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Chapter 1

Introduction

1.1 Background

\Customer Satisfaction" is one of the key issues in the business �eld today.

Re
ecting the abundance of products and the stagnancy of the domestic

economy, consumers become more selective with purchasing. Keeping de-

livery promises is often considered to be the main performance measure for

the quality of customer service. To respond to the customers' needs quickly,

most retailers are now managing their business process with POS (Point Of

Sales) system. The retailers consequently request their vendors to supply

\needed items in needed amount at needed time." To meet such requests

from the retailers and minimize cost, it is necessary for the vendors, i.e. the

producers, to have careful policies for the production and inventory control.

The producers would like to suppress the inventory cost as much as possible

without making their customers wait too long. The producers promise a

�xed delivery time to the customers. Sox, Thomas and McClain [5] called it

service window (its length denoted T ). The objective of the producers is to

maximize the number of the orders �lled within T with keeping the inven-

tory level as low as possible. To quantify the level of the customer service

regarding delivery time, �ll rate is de�ned as the fraction of demand satis�ed

within the service window. The di�erent kinds of �nished goods are stored

in the inventory which has a limited capacity. Once the total basestock level

is speci�ed, basestock allocation which maximizes the �ll rate can be found

using a proper method. Sox et al. proposed an algorithm of the bases-

tock allocation for M=M=1 production-inventory model. M=M=1 represent

a queueing system with the exponential distribution concerning the intervals

of customer arrival and production. They also considered the production

priority rules other than FIFO and showed the improvement in the �ll rate.
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1.2 Objectives of Research

The model proposed by Sox et al. is easily applicable but it provides optimal

or approximate solutions for a rather limited number of practical situations.

The main purpose of the thesis is to extend the model so that it is useful

for a larger variety of real business situations and test the worthiness of the

proposed extensions. To achieve these objectives, the original model of Sox

et al. is extended in the following three directions.

First, the original model is restricted to exponential production time dis-

tributions. Here a larger class of production time distribution is considered,

namely k-stage Erlang distributions.

Second, the original model is applicable only to situations with a single-

location �nished-goods inventory facility. Moreover, it does not permit limits

on the individual basestock levels on subgroup of products. The proposed

extension includes both the possibility of several inventory facilities and limits

on the levels of basestock for subsets of products. The basestock allocation

algorithm is considered for such partitioned model.

Third, Sox et al. introduced a priority rule for production, BackOrder-

gets-�rst-Priority (BOP), and improved the �ll rate over FIFO with a �xed

service window. It is found that BOP is e�cient production rule overall,

but works negatively on the �ll rate in some conditions. The proposed rule,

Modi�ed BOP, is expected to solve that problem and achieve higher �ll rate

than BOP.

1.3 Composition of Thesis

The thesis has the following composition. In Chapter 2, the basics of queueing

theory, general concepts of production-inventory model and the model of

Sox et al. are described for the help to understand following chapters. In

Chapter 3 and Chapter 4, the extensions of production time distributions

and inventory constraints are described, respectively. In Chapter 5, a new

production rule Modi�ed BOP is introduced, and its improvement over BOP

and FIFO is shown. Finally in Chapter 6, the reviews of the research and

the concluding remarks are stated.
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Chapter 2

Preliminary

In this chapter, �rst the basics of the queueing theory are described, next the

general concepts of the production-inventory model are outlined, then �nally

the model proposed by Sox et al. is explained.

2.1 Basics of Queueing Theory

The model described here is based on queueing theory. Its basic concepts

related to the model are summarized as follows.

2.1.1 M=M=1 Model

The simplest queueing model is the \M=M=1" model. M=M=1 is known as

Kendall's notation. The �rst \M" means that the interarrival times of cus-

tomers follow exponential distribution. Customers arrive totally at random

in this case. The second \M" means that service times also follow the ex-

ponential distribution. The distribution curve of the exponential is shown in

Fig. 2.1. In the exponential distribution, the probability is highest when time

interval is 0. The last \1" represents the number of servers. If the M=M=1

model is applied to the inventory model, it is reasonable to assume the expo-

nential distribution for the customer's arrival but sometimes unreasonable [4,

p.256] for the service time because a certain time lapse is necessary to give

the services.

The probability distribution for this model is considered as follows. Let

� and n(T ) represent the average arrival rate of customers and the number

of customer arrivals in the period T , respectively. Then the probability

distribution of the number of customers arriving in a �nite time interval

[0; T ] has following Poisson distribution:
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Figure 2.1: Exponential Distribution (1=� = 2)

P [n(T ) = i] =
(�T )i

i!
e��T

When the service rate is denoted by �, the probability of �nding n cus-

tomers in the system (i.e. queue + server) is calculated as follows:

pn = (1� �)�n

where

� =
�

�
:

Expected number of customers E[N(t)] in the systems is

E[N(t)] =
�

1� �
=

�

�� �

where N(t) is the number of customers in the system at time t.

2.1.2 M=Ek=1 Model

This model has the Erlang distribution for the service time. The probability

density function f(t) of the k-stage Erlang distribution is

f(t) =
(�k)k

(k � 1)!
tk�1e�k�t:
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Figure 2.2: Erlang Distribution (1=� = 2)

An equivalent representation of the k-stage Erlang distribution is shown in

Fig. 2.3.

kµ kµ kµ

1st stage 2nd stage k-th stage

Server

Queue

Figure 2.3: The k-stage Erlang distribution represented in terms of the ex-

ponential server

In this system, the service facility consists of k exponential servers in

tandem, each of which has the service rate k�. In this representation, when

a customer departs by exiting from the last (i.e., k-th) stage, a new customer

may enter and proceed one stage at a time. The total time that a customer

spends in the k-stage facility is distributed according to the k-stage Erlang

distribution. When k is equal to 1, the distribution is exactly same to the

exponential distribution. As k approaches in�nity, the limit of this density

function approaches a unit impulse function at the point t = 1=�. The

derivation of the probability distribution function is as follows. First let

consider a Poisson process with rate k�. If every k-th service is selected,

then this forms a service process, in which service times have the k-stage
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Erlang distribution with mean 1=�. Figure 2.4 illustrates the case in which

k = 3.

1 2 3 1 2 3 1 12 3 2 3

0

0

Exponential

Erlang ( k=3)

Figure 2.4: The Poisson services and the Erlang services

From Fig. 2.4 the probability that more than m customers are serviced

during the interval [0; T ] is

P [n(T ) � m] =

1X
m=0

k(m+1)�1X
l=km

e�k�T
(k�T )l

l!
:

(Since this equation can be applied to the customer arrivals also by replacing

� with �, the same notation n(T ) is used here.) According to Kobayashi [3,

p.196], the probability distribution of �nding n customers in the system is

pn = (1� �)

nX
j=0

(�1)n�jrn�j�1Rkj

��
kj

n� j

�
r +

�
kj

n� j � 1

��

where

R = 1 +
�

k
; r = 1� R�1:

One can derive from the basic queueing theory [2] that the expected number

of customers in the system E[N(t)] and the expected waiting time W are

E[N(t)] =
(1 + 1=k) �2

2(1� �)
+ � =

1 + k

2k

�2

�(�� �)
+
�

�

W =
1 + k

2k

�

�(�� �)
+

1

�
:

Now consider approximating pn according to the method of Buzacott

and Shanthikumar [1, p.76]. Because the time-average probability that no

customer is found at the server is 1��, p0 = 1�� is obtained. Assuming that

remaining probabilities have a geometric form (i.e., pn = a�n�1; n = 1; 2; : : : )
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and using the requirement that the total probability should be one, a =

�(1��) is obtained. This approximated distribution has a mean of �=(1��).

Suppose the mean number of customers in the system is approximated with

E[N(t)]. Then requiring that this approximation be the same as the mean

of the approximate distribution of the number of customers in the system,

the following relations are obtained:

pn � ~pn =

(
1� � n = 0

�(1� �)�n�1 n = 1; 2; : : :

where

� =
E[N(t)]� �

E[N(t)]
:

Figure 2.5 shows that this approximation curve with k = 3 �ts well to the

pure Erlang distribution.

0 5 10 15 20
Customers in the System

0

0.02

0.04

0.06

0.08

0.1

0.12

P
r
o
b
a
b
i
l
i
t
y

Erlang

Approximation

Figure 2.5: Erlang distribution and its approximation curves (k = 3)
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2.2 Production-Inventory Model

One can �nd many variations in the styles of the production and inventory

management in the business �eld. Fig. 2.6 illustrates the components of a

typical production-inventory model.

Purchase
Order

Product

W
or

ko
rd

er

S
hi

pp
in

g
O

rd
er

Figure 2.6: Model Components

The model consists of a single production facility and a single inventory for

�nished goods. There is a management department which dispatches internal

orders to the production facility and the inventory. The inventory holds

basestocks (stocks to be always kept in the inventory) to deliver products to

the customers in the shorter service window. Once an unit of basestock is

delivered to a customer, the management immediately issues a production

order to the production facility for replenishment. This production style is

sometimes called \produce-to-stock" model [1]. The model is going to be

used for mathematical analyses throughout the thesis.

It is assumed that a customer arrives and orders single unit of product

only at a time. No more than one customers arrive simultaneously. When a

customer issues a purchase order and if there is no stock, the customer waits

until his order is produced. If more than one customer wait for the same

product, FIFO rule is applied.

Production facility usually has multiple independent production lines.

However, a simple case with single production line like Fig. 2.7 is chosen here.

Di�erent items are produced using the same production line. The average

production rate � is same for all items. The management receives purchase

orders from the customers and then issues workorders (production orders)

to the production facility. A received purchase order is never bu�ered but

immediately directed to the production facility as a workorder. This means

10



Storage
W

or
ko

rd
er

Figure 2.7: Production Facility

that no more than one workorders are issued simultaneously. Stocked items

are immediately delivered to the customers when the management receives

purchase orders for the item. Delivering interval is not considered.

The inventory (Fig. 2.8) holds all the products produced at the production

facility.
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Figure 2.8: Finished Goods Inventory
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The inventory has its capacity, but here it is assumed that the manage-

ment can set total stock limit within the capacity because of the change of

business environment. To maximize the �ll rate to the customers, basestocks

are �lled up to the total stock limit. In Fig. 2.8, basestocks are allocated 2

for item 1, 0 for item 2 and 3, 7 for item 4, and so on. Here, the optimum

basestock allocation to maximize �ll rate (described next) is considered.

By the negotiation with customers, the management sets the service win-

dow T : the interval from the time of purchase order receipt to the time of

delivery. The service window is a �xed value. Each customer orders an unit

of products, and if the product is delivered within the service window, it is

considered that the order is �lled (satis�ed). The �ll rate can be calculated

from the data of the transaction as follows:

(Fill Rate) =
(Filled Orders)

(Total Orders)
:

It approximates the probability that the customers are served within T .

The terminology used in general queueing theory corresponds to the one

used in the production-inventory model in the following way:

Notation Queueing Theory The Model in the Thesis

customer workorder

system production facility and queue

� customer arrival total demand

� service production rate

Assumptions for the Model

The assumptions for this production-inventory model are summarized as fol-

lows:

� There are no order cancellation from the customers

� The time lapse between the model components is zero

Time is consumed only in the production process.

� All items are produced by same single production line with

same average production rate

� The management doesn't accept more than one purchase or-

ders at a time

12



� If there are more than one customers waiting for the same

kind of product, their orders are processed by FIFO rule. If

there are more than one customers waiting for the di�erent

kinds of products, and if the ordered items are bu�ered in the

queue at the production line, each customer can receive the

product as soon as its production is completed

� The average production time of every item is the same

Average production time is 1=� (� = average production rate).

� The average total demand never exceeds the average produc-

tion rate

Using average demand rate � and production rate �, the relationship is

written as � < �. If � � �, so that the average demand rate is greater

than or equal to the average production rate, then the length of the

queue would \explode" and grow without bound.

2.3 The Model of Sox et al.

Base on theM=M=1 production-inventory model, Sox et al. proposed a calcu-

lation method of the �ll rate and an algorithm of basestock allocation which

maximize the �ll rate. Stepwise explanations of their method and a proof for

the algorithm given by the author are shown as follows. The �ll rate repre-

sents the probability that an order is satis�ed within the service window T .

In other words, the probability is the remainder of the probability that an

order is \not" satis�ed, such as

(Fill Rate) = 1� (Probability of Late-Delivery):

The probability that an order is not satis�ed, i.e. late-delivery rate, is calcu-

lated �rst to obtain the �ll rate. The events of the late-delivery occur under

following conditions. Consider a production-inventory model illustrated in

Fig. 2.9.

When focusing on the transactions of the item 2, for example, the two

basestocks are held at the initial stage (a). At time t1, customer A arrives,

orders item 2 and receives the product immediately. A workorder is issued at

the same time and joined at the end of the queue (b). Next customer B comes

in, orders the same item and receives it. Another workorder is joined at the

end of the queue (c). The basestock for item 2 is empty when customer C

arrives. His order becomes a backorder and is joined at the end of the queue

(d). The order is �lled if the number of the workorder for item 2 ahead of

13
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Figure 2.9: Schematic Description of Late Delivery

the order issued by customer C is smaller than the basestock level (in this

case, 2) T time unit after his arrival (e). On the other hand, the order is

not �lled because the number of the workorders ahead of the order issued

by customer C is greater than or equal to the basestock level (f). Thus, the

late-delivery rate is said to be the probability that the number of workorder

ahead of a backorder is greater than or equal to the basestock level T time

unit after the customer of that backorder arrives.

Sox et al. showed the calculation method of the �ll rate for the M=M=1

model. The summary of the method is shown as follows. De�ne P (i; x)

as the steady-state probability that workorder for item i has x (� 0) other

workorders for the same item ahead of it T time unit after its arrival. The

probability that n workorders exist in the system is (1��)�n. This is given by

the basics of the queueing theory as described in the previous chapter. Sup-

pose that m workorders are processed during time T . Then the probability

14



that there are x other workorders of item i becomes

1X
n=x+m

(1� �)�nP x
i (1� Pi)

n�m�x

�
n�m

x

�

where Pi = �i=�. The probability of m workorders being processed during

T is given by Poisson distribution
P1

m=0 e
��T (�T )m=m!. Then P (i; x) is

obtained by multiplying the two probabilities as follows:

P (i; x) =

1X
m=0

e��T
(�T )m

m!

1X
n=x+m

(1� �)�nP x
i (1� Pi)

n�m�x

�
n�m

x

�
:

The inner sum (denoted s(m; x)) reduces to

s(m; x) = (1� 
i)

x
i �

m; where 
i =
�Pi

1� �(1� Pi)
:

As a result,

P (i; x) = (1� 
i)

x
i e
��T (1��) for x � 0

A late delivery occurs if x � Si, so for item i,

FR(i;T )(S1; : : : ; SK) = 1�

1X
x=Si

(1� 
i)

x
i e
��T (1��) = 1� 
Sii e

��T (1��)

The aggregate �ll rate is the sum, weighting each item by its fraction of

total demand Pi:

FRT (S1; : : : ; SK) = 1� e��T (1��)
KX
i=1

Pi

Si
i :

Following problem is considered to allocate S units of basestock to max-

imize the �ll rate:

Maximize

FRT (S1; S2; : : : ; SK) = 1� e��T (1��)
KX
i=1

Pi

Si
i (2.1)

subject to

KX
i=1

Si � S: (2.2)
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The increment of the �ll rate when the number of basestock is increased

by one is

FRT (S1; : : : ; Si + 1; : : : ; SK)� FRT (S1; : : : ; Si; : : : ; SK) =

Pi(1� 
i)

Si
i e

��T (1��) =
(1� �)

�

Si+1i e��T (1��):

The �ll rate when there is no stock in the inventory is

FRT (0; 0; : : : ; 0) = 1� e��T (1��):

Then (2.1) can be rewritten as follows:

FRT (S1; S2; : : : ; SK) = 1� e��T (1��) +
(1� �)

�
e��T (1��)

KX
i=1

SiX
j=1



j
i :

Since
(1��)

�
e��T (1��) is positive constant, the optimization problem (2.1)-(2.2)

is simpli�ed as follows:

Maximize

FRT (S1; S2; : : : ; SK) =

KX
i=1

SiX
j=1



j
i (2.3)

subject to

KX
i=1

Si � S: (2.4)

Proof for the Stock Allocation Algorithm

Sox et al. stated that the optimum allocation of the basestocks may be ob-

tained by sequentially adding 1 to Si for the item with the largest value of


S
(m)
i

+1. A proof for this algorithm is given as follows. First consider a gen-

eralized algorithm as follows. Let � be a set of non-negative real numbers

�i;j such that

� = f�i;jj 1 � i � U; 1 � j � V g (2.5)

where

�i;j > �i;j0 if j < j 0; (2.6)
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and let �̂m represent a subset of � which consists of m largest elements

of �. It is obvious that �i;j 2 �̂m if �i;j+1 2 �̂m. Moreover, �i;j0 2 �̂m

for 1 � j 0 � j if �i;j+1 2 �̂m. Thus there exist U non-negative integers

V
(m)
1 ; V

(m)
2 ; : : : ; V

(m)

U which satisfy
PU

i=1 V
(m)
i = m, and such that �̂m can be

represented as follows:

�̂m = f�i;jj 1 � i � U; 1 � j � V
(m)
i g: (2.7)

A following algorithm can be considered to obtain m largest elements

from �. First set �̂0 = � and V
(0)

i = 0 for all i for initialization. Suppose

that �̂m and V
(m)
1 ; : : : ; V

(m)

K which satisfy (2.7) are given, then �̂m+1 can be

obtained by the following operation:

�̂m+1 = �̂m [ max
1�i�U

f�
i;(V

(m)
i +1)

; �
i;(V

(m)
i +2)

; : : : ; �i;V g

= �̂m [ max
1�i�U

f�
i;(V

(m)
i +1)

g: (2.8)

Thus m largest elements are selected by sequentially picking up a largest

element from yet unselected elements in �. Using this property of the gen-

eralized problem, we obtain next lemma for the stock allocation problem.

Lemma 1. The algorithm, sequentially adding 1 to Si for the item with the

largest value of 
S
(m)
i +1, gives the optimum set fS1; S2; : : : ; SKg which maxi-

mizes FRT .

Proof. First consider a set � which is de�ned as

� = f

j
i j 1 � i � K; 1 � j � Sg: (2.9)

Since 0 < 
i < 1, the following relation is observed:



j
i > 


j0

i if j < j 0: (2.10)

The two properties (2.9) and (2.10) exactly correspond to (2.5) and (2.6),

respectively. Then the subset �̂S of � which consists of S largest elements

of � can be represented as follows. There exist K and S1; S2; : : : ; SK which

satisfy (2.4) and such that

�̂S = f

j
i j 1 � i � K; 1 � j � Sig:

From (2.3), the maximum value of FRT is obtained from the sum of S

elements of 
ji . Then the sum of the elements of �̂S is greater than or equal

to FRT , i.e.,

FRT (S1; S2; : : : ; SK) �
X


j
i 2�̂S



j
i
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This implies that maximizing FRT is equivalent to �nding �̂S. From (2.8),

�̂S is obtained by sequentially selecting an element with largest value of



S
(m)
i +1

i . �

The algorithm of basestock allocation is summarized as follows:

BSA : BaseStock Allocation Problem

Input: 
1; 
2; : : : ; 
K, and S.

Output: S1; S2; : : : ; SK such that

KX
i=1

Si � S;

and FRT (S1; S2; : : : ; SK) is maximized.

Algorithm BSA (
1; 
2; : : : ; 
K; S)

for i = 1 to K

Si := 0

while (
PK

i=1 Si < S)

do


max = maxif

Si+1
i g

for i = 1 to K

if (
Si+1i == 
max) then j := i

Sj := Sj + 1

od

return(S1; S2; : : : ; SK)

2.4 Terms and De�nitions

The terms and de�nitions used to describe the production-inventory model

are summarized in the following table:
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Notation Term De�nition

(purchase)

order

A purchase order from a customer. Each

customer can order one product only at

a time among di�erent kinds of products.

Di�erent customers cannot order simulta-

neously.

workorder

A production order dispatched to the pro-

duction facility by the management. The

management can order one product only

at a time. The number of workorders is

equal to that of (purchase) order.

basestock

A planned stock level to be maintained.

When a product is shipped to a customer,

the management immediately sends the

workorder to the production facility to

keep the basestock level

i (product) item Product item number (i = 1; 2; : : : ; K)

Ni(t)
workorders in

the system

The number of workorders in the system

for product i at time t. The \system" in-

cludes the waiting queue for production

and the single-stage production facility.

Only a workorder can enter the produc-

tion facility at a time.

N(t) total workorder
Total workorders in the system at time t.

N(t) =
PK

i Ni(t)

Si basestock level

The basestock level for product i. The

level is equal to the number of the prod-

uct i in the inventory.

S
limit of total

basestock level

The upper limit of total basestock level.PK

i=1 Si � S
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(continued from previous page)

Notation Term De�nition

T service window

The time interval from the point of order

to the point of the delivery to customers.

The service window is a �xed time and is

decided by the management.

FR(i;T ) �ll rate for i
Fraction of the orders of the product i de-

livered to the customers within T .

FRT �ll rate
Fraction of total orders delivered to the

customers within T .

L(i;T )

late-delivery

rate for i

Fraction of the orders of the product i

\not" delivered to the customers within

T .

LT

late-delivery

rate

Fraction of total orders \not" delivered to

the customers within T .

�i demand
Average arriving orders per unit time for

product i.

� total demand
Average arriving orders per unit time.

� =
PK

i=1 �i

� production rate

Average produced orders per unit time.

The rate is �xed and same for all kinds of

products.

� utilization
The utilization of production facility.

� = �=�

Pi

fraction of de-

mand

The probability that an arriving order is

for product i. Pi = �i=�


i
e�ective utiliza-

tion

A parameter that indicates how much

product i contributes to the utilization �.

�̂i = �i=(�� �+ �i) = �Pi=(1� � + �Pi)

E[N(t)]

expected

workorders

in system

Expected number of workorders in the

system (queue + production facility)

�
approximation

parameter

The parameter used to approximate Er-

lang distribution. � = (E[N(t)] �

�)=E[N(t)]

�̂i
distribution pa-

rameter

Another parameter used to approximate

Erlang distribution. �̂i = �Pi=(1 � � +

�Pi)
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Chapter 3

Extension of Production Time

Distributions

In this chapter, a model extension by changing production time distribu-

tion from exponential to Erlang distribution is described, and the numerical

results of basestock allocation are shown.

3.1 Calculation of Fill Rate

The M=M=1 model is limited to an exponential distribution concerning the

probability of production time. It means that production times are always

random. It is unnatural to apply exponential distribution even to the case

when the production times are distributed around an average value. Erlang

distribution is usually used to solve this problem. However, using the for-

mulas of Erlang distribution directly in the calculation of the �ll rate makes

the calculation too complicated. As described in the previous chapter, the

probability distribution which is approximated for Erlang distribution will

be used here, and the model will be called M= ~Ek=1 model in the thesis.

The procedure of the calculation is almost same as the one for theM=M=1

model. Di�erent calculation methods are used according to the basestock

level.

For Si > 0,

P (i; x) =

1X
m=0

k(m+1)�1X
l=km

e�k�T
(k�T )l

l!

1X
n=x+m

~pnP
x
i (1� Pi)

n�m�x

�
n�m

x

�
(3.1)

Inner sum is reduced as follows:
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1X
n=x+m

~pnP
x
i (1� Pi)

n�m�x

�
n�m

x

�
= (1� �̂i)�̂

x
i ��

m�1 for x > 0

where

�̂i =
�Pi

1� �(1� Pi)
: (3.2)

As a result,

P (i; x) = (1� �̂i)�̂
x
i e
�k�T

1X
m=0

k(m+1)�1X
l=km

(k�T )l

l!
��m�1 for x > 0:

A late delivery occurs if x � Si, so for item i,

L(i;T )(S1; : : : ; SK) =

1X
x=Si

(1� �̂i)�̂
x
i e
�k�T

1X
m=0

k(m+1)�1X
l=km

(k�T )l

l!
��m�1

= �̂Sii e
�k�T

1X
m=0

k(m+1)�1X
l=km

(k�T )l

l!
��m�1:

For Si = 0, a late delivery occurs only if production during T is less than

N(t) + 1. Hence,

L(i;T )(S1; : : : ; SK) =

1X
m=0

k(m+1)�1X
l=km

(k�T )l

l!
e�k�T

1X
n=m

~pn

=

k�1X
l=0

e�k�T
(k�T )l

l!
+

1X
m=1

k(m+1)�1X
l=km

e�k�T
(k�T )l

l!
��m�1:

The aggregate �ll rate is the sum, weighing each item by its fraction of

total demand:

FRT (S1; : : : ; SK) = 1�

KX
i=1

PiL(i;T )(S1; : : : ; SK)

where

L(i;T )(S1; : : : ; SK) =(
�̂Sii e

�k�T
P1

m=0

Pk(m+1)�1

l=km
(k�T )l

l!
��m�1 (Si > 0)Pk�1

l=0 e
�k�T (k�T )l

l!
+
P1

m=1

Pk(m+1)�1

l=km e�k�T
(k�T )l

l!
��m�1 (Si = 0)
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3.2 Basestock Allocation Algorithm

The greedy algorithm is also applicable to the M= ~Ek=1 model.

The increment in the �ll rate when Si is increased by 1 is,

for Si > 0,

Pi(1� �̂i)�̂
Si
i e

�k�T

1X
m=0

k(m+1)�1X
l=km

(k�T )l

l!
��m�1

=
1� �

�
�̂Si+1i e�k�T

1X
m=0

k(m+1)�1X
l=km

(k�T )l

l!
��m�1; (3.3)

for Si = 0,

Pi(1� �̂i)e
�k�T

k�1X
l=0

(k�T )l

l!
+ Pi(1� �̂i)e

�k�T

1X
m=1

k(m+1)�1X
l=km

(k�T )l

l!
��m�1

=
1� �

�
�̂ie

�k�T

k�1X
l=0

(k�T )l

l!
+

1� �

�
�̂ie

�k�T

1X
m=1

k(m+1)�1X
l=km

(k�T )l

l!
��m�1:

(3.4)

All the parts except �̂i are independent of Si and positive. Then when Si > 0,

the allocation method of the basestocks can be considered in the same way

to the one in the case of the M=M=1 model. However, that method cannot

be directly applied to the case when Si = 0. The relationship of the two

increments, the one from Si = 0 to Si = 1 and another one from Si = 1 to

Si = 2, should be examined. The increment of the �ll rate when the basestock

level changes from Si = 0 to Si = 1 is equal to (3.4), and the increase when

the level changes from Si = 1 to Si = 2 is obtained by inputting Si = 1 to

(3.3) and becomes

1� �

�
�̂2i e

�k�T

1X
m=0

k(m+1)�1X
l=km

(k�T )l

l!
��m�1: (3.5)

(3.4)�(3.5) is

1� �

�
�̂i

�
1�

�

�
�̂i

�
e�k�T

k�1X
l=0

(k�T )l

l!

+
1� �

�
�̂i(1� �̂i)e

�k�T

1X
m=1

k(m+1)�1X
l=km

(k�T )l

l!
��m�1 (3.6)
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The second term is positive because 0 < �̂i < 1. Whether the �rst term is

positive or not depends on the part 1�
�
� �̂i. When 1�

�
� �̂i is positive, 1�

�̂i
�

is also positive because 0 � � < 1. This term is positive because if 1� �̂i
� < 0,

then

� < �̂i

� <
�Pi

1� �(1� Pi)
(from (3.2))

1 < �:

This result contradicts the property 0 < � < 1. Then 1 � �̂i
� � 0. For this

reason, the increment of the �ll rate when the basestock level changes from

Si = 0 to Si = 1 is greater than the increase when the level changes from

Si = 1 to Si = 2. Thus when the increment of the �ll rate is represented by

�i;j (j is the basestock level for item i), the following relation holds:

�i;j > �i;j0 if j < j 0:

Above relation is exactly same to (2.6). This implies that the optimum

allocation problem for the M= ~Ei=1 model can be solved using the algorithm

BSA (described in previous chapter) with respect to �̂i.

From the analyses on the M= ~Ek=1 model, the following property is ob-

tained.

Theorem 1. The optimal stock levels for the M= ~Ek=1 models are obtained

by sequentially allocating the next unit of basestock to the item with the largest

value of �̂Si+1i .

For k = 1, the M= ~Ek=1 model is identical with M=M=1 model.

3.3 Numerical Results

The numerical result of the optimum basestock allocation is shown as follows.

3.3.1 Input Data

The demand rate of the products (�i=�) and the utilization (�) as input data.

The data of the 20 items is listed in Table 3.1.
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Table 3.1: Demand Rate by Item
Percentage of Percentage of

Item Total Demand Item Total Demand

1 33:10 11 0:60

2 22:20 12 0:40

3 14:80 13 0:30

4 9:90 14 0:20

5 6:60 15 0:10

6 4:40 16 0:08

7 2:97 17 0:06

8 1:98 18 0:04

9 1:32 19 0:03

10 0:90 20 0:02

3.3.2 Result of Basestock Allocation

The results of the allocation of the 50 basestocks are shown in Table 3.2-3.4.

In the table, the allocation for the exponential distribution corresponds to

Erlang distribution with k = 1. The stage number k is changed up to 50.

Only di�erent calculation results are listed in the table. In Table 3.2 for

example, the calculation results are same between k = 1 and k = 2, and

between k = 3 and k = 50. Below the each table, the data is visualized

with respect to the comparison of the allocation between the case with the

exponential distribution (k = 1) and the case with the approximated Erlang

distribution with the largest k in the each table. The allocation tends to shift

to the lower demand items according to the increase of the value of k. Also,

the allocation shifts to the higher demand items according to the increase

of the utilization �. With the higher value of the utilization, the di�erence

of allocation becomes greater according to the increase of k. The allocation

changes more often with lower values of k than higher ones.
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Table 3.2: Result of Basestock Allocation (1)

� = 0:6

item k = 1 � � � k = 3 � � �

1 8 � � � 7 � � �

2 6 6

3 5 5

4 4 4

5 4 4

6 3 3

7 3 3

8 2 2

9 2 2

10 2 2

11 2 2

12 1 2

13 1 � � � 1 � � �
...

...
...

20 1 � � � 1 � � �

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5

10

15

0

Item Number

S
to

ck
 L

ev
el

exponential (k=1)

Erlang Approx. (k=3)
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Table 3.3: Result of Basestock Allocation (2)

� = 0:8

item k = 1 k = 2 k = 3 k = 4 � � �

1 11 10 9 9 � � �

2 8 7 7 7

3 6 6 6 5

4 4 4 4 4

5 4 4 3 4

6 3 3 3 3

7 2 2 2 2

8 2 2 2 2

9 2 2 2 2

10 1 1 2 2

11 1 1 1 1 � � �
...

...
...

...
...

17 1 1 1 1 � � �

18 0 1 1 1

19 0 1 1 1

20 0 0 1 1 � � �

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5

10

15

0

Item Number

S
to

ck
 L

ev
el

exponential (k=1)

Erlang Approx. (k=4)
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Table 3.4: Result of Basestock Allocation (3)

� = 0:95

item k = 1 k = 2 k = 3 � � � k = 6 k = 7 � � � k = 17 � � �

1 15 15 14 � � � 14 14 � � � 13 � � �

2 11 10 10 10 9 9

3 7 7 7 7 7 7

4 5 5 5 5 5 5

5 4 4 4 3 3 4

6 2 3 3 3 3 3

7 2 2 2 2 2 2

8 1 1 1 2 2 2

9 1 1 1 1 1 1

10 1 1 1 1 1 1

11 1 1 1 1 1 1

12 0 0 1 1 1 1

13 0 0 0 0 1 1

14 0 0 0 � � � 0 0 � � � 0 � � �
...

...
...

...
...

...
...

...
...

20 0 0 0 � � � 0 0 � � � 0 � � �

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5

10

15

0

Item Number

S
to

ck
 L

ev
el

exponential (k=1)

Erlang Approx. (k=17)
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3.3.3 Results of Fill Rate Calculation

Fig. 3.1 shows the �ll rate curves with di�erent probability distributions. The

solid lines and the dot plotting represent the analytical results and the sim-

ulation results, respectively. The Erlang distribution used for the analytical

result is actually the approximated one described in the previous chapter.

The result of the deterministic distribution is shown just for reference. The

�ll rate goes up according to the increase of the stage number k. It is well

known in the queueing theory that the average waiting time decreases as

the service (production) time changes from random state to deterministic

state. In this case, the production comes close to the deterministic state

as k increases. Consequently, the decrease of the average waiting time may

contribute to the increase of the �ll rate.

0 5 10 15 20

Service Window

0.8

0.85

0.9

0.95

1

F
i
l
l
 
R
a
t
e

Exp(Analytical)

Exp(Simulation)

Erlang(k=3, Analytical)

Erlang(k=7, Analytical)

Erlang(k=3, Simulation)

Erlang(k=7, Simulation)

Deterministic

Figure 3.1: Fill Rate Curves with Di�erent Probability Distributions

Fig. 3.2 shows the �ll rate curves with changing the total basestock level

from 20 to 60. To obtain the same �ll rate, more basestocks are required

for the exponential distribution than for the Erlang distribution. This im-

plies that assuming exponential distribution for every type of production

sometimes results in large error in the estimation of total basestocks. Since

the production time tends to be periodical in the most manufacturing cases,

using the Erlang distribution and adjusting k to simulate the actual distri-

bution may be preferable in the sense of the 
exibility and accuracy of the

model.
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Figure 3.2: Fill Rate Curves with Di�erent Basestock Levels
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Chapter 4

Extension of Constraints

In this chapter, more general system of constraints on basestock is de�ned

and an algorithm for the basestock allocation is presented.

4.1 De�nition of Partition

Introduced general system of constraints allows to set limits of basestock for

speci�c items or group of items. It gives the management more 
exibility,

such as setting the limit of stock to speci�c items because of the deterio-

ration or the impulsive decrease in demand which is predicted by demand

forecasting. It is also suitable for dealing with situation in which several

�nished-goods inventory facilities in di�erent locations exist. The de�nition

of the partition is given as follows. Let P = fP1;P2; : : : ;Png be a partition

of f1; 2; : : : ; Kg into n subsets, that is

P1 [ P2 [ � � � [ Pn = f1; 2; : : : ; Kg

Pj \ Pk = � if j 6= k

Pj 6= � for j = 1; 2; : : : ; n

For each k 2 f1; 2; : : : ; ng, let Bk be a nonnegative integer representing the

upper limit for total level of basestocks for the items in Pk. Fig. 4.1 illustrates

the concept of the partition.

The total basestock of 7 items is limited to 20. One partition member P1

has two elements of item 2 and item 3 and has the boundary B1 = 4 for

basestock allocation. Another partition member P2 has remaining elements

and has the boundary B2 = 20 for basestock allocation. These conditions
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Inventory
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2
2

3
3

4
4
4
4

5
5
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Figure 4.1: An Example of Basestock Allocation of Partitioned Model

are written in the following way:

P = fP1;P2g; P1 = f2; 3g; P2 = f1; 4; 5; 6; 7g

S2 + S3 � B1; S1 + S4 + S5 + S6 + S7 � B2

B1 = 4; B2 = 20:

4.2 Algorithm of Basestock Allocation

Next the following problem similar to (2.1)-(2.2) is considered:

Maximize

FRT (S1; S2; : : : ; SK) = 1� e��T (1��)
KX
i=1

Pi

Si
i (4.1)

subject to

KX
i=1

Si � S;
X
i2Pk

Si � Bk; k = 1; 2; : : : ; n: (4.2)

Obviously, the previous problem (2.1)-(2.2) is a special case of the problem

(4.1)-(4.2). This problem is simpli�ed also as done in (2.3)-(2.4):
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Maximize

FRT (S1; S2; : : : ; SK) =

KX
i=1

SiX
j=1



j
i (4.3)

subject to

KX
i=1

Si � S;
X
i2Pk

Si � Bk; k = 1; 2; : : : ; n: (4.4)

An algorithm similar to BSA can be used to �nd the optimum allocation

of the basestock even for the inventory with partition. The proof of the

correctness for this is similarly shown as done in the proof of Lemma 1. A

generalized algorithm is again considered as follows. The set � de�ned in

(2.5),

� = f�i;jj 1 � i � U; 1 � j � V g

�i;j > �i;j0 if j < j 0;

is used here also. Let P 0 = fP 01;P
0
2; : : : ;P

0
ng be a partition of f1; 2; : : : ; V g

into n subsets, that is

P 01 [ P
0
2 [ � � � [ P

0
n = f1; 2; : : : ; V g

P 0j \ P
0
k = � if j 6= k

P 0j 6= � for j = 1; 2; : : : ; n

m largest elements are selected, and a subset

�̂m = f�i;jj 1 � i � U; 1 � j � V
(m)

i g

is created similarly to (2.7). Each element is sequentially selected using the

greedy algorithm as done in the case without partition, but the following

operation is added in each iteration for the partitioned model in order to ex-

clude the partition which has already reached the upper limit of the partition

in the m-th iteration:

if
P

i2P 0

k
V

(m)

i =Wk (1 � k � n) then

� = �� f�
i;(V

(m)
i +1)

; �
i;(V

(m)
i +2)

; : : : ; �i;V g (for all i 2 P 0k).

where Wk is a nonnegative integer representing the upper limit for total

number of the elements in P 0k. After that, a largest element is selected from

yet unselected elements in � with taking the operation:

�̂m+1 = �̂m [ max
1�i�U

f�
i;(V

(m)
i +1)

g:
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Finally �̂V , a set of V largest elements, is obtained in the V -th iteration.

As shown in the proof of Lemma 1, this algorithm has direct correspondence

with the problem (4.3)-(4.4). Thus it is proved that the optimum allocation

of basestocks is obtained by the algorithm BSA (with some modi�cation)

even for the partitioned model. The algorithm of basestock allocation is

summarize as follows:

BSAP : BaseStock Allocation with Partition Problem

Input: 
1; 
2; : : : ; 
K; P1;P2; : : : ;Pm; B1; B2; : : : ; Bm, and S.

Output: S1; S2; : : : ; SK such that

KX
i=1

Si � S;
X
i2Pk

Si � Bk; k = 1; 2; : : : ; n;

and FRT (S1; S2; : : : ; SK) is maximized.

Algorithm BSAP

for i = 1 to K

Si := 0

k := 1

while (
PK

i=1 Si < S) && (k > 0)

do

k := 0


max := 0

for j := 1 to m

do

if (
P

i 2 Pj
Si < Bj) then

for i 2 Pj

do

if (
max < 
Si+1i ) then


max := 
Si+1i

k := i

od

od

Sk := Sk + 1

od

return(S1; S2; : : : ; SK)

Since this algorithm is applicable to both the M=M=1 and the M= ~Ek=1

models, the property for the extension to the partitioned model is summa-

rized as the theorem:
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Theorem 2. The optimal stock levels for the M=M=1 (M= ~Ek=1) model with

partitioned inventory are obtained by sequentially allocating the next unit of

basestock to the item with the largest value of 
Si+1i (�̂Si+1i ), provided that if

a partition reaches its limit in the course of iteration, the allocation for the

items in the partition halts.

Fig. 4.2 shows the �ll rate curves with and without partition for M=M=1

production-inventory model. Here, the demand data in Table 3.1 is used,

and the utilization is �xed to � = 0:9. The partition is given as follows:

P = fP1;P2g; P1 = f1; 2; 3g; P2 = f4; : : : ; 20g

S1 + S2 + S3 � B1; S4 + � � �+ S20 � B2

B1 = 20; B2 = S:

It may seem unrealistic to constrain high demand items such as item 1, 2

and 3. This case is only for the experiment to see the e�ect of the partition

on the �ll rate.
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Figure 4.2: Fill Rate Curve with Partition
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Chapter 5

New Production Rule

In this chapter, a new production rule Modi�ed BOP is introduced, then its

improvement over other rules (BOP, FIFO) is shown by simulation.

5.1 Previous Work

The production rule which is discussed in previous chapters is assumed FIFO

(First In First Out) only. Sox et al. proposed two new rules: BOP (BackO-

rders get �rst Priority) and ANT (ANTicipate backorders). BOP is the rule

that a backorder is placed at the top of the queue when it arrives. If there

exist already other backorders in the queue, the last backorder is placed at

the end of the backorders. ANT is not discussed in this research because

there is not enough information for the algorithm in their paper so that it is

hard to reproduce ANT exactly. As shown in Fig. 5.1, BOP improves the �ll

rate substantially in the most range of the service window but shows poor

performance when T < 1. They explain that in such range, backordered item

has already violated the criterion of delivery within T , so giving priority to

such item is expending resources on a lost cause.
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Figure 5.1: Fill Rate Curves with FIFO and BOP

5.2 Modi�ed BOP

Modi�ed BOP is basically same as BOP, but the number of backorders in the

queue is calculated every time a new backorder arrives. Fig. 5.2 illustrates

Modi�ed BOP step by step. The workorders are processed by FIFO when

there are no backorders (a). When a backorder 5 arrives, it gets the �rst

priority and is placed at the top of the queue (b). When another backorder

6 arrives, it is placed just behind the prior backorder (c). Suppose that

two orders are processed on average during the service window T . If next

backorder arrives when two other backorders still remain in the queue, it is

not attached to the prior backorder but the end of the queue because it is

highly likely late in the delivery time (i.e. service window T ). Other ordinary

workorders will not be added extra waiting time by accepting such rule (d).

If next backorder 9 arrives while backorder 7 still remains in the queue and

there are no backorders at the top of the queue, the backorder 9, which is

accompanied with 7, is placed at the top of the queue (f). If only 9 comes at

the top of the queue (f '), it will not improve the �ll rate because backorder 9

is given to the customer who originally issued the order 7. For that customer,

the waiting time is already over T .
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Figure 5.2: Schematic Description of Modi�ed BOP
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5.3 Simulation Result

Fig. 5.3 shows the comparison of the �ll rate calculated with di�erent pro-

duction rules. BOP mostly increases the �ll rate from FIFO level, but gets

lower when the service window T is close to zero. This is because priority

is given even to the backorders which are expected to be late in that short

service window. Modi�ed BOP solves this problem, and actually the �ll rate

with Modi�ed BOP is never below the data obtained by FIFO.
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Figure 5.3: Improvement of Fill Rate by Modi�ed BOP

Fig.5.4 and Fig.5.5 show the distribution of the waiting time calculated by

simulation. Here, the demand data in Table 3.1 is used, and the utilization

is �xed to � = 0:9. Item 1 and item 9 are assigned six and zero basestocks,

respectively. Modi�ed BOP generally have the customers wait for shorter

time than BOP and FIFO. However, as shown in Table 5.1, Modi�ed BOP

sometimes sacri�ces a few customers and makes them wait long time. This

is because Modi�ed BOP does not consider the waiting time of individual

customer in the queue when it makes decision.
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Figure 5.4: Waiting Time Distribution of Item 1
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Table 5.1: Maximum Waiting Time

Production Rule Max. Waiting Time

FIFO 45:7

BOP 30:3

Modi�ed BOP 197:8
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Chapter 6

Concluding Remarks

6.1 Review of Work

The two extensions of the M=M=1 model proposed by Sox et al. are intro-

duced. One is the modi�cation of the model using approximated Erlang

distribution for production time. The allocation of basestocks changes ac-

cording to the parameter k of Erlang distribution. Another is with the case

where the inventory is partitioned and has extra constrains for basestock

allocation. The optimum allocation of basestocks is obtained by a greedy

algorithm BSAP. Modi�ed BOP is introduced as a priority rule for produc-

tion. It achieves higher �ll rate than FIFO (First In First Out) or BOP

(BackOrder gets �rst Priority) proposed by Sox et al.

6.2 Conclusions

As the conclusions of the research, the following points can be mentioned.

� The basestock allocation to maximize the �ll rate is a�ected by the

parameter k of Erlang distribution of production time. Since Erlang

distribution includes exponential distribution, M=Ek=1 model is ex-

pected to be used for the basestock allocation of the models which

have a larger class of production time distributions.

� The optimum allocation of the basestocks are obtained by a greedy

algorithm for the model with partitioned inventory.

� Modi�ed BOP rule improves conventional BOP concerning production

performance and achieves higher �ll rate.
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6.3 Further Research

The extensions of the model are originally aimed to make the production-

inventory model applicable to a larger variety of practical situations. In that

sense, there is much room left for further improvement of the model. For

example, the model of this research assumes single production line. Since

most actual production facilities have multiple production lines for the spe-

ci�c groups of product items, extension from single to multiple production

lines for the model is considered natural. Or the model of this research as-

sumes the same production rate � for all product items. The model with

di�erent �'s for the product items seems to be more realistic. Approximated

Erlang distribution is used for the probability distribution of production time

in this research. From theoretical point of view, using Erlang distribution

would be more preferable. It was not possible to formulate mathematical

model with Erlang distribution this time because of the di�culty of han-

dling formulas. Di�erent approach is expected to organize the model with

Erlang distribution.
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