.

Example 1.1.2. Figure 1.2 illustrates the satisfiability of the constraint:
x2 + y2 < 4 ∧ xy > 1. Any point in the purple area is a SAT instance of the con-
straint, e.g. (1.5, 1).

1http://cl-informatik.uibk.ac.at/software/ttt2/
2http://aprove.informatik.rwth-aachen.de
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Figure 1.1: Example of UNSAT constraint

1.2 Proposed Approach and Contributions

Our aim is an SMT solver for solving polynomial constraint. We first focus on strict
inequalities because of the following reasons.

1. Satisfiable inequalities allow over-approximation. An over-approximation estimates
the range of a polynomial f as rangeO(f) that covers all the possible values of f , i.e.
range(f) ⊆ rangeO(f). For an inequality f > 0, if rangeO(f) stays in the positive
side, it can be concluded as SAT. On the other hand, over-approximation cannot
prove the satisfiability of SAT equations.

2. Satisfiable inequalities allow under-approximation. An under-approximation com-
putes the range of the polynomial f as rangeU(f) such that range(f) ⊇ rangeU(f).
If rangeU(f) is on the positive side, f > 0 can be said to be SAT. Due to the con-
tinuity of f , finding such an under-approximation for solving f > 0 is more feasible
than that for f = 0.

• If f(x̄) > 0 has a real solution x̄0, there exist rational points near x̄0 which
also satisfy the inequality. Solving inequalities over real numbers thus can be
reduced to that over rational numbers.

• The real solution of f(x̄) = 0 cannot be approximated to any rational number.

For UNSAT constraint (both inequalities and equations) can be solved by over-approximation.
Suppose rangeO(f) is the result of an over-approximation for a polynomial f .

1. If rangeO(f) resides on the negative side, f > 0 is UNSAT.

2. If rangeO(f) stays on either negative or positive side, f = 0 is UNSAT.
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Figure 1.2: Example of SAT constraint

Our approach of ”iterative approximation refinement” - raSAT loop for solving poly-
nomial constraint was proposed and implemented as an SMT solver named raSAT in
[10]. This work improves the efficiency of the tool and extend it to handle equations and
constraints over integer numbers. The summary of the proposed method in [10] is:

1. Over-approximation is used for both disproving and proving polynomial inequalities.
In addition, under-approximation is used for boosting SAT detection. When both
of these methods cannot conclude the satisfiability, the input formula is refined so
that the result of approximation become more precise.

2. Interval Arithmetic (IA) and Testing are instantiated as an over-approximation and
an under-approximation respectively. While IA defines the computations over the
intervals, e.g. [1, 3] +IA [3, 6] = [2, 9], Testing attempts to propose a number of
assignments of real numbers to variables and check each assignment against the
given constraint to find a SAT instance.

3. In refinement phase, intervals of variables are decomposed into smaller ones. For
example, x ∈ [0, 10] becomes x ∈ [0, 4] ∨ x ∈ [4, 10].

4. Khanh and Ogawa [10] also proposed a method for detecting satisfiability of equa-
tions using the Intermediate Value Theorem.

The contributions of this work are as follows:

1. Although the method of using IA is robust for large degrees of polynomial, the num-
ber of boxes (products of intervals) grows exponentially with respect to the number
of variables during refinement (interval decomposition). As a result, strategies for
selecting one variable to decomposed and selecting one box to explore play a crucial
role in efficiency. We introduce the following strategies:
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• Selecting one box. The box with more possibility to satisfy the given con-
straint is selected to explore, which is estimated by several heuristic measures,
called SAT likelihood, and the number of unsolved polynomial inequalities.

• Selecting one variable. The most influential variable is selected for mul-
tiple test cases and decomposition. This is estimated by sensitivity which is
determined during the computation of IA.

2. Two schemes of incremental search are proposed for enhancing solving process:

• Incremental deepening. raSAT follows the depth-first-search manner. In
order to escape local optimums, it starts searching with a threshold that each
interval will be decomposed no smaller than it. If neither SAT nor UNSAT is
detected, a smaller threshold is taken and raSAT restarts.

• Incremental widening. Starting with a small interval, if raSAT detects
UNSAT, input intervals are enlarged and raSAT restarts. For SAT constraint,
small (finite) interval allows sensitivity to be computed because Affine Interval
[10] requires finite range of variables. As a consequence, our above strategy
will take effects on finding SAT instance. For the UNSAT case, combination
of small intervals and incremental deepening helps raSAT quickly determines
the threshold in which unsatisfiability may be proved by IA.

3. SAT confirmation step by an error-bound guaranteed floating point package iR-
RAM3, to avoid soundess bugs caused by roundoff errors.

4. This work also implemented the idea of using Intermediate Value Theorem to show
the satisfiability of multiple equations which was suggested in [10].

5. We also extend raSAT to handle constraints over integer numbers. For this exten-
sion, we only generate the integer values for variables in testing phase. In addition,
the threshold used for stopping decomposition is set to 1.

1.3 Thesis Outline

The rest of this thesis is organized as following.

• Chapter 2 presents the basics about abstract Davis-Putnam-Logemann-Loveland
(DPLL) procedure for solving propositional formulas, basics about Satisfiability
Module Theories (SMT) and SMT for polynomial constraints over real numbers.

• Chapter 3 introduces proposed approximation schemes and their instances, raSAT
loop algorithm and its soundness, completeness.

• Variants of Interval Arithmetic which is an instance of over-approximation are pre-
sented in Chapter 4.

3http://irram.uni-trier.de
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• Chapter 5 illustrates strategies for improving efficiency of raSAT loop.

• Experiments to show how efficient are proposed strategies and comparison with
other SMT solvers are presented in Chapter 6.

• Chapter 7 proposes extensions for handling equations and constraints over integer
numbers.

• Before summarizing the thesis and suggesting future works in Chapter 9, we present
related works in Chapter 8.



Chapter 2

Preliminaries

2.1 Abstract DPLL

In propositional logic, we have a set of propositional symbols P and every p ∈ P is called
an atom. A literal l is either p or ¬p with p ∈ P . The negation ¬l of a literal l is ¬p if l is
p, or p if l is ¬p. A disjunction l1 ∨ · · · ∨ ln of literals is said to be a clause. A Conjuctive
Normal Form (CNF) formula is a conjunction of clauses C1∧ · · · ∧Cn. If C = l1∨ · · · ∨ ln
is a clause, ¬C is used to denote the CNF formula ¬l1 ∧ · · · ∧ ¬ln

An (partial) assignment M is a set of literals such that l ∈M and ¬l ∈M for no literal
l. A literal l is undefined in M if neither l ∈ M nor ¬l ∈ M . If l ∈ M , l is said to be
true in M. On the other hand if ¬l ∈ M , we say that l is false in M . A clause is true in
M if at least one of its literals is in M . An assignment M satisfies a CNF formula F (or
F is satisfied by M) if all clauses of F is true in M which is denoted as M |= F . Given
two CNF formula F and F ′, we write F |= F ′ if for any assignment M , M |= F implies
M |= F ′. The formula F is unsatisfiable if there is no assignment M such that M |= F .

Abstract Davis-Putnam-Logemann-Loveland (DPLL) Procedure [16] searches for an
assignment that satisfies a CNF formula. Each state of the procedure is either FailState
or a pair M ‖ F of an assignment M and a CNF formula F . For the purpose of the
procedure, M is represented as a sequence of literals where each literal is optionally
attached an annotation, e.g. ld which basically means that the literal l is selected to be
included in the assignment by making a decision (l is called a decision literal). An empty
sequence is denoted by ∅. Each DPLL procedure is modeled by a collection of states and
a binary relation =⇒ between states. Basic DPLL procedure is a transition system which
contains the following four rules.

1. UnitPropagate

M ‖ F ∧ (C ∨ l) =⇒Ml ‖ F ∧ (C ∨ l) if

{
M |= ¬C
l is undefined in M.

2. Decide

M ‖ F =⇒Mld ‖ F if

{
l or ¬l occur in a clause of F
l is undefined in M.

11
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3. Fail

M ‖ F ∧ C =⇒ FailState if

{
M |= ¬C
ld ∈M for no literal l.

4. Backjump

MldM ′ ‖ F∧C =⇒Ml′ ‖ F∧C if


MldM ′ |= ¬C, and there is some clause C ′ ∨ l′
such that F ∧ C |= C ′ ∨ l′ and M |= ¬C ′, l′ is
undefined in M, and l′ or ¬l′ occurs in F or in
MldM ′.

Let F be a given CNF formula. Starting with the state ∅ ‖ F , basic DPLL procedure
terminates with either FailState (which is denoted as ∅ ‖ F =⇒! FailState) when F is
unsatisfiable, or a state M ‖ F (which is denoted as ∅ ‖ F =⇒! M ‖ F ) where M satisfies
F . Intuitively, the above four rules can be explained as following.

• UnitPropagate: In order to satisfy F ∧(C∨ l), C∨ l needs to be satisfied. Because
all the literals in C is false in current assignment M (M |= ¬C), l must be made
true when extending M .

• Decide: This rule is applied when no more UnitPropagation can be applied. The
annotation d in ld denotes that if Ml cannot be extended to satisfy f , M¬l needs
to be explored further.

• Fail: When a clause is false in M (conflict) and M has no literal which is decided
by making a decision (there is no more options to explored), the formula F is
unsatisfiable.

• Backjump: As same as in Fail rule, a conflict is detected. However, in Backjump,
because there exists some decision literal in the assignment, new possible assign-
ments can be explored. The clause C ′ ∨ l′ is called the backjump clause.

Example 2.1.1. For the formula (¬l1 ∨ l2)∧ (¬l3 ∨ l4)∧ (¬l5 ∨¬l6)∧ (l6 ∨¬l5 ∨¬l2), the
basic DPLL procedure proceeds as following:

∅ ‖ (¬l1 ∨ l2) ∧ (¬l3 ∨ l4) ∧ (¬l5 ∨ ¬l6) ∧ (l6 ∨ ¬l5 ∨ ¬l2) =⇒ (Decide)

ld1 ‖ (¬l1 ∨ l2) ∧ (¬l3 ∨ l4) ∧ (¬l5 ∨ ¬l6) ∧ (l6 ∨ ¬l5 ∨ ¬l2) =⇒ (UnitPropagate)

ld1l2 ‖ (¬l1 ∨ l2) ∧ (¬l3 ∨ l4) ∧ (¬l5 ∨ ¬l6) ∧ (l6 ∨ ¬l5 ∨ ¬l2) =⇒ (Decide)

ld1l2l
d
3 ‖ (¬l1 ∨ l2) ∧ (¬l3 ∨ l4) ∧ (¬l5 ∨ ¬l6) ∧ (l6 ∨ ¬l5 ∨ ¬l2) =⇒ (UnitPropagate)

ld1l2l
d
3l4 ‖ (¬l1 ∨ l2) ∧ (¬l3 ∨ l4) ∧ (¬l5 ∨ ¬l6) ∧ (l6 ∨ ¬l5 ∨ ¬l2) =⇒ (Decide)

ld1l2l
d
3l4l

d
5 ‖ (¬l1 ∨ l2) ∧ (¬l3 ∨ l4) ∧ (¬l5 ∨ ¬l6) ∧ (l6 ∨ ¬l5 ∨ ¬l2) =⇒ (UnitPropagate)

ld1l2l
d
3l4l

d
5l6 ‖ (¬l1 ∨ l2) ∧ (¬l3 ∨ l4) ∧ (¬l5 ∨ ¬l6) ∧ (l6 ∨ ¬l5 ∨ ¬l2) =⇒ (Backjump)

ld1l2l
d
3l4¬l5 ‖ (¬l1 ∨ l2) ∧ (¬l3 ∨ l4) ∧ (¬l5 ∨ ¬l6) ∧ (l6 ∨ ¬l5 ∨ ¬l2)

In the Bacjump step of this example: M is ld1l2l
d
3l4, ld is ld5, M ′ is l6, F is

(¬l1 ∨ l2) ∧ (¬l3 ∨ l4) ∧ (¬l5 ∨ ¬l6), C is l6 ∨ ¬l5 ∨ ¬l2, C ′ is ¬l1, and l′ is ¬l5.
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Additionally DPLL implementation can add the backjump clauses into the CNF formula
as learnt clause (or lemmas), which is usually referred as conflict-driven learning. Lemmas
aim at preventing similar conflicts to occur in the future. When the conflicts are not likely
to happen, the lemmas can be removed. The following two rules are prepared for DPLL.

6. Learn

M ‖ F =⇒M ‖ F ∧ C if

{
each atom in C appears in F
F |= C.

7. Forget

M ‖ F ∧ C =⇒M ‖ F if

{
each atom in C appears in F
F |= C.

2.2 Satisfiability Modulo Theories - SMT

2.2.1 Syntax

Definition 2.2.1. A signature Σ is a 4-tuple (S, P, F, V, α) consisting of a set S of sorts,
a set P of predicate symbols, a set F of function symbols, a set V of variables, and a
sorts map α which associates symbols to their sorts such that

• for all p ∈ P, α(p) is a n-tuple argument sorts of p,

• for all f ∈ F, α(f) is a n-tuple of argument and returned sorts of f , and

• for all v ∈ V, α(v) represents the sort of variable v.

A Σ-term t over the signature Σ is defined as

t ::= v where v ∈ V
| f(t1, · · · , tn) where f ∈ F with arity n

A Σ-formula ϕ over the signature Σ is defined recursively as (we only focus on equantifier-
free formulas):

ϕ ::= p(t1, · · · , tn) where p ∈ P with arity n
| ⊥ | ¬ϕ1

| ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2

| ϕ1 → ϕ2 | ϕ1 ↔ ϕ2

2.2.2 Semantics

Definition 2.2.2. Let Σ = (S, P, F, V, α) is a signature. A Σ-model M of Σ is a pair
(U, I) in which U is the universe and I is the interpretation of symbols such that

• for all s ∈ S, I(s) ⊆ U specifies the possible values of sort s,
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• for all f ∈ F , I(f) is a function from I(s1) × · · · × I(sn−1) to I(sn) with
α(f) = (s1, · · · , sn),

• for all p ∈ P , I(p) is a function from I(s1) × · · · × I(sn) to {0, 1} where
α(p) = (s1, · · · , sn), and

• for all v ∈ V , I(v) ∈ I(α(v))

A Σ-theory T is a (infinite) set of Σ-models. A theory T ′ is a subset of theory T if and
only if T ′ ⊆ T .

The interpretation of each predicate or function symbol is allowed to be not total, i.e.
I(p) or I(f) are not necessarily total. We extend the universe of each model to include the
symbol ů (unknown) which is prepared to indicate the result of undefined operations. For
further convenience, we also define the following relations: ů < 0, 1 and ů > 0, 1 and the
following arithmetic 1− ů = ů which are useful when we evaluate the values of formulas
containing logical connectives (∧, ∨, →, ↔, or ¬).

Definition 2.2.3. Let Σ = (S, P, F, V, α) and M = (U, I) are a signature and a Σ−model
respectively. The valuation of a Σ-term t against M which is denoted by tM is defined
recursively as:

vM = I(v) where v ∈ V , and

fM(t1, · · · , tn) =

{
I(f)(tM1 , · · · , tMn ) if (tM1 , · · · , tMn ) ∈ Dom(I(f))

ů otherwise
where f ∈ F .

Similarly, the valuation ϕM of ϕ is defined as:

pM(t1, · · · , tn) =

{
I(p)(tM1 , · · · , tMn ) if (tM1 , · · · , tMn ) ∈ Dom(I(p))

ů otherwise
where p ∈ P ,

⊥M = 0 ,
(¬ϕ1)M = 1− ϕM1 ,
(ϕ1 ∧ ϕ2)M = min(ϕM1 , ϕ

M
2 ),

(ϕ1 ∨ ϕ2)M = max(ϕM1 , ϕ
M
2 ),

(ϕ1 → ϕ2)M = max(1− ϕM1 , ϕM2 ), and

(ϕ1 → ϕ2)M =

{
1 if ϕM1 = ϕM2
0 otherwise

.

We say that M satisfies ϕ which is denoted by |=M ϕ iff ϕM = 1. If ϕM = 0, 6|=M ϕ is
used to denote that M does not satisfy ϕ.

Given a signature Σ, a Σ-theory T and a Σ-formula ϕ, a Satisfiability Modulo Theo-
ries(SMT) problem is the task of finding a model M ∈ T such that |=M ϕ.

Lemma 2.2.1. Given any Σ-model M and Σ-formula ϕ, we have |=M ϕ if and only if
6|=M ¬ϕ
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Proof. |=M ϕ ⇐⇒ ϕM = 1 ⇐⇒ 1− ϕM = 0 ⇐⇒ (¬ϕ)M = 0 ⇐⇒ 6|=M ¬ϕ

Definition 2.2.4. Let T be a Σ-theory. A Σ-formula ϕ is:

• satisfiable in T or T-SAT if and only if for all M ∈ T we have |=M ϕ,

• valid in T or T-VALID if and only if for all M ∈ T we have |=M ϕ,

• unsatisfiable in T or T-UNSAT if and only if for all M ∈ T we have 6|=M ϕ, and

• unknown in T or T-UNKNOWN if and only if for all M ∈ T , ϕM = ů.

Lemma 2.2.2. If T be a Σ-theory, then ϕ is T-VALID if and only if ¬ϕ is T-UNSAT

Proof. ϕ is T-VALID ⇐⇒ ∀M ∈ T ; |=M ϕ ⇐⇒ ∀M ∈ T ; 6|=M ¬ϕ (Lemma 2.2.1)
⇐⇒ ¬ϕ is T-UNSAT.

Lemma 2.2.3. If T ′ ⊆ T , then ϕ is T ′-SAT implies that ϕ is T -SAT.

Proof. ϕ is T ′-SAT =⇒ ∃M ∈ T ′; |=M ϕ =⇒ ∃M ∈ T ; |=M ϕ (because T ′ ⊆ T )
=⇒ ϕ is T -SAT.

2.3 Polynomial Constraints over Real Numbers

2.3.1 Syntax

We instantiate the signature Σp = (Sp, P p, F p, V, αp) in Section 2.2.1 for polynomial
constraints as following:

• Sp = {Real}

• P p = {�,≺,�,�,≈, 6≈}

• F p = {⊕,	,⊗,1}

• for all p ∈ P p, αp(p) = (Real, Real)

• for all f ∈ F p \ {1}, αp(f) = (Real, Real, Real) and αp(1) = Real

• for all v ∈ V, αp(v) = Real

A polynomial and a polynomial constraint are a Σp-term (we referred as letters f or g)
and a Σp-formula respectively.

Definition 2.3.1. Given a polynomial f , the set of its variables which is denoted as
var(f) is defined recursively as following:

1. var(v) = {v} for v ∈ V .

2. var(1) = ∅.

3. var(f1 ◦ f2) = var(f1) ∩ var(f2) with ◦ ∈ {⊕,	,⊗}.
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2.3.2 Semantics

A model Mp
R = (R, IpR) over real numbers for polynomial constraints contains the set of

reals number R and a map I that satisfies the following properties.

1. IpR(Real) = R.

2. ∀p ∈ P ; IpR(p) is a function from R× R to {1, 0} such that

IpR(p)(r1, r2) =

{
1 if r1 pR r2
0 otherwise

where (�R,≺R,�R,�R,≈R, 6≈R) = (>,<,≥,≤,=, 6=).

3. ∀f ∈ F \ {1}; IpR(f) is a function from R× R to R such that

IpR(f)(r1, r2) = r1 fR r2

where (⊕R,	R,⊗R) = (+,−, ∗).

4. IpR(1) = 1

5. ∀v ∈ V ; IpR(v) ∈ R.

The valuation of polynomials (Σp-terms) and polynomial constraints (Σp-formulas) against
a model Mp

R follows Definition 2.2.3.
The theory of real numbers is T pR = {Mp

R|M
p
R is a model of real numbers }. By this

instantiation, each model differs to another by the mapping from variables to real numbers.
As a result, an assignment of real numbers to variables, e.g. {v 7→ r ∈ R|v ∈ V }, can be
used to represent a model. Given a map θ = {v 7→ r ∈ R|v ∈ V }, θpR denotes the model
represented by θ.

Moreover, because all the predicate and function symbols’ interpretations are total
functions, so a given polynomial constraint ϕ cannot be T pR-UNKNOWN. In the other
words, ϕ can only be T pR-SAT, T pR-VALID, or T pR-UNSAT.

From now on, we focus on Σp-formulas ϕ of the forms:

ϕ ::= p(f1, f2) where p ∈ P
| ϕ1 ∧ ϕ2

because this does not lose the generality. Given a general polynomial constraint ϕ that
is formed by the syntax in Section 2.2.1:

• If we consider each formula p(f1, f2) as an propositional symbols, we can first convert
ϕ into an CNF formula and then use DPLL procedure to infer a sequence of literals
that satisfies ϕ (in terms of propositional logic).

• The sequence of literals may contains some literals of the form ¬p(f1, f2). However,
from the semantics of polynomial constraints, we can change:
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¬(� (f1, f2)) to � (f1, f2)
¬(≺ (f1, f2)) to � (f1, f2)
¬(� (f1, f2)) to ≺ (f1, f2)
¬(� (f1, f2)) to � (f1, f2)
¬(≈ (f1, f2)) to 6≈ (f1, f2)
¬(6≈ (f1, f2)) to ≈ (f1, f2)

• The remaining task is solving the SMT problem with the constraint is the conjunc-
tion of literals in the sequence.

Representing (sub-)theory of real numbers as a constraint of real intervals

The signature of the first order logic is instantiated as ΣI = (SI , P I , F I , αI) for real
interval constraints such that

1. SI = {Real, Interval},

2. P I = {∈},

3. F I = {c | c is a constant},

4. αI(∈) = (Real, Interval),

5. for all c ∈ F I , αI(c) = Interval, and

6. ∀v ∈ V ; αI(v) = Real.

We call ΣI-formula is an interval constraint. The interval constraints in this thesis is
represented by symbol Π with possibly subscription. A model M I

R = (I ∪ R, IIR) of real
intervals consists of the union of real intervals I which is defined later in Definition 3.2.2
and real numbers R and a map IIR that satisfies the following properties.

1. IIR(Real) = R and IIR(Interval) = I.

2. IIR(∈) = R× I 7→ {1, 0} such that

IIR(∈)(r, 〈a, b〉) =

{
1 if a ≤ r ≤ b
0 otherwise

3. For all c ∈ F I , IIR(c) ∈ I.

4. For all v ∈ V , IIR(v) ∈ R.

The valuation of ΣI-terms and ΣI-terms follows Definition 2.2.3. The theory of real
intervals is T IR = {M I

R|M I
R is a model of real intervals}. By this instantiation, each

model differs to another by the mapping from variables to real numbers. As a re-
sult, an assignment of real numbers to variables, e.g. {v 7→ r ∈ R|v ∈ V }, can be
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used to represent a model. Given an assignment θ = {v 7→ r ∈ R|v ∈ V }, we de-
note θIR as a model of real intervals represented by θ. If Π is a ΣI-formula, the nota-
tion Πp

R = {θpR | θ = {v 7→ r ∈ R | v ∈ V } and |=θIR
Π} represents the (sub-)theory of real

numbers that each of its model contain the assignment from real numbers to variables
that (intuitively) satisfies Π.



Chapter 3

Over-Approximation and
Under-Approximation

3.1 Approximation Theory

Definition 3.1.1. Let T, T ′ be Σ-theories and ϕ be any Σ-formula.

• T ′ is an over-approximation theory of T iff T ′-UNSAT of ϕ implies T -UNSAT of
ϕ.

• T ′ is an under-approximation theory of T iff T ′-SAT of ϕ implies T -SAT of ϕ.

Theorem 3.1.1. If TO be an over-approximation theory of T , then for any Σ-formula ϕ:
ϕ is TO-VALID implies ϕ is T -VALID.

Proof. ϕ is TO-VALID =⇒ ¬ϕ is TO-UNSAT (Lemma 2.2.2) =⇒ ¬ϕ is T -UNSAT
(Definition 3.1.1) =⇒ ϕ is T-VALID (Lemma 2.2.2)

3.2 Interval Arithmetic as an Over-Approximation

Theory

3.2.1 Real Intervals

We adopt the definition of real intervals from [8]:

Definition 3.2.1. [8] Let a and b be reals such that a ≤ b.

〈a, b〉 def
= {x ∈ R|a ≤ x ≤ b}

〈−∞, b〉 def
= {x ∈ R|x ≤ b}

〈a,+∞〉 def
= {x ∈ R|a ≤ x}

〈−∞,+∞〉 def
= R

19
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x+ y −∞ NR 0 PR +∞
−∞ −∞ −∞ −∞ −∞ ⊥
NR NR NR R +∞

0 0 PR +∞
PR PR +∞
+∞ +∞

x− y −∞ NR 0 PR +∞
−∞ ⊥ +∞ +∞ +∞ +∞
NR −∞ R PR PR +∞

0 −∞ NR 0 PR +∞
PR −∞ NR NR R +∞
+∞ −∞ −∞ −∞ −∞ ⊥

x ∗ y −∞ NR 0 PR +∞
−∞ +∞ +∞ ⊥ −∞ −∞
NR PR 0 NR −∞

0 0 0 ⊥
PR PR +∞
+∞ +∞

Table 3.1: Arithmetics Operations for R ∪ {−∞,+∞}

The intervals in this definition can be summarized by 〈a, b〉 where a, b ∈ R∪{−∞,+∞}
and a ≤ b with the assumption that ∀c ∈ R−∞ < c <∞. Furthermore, Hickey et al. [8]
also defined arithmetic operations for R ∪ {−∞,+∞} which is summarized in Table 3.1.

Definition 3.2.2. The set of all real intervals I is defined as:

I = {〈a, b〉 | a, b ∈ R ∪ {−∞,+∞} and a ≤ b}

.

3.2.2 Interval Arithmetic as an Over-Approximation Theory

A model Mp
IA = (I, IpIA) over intervals for polynomial constraints consists a set of all real

intervals I and a map IpIA that satisfies the following conditions.

1. IpIA(Real) = I

2. For all p ∈ P p, IpIA(p) is a function from I× I to {0, 1} where

IpIA(p)(i1, i2) = i1 pIA i2

The definition of pIA is as follow:



21

〈l1, h1〉 �IA 〈l2, h2〉 =

{
1 if l1 > h2

0 if h1 ≤ l2

〈l1, h1〉 ≺IA 〈l2, h2〉 =

{
1 if h1 < l2
0 if l1 ≥ h2

i1 �IA i2 = 1− (i1 ≺IA i2)
i1 �IA i2 = 1− (i1 �IA i2)
i1 ≈IA i2 = min(i1 �IA i2, i1 �IA i2)
i1 6≈IA i2 = 1− (i1 ≈IA i2)

3. For all f ∈ F p \ {1}, IpIA(f) is a function from I× I 7→ I such that

IpIA(f)(i1, i2) = i1 fIA i2

where fIA satisfies the following properties:

• i1 ⊕IA i2 ⊇ {r1 + r2|r1 ∈ i1 and r2 ∈ i2}.
• i1 	IA i2 ⊇ {r1 − r2|r1 ∈ i1 and r2 ∈ i2}.
• i1 ⊗IA i2 ⊇ {r1 ∗ r2|r1 ∈ i1 and r2 ∈ i2}.

4. IpIA(1) = 〈1, 1〉

5. For all v ∈ V ; IpIA ∈ U
p
IA

Theory T pIA = {Mp
IA|M

p
IA is a model over intervals}. Each model differs to another by the

mapping from variables to intervals. As a consequence, one assignment from variables to
intervals can be used to describe an model. In addition, an assignment {v 7→ i ∈ I|v ∈ V }
and an interval constraint

∧
v∈V

v ∈ i are equivalent in terms of the set of assignments

from variables to real numbers. So by abusing notation, for a constraint of the form
Π =

∧
v∈V

v ∈ i, we denote Πp
IA as a model of interval arithmetics for polynomial constraints.

By definition, {Πp
IA} represents a sub-theory of T pIA.

Lemma 3.2.1. Let Mp
IA = (I, IpIA) be a model over intervals, i1, i2 ∈ I, r1 ∈ i2, r2 ∈ i2,

p ∈ P p, we have i1 pIA i2 = 0 implies not (r1 pR r2)

Example 3.2.1. We have 〈1, 3〉 �IA 〈5, 8〉 = 0 by the definition of ≺IA. Take 2 ∈ 〈1, 3〉
and 6 ∈ 〈5, 8〉. Following Lemma 3.2.1, we have not (2 ≺R 6) holds or not (2 < 6) holds
(because ≺R = <) which is obviously true.

Proof. Let i1 = 〈l1, h1〉 and i2 = 〈l2, h2〉 where l1 ≤ h1 and l2 ≤ h2. We have:

• r1 ∈ i1 implies l1 ≤ r1 ≤ h1, and

• r2 ∈ i2 implies l2 ≤ r2 ≤ h2.

Suppose that i1 pIA i2 = 0, we need to show not (r1 pR r2) by considering all the possible
cases of p:
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1. If p is �, we have 〈l1, h1〉 �IA 〈l2, h2〉 = 0 =⇒ h1 ≤ l2 =⇒ r1 ≤ r2 (because
r1 ≤ h1 and l2 ≤ r2) =⇒ not (r1 > r2) =⇒ not (r1 �R r2).

2. If p is ≺, we have 〈l1, h1〉 ≺IA 〈l2, h2〉 = 0 =⇒ l1 ≥ h2 =⇒ r1 ≥ r2 (because
r1 ≥ l1 and r2 ≤ h2) =⇒ not (r1 < r2) =⇒ not (r1 ≺R r2).

3. If p is �, we have 〈l1, h1〉 �IA 〈l2, h2〉 = 0 =⇒ 1− (〈l1, h1〉 ≺IA 〈l2, h2〉) = 0 =⇒
〈l1, h1〉 ≺IA 〈l2, h2〉 = 1 =⇒ h1 < l2 =⇒ r1 < r2 (because r1 ≤ h1 and r2 ≥ l2)
=⇒ not (r1 ≥ r2) =⇒ not (r1 �R r2).

4. If p is �, we have 〈l1, h1〉 �IA 〈l2, h2〉 = 0 =⇒ 1− (〈l1, h1〉 �IA 〈l2, h2〉) = 0 =⇒
〈l1, h1〉 �IA 〈l2, h2〉 = 1 =⇒ l1 > h2 =⇒ r1 > r2 (because r1 ≥ l1 and r2 ≤ h2)
=⇒ not (r1 ≤ r2) =⇒ not (r1 �R r2).

5. If p is ≈, we have i1 ≈IA i2 = 0 =⇒ min(i1 �IA i2, i1 �IA i2) = 0 =⇒
i1 �IA i2 = 0 or i1 �IA i2 = 0 =⇒ r1 < r2 or r1 > r2 (as the third and fourth case
of this proof) =⇒ not (r1 = r2) =⇒ not (r1 ≈R r2).

6. If p is 6≈, we have i1 6≈IA i2 = 0 =⇒ 1 − (i1 ≈IA i2) = 0 =⇒
min(i1 �IA i2, i1 �IA i2) = 1 =⇒ i1 �IA i2 = 1 and i1 �IA i2 = 1 =⇒ 1− (i1 ≺IA
i2) = 1 and 1 − (i1 �IA i2) = 1 =⇒ i1 ≺IA i2 = 0 and i1 �IA i2 = 0 =⇒
r1 ≥ r2 and r1 ≤ r2 (as the first and second case of this proof) =⇒ r1 = r2 =⇒
not (r1 6= r2) =⇒ not (r1 6≈R r2).

Lemma 3.2.2. Let Π =
∧
v∈V

v ∈ i with i ∈ I, g is a polynomial (Σp-term). For every

model over real numbers Mp
R ∈ Πp

R, we have gM
p
R ∈ gΠp

IA.

The intention of this lemma is that for given a box of variables’ intervals and a polyno-
mial, interval arithmetic will, essentially, output an interval that contains all the possible
values of the polynomial with respect to any point inside the box.

Proof. Let Mp
R = (R, IpR) ∈ Πp

R. As mentioned in Section 3.2.2, Π can also be referred as
a map from variables to intervals, i.e. {v 7→ i | v ∈ V }. Proof is done by induction on
structure of polynomial f .

1. Base case

• If g = v ∈ V , we have

vM
p
R = IpR(v) ∈ Π(v) because Mp

R ∈ Πp
R, and

vΠp
IA = Π(v)

Then, vM
p
R ∈ vΠp

IA .

• If g = 1, then 1M
p
R = 1 ∈ 〈1, 1〉 = 1Πp

IA
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2. Induction case: g = f(g1, g2) for some f ∈ F p \ {1}.
We have

fM
p
R (g1, g2) = g

Mp
R

1 fR g
Mp

R
2

fΠp
IA(g1, g2) = g

Πp
IA

1 fIA g
Πp

IA
2

By induction hypothesis, we have g
Mp

R
1 ∈ g

Πp
IA

1 and g
Mp

R
2 ∈ g

Πp
IA

2 which due to the

properties of fIA implies g
Mp

R
1 fR g

Mp
R

1 ∈ gΠp
IA

2 fIA g
Πp

IA
2 , or gM

p
R ∈ gΠp

IA

Theorem 3.2.1. Let Π =
∧
v∈V

v ∈ i with i ∈ I, then {Πp
IA} is an over-approximation of

Πp
R.

Proof. Given an polynomial constraint ϕ and suppose that ϕ is {Πp
IA}-UNSAT. We will

prove that ϕ is Πp
R-UNSAT by induction on structure of ϕ.

1. Base case: ϕp = p(g1, g2) for some p ∈ P p.

We prove the lemma for the base case by contradiction. Suppose ϕ is not Πp
R-

UNSAT, that means it is either Πp
R-SAT or Πp

R-VALID. In either case, there exist
at least a model Mp

R ∈ Πp
R such that |=Mp

R
ϕ ⇐⇒ ϕM

p
R = 1. We have

ϕM
p
R = 1 =⇒ g

Mp
R

1 pR g
Mp

R
2 (3.1)

On the other hand,

ϕ is {Πp
IA}-UNSAT =⇒ ϕΠp

IA = 0 =⇒ g
Πp

IA
1 pIA g

Πp
IA

2 = 0

In addition, because g
Mp

R
1 ∈ gΠp

IA
1 and g

Mp
R

2 ∈ gΠp
IA

2 (Lemma 3.2.2), we have

g
Πp

IA
1 pIA g

Πp
IA

2 = 0 =⇒ not (g
Mp

R
1 pR g

Mp
R

2 )(Lemma 3.2.1) (3.2)

Contradiction is raised between (3.1) and (3.2). As the result, ϕ must be Πp
R-

UNSAT.

2. Induction case: ϕ = ϕ1 ∧ ϕ2.

We have ϕ is {Πp
IA}-UNSAT =⇒ 6|=Πp

IA
(ϕ1 ∧ ϕ2) =⇒ (ϕ1 ∧ ϕ2)Πp

IA = 0 =⇒
max(ϕ

Πp
IA

1 , ϕ
Πp

IA
2 ) = 0 =⇒ ϕ

Πp
IA

1 = 0 and ϕ
Πp

IA
2 = 0.

Thus, by induction hypothesis, ϕ1 and ϕ2 are Πp
R-UNSAT =⇒ for all Mp

R ∈
Πp

R, 6|=Mp
IA

ϕ1 and for all Mp
R ∈ Πp

R, 6|=Mp
IA

ϕ2 =⇒ for all Mp
R ∈ Πp

R, 6|=Mp
IA

(ϕ1 ∧ ϕ2) =⇒ ϕ1 ∧ ϕ2 is Πp
R-UNSAT.
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3.3 Testing as an Under-Approximation Theory

Definition 3.3.1. Let T ⊆ T pR be a sub-theory of real numbers. Any sub-theory TT of T ,
i.e. TT ⊆ T is call a theory of testing with respect to T .

Theorem 3.3.1. If TT is a theory of testing w.r.t T , TT is an under-approximation of T .

Proof. Let ϕ be a polynomial constraint and suppose it is TT -SAT. We need to prove ϕ
is T -SAT.

We have ϕ is TT -SAT =⇒ there exists M ∈ TT such that |=M ϕ =⇒ there exists
M ∈ T such that |=M ϕ (because TT ⊆ T ) =⇒ ϕ is T -SAT.

Given the interval constraint Π =
∧
vi∈V

v ∈ 〈li, hi〉, we have Πp
R is a sub-theory of T pR. We

randomly select a number of models from Πp
R (by randomly picking values for variables)

to form the testing theory (Πp
R)T of Πp

R.

Example 3.3.1. Let Π = x ∈ 〈1, 5〉 ∧ y ∈ 〈−5, 10〉 be an interval constraint. If we
pick two values for x (e.g. {0, 2}) and one value for y (e.g. {−3}), we will have two
assignments from real numbers to variables:

θ1 = {x 7→ 0, y 7→ −3}, and

θ1 = {x 7→ 2, y 7→ −3}

Thus, the testing theory (Πp
R)T of Πp

R is

(Πp
R)T = {(θ1)pR, (θ2)pR}

3.4 raSAT Loop

Our algorithm raSAT loop is described using a transition system. Each state of the
search procedure is represented by (Π, ϕ, Π̊, ϕV , ϕU , ε, τ) where

• Π is a CNF interval constraint.

• ϕ represents the polynomial constraint.

• Π̊ =
∧
vi∈V

vi ∈ 〈li, hi〉 with 〈li, hi〉 ∈ I. We use ∅ to denote the empty conjunction.

• ϕV consists of conjunction of inequalities that are VALID under over-approximation.
We use ∅ to denote the empty conjunction.

• ϕU is the set of inequalities which are UNKNOWN under over-approximation. We
use ∅ to denote the empty conjunction.

• ε indicates the threshold to stop decomposing intervals.
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• τ is a flag to mark whether the threshold of intervals has been reached. It can be
one of two values ⊥ and >. In the initial state, τ is always ⊥.

The transition rules are described in Table 3.2. Figure 3.1 illustrates the transition
system. Given one box (product of variables’ intervals), e.g. (x, y) ∈ 〈1, 5〉 × 〈−3, 8〉,
IA and Testing attempt to show the satisfiability/unsatisfiability of the constraint. If
neither does, the interval of some variable is decomposed in to smaller intervals, e.g.
〈1, 5〉 of x is decomposed into 〈1, 2〉 and 〈2, 5〉; creating two boxes, e.g. 〈1, 2〉 × 〈−3, 8〉
and 〈2, 5〉×〈−3, 8〉. Each of these box will be examined in next iterations. We use a SAT
solver which implements DPLL procedure to handle the combinations(boxes) of variables
intervals by considering each interval, e.g x ∈ 〈1, 5〉, as a propositional atom. The boxes
is represented by interval constraint Π and Π̊ represents the output of DPLL procedure
on Π. We use threshold ε to prevent some interval to be decomposed deeply. When a
box has the size smaller that ε, it is pruned by being removed from the considering boxes
represented by Π. The transition rules can be understood as following.

• ΠΠΠ UNSAT: The DPLL procedure fails to find an assignment that satisfy Π (in
terms of propositional logic), then there are no more boxes that possibly make the
constraint satisfiable. Because no intervals were pruned by threshold (τ = ⊥), the
given constraint is unsatisfiable with respect to the initial box.

• ΠΠΠ UNKNOWN: The DPLL procedure fails and some intervals were pruned by
threshold (τ = >), we can conclude neither SAT nor UNSAT.

• ΠΠΠ SAT: DPLL procedure outputs one assignment representing a box which is stored
in Π̊. We call this box is the current box. The box is sent to Interval Arithmetic
modules to check against the constraint.

• IA UNSAT: If IA can prove that the constraint is unsatisfiable in the current box,
the box will be removed from the considering boxes simply by adding ¬Π̊ into Π.

• IA SAT: If IA does not disprove the constraint with respect to the current box,
the inequalities in the given constraint is divided into two set:

– ϕV consisting of inequalities that are proved to be VALID in the current box
by IA and

– ϕU (possibly empty) consisting of remaining inequalities.

• IA VALID: If IA showed that all the inequalities are VALID in the current box
(ϕU = ∅), we can conclude the satisfiability of the constraint.

• TEST SAT: Inequalities ϕU 6= ∅ that can not be verified by IA are passed to the
Testing module. If some instances in the current box of variables are found that
make ϕU satisfiable, we can conclude that ϕ is satisfiable because ϕV is satisfiable
for all instances in the current box (proved by IA).
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∅‖Π=⇒!FailState
(Π,ϕ,∅,∅,∅,ε,⊥)→UNSAT Π UNSAT

∅‖Π=⇒!FailState
(Π,ϕ,∅,∅,∅,ε,>)→UNKNOWN Π UNKNOWN

∅‖Π=⇒!Π̊

(Π,ϕ,∅,∅,∅,ε,τ)→(Π,ϕ,Π̊,∅,∅,ε,τ)
Π SAT

Π̊ 6=∅ ϕV ∧ϕU=ϕ ϕV is {Π̊p
IA}-VALID

(Π,ϕ,Π̊,∅,∅,ε,τ)→(Π,ϕ,Π̊,ϕV ,ϕU ,ε,τ)
IA SAT

ϕV =ϕ

(Π,ϕ,Π̊,ϕV ,ϕU ,ε,τ)→SAT IA VALID

Π̊ 6=∅ ϕU 6=∅ ϕU is (Π̊p
R)T -SAT

(Π,ϕ,Π̊,ϕV ,ϕU ,ε,τ)→SAT TEST SAT

ϕU is (Π̊p
R)T -UNSAT Π̊=

∧
vi∈V

vi∈〈li,hi〉 ∀i(hi−li<ε)

(Π,ϕ,Π̊,ϕV ,ϕU ,ε,τ)→(Π∧¬Π̊,ϕ,∅,∅,∅,ε,>)
THRESHOLD

ϕU is (Π̊p
R)T -UNSAT Π̊=

∧
vi∈V

vi∈〈li,hi〉 ∃j(hj−lj>ε) lj<d∈R<hj Ij=vj∈〈lj ,hj〉 Ij1=vj∈〈lj ,d〉 Ij2=vj∈〈d,hj〉

(Π,ϕ,Π̊,ϕV ,ϕU ,ε,τ)→(Π∧(¬Ij∨Ij1∨Ij2)∧(Ij∨¬Ij1)∧(Ij∨¬Ij2)∧(¬Ij1∨¬Ij2),ϕ,∅,∅,∅,ε,τ)
REFINE

Π̊ 6=∅ ϕ is {Π̊p
IA}-UNSAT

(Π,ϕ,Π̊,∅,∅,ε,τ)→(Π∧¬Π̊,ϕ,∅,∅,∅,ε,τ)
IA UNSAT

Table 3.2: Transition rules

• THRESHOLD: Neither IA nor Testing concludes the constraint and the current
box has the size smaller than threshold ε, the box will be also removed from the
considering boxes and τ is set to > to mark this pruning.

• REFINE: Neither IA nor Testing concludes the constraint and the some interval of
the current box has the size larger than threshold ε, decomposition is implemented
on that interval.

Theorem 3.4.1. Starting with state (Π, ϕ, ∅, ∅, ε,⊥), if Π =
∧
vi∈V

vi ∈ 〈li, hi〉 and

〈l1, h1〉 × 〈l2, h2〉 × · · · is bounded, raSATloop terminates.

Proof. In the worst case, all the interval will be decomposed into smallest boxes with
size of ε whose number are bounded to h1−l1

ε
∗ h2−l2

ε
∗ · · · (the number of variables in one
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Figure 3.1: raSAT design

polynomial constraint is also bounded). As a result, raSATloop terminates after checking
all of these boxes.

Example 3.4.1. In Theorem 3.4.1, if Π = x ∈ 〈1, 5〉 ∧ y ∈ 〈−3, 8〉 and ε = 0.1, then
decomposition will create maximally

5− 1

0.1
∗ 8− (−3)

0.1
= 150

boxes.

3.5 Soundness - Completeness

3.5.1 Soundness

Theorem 3.5.1. Let (Π0, ϕ0, Π̊0, ϕ
V
0 , ϕ

U
0 , ε,⊥) be the starting state and

(Π, ϕ, Π̊, ϕV , ϕU , ε, τ) be any state of our system, then the following properties are
invariants:

1. Π̊p
R ⊆ T pR

2. ϕV is Π̊p
R-VALID.
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3. ϕU = ∅ ∨ (ϕ = ϕU ∧ ϕV )

4. ϕ is Πp
R-UNSAT and τ = ⊥ implies that ϕ is (Π0)pR-UNSAT

Proof. 1. Easy from the definition.

2. Easy from the transitions and the fact that {Π̊p
IA} is an over-approximation of Π̊p

R
(Theorem 3.2.1).

3. Easy from the transitions.

4. The proof is done inductively on transitions of the system:

• Initial state: It is obvious because Π = Π0.

• Transitions:

– ΠΠΠ SAT and IA SAT: The interval constraint Π does not changed, so if
the properties holds for the former state, it also does for the later one.

– REFINE:
Denote Π′ = Π ∧ Π′′ where:

Π′′ = (¬Ij ∨ Ij1 ∨ Ij2) ∧ (Ij ∨ ¬Ij1) ∧ (Ij ∨ ¬Ij2) ∧ (¬Ij1 ∨ ¬Ij2)

We will prove (Π′)pR = Πp
R by showing (Π′)pR ∈ Πp

R and (Π′)pR 3 Πp
R.

(Π′)pR ∈ Πp
R(Π′)pR ∈ Πp
R(Π′)pR ∈ Πp
R: Let Mp

R = (R, IpR) be any model in (Π′)pR and
θ = {v 7→ IpR(v) | v ∈ V }. By definition, we have θpR = Mp

R. Be-
cause Mp

R ∈ (Π′)pR, it is the case that |=θIR
Π′, which implies

(Π′)θ
I
R = 1 =⇒ (Π ∧ Π′′)θ

I
R = 1 =⇒ min((Π)θ

I
R , (Π′′)θ

I
R) = 1

=⇒ (Π)θ
I
R and (Π′′)θ

I
R =⇒ |=θIR

Π =⇒ θpR ∈ Πp
R

or Mp
R ∈ Πp

R. As the result, (Π′)pR ∈ Πp
R.

Πp
R ∈ (Π′)pRΠp
R ∈ (Π′)pRΠp
R ∈ (Π′)pR: Let Mp

R = (R, IpR) be any model in Πp
R and

θ = {v 7→ IpR(v) | v ∈ V }. By definition, we have θpR = Mp
R. Because

Mp
R ∈ Πp

R, it is the case that |=θIR
Π. There are two possible cases: |=θIR

Ij
or 6|=θIR

Ij. In the first case, by the construction of Ij1 and Ij2 we can

imply that |=θIR
Ij1 or |=θIR

Ij2. These imply |=θIR
Π′′ and thus |=θIR

Π′ or

Mp
R ∈ (Π′)pR. In the second case, i.e. 6|=θIR

Ij, again by the construction of

Ij1 and Ij2, 6|=θIR
Ij implies 6|=θIR

Ij1 and 6|=θIR
Ij2. These imply that 6|=θIR

Π′′

(by some simple calculation we can prove that (Π′′)θ
p
R = 1). As a result,

|=θIR
Π′ or Mp

R ∈ (Π′)pR.

In either case, we have Mp
R ∈ (Π′)pR for any Mp

R ∈ Πp
R. Then, Πp

R ∈ (Π′)pR.

– IA UNSAT: suppose ϕ is (Π ∧ ¬Π̊)pR-UNSAT. We need to prove
that ϕ is Πp

R-UNSAT. Let Mp
R = (R, IpR) be any model in Πp

R and
θ = {v 7→ IpR(v) | v ∈ V }. The later is the assignment from real numbers
to variables that are included in the former and by definition Mp

R = θpR.
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Because Mp
R ∈ Πp

R, be definition of Πp
R we have |=θIR

Π. There are two

possible cases: either |=θIR
Π̊ or 6|=θIR

Π̊.

If |=θIR
Π̊, by definition θpR ∈ Π̊p

R. In addition because ϕ is {Π̊p
IA}-UNSAT,

ϕ is Π̊p
R-UNSAT (derived from Theorem 3.2.1). As a result, 6|=θpR

ϕ or
6|=Mp

R
ϕ.

If 6|=θIR
Π̊, then by Lemma 2.2.1 we have |=θIR

¬Π̊ which implies |=θIR
Π∧¬Π̊

(because |=θIR
Π). By definition this implies θpR ∈ (Π ∧ ¬Π̊)pR or Mp

R ∈
(Π ∧ ¬Π̊)pR. In addition because ϕ is (Π ∧ ¬Π̊)pR-UNSAT, we can imply
6|=Mp

R
ϕ

In any cases, we can imply that 6|=Mp
R
ϕ for any Mp

R ∈ Πp
R. In other words,

ϕ is Πp
R-UNSAT.

Theorem 3.5.2. Let ϕ be the polynomial constraint to be solved. Starting with the state
(Π =

∧
vi∈V

vi ∈ 〈−∞,+∞〉, ϕ, ∅, ∅, ∅, ε,⊥), if our transitional system terminates and out-

put:

• SAT then ϕ is T pR-SAT.

• UNSAT then ϕ is T pR-UNSAT.

Proof. Because the starting state is Π =
∧
vi∈V

vi ∈ 〈−∞,+∞〉, by definition we have

Πp
R = T pR.

• If the system output SAT, there are two possibles transition to SAT:

– In the case of IA VALID, we have ϕV is Π̊p
R-VALID (invariant 2) =⇒ ϕV

is Π̊p
R-SAT =⇒ ϕ is Π̊p

R-SAT (because ϕV = ϕ is the condition of this

transition). In addition, following invariant 1, we have Π̊p
R ⊆ T pR, then ϕ is

T pR-SAT (Lemma 2.2.3).

– In the case of TEST SAT, ϕU is Π̊p
R-SAT =⇒ there exist Mp

R ∈ Π̊p
R such

that |=Mp
R
ϕV =⇒ (ϕV )M

c
R = 1. In addition, because ϕV is Π̊p

R-VALID

(invariant 2) and Mp
R ∈ Π̊R, we have |=Mp

R
ϕU or (ϕU)M

p
R = 1. Consider the

evaluation of ϕ under the model Mp
R: (ϕ)M

p
R = (ϕU ∧ ϕV )M

p
R (invariant 3) =

min((ϕU)M
p
R , (ϕV )M

p
R ) = min(1, 1) = 1 =⇒ |=Mp

R
ϕ =⇒ ϕ is Π̊p

R-SAT =⇒ ϕ
is T pR-SAT (because of invariant 1 and Lemma 3.2.1)

• If the system output UNSAT, there is only one transition of rule Π UNSAT. Because
∅ ‖ Π =⇒! FailState, Π is unsatisfiable in the sense of propositional logic, and thus
it cannot be satisfiable in terms of first order logic. As the result, by definition Πp

R
is empty which implies that ϕ is Πp

R-UNSAT. By invariant 4, ϕ is T pR-UNSAT.



30

3.5.2 Completeness

Definition 3.5.1. Let Π =
∧
vi∈V

vi ∈ 〈li, hi〉, and ϕ =
n∧
i=1

fi > 0. An theory T is com-

plete with respect to the theory real numbers over polynomial constraint T pR if for each
O ⊂ 〈l1, h1〉 × 〈l2, h2〉 × · · ·, c = (c1, c2, · · · ) ∈ O, and δ > 0, there exists γ > 0, T ′ ⊂ T ,
such that:

• 〈c1 − γ, c1 + γ〉 × 〈c2 − γ, c2 + γ〉 × · · · ⊂ O,

•
n∧
i=1

(fi(c)− δ < fi(x)) ∧ (fi(x) < fi(c) + δ) is T ′-VALID, and

• T ′ is an over-approximation of (Π′)pR where Π′ =
∧
vi∈V

vi ∈ 〈ci − γ, ci + γ〉.

Lemma 3.5.1. Let Π =
∧
vi∈V

vi ∈ 〈li, hi〉 where 〈li, hi〉 ∈ I is open, and ϕ =
n∧
j=1

fj > 0.

Denote

• Sϕ = {(r1, r2, · · · ) | θ = {vi 7→ ri | vi ∈ V } and |=θpR
ϕ} be the set of points that

satisfy the constraint ϕ, and

• S = (〈l1, h1〉 × 〈l1, h1〉 × · · · ) ∩ Sϕ be the set of points that

– are inside the box represented by Π.

– satisfy the constraint ϕ.

If S 6= ∅, then S contain an open set.

Proof. Because S 6= ∅, there exist c = (c1, c2, · · · ) ∈ S. By defini-
tion of S, for all j ∈ {1, · · · , n}, fj(c) > 0. Take δ = min

j=1···n
fj(c), then δ >

0. Because the polynomials are continuous, there exists γ > 0 such that

for all v ∈ 〈c − γ, c+ γ〉,
n∧
j=1

fj(c)− δ < fj(v) < fj(c) + δ which implies for all

v ∈ 〈c− γ, c+ γ〉,
n∧
j=1

fj(v) > 0 (because δ = min
j=1···n

fj(c) ≤ fj(c) for any j). Now con-

sider the open interval

O = (max(l1, c1 − γ),min(h1, c1 + γ)× (max(l2, c2 − γ),min(h2, c2 + γ)× · · ·

It is easy to see that O ⊂ 〈c− γ, c+ γ〉 ⊂ Sϕ and O ⊂ 〈l1, h1〉 × 〈l1, h1〉 × · · · that implies
O ∈ S. In addition because 〈li, hi〉 is open for each i = 1, 2, · · · , O is open by its
construction.

Theorem 3.5.3. Let Π =
∧
vi∈V

vi ∈ 〈li, hi〉 where 〈li, hi〉 ∈ I is open, and ϕ =
n∧
j=1

fj > 0.
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• Sϕ = {(r1, r2, · · · ) | θ = {vi 7→ ri | vi ∈ V } and |=θpR
ϕ} be the set of points that

satisfy the constraint ϕ, and

• S = (〈l1, h1〉×〈l1, h1〉×· · · )∩Sϕ be the set of points that are inside the box represented
by Π and also satisfy the constraint ϕ.

If S 6= ∅, (l1, h1) × (l2, h2) × · · · is bounded, and the threshold ε is small enough; then
raSATloop can detect the satisfiability of ϕ with assumption that the theory of interval
arithmetic T pIA is complete.

Proof. Based on Lemma 3.5.1, there exist an open box (l, h) ∈ S such that for all

(r1, r2, ...) ∈ (l, h),
n∧
j=1

fj > 0. Take any c ∈ (l, h) and take δ = min
j=1···n

(fj(c)). Because IA

is complete by assumption, from Definition 3.5.1 there exists γ > 0 and T ⊂ T pIA such
that

• 〈c− γ, c+ γ〉 ∈ (l, h),

•
n∧
j=1

fj(c)− δ < fj(v) < fj(c) + δ is T -VALID, and

• T is an over-approximation of (Π′)pR where Π′ =
∧
vi∈V

vi ∈ 〈ci − γ, ci + γ〉.

From above second and third conditions, IA can be used to prove that
n∧
j=1

fj(c) − δ <

fj(v) < fj(c) + δ is (Π′)pR-VALID (Theorem 3.1.1) which implies that
n∧
j=1

0 < fj(v) is

(Π′)pR-VALID (because δ = min
j=1···n

(fj(c)) =⇒ fj(c) ≥ δ for all j = 1, 2, · · · , n) or ϕ is

(Π′)pR-VALID =⇒ ϕ is (Π′)pR-SAT =⇒ ϕ is T pR-SAT.
By taking γ as the threshold in (Π, ϕ, ∅, ∅, γ,⊥), raSATloop will terminate (Theo-

rem 3.4.1). Furthermore, 〈c−γ, c+γ〉 ∈ (l, h) =⇒ (c+γ)−(c−γ) < h−l =⇒ 2γ < h−l.
As a consequence, decomposition eventually creates a box of size γ inside (h, l) which can
be used to conclude the satisfiability of the constraint by IA.

Figure 3.2a illustrates a simple case for this theorem where we have two inequalities
and the initial box is represented by Π = x ∈ 〈a, b〉 ∧ y ∈ 〈c, d〉. Here a < b and c < d
make the box open. This box intersects with set of points that satisfy both inequalities.
As a consequence, decomposition will create a box (the blue one) that can be used by IA
to prove the satisfiability of two inequalities.

Theorem 3.5.4. Let Π =
∧
vi∈V

vi ∈ 〈li, hi〉 where 〈li, hi〉 ∈ I is open, and ϕ =
n∧
j=1

fj > 0.

Denote S = {(r1, r2, · · · ) | θ = {vi 7→ ri | vi ∈ V }, |=θI Π and |=θpR

n∧
j=1

fj ≥ 0} be the

set of all points which are inside the box represented by Π and also satisfy
n∧
j=1

fj ≥ 0.
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(a) Example of SAT completeness (b) Example of UNSAT completeness

Figure 3.2: Examples on complete cases of raSAT

If S = ∅, (l1, h1) × (l2, h2) × · · · is bounded, and the threshold ε is small enough; then
raSATloop can prove the unsatisfiability of ϕ with assumption that the theory of Interval
Arithmetic T pIA is complete.

Proof. Let f(v) =
n

min
j=1

fj(v), then f(v) is continuous. Because D = 〈l1, h1〉×〈l2, h2〉×· · ·
is compact, δ = |max

v∈D
f(v)| exists.

First we will prove that δ > 0. In fact, suppose δ = 0 =⇒ |max
v∈D

f(v)| = 0 =⇒

for all c ∈ D, f(c) = 0 =⇒ for all c ∈ D,
n

min
j=1

fj(c) = 0 =⇒ for all c ∈ D, for all

j ∈ {1, · · · , n}, fj(c) ≥ 0. This contradicts with the assumption that S = ∅.
Because T pIA is complete, by Definition 3.5.1, for any point c ∈ D, there exists γ > 0

and T ⊂ T pIA such that

• 〈c− γ, c+ γ〉 ∈ D,

•
n∧
j=1

fj(c)− δ < fj(v) < fj(c) + δ is T -VALID, and

• T is an over-approximation of (Π′)pR where Π′ =
∧
vi∈V

vi ∈ 〈ci − γ, ci + γ〉.

From above second and third conditions, IA can be used to prove
n∧
j=1

fj(c)− δ < fj(v) <

fj(c) + δ is (Π′)pR-VALID (Theorem 3.1.1).

Let fk(c) =
n

min
j=1

fj(c) for k ∈ {1, 2, · · · , n} then fk(c) < 0 otherwise a contradiction with

the assumption that S = ∅ exists. In addition, by definition of f(v) we have fk(c) = f(c)
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which implies |fk(c)| ≤ |max
v∈D

f(v)| =⇒ fk(c) + δ ≤ 0. Moreover, IA can prove that

fk(v) < fk(c) + δ is (Π′)pR-VALID. We have fk(v) < fk(c) + δ is (Π′)pR-VALID =⇒
fk(v) < 0 is (Π′)pR-VALID =⇒ ¬(fk(v) < 0) = fk(v) ≥ 0 is (Π′)pR-UNSAT (Lemma 2.2.2)

=⇒ fk(v) > 0 is (Π′)pR-UNSAT =⇒
n∧
j=1

fj(v) > 0 is (Π′)pR-UNSAT.

In conclusion, for any point in D, we can find a small box containing that point in
which the constraint can be proved to be unsatisfiable by IA. As a result, if ε is small
enough, raSAT loop will terminate (Theorem 3.4.1) and proves the unsatisfiability of the
constraint after checking all the small decomposed boxes.

Figure 3.2b illustrates a simple example for this theorem where we have two inequalities
and the initial box is represented by Π = x ∈ 〈a, b〉 ∧ y ∈ 〈c, d〉. Here a < b and c < d
make the box open. The constraint is unsatisfiable inside the box and decomposition will
eventually separate two satisfiable areas of two inequalities.

The limitation of UNSAT detection comes from the case of kissing situation. Figure 3.3
presents an example of this with the constraint

x2 + y2 < 4 ∧ (x− 4)2 + (y − 3)2 < 9

which is UNSAT but Interval Arithmetic can not uses boxes to separate the satisfiable
areas around the touching points of two inequalities. The condition S = ∅ in the above
Theorem avoids such a kissing situation.

Figure 3.3: Kissing situation

Note that is Theorem 3.5.3 and 3.5.3 requires that the threshold ε is small enough.
Although computing this enough small ε is not easy, raSAT achieves this by incremental
deepening (Chapter 5) strategy in which the value of threshold is made to be smaller if
raSAT fails to conclude the constraint.



Chapter 4

Variations of Interval Arithmetic

Interval Arithmetic is defined formally in Section 3.2 of Chapter 3. This chapter is
going to present two instances of Interval Arithmetic which are used in raSAT: Classical
Interval and Affine Interval. These two kinds differ to each other in the way they represent
intervals and interpret function symbols.

4.1 Classical Interval

A model Mp
CI = (Up

CI , I
p
CI) over intervals contains a set of all intervals Up

CI = Up
IA and a

map IpCI that satisfies the following conditions.

1. IpCI(Real) = IpIA(Real)

2. ∀p ∈ P p; IpCI(p) = IpIA(p)

3. ∀f ∈ F p \{1}; IpCI(f) = Up
CI ×U

p
CI 7→ Up

CI such that IpCI(f)(i1, i2) = i1 fCI i2 where
the definition of fCI is:

• 〈l1, h1〉 ⊕CI 〈l2, h2〉 = 〈l1 + l2, h1 + h2〉.
• 〈l1, h1〉 	CI 〈l2, h2〉 = 〈l1 − h2, h1 − l2〉.
• Operation i1 ⊗CI i2 is defined using case analysis on the types of i1 and i2.

First, the intervals are classified into the following:

– P = {〈a, b〉|a ≥ 0 ∧ b > 0}
– N = {〈a, b〉|b ≤ 0 ∧ a < 0}
– M = {〈a, b〉|a < 0 < b}
– Z = {〈a, b〉}

The definition of ⊗CI is given in Table 4.1.

4. IpCI(1) = 〈1, 1〉

5. ∀v ∈ V ; IpCI ∈ U
p
CI

34
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Class of 〈l1, h1〉 Class of 〈l2, h2〉 〈l1, h1〉 ⊗CI 〈l2, h2〉
P P 〈l1 × l2, h1 × h2〉
P M 〈h1 × l2, h1 × h2〉
P N 〈h1 × l2, l1 × h2〉
M P 〈l1 × h2, h1 × h2〉
M M 〈min(l1 × h2, h1 × l2),max(l1 × l2, h1 × h2)〉
M N 〈h1 × l2, l1 × l2〉
N P 〈l1 × h2, h1 × l2〉
N M 〈l1 × h2, l1 × l2〉
N N 〈h1 × h2, l1 × l2〉
Z P, N, M, Z 〈0, 0〉

P, N, M Z 〈0, 0〉

Table 4.1: Definition of ⊗CI

Theory T pCI = {Mp
CI |M

p
CI is a model over intervals}. Each model differs to another by

the mapping from variables to intervals. As a consequence, one assignment from variables
to intervals can be used to describe an model. We denote Πp

CI as the model represented
by Π = {x ∈ 〈l, h〉|v ∈ V }.

Theorem 4.1.1. CI is an IA.

Proof. Easy.

4.2 Affine Interval

Affine Interval use the formula a0+
n∑
i=1

aiεi to represent the interval 〈a0−
n∑
i=1

|ai|, a0+
n∑
i=1

|ai|〉

with ai ∈ R for i = 0, 1, · · · . For example, the affine interval form of (x ∈)〈2, 4〉 and
(y ∈)〈0, 2〉 is 3 + ε1 and 1 + ε2 respectively, thus the interpretation of x2 − x× y is

(3 + ε1)2 − (3 + ε1)× (1 + ε2) = 9 + 6ε1 + ε21 − (3 + 3ε2 + ε1 + ε1ε2)

= 6 + 5ε1 − 3ε2 + ε21 + ε1ε2

Types of Affine Interval vary by choices of estimating multiplications ε21 and ε1ε2:

1. AA [3, 20] replaces ε1ε2 by a fresh noise symbol.

2. AF1 and AF2 [13] prepares a fixed noise symbol for any ε1ε2.

3. EAI [14] replaces ε1ε2 by 〈−1, 1〉ε1 or 〈−1, 1〉ε2.

4. AF2 [13] replaces ε21 by the fixed noise symbols ε+ or ε−.

These variations of Affine Interval are discussed in details in [11]. This thesis focuses on
AF2 because currently it is used in raSAT.
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AF2

A model Mp
AF2 = (Up

AF2, I
p
AF2) over intervals contains a set of all intervals Up

AF2 = {a0 +
n∑
i=1

aiεi + an+1ε+ + an+2ε− + an+3ε±|∀i ∈ {0, 1, · · · , n + 3}; ai ∈ R} and a map IpAF2 that

satisfies the following conditions.

1. IpAF2(Real) = Up
AF2

2. ∀p ∈ P p; IpAF2(p) = Up
AF2 × U

p
AF2 7→ {true, false} such that IpAF2(p)(a0 +

n∑
i=1

aiεi +

an+1ε+ + an+2ε− + an+3ε±, b0 +
n∑
i=1

biεi + bn+1ε+ + bn+2ε− + bn+3ε±) = IpAI(p)(〈a0 −
n∑
i=1

|ai| − an+2 − an+3, a0 +
n∑
i=1

|ai| + an+1 + an+3〉, 〈b0 −
n∑
i=1

|bi| − bn+2 − bn+3, b0 +

n∑
i=1

|bi|+ bn+1 + bn+3〉)

3. ∀f ∈ F p\{1}; IpAF2(f) = Up
AF2×U

p
AF2 7→ Up

AF2 such that IpAF2(f)(i1, i2) = i1 fAF2 i2

where the definition of fAF2 is as following. Let i1 = a0 +
n∑
i=1

aiεi+an+1ε+ +an+2ε−+

an+3ε± and i2 = b0 +
n∑
i=1

biεi + bn+1ε+ + bn+2ε− + bn+3ε±, then:

– i1⊕AF2 i2 = a0 + b0 +
n∑
i=1

(ai+ bi)εi+(an+1 + bn+1)ε+ +(an+2 + bn+2)ε−+(an+3 +

bn+3)ε±.

– i1	AF2 i2 = a0− b0 +
n∑
i=1

(ai− bi)εi+(an+1 + bn+1)ε+ +(an+2 + bn+2)ε−+(an+3 +

bn+3)ε±.

– i1 ⊗AF2 i2 = a0b0 +
n∑
i=1

(a0bi + aib0)εi +K1ε+ +K2ε− +K3ε±, where:

K1 =
n+3∑

i=1,aibi>0

aibi +


a0bn+1 + an+1b0 if a0 ≥ 0 and b0 ≥ 0
a0bn+1 − an+2b0 if a0 ≥ 0 and b0 < 0
−a0bn+2 + an+1b0 if a0 < 0 and b0 ≥ 0
−a0bn+2 − an+2b0 if a0 < 0 and b0 < 0

K2 =
n+3∑

i=1,aibi<0

aibi +


a0bn+2 + an+2b0 if a0 ≥ 0 and b0 ≥ 0
a0bn+2 − an+1b0 if a0 ≥ 0 and b0 < 0
−a0bn+1 + an+2b0 if a0 < 0 and b0 ≥ 0
−a0bn+1 − an+1b0 if a0 < 0 and b0 < 0

K3 =
n+3∑
i=1

n+3∑
j=1,j 6=i

|aibj|+ |a0|bn+3 + an+3|b0|

4. IpAF2(1) = 1

5. ∀v ∈ V ; IpAF2 ∈ U
p
AF2
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Theory T pAF2 = {Mp
AF2|M

p
AF2 is a model over intervals}. Each model differs to another by

the mapping from variables to intervals. As a consequence, one assignment from variables
to intervals can be used to describe an model. We denote Πp

CI as the model represented
by Π = {x ∈ 〈l, h〉|v ∈ V }.

Theorem 4.2.1. AF2 is an IA.

Proof. Easy.



Chapter 5

Strategies

We implemented a number of strategies for improving efficiency of raSAT: incremental
search and refinement heuristics.

5.1 Incremental search

raSAT applies three incremental strategies, (1) incremental windening, (2) incremental

deepening and (3) incremental testing. Let ϕ =
m∧
j=1

fj > 0 be the constraint to be solved.

5.1.1 Incremental Windening and Deepening

Given 0 < γ0 < γ1 < · · · and ε0 > ε1 > · · · > 0 raSAT’s algorithm design with incremental
widening and deepening is described in Algorithm 1. The idea here is that raSAT starts
searching within small interval and large value of threshold. If SAT is detected, the result
can be safely returned. If the current intervals cannot satisfy the constraint (UNSAT
is detected), larger intervals are consider. In the case of UNKNOWN, the threshold is
not small enough to detect either SAT or UNSAT. As the result, raSAT decreases it and
restarts the search. In Theorem 3.5.3 and Theorem 3.5.4, the threshold γ is not easy to
calculate, but by incremental deepening, such threshold can be eventually reached because
it does exist.

5.1.2 Incremental Testing

One obstacle in testing is the exponentially large number of test instances (number of
selected models). If 2 values are generated for each of n variables, 2n test cases (combi-
nations of generated values) will present.

Example 5.1.1. Suppose {x, y} is the set of variables which appears in the input con-
straint and let {2, 9} and {5, 8} are generated values for x and y respectively. In total 4
test cases arise: (x, y) = (2, 5), (2, 8), (9, 5), (9, 8).

In order to tackle the problem, the following strategies are proposed:

38



39

Algorithm 1 Incremental Widening and Deepening
1: i← 0
2: j ← 0
3: while true do
4: Π =

∧
vi∈V

vi ∈ 〈−γi, γi〉

5: if (Π, ϕ, ∅, ∅, ∅, εj,⊥)→ SAT then
6: return SAT
7: else if (Π, ϕ, ∅, ∅, ∅, εj,⊥)→ UNSAT then
8: if γi = +∞ then
9: return UNSAT

10: else
11: i← i+ 1
12: end if
13: else
14: j ← j + 1
15: end if
16: end while

1. Restrict the number of test cases to 210 by choosing most 10 influential variables
which are decided by the following procedures for generating multiple (2) test values.

• Select 10 inequalities by SAT-likelihood.

• Select 1 variable of each selected API using sensitivity.

2. Incrementally generate test values for variables to prune test cases that do not satisfy
an inequality. This was proposed by Khanh and Ogawa in [11]:

• Dynamically sort the IA-SAT inequalities by SAT-likelihood such that the
inequality which is less likely to be satisfiable will be prioritized.

• Generate the test values for variables of selected inequalities.

Example 5.1.2. Let x2 > 4 and x ∗ y > 0 are two IA-VALID APIs to be tested
and somehow they are sorted in that order, i.e. x2 > 4 is selected before x ∗ y > 0.
Suppose {1, 3} are generated as test values for x which are is enough to test the
first selected API, i.e. x2 > 4. As a result of testing, x = 1 is excluded from the
satisfiable test cases whilst x = 3 is not. Next, when x ∗ y > 0 is considered, y needs
to be generated 2 values, e.g. {−3, 4} and two test cases (x, y) = (3,−3), (3, 4) come
out to be checked. In this example, (x, y) = (1,−3) and (x, y) = (1, 4) are early
pruned by only testing x = 1 against x2 > 4 .

Definition 5.1.1. Given an assignment from variables to intervals θ = {v 7→ i|v ∈ V }
in which i ∈ I and an inequality f > 0. Let 〈l, h〉 = f θ

I
, then the SAT-likelihood of f > 0

is |〈l, h〉 ∩ 〈l, h〉|/(h− l) which is denoted as $(f > 0, θ).
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Figure 5.1: Incremental Testing Example

Definition 5.1.2. Given an assignment from variables to intervals in the form of affine

interval θ = {vi 7→ a0i + a1iεi|vi ∈ V } and a polynomial f . Let a0 +
n∑
j=1

ajεj = f θ
I
, then

we define sensitivity of variable vi ∈ V by the value of ai.

5.2 Refinement Heuristics

Suppose the number of variable is nV ar and initially the intervals assignment is repre-
sented by Π =

∧
vi∈V

vi ∈ 〈li, hi〉. If the interval of each variable is decomposed into two

smaller ones, the new interval constraint becomes Π′ =
∧
vi∈V

(vi ∈ 〈li, ci〉 ∨ vi ∈ 〈ci, hi〉)

where ci is the decomposed point such that li < ci < hi. The number of boxes becomes
2nV ar. The exponentially increase in the number of boxes affect the scalability of raSAT.
To this point, raSAT applies two strategies for boosting SAT detection:

1. In REFINE transition, the interval of one variable is selected for decomposition, raSAT
chooses such variables through the following steps:

• Choose the inequality f > 0 in ϕU with the least value of SAT-likelihood.

• Within f , choose the variable vk with the largest value of sensitivity.

2. After the interval of vk is decomposed, basically the box represented
by Π̊ =

∧
vi∈V

vi ∈ 〈li, hi〉 will become two boxes which are represented

by Π̊1 = v0 ∈ 〈l0, h0〉 ∧ · · · ∧ vk ∈ 〈lk, ck〉 ∧ · · · ∧ vnV ar ∈ 〈lnV ar, hnV ar〉 and
Π̊2 = v0 ∈ 〈l0, h0〉 ∧ · · · ∧ vk ∈ 〈ck, hk〉 ∧ · · · ∧ vnV ar ∈ 〈lnV ar, hnV ar〉. raSAT pre-
pares the following strategies to choose one box to explore:

• the box with higher/smaller value of SAT-likelihood to explore in the next
iteration, i.e. the result of SAT operation in Π SAT is controlled so that the
desired box will be selected, and
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• the box with higher/smaller inequalities that can be solved by IA and Testing.

Definition 5.2.1. Given an assignment from intervals to variables θ = {v 7→ i|v ∈ V }
in which i ∈ I and a constraint

n∧
i=1

fi > 0. The SAT-likelihood of θ is defined as

n

min
i=1

$(fi > 0, θ).

5.3 UNSAT Core

In IA UNSAT rule, the negation of Π̊ is added into the interval constraint so that Π̊ will not
be explore again later because it make the constraint unsatisfiable. If we can find Π̊′ such
that Π̊ = Π̊′∧ Π̊′′ and ϕ is {Π̊′pIA}-UNSAT, we can add ¬Π̊′ into interval constraint instead

of Π̊ to reduce the search space.

Example 5.3.1. Consider the constraint ϕ = x2 +y2 < 1. Suppose in the IA UNSAT rule, we
have Π = (x ∈ 〈2, 3〉 ∨ x ∈ 〈0, 2〉)∧ (y ∈ 〈0, 1〉y ∈ 〈−1, 0〉) and Π̊ = x ∈ 〈2, 3〉 ∧ y ∈ 〈0, 1〉.
The conditions of IA UNSAT are satisfied, ¬Π̊ is added into the interval constraint which
becomes Π∧¬Π̊. The new interval constraint contains {x ∈ 〈2, 3〉, y ∈ 〈−1, 0〉} as one of
its solution. However, with Π̊′ = x ∈ 〈2, 3〉, we have ϕ is {Π̊′pIA}-UNSAT and by adding

¬Π̊′ to the interval constraint, {x ∈ 〈2, 3〉, y ∈ 〈−1, 0〉} is also removed from the search
space.

The constraint ϕ =
n∧
j=1

fj > 0 is Π̊-UNSAT when fk > 0 is Π̊-UNSAT with some

k ∈ {1, 2, · · · , n}. We have two ideas for computing UNSAT core.

1. UNSAT core 1: A sub-polynomial f ′k of fk such that

• f ′k > 0 is Π̊-UNSAT implies that fk is Π̊-UNSAT, and

• f ′k is in fact Π̊-UNSAT.

In this case, we just take Π̊′ =
∧

vi∈var(fk)

vi ∈ 〈li, hj〉.

2. UNSAT core 2: Check all the possible cases if Π̊′.

Example 5.3.2. Consider again the constraint ϕ = x2 + y2 < 1 or 1 − x2 − y2 > 0. In
the IA UNSAT rule, we also have Π = (x ∈ 〈2, 3〉 ∨ x ∈ 〈0, 2〉) ∧ (y ∈ 〈0, 1〉y ∈ 〈−1, 0〉) and
Π̊ = x ∈ 〈2, 3〉 ∧ y ∈ 〈0, 1〉. Here, ϕ is Π-UNSAT. In addition, 1− x2 is the UNSAT core
of 1− x2 − y2 because

• 1− x2 is Πp
IA-UNSAT implies that 1− x2 − y2 is Πp

IA-UNSAT, and

• the constraint 1− x2 > 0 is in fact Πp
IA-UNSAT.
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5.4 Test Case Generation

The value of variable’s sensitivity can also be used to approximate how likely
the value of a polynomial increases when the value of that variable increases.
Consider the constraint f = −x15 ∗ x8 + x15 ∗ x2 − x10 ∗ x16 > 0. With
x2 ∈ [9.9, 10], x8 ∈ [0, 0.1], x10 ∈ [0, 0.1], x15 ∈ [0, 10], and x16 ∈ [0, 10]. The result of AF2
for f is: 0.25ε2−0.25ε8−0.25ε10 +49.5ε15−0.25ε16 +0.75ε+−+49.25. The coefficient of ε2
is positive (0.25), then we expect that if x2 increases, the value of f also increase. As the
result, the test case of x2 is as high as possible in order to satisfy f > 0. We will thus take
the upper bound value of x2, i.e. 10. Similarly, we take the test cases for other variables:
x8 = 0, x10 = 0, x15 = 10, x16 = 0. With these test cases, we will have f = 100 > 0.

5.5 Box Decomposition

Currently raSAT applies balanced decomposition in REFINE rule, e.g. x ∈ 〈0, 10〉 will be
decomposed into x ∈ 〈0, 5〉 and x ∈ 〈5, 10〉. We intend to use the same approximation as
in Section 5.4 to guide the decomposition. Take the same example in Section 5.4 and
suppose x15 is selected for decomposition. Because the coefficient of ε15 is 49.5 which is
positive, we expect the high values for x15 so that f > 0 will be satisfied. As the result,
the interval x15 ∈ 〈0, 10〉 can be decomposed into x15 ∈ 〈0, 10− ε〉 and x15 ∈ 〈10− ε, 10〉
where ε is the threshold for decomposition.



Chapter 6

Experiments

This chapter is going to present the experiments results which reflect how effective our
designed strategies are. In addition, comparison between raSAT, Z3 and iSAT3 will be
also shown. The experiments were done on a system with Intel Xeon E5-2680v2 2.80GHz
and 4 GB of RAM. In the experiments, we exclude the problems which contain equalities
because currently raSAT focuses on inequalities only.

In order to avoid soundness bugs from round-off/over-flow errors, we integrated iR-
RAM1 to check the SAT instances provided by Testing module. If a bug is detected,
raSAT continues searching other boxes instead of concluding satisfiability of the con-
straint.

6.1 Experiments on Strategy Combinations

Experiments on incremental testing and refinements heuristics

We perform experiments only on Zankl, and Meti-Tarski families.
Our combinations of strategies mentioned in Section 5.2 are,

Selecting a test-UNSAT API Selecting a box (to explore): Selcting a variable:
(1) Least SAT-likelyhood. (3) Largest number of SAT inequalities. (8) Largest sensitibity.
(2) Largest SAT-likelyhood. (4) Least number of SAT inequalities.

(5) Largest SAT-likelyhood.
(6) Least SAT-likelyhood.

(10) Random. (7) Random. (9) Random.

Table 6.1 shows the experimental results of above mentioned combination. The timeout
is set to 500s, and each time is the total of successful cases (either SAT or UNSAT).

Note that (10)-(7)-(9) means all random selection. Generally, the combination of (5)
and (8) show the best results, though the choice of (1),(2), and (10) shows different
behavior on benchmarks. We tentatively prefer (1) or (10), but it needs to be investigated
further.

1http://irram.uni-trier.de
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Benchmark (1)-(5)-(8) (1)-(5)-(9) (1)-(6)-(8) (1)-(6)-(9) (10)-(5)-(8) (10)-(6)-(8)
Matrix-1 (SAT) 20 132.72 (s) 21 21.48 19 526.76 18 562.19 21 462.57 19 155.77
Matrix-1 (UNSAT) 2 0.00 3 0.00 3 0.00 3 0 3 0.00 3 0.00
Matrix-2,3,4,5 (SAT) 11 632.37 1 4.83 0 0.00 1 22.50 9 943.08 1 30.48
Matrix-2,3,4,5 (UNSAT) 8 0.37 8 0.39 8 0.37 8 0.38 8 0.38 8 0.38

Benchmark (2)-(5)-(8) (2)-(5)-(9) (2)-(6)-(8) (2)-(6)-(9) (2)-(7)-(8) (10)-(7)-(9)
Matrix-1 (SAT) 22 163.47 (s) 19 736.17 20 324.97 18 1068.40 21 799.79 21 933.39
Matrix-1 (UNSAT) 2 0 2 0.00 2 0.00 2 0.00 2 0.00 2 0.00
Matrix-2,3,4,5 (SAT) 5 202.37 1 350.84 1 138.86 0 0.00 0 0.00 0 0.00
Matrix-2,3,4,5 (UNSAT) 8 0.43 8 0.37 8 0.40 8 0.38 8 0.37 8 0.38

Benchmark (1)-(3)-(8) (1)-(4)-(8) (2)-(3)-(8) (2)-(4)-(8) (10)-(3)-(8) (10)-(4)-(8)
Matrix-1 (SAT) 20 738.26 (s) 21 1537.9 18 479.60 21 867.99 20 588.78 19 196.21
Matrix-1 (UNSAT) 2 0.00 2 0.00 2 0.00 2 0.00 2 0.00 2 0.00
Matrix-2,3,4,5 (SAT) 0 0.00 2 289.17 1 467.12 1 328.03 1 195.18 2 354.94
Matrix-2,3,4,5 (UNSAT) 8 0.36 8 0.36 8 0.34 8 0.37 8 0.37 8 0.39

Benchmark (1)-(5)-(8) (1)-(5)-(9) (10)-(5)-(8) (10)-(7)-(9)
Meti-Tarski (SAT, 3528) 3322 369.60 (s) 3303 425.37 3325 653.87 3322 642.04
Meti-Tarski (UNSAT, 1573) 1052 383.40 1064 1141.67 1100 842.73 1076 829.43

Table 6.1: Combinations of raSAT strategies on NRA/Zankl,Meti-Tarski benchmark

Preliminary Experiments on UNSAT core

Strategy UNSAT core 1 was already implemented in [10] and the other strategy was
implemented in this work. We did the experiments on the SMT-LIB family Hong where
each problem is unsatisfiable and of the following form:

n∑
i=1

x2
i < 1 ∧

n∏
i=1

xi > 1

where n ranges from 1 to 20. Table 6.2 shows the experiments for raSAT with/without
UNSAT core strategies where we fixed the initial intervals to be 〈0, 10〉 and the threshold
0.1 (i.e. no incremental deepening and widening). UNSAT core 2 works fine because
problems in Hong family contain polynomials with lots of UNSAT cores which this strat-
egy tends to calculate. On the other hand, UNSAT core 1 has not been well implemented
in the way raSAT search for a sub-polynomial. Experiments for these strategies on other
benchmarks of SMT-LIB did not show improvements in the result, we need further inves-
tigations.

Preliminary Experiments on Test Case Generation and Box De-
composition Strategies

Table 6.3 illustrates the experiments of this strategy together with (1)-(5)-(8). In com-
parison with (1)-(5)-(8), this strategy solves more satisfiable constraints and the solving
time is generally smaller for the same constraint.
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Problem
No UNSAT core UNSAT core 1 UNSAT core 2

Time (s) Result Time (s) Result Time (s) Result
hong 1 0 UNSAT 0 UNSAT 0.004 UNSAT
hong 2 0.00838 UNSAT 0.016 UNSAT 0.016 UNSAT
hong 3 0.007441 UNSAT 0.016 UNSAT 0.016 UNSAT
hong 4 0.114857 UNSAT 0.124 UNSAT 0.016 UNSAT
hong 5 0.27588 UNSAT 0.272 UNSAT 0.028 UNSAT
hong 6 1.20687 UNSAT 1.288 UNSAT 0.052 UNSAT
hong 7 9.29289 UNSAT 9.996 UNSAT 0.112 UNSAT
hong 8 153.619 UNSAT 164.288 UNSAT 0.68 UNSAT
hong 9 117.937 UNSAT 129.044 UNSAT 0.08 UNSAT
hong 10 307.208 UNSAT 281.696 UNSAT 0.152 UNSAT
hong 11 478.605 UNSAT 412.028 UNSAT 0.236 UNSAT
hong 12 500 Timeout 500 Timeout 0.456 UNSAT
hong 13 500 Timeout 500 Timeout 0.752 UNSAT
hong 14 500 Timeout 500 Timeout 1.572 UNSAT
hong 15 500 Timeout 500 Timeout 2.756 UNSAT
hong 16 500 Timeout 500 Timeout 5.98 UNSAT
hong 17 500 Timeout 500 Timeout 10.864 UNSAT
hong 18 500 Timeout 500 Timeout 24.352 UNSAT
hong 19 500 Timeout 500 Timeout 47.968 UNSAT
hong 20 500 Timeout 500 Timeout 103.484 UNSAT

Table 6.2: Experiments on UNSAT core computations

Benchmark SAT UNSAT
Zankl/matrix-1 (53) 24 511.07 (s) 2 0.009(s)

Zankl/matrix-2,3,4,5 (98) 13 477.62 (s) 8 0.39(s)

Table 6.3: raSAT with sensitivity in testing
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Benchmark SAT UNSAT
Zankl/matrix-1 (53) 24 510.55 (s) 2 0.01(s)

Zankl/matrix-2,3,4,5 (98) 9 1030.35 (s) 8 0.38(s)

Table 6.4: raSAT with sensitivity in decomposition

The experiments on box decomposition strategy is shown in Table 6.4 shows when it is
used together with (1)-(5)-(8) and the strategy in Section 5.4. Basically the result has not
been improved in comparison with the result in Section 5.4, we need further investigation.

6.2 Comparison with other SMT Solvers

We compare raSAT with other SMT solvers on NRA benchmarks, Zankl and Meti-Tarski.
The timeouts for Zankl and Meti-tarski are 500s and 60s, respectively. For iSAT3, ranges
of all variables are uniformly set to be in the range [−1000, 1000] (otherwise, it often
causes segmentation fault). Thus, UNSAT detection of iSAT3 means UNSAT in the
range [−1000, 1000], while that of raSAT and Z3 4.3 means UNSAT over [−∞,∞].

Among these SMT solvers, Z3 4.3 shows the best performance. However, if we closely
observe, there are certain tendency. Z3 4.3 is very quick for small constraints, i.e.,
with short APIs (up to 5) and a small number of variables (up to 10). raSAT shows
comparable performance on SAT detection with longer APIs (larger than 5) and a larger
number of variables (more than 10), and sometimes outforms for SAT detection on vary
long constraints (APIs longer than 40 and/or more than 20 variables). Such examples
appear in Zankl/matrix-3-all-*, matrix-4-all-*, and matrix-5-all-* (total 74 problems),
and raSAT solely solves

• matrix-3-all-2 (47 variables, 87 APIs, and max length of an API is 27),

• matrix-3-all-5 (81 variables, 142 APIs, and max length of an API is 20),

• matrix-4-all-3 (139 variables, 244 APIs, and max length of an API is 73), and

• matrix-5-all-01 (132 variables, 276 APIs, and max length of an API is 47).

Note that, for Zankl, when UNSAT is detected, it is detected very quickly. This is because
SMT solvers detects UNSAT only when they find small UNSAT cores, without tracing
all APIs. However, for SAT detection with ;arge problems, SMT solvers need to trace all
problems. Thus, it takes much longer time.
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Benchmark raSAT Z3 4.3 iSAT3
SAT UNSAT SAT UNSAT SAT UNSAT

Zankl/matrix-1 (53) 20 132.72 (s) 2 0.00 41 2.17 12 0.00 11 4.68 3 0.00
Zankl/matrix-2,3,4,5 (98) 11 632.37 8 0.37 13 1031.68 11 0.57 3 196.40 12 8.06
Meti-Tarski (3528/1573) 3322 369.60 1052 383.40 3528 51.22 1568 78.56 2916 811.53 1225 73.83

Table 6.5: Comparison among SMT solvers

raSAT Z3
SAT UNSAT SAT UNSAT

156 244.6(s) 2 0.03 (s) 205 1.12 (s) 22 0.05 (s)

Table 6.6: Experiments on 217 QEPCAD problems from Hidenao Iwane

6.3 Experiments with QE-CAD Benchmark

We also did experiments on QE-CAD problems provided by Mohab Safey El Din2 - LIP6
who is working on QE-CAD simplification (checking SAT/UNSAT only and the complex-
ity is from DEXP to EXP) and the QEPCAD problems collected by Hidenao Iwane3.

The benchmarks from LIP6 are all unsatisfiable and contain long polynomials (in terms
of monomials number). From the experiments with raSAT and Z3, these benchmarks show
that they are very difficult to be solved (Table 6.7). These benchmarks may be suitable
targets for our UNSAT core strategies in the future.

In terms of QEPCAD benchmarks, while Z3 solves all 217 problems, raSAT solves
156/205 satisfiable and 2/22 unsatisfiable benchmarks. Apart from a number of problems
which raSAT has errors in parsing, the unsolved ones are mostly unsatisfiable. This can
be tackled by strategies on UNSAT core which is left for our future works.

2http://www-polsys.lip6.fr/~safey/
3https://github.com/hiwane/qepcad/

Problem
raSAT Z3

Time (s) Result Time (s) Result
f23 3600 Timeout 3599.55 Timeout
f22 3600 Timeout 3599.51 Timeout
pol 3600 Timeout 0.02499 UNSAT
f13 3600 Timeout 3599.17 Timeout
pol1 3600 Timeout 3601.61 Timeout
f12 3600 Timeout 3599.27 Timeout

Table 6.7: Experiments on problems from LIP6



Chapter 7

Extensions: Equality Handling and
Polynomial Constraint over Integers

7.1 SAT on Equality by Intermediate Value Theorem

Single Equation

For solving polynomial constraints with single equality (g = 0), we apply Intermediate
Value Theorem. That is, if existing 2 test cases such that g > 0 and g < 0, then g = 0 is
SAT somewhere in between.

Lemma 7.1.1. For ϕ =
m∧
j

fj > 0 ∧ g = 0, F is SAT, if there is a box represented by

Π =
∧
vi∈V

vi ∈ (li, hi) such that

(i)
m∧
j

fj > 0 is Πp
R-VALID, and

(ii) there are two instances ~t, ~t′ in the box with g(~t) > 0 and g(~t′) < 0.

Proof. It is clear from the Intermediate Value Theorem that there exist an point ~t0 between

~t and ~t′ such that g(~t0) = 0. In addition, because
m∧
j

fj > 0 is Πp
R-VALID, ~t0 also satisfies

m∧
j

fj > 0. As a result, ϕ is satisfiable with ~t0 as the SAT instance.

Example 7.1.1. Consider the constraint ϕ = f(x, y) > 0 ∧ g(x, y) = 0. Suppose we can
find a box represented by Π = x ∈ 〈a, b〉 ∧ y ∈ 〈c, d〉 such that f(x, y) > 0 is Πp

R-VALID
(Figure 7.1). In addition, inside that box, we can find two points (u1, v1) and (u2, v2) such
that g(u1, v1) > 0 and g(u2, v2) < 0. By Lemma 7.1.1, the constraint is satisfiable.

raSAT first tries to find a box of variables’ intervals (by refinements) such that
m∧
j

fj > 0

is VALID inside that box. Then it tries to find 2 instances for g > 0 and g < 0 by testing.
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Figure 7.1: Example on solving single equation using the Intermediate Value Theorem

Intermediate Value Theorem guarantees the existence of an SAT instance in between.
Note that this method does not find an exact SAT instance.

Multiple Equations

The idea of using the Intermediate Value Theorem can also be used for solving mul-

tiple equations. Consider n equations (n ≥ 1):
n∧
i=1

gi = 0 and an interval constraint∧
vi∈V

vi ∈ 〈li, hi〉. If we can find a set {V1, · · · , Vn} that satisfies the following properties,

then we can conclude that
n∧
i=1

gi = 0 is satisfiable in
∧
vi∈V

vi ∈ 〈li, hi〉.

• For all i = 1, · · · , n; we have Vi ⊂ var(gi).

• For all i 6= j, we have Vi 6= Vj.

• For all i = 1, · · · , n; let ki = |Vi| and Vi = {vij | 1 ≤ j ≤ ki}. Then, there exist two
values (vi1, · · · , vikI ) = (xi1, · · · , xiki) and (vi1, · · · , vikI ) = (x′i1, · · · , x′iki) such that

gi(xi1, · · · , xiki , · · · , vik, · · · ) > 0

and
gi(x

′
i1, · · · , x′iki , · · · , vik, · · · ) < 0

for all values of vik in 〈lik, hik〉 where vik ∈ var(gi) \ Vi. We denote ivt(gi, Vi,Π) to
represent that the polynomial gi enjoy this property with respect to Vi and Π.

By the first two properties, this method restricts that the number of variables must be
greater than or equal to the number of equations.
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Example 7.1.2. Consider two equations g1(x, y) = 0 and g2(x, y) = 0 (Figure 7.2)
which satisfy the above restriction on the number of variables, and the variable intervals
is Π = x ∈ 〈c1, d1〉 ∧ y ∈ 〈d2, c2〉. Let V1 = {x} and V2 = {y}, we have:

g1(c1, y) < 0 and g1(d1, y) < 0 for all y ∈ 〈d2, c2〉; and

g2(x, d2) > 0 and g2(x, c2) < 0 for all x ∈ 〈c1, d1〉
Thus we can conclude that g1(x, y) = 0 ∧ g2(x, y) = 0 has a solution inside the box
represented by Π.

Figure 7.2: Example on solving single equation using the Intermediate Value Theorem

Our current implementation of handling multiple equations is very naive which is de-
scribed in Algorithm 2 because for each polynomial, raSAT checks every possible subsets

of its variables. As the result, given the constraint
n∧
i=1

gi = 0, in the worst case raSAT

will check 2|var(g1)|∗· · ·∗2|var(gn)| cases. As a future work, we may use variables’ sensitivity
to give priority on subsets of variables.

Experiments on Benchmarks

In Table 7.1 we show preliminary experiment for 15 problems that contain polynomial
equations in Zankl family. The first 4 columns indicate name of problems, the number
of variables, the number of polynomial equalities and the number of inequalities in each
problem, respectively. The last 2 columns show comparison results of Z3 4.3 and raSAT.
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Algorithm 2 Solving multiple equations
n∧
i=1

gi = 0 with interval constraint

Π =
∧
vi∈V

vi ∈ 〈li, hi〉

1: function equationsProver(
n∧
i=j

gi = 0,Π, V0)

2: if j > n then . All equations are checked
3: return SAT
4: end if
5: for Vj ∈ P (var(gj)) do . P (var(gj)) is the powerset of var(gj)
6: if Vj ∩ V = ∅ and ivt(V ′, gj,Π) then
7: V0 ← V0 ∪ V ′

8: if equationsProver(
n∧

i=j+1

gi = 0,Π, V0) = SAT then

9: return SAT
10: end if
11: end if
12: end for
13: return UNSAT
14: end function

15: equationsProver(
n∧
i=1

gi = 0,Π, ∅)

Problem No. No. No. Z3 4.3 (15/15) raSAT (15/15)
Name Variables Equalities Inequalities Result Time(s) Result Time(s)
gen-03 1 1 0 SAT 0.01 SAT 0.001
gen-04 1 1 0 SAT 0.01 SAT 0.001
gen-05 2 2 0 SAT 0.01 SAT 0.003
gen-06 2 2 1 SAT 0.01 SAT 0.005
gen-07 2 2 0 SAT 0.01 SAT 0.002
gen-08 2 2 1 SAT 0.01 SAT 0.009
gen-09 2 2 1 SAT 0.03 SAT 0.007
gen-10 1 1 0 SAT 0.02 SAT 0.002
gen-13 1 1 0 UNSAT 0.05 UNSAT 0.002
gen-14 1 1 0 UNSAT 0.01 UNSAT 0.002
gen-15 2 3 0 UNSAT 0.01 UNSAT 0.03
gen-16 2 2 1 SAT 0.01 SAT 0.006
gen-17 2 3 0 UNSAT 0.01 UNSAT 0.03
gen-18 2 2 1 SAT 0.01 SAT 0.002
gen-19 2 2 1 SAT 0.05 SAT 0.046

Table 7.1: Experimental results for 15 equality problems of Zankl family
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7.2 Polynomial Constraints over Integers

raSAT loop can be slightly modified to handle NIA (nonlinear arithmetic over inte-
gers) constraints from NRA, by setting γ0 = 1 in incremental deepening in Section 5.1
and restricting test data generation on integers. We also compare raSAT (combina-
tion (1)− (5)− (8)) with Z3 4.3 on NIA/AProVE benchmark. AProVE contains 6850
inequalities among 8829. Some has several hundred variables, but each API has few
variables (mostly just 2 variables).

The results are,

– raSAT detects 6764 SAT in 1230.54s, and 0 UNSAT.

– Z3 4.3 detects 6784 SAT in 103.70s, and 36 UNSAT in 36.08s.

where the timeout is 60s. raSAT does not successfully solve any unsatisfiable problem,
since they have large coefficients which lead exhaustive search on large area.



Chapter 8

Related Works

8.1 Methodologies for Polynomial Constraints over

Real Numbers

Although solving polynomial constraints on real numbers is decidable [21], current
methodologies have their own pros and cos. They can be classified into the following
categories:

1. Quantifier Elimination by Cylindrical Algebraic Decomposition (QE-
CAD) [1] is a complete technique, and is implemented in Mathematica,
Maple/SynRac, Reduce/Redlog, QEPCAD-B, and recently in Z3 4.3 (which is re-
ferred as nlsat in [9]). Although QE-CAD is precise and detects beyond SAT in-
stances (e.g., SAT regions), scalability is still challenging, since its complexity is
doubly-exponential with respect to the number of variables.

2. Virtual Substitution eliminates an existential quantifier by substituting the cor-
responding quantified variable with a very small value (−∞), and either each root
(with respect to that variable) of polynomials appearing in the constraint or each
root plus an infinitesimal ε. Disjunction of constraints after substitutions is equiv-
alent to the original constraint. Because VS needs the formula for roots of polyno-
mials, its application is restricted to polynomials of degree up to 4. SMT-RAT and
Z3 [17] applies VS.

3. Bit-blasting. In this category of methodology, numerical variables are represented
by a sequence of binary variables. The given constraint is converted into another
constraint over the boolean variables. SAT solver is then used to find a satisfiable
instance of binary variables which can be used to calculate the values of numerical
variables. MiniSmt [22], the winner of QF NRA in SMT competition 2010, applies
it for (ir)-rational numbers. It can show SAT quickly, but due to the bounded bit
encoding, it cannot conclude UNSAT. In addition, high degree of polynomial results
in large SAT formula which is an obstacle of bit-blasting.

53
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4. Linearization. CORD [5] uses COrdinate Rotation DIgital Computer (CORDIC)
for real numbers to linearizes multiplications into a sequence of linear constraints.
Each time one multiplication is linearized, a number of new constraints and new
variables are introduced. As a consequence, high degree polynomials in the original
constraint lead to large number of linear constraints.

5. Interval Constraint Propagation (ICP) which are used in SMT solver com-
munity, e.g., iSAT3 [4], dReal [7], and RSOLVER [18]. ICP combines over-
approximation by interval arithmetics and constraint propagation to prune out the
set of unsatisfiable points. When pruning does not work, decomposition (branching)
on intervals is applied. ICP which is capable of solving ”multiple thousand arith-
metic constraints over some thousands of variables” [4] is practically often more
efficient than algebraic computation.

Because raSAT in the same category with iSAT3 and dReal, next section is going to
take a look at details of methodologies used in these solvers.

8.2 Solvers using Interval Constraint Propagation

iSAT3

Although iSAT3 also uses Interval Arithmetic, its algorithm integrates IA with DPLL
procedure tighter than one of raSAT. During DPLL procedure, in addition to an as-
signment of literals, iSAT3 also prepares a data structure to store interval boxes where
each box corresponds to one decision level of DPLL procedure’s assignment. In Unit-
Propagation rule, intead of using standard rule, iSAT3 searches for clauses that have
all but one atoms being inconsistence with the current interval box. When some atom are
selected for the literals assignment, this tool tries to use the selected atoms to contract the
corresponding box to make it smaller. In order to do this, iSAT3 convert each inequal-
ity/equation in the given constraints into the conjunction of the atoms of the following
form by introducing additional variables:

atom ::= bound | equation
bound ::= variable relation rational constant
relation ::= <|≤|=|≥|>
equation ::= variable = variable bop variable
bop ::= + | − | ×

In other words, the resulting atoms are of the form, e.g., either x > 10 or x = y + z. For
example, the constraint

x2 + y2 < 1

is converted into: 
x1 = x2

x2 = y2

x3 = x1 + x2

x3 < 1
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From the atoms of these form, the contraction can be easily done for interval boxes:

• For the bound atom of the form, e.g., x > 10, if the bound is x ∈ 〈0, 100〉, then the
contracted box contain x ∈ 〈10, 100〉.

• For the equations of three variables x = y bop z, from bounds of any two variables,
we can infer the bound for the remaining one. For example, from

x = y.z
x ∈ 〈1, 10〉
y ∈ 〈3, 7〉

we can infer that

z ∈ 〈1
7
,
10

3
〉

When the UnitPropagation and contraction can not be done, iSAT3 split one interval
(decomposition) in the current box and select one decomposed interval to explore which
corresponds to decide step. If the contraction yields an empty box, a conflict is detected
and the complement of the bound selection in the last split needs to be asserted. This is
done via learn the causes of the conflict and backjump to the previous bound selection
of the last bound selection. In order to reason about causes of a conflict, iSAT3 maintains
an implication graph to represents which atoms lead to the asserting of one atom.

dReal

In stead of showing satisfiability/unsatisfiability of the polynomial constraints ϕ over the
real numbers, dReal proves that either

• ϕ is unsatisfiable, or

• ϕδ is satisfiable.

Here, ϕδ is the δ-weakening of ϕ. For instance, the δ-weakening of x = 0 is |x| ≤ δ. Any
constraint with operators in {<,≤, >,≥,=, 6=} can be converted into constraints that
contains only = by the following transformations.

• Removing 6=: Each formula of the form f 6= 0 is transformed into f > 0 ∨ f < 0.

• Removing < and ≤: Each formula of the form f < 0 or f ≤ 0 is transformed into
−f ≥ 0 or −f > 0 respectively.

• Removing > and ≥: Each formula of the form f > 0 or f ≥ 0 is transformed into
f − x = 0 by introducing an auxiliary variable x that has bound [0,m] or (0,m]
respectively. Here, m is any rational number which is greater than the maximum of
f over intervals of variables. As the result, dReal requires the input that ranges of
variables must be compact.

Note that the satisfiability of ϕδ does not imply that of ϕ. dReal’s methodology [6]
also cooperates DPLL with ICP in the lazy manner as in raSAT.



Chapter 9

Conclusion

This thesis presented improvement and extensions for an SMT solved raSAT including
heuristics to deal with exponential exploration of boxes, extensions for handling equations
and handling constraints over integer numbers. From the experiments on standard SMT-
LIB benchmarks, raSAT is able to solve large constraints (in terms of the number of
variables) which are difficult for other tools. The contributions of this work are as follows:

1. To deal with exponential growth of the number of boxes during refinement (interval
decomposition), two strategies for selecting one variable to decomposed and selecting
one box were proposed:

• Selecting one box. The box with more possiblity to satisfy the constraint
is selected to explore, which is estimated by several heuristic measures, called
SAT likelyhood, and the number of unsolved polynomial inequalities.

• Selecting one variable. The most influential variable is selected for mul-
tiple test cases and decomposition. This is estimated by sensitivity which is
determined during the approximation process.

2. Two schemes of incremental search are proposed for enhancing solving process:

• Incremental deepening. raSAT follows the depth-first-search manner. In
order to escape local exhaustive search, it starts searching with a threshold that
each interval will be decomposed no smaller than it. If neither satisfiability nor
unsatisfiability is detected, a smaller threshold is taken and raSAT restarts.

• Incremental widening. Starting with a small intervals, if raSAT detects
UNSAT, it enlarges input intervals and restarts. This strategy is effective in
detecting satisfiability of constraints because small intervals reduce the number
of boxes after decomposition.

3. Satisfiability confirmation step by an error-bound guaranteed floating point package
iRRAM1, to avoid soundess bugs caused by roundoff errors.

1http://irram.uni-trier.de
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4. This work also implemented the idea of using Intermediate Value Theorem to show
the satisfiability of multiple equations which was suggested in [10].

5. raSAT is also extended to handle constraints over integer numbers by simple ex-
tension in the approximation process.

Future Directions

A number of ideas for the future works are:

1. UNSAT core: Two strategies SAT likelihood and the number of unsolved inequal-
ities aim at boosting satisfiability detection. For unsatisfiable constraints, UNSAT
core is the key in expeditious detection. Although we have some ideas for this
but they did not show much improvement in experiments. As a future work, more
investigation is needed for UNSAT core.

2. Test case generation: Currently raSAT randomly generates test cases in testing
phase. We had the idea of using sensitivity to guide testing but this needs to be
investigated in detail.

3. Box Decomposition: The key in UNSAT detection is also how to early isolate
unsatisfiable intervals that is done through decomposition. Note that at the moment
the decomposition strategy of raSAT is taking its middle point.
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