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Abstract. Cloud database is now a rapidly growing trend in cloud com-
puting market recently. It enables the clients run their computation on
out-sourcing databases or access to some distributed database service on
the cloud. At the same time, the security and privacy concerns is major
challenge for cloud database to continue growing. To enhance the secu-
rity and privacy of the cloud database technology, the pseudo-random
number generation (PRNG) plays an important roles in data encryption-
s and privacy-preserving data processing as solutions. In this paper, we
focus on the security and privacy risks in cloud database and provide a
solution for the clients who want to generate the pseudo-random number
collaboratively in a distributed way which can be reasonably secure, fast
and low cost to meet requirement of cloud database. We provide two so-
lutions in this paper, the first one is a construction of distributed PRNG
which is faster than the traditional Linux PRNG. The second one is a
protocol for users to execute the random data perturbation collabora-
tively before uploading the data to the cloud database.

Keywords: cloud database, pseudo-random number generators, distributed
computation, data randomization

1 Introduction

In the so-called “big data” era, huge volumes of data are being created from
the organizations procedure, business activities, social network and scientific
research. Databases are ubiquitous and of immense importance and the cloud
database technology offers many benefits such as data storage and outsource
computing to meet the new technological requirements. Many cloud database
service and computation are in the distributed environment, as an important
security primitive, pseudo-random number generator play an extremly important
role in such cloud based data service. In this paper, we propose a framework for
pseudo-random number generator (PRNG) which is used in distributed cloud
database, our proposal is based on the collection of high entropy from operation
system such as Linux.
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In Linux PRNG, there are two devices dev/random and dev/urandom. de-
v/random is nearly a true random number generator consists of a physical non
deterministic phenomenon produces a raw binary sequence and a deterministic
function, compress this sequence in order to reduce statistical weakness. But
these procedures to produce the nearly true random number sequences from
dev/random are expensive and low-speed for practical cloud database applica-
tion. So usually for practical usage, we use pseudo-random number generators
which are deterministic random bit generators such as Linux dev/urandom, Linux
dev/urandom use algorithms for generating a sequence of numbers that approx-
imates the properties of true random number but with lower security bound.
Our research purpose is to make the robust and secure dev/random which is
more secure and robust to be faster to meet the need of cloud database service.

1.1 Related works

Many random number generators exists (e.g., [15, 18, 23, 1, 20, 21]. Shamir was
first to provide SPRNG [23] while Blum-Blum-Shub [1] and many other PRNGs
followed. A high-quality source of randomness must be used to design a high-
quality true random data generator for cryptographic purposes. In a typical
environment of general purpose computer systems, some good sources of ran-
domness may exist in almost any user input - the exact timing of keystrokes
and the exact movements of mouse are well known. Some other possible sources
are for example microphone (if unplugged then A/D convertor yields electronic
noise [9]), video camera (focused ideally on some kind of chaotic source as lava
lamp [16]), or fluctuations in hard disk access time [6].

Following the unsuitability of the so called statistical PRNGs for crypto-
graphical purposes, special PRNGs, intended for cryptography uses, were de-
veloped. The most related works to ours are Linux PRNG. The first security
analysis of Linux PRNGs was given in 2006 by Gutterman et. al [10], based on
kernel version 2.6.10 released in 2004. In 2012, Lacharme et. al [19] gave a de-
tailed analyze the PRNG architecture in the Linux system and provide its first
accurate mathematical description and a precise analysis of the building blocks,
including entropy estimation and extraction.

1.2 Problem Definition and Our Contributions

There are two common deployment models of cloud database: users can run
databases on the cloud independently, using a virtual machine image, or they can
purchase access to a database service, maintained by a cloud database provider
such as Distributed database as a service (DBaaS). However, cloud database
adoption may be hampered by concerns about security, privacy, and proprietary
issues, such distributed DBaaS are vulnerable to threats such as unauthorized
access and malicious adversaries who want to compromise the privacy of the
data storage. Our protocol is constructed based on Linux kernel, the internal
state of the Linux PRNG is composed of three pools, namely the input pool, the
blocking pool for dev/random output and the nonblocking pool for dev/urandom
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output, according to the source code. We assume that there are many severs who
provide outsourcing distributed database services and need to generate pseudo-
random number for encryption or data random perturbation. If the blocking
pool cannot accumulate enough entropy, the PRNG output will be blocked.
However, the Linux OS dev/random is extremely suitable for use when very high
quality randomness is desired (for example, for key generation, one-time pads and
sensitive data randomization), but it will only return a maximum of the number
of bits of randomness contained in the entropy pool. The major problem we focus
in this paper is to construct a fast dev/random in the distributed environment
to achieve a higher speed.

– For the cryptographic purposes, the distributed clients and the cloud servers
may need to generate encryption or decryption keys to secure their commu-
nication or create some fresh nonce or to execute the protocols for authen-
tication. In this case, pseudo-random numbers are necessary for both key
generations, encryption authentication.

– For data privacy purpose, the clients who purchase the services for the cloud
database may store their database on the cloud servers. In order to aggregate
information that contains personal data without involving a trusted aggre-
gator, two important constraints must be fulfilled: 1) privacy of individuals
or data subjects whose data are being collected, and 2) security of data con-
tributors who need to protect their data from other contributors as well as
the untrusted aggregation.

For an OS-based pseudo-random generator, Linux PRNG is a good candidate
for the distributed environment. Because it is an open-source OS and it plays
a huge role in virtualized cloud operations including the DBaaS. The theory of
computational pseudo-randomness discussed in our paper emerged from cryp-
tography, where researchers sought a definition that would ensure that using
pseudo-random bits instead of truly random bits would retain security against
all computationally feasible attacks.

Our Contributions In this paper, we propose a framework for pseudo-random
number generators under the distributed environment.

– We clarify the necessary conditions for implementing secure and fast PRNGs
for the distributed cloud database.

– We propose a protocol based on Linux PRNG for the distributed pseudo-
random number generation which is faster than stand-alone Linux PRNG.
We let all parties execute the collection of entropy for distributed ran-
dom source and then mix them securely to form a local random pool for
the pseudo-random number generation. The second one is to apply Barak-
Shaltiel-Tromer randomness extractor randomness exactor to generate the
pseudo-random number with the same probability distribution for the data
aggregation in cloud database.

– We also provide the security proof and show that the security of our proposals
holds as long as the adversary has limited influence on the high-entropy
source.
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The rest of the paper is constructed as follows: We outline preliminaries for
pseudo-random number generator in Section 2. The constructions of our schemes
are in Section 3 and Section 4, respectively. In Section 5, we provide the security
proofs for our proposed distributed PRNGs and our experimental analysis. We
draw the conclusions in Section 6.

2 Preliminaries

In this section, we give a brief descriptions about the building blocks used in our
schemes and the security definition.

2.1 Building Blocks

Linux PRNG. The Linux PRNG is part of the Linux kernel since 1994. The
original version was written by Tsfo [24], and later modified by Mackall [22]. The
PRNG is implemented in C with more than about 1700 lines code in a single
source file, drivers/char/random.c. There are many build-in function which we
can use to construct our distributed PRNG.

Barak-Halevi Model. Let us briefly recall construction of PRNG with input
due to Barak and Halevi [3]. This model (which we call BH model) involves a
randomness extraction function: Extract : {0, 1}p → {0, 1}n and a standard de-
terministic PNRG G; {0, 1}n → {0, 1}n+l In the Barak-Halevi’s framework, two
functions are defined in the pseudo-random number generator: function next(s)
that generates the next output and then updates the state accordingly and a
function refresh(s, x) that refreshes the current state s using some additional
input x.

Twisted Generalized Feedback Shift Register (TGFSR)[20]. It is a improved
version of Generalized Feedback Shift Register (GFSR) which can be used to
run w Linear Feed Back Registers (LFSR) in parallel, where w is the size of the
machine word and its cycle length 2p − 1 with a memory of p words. TGFSR
achieves a period of 2wp−1 and removes the dependence of a initialized sequence
in GFSR, without the necessary of polynomial being a trinomial.

Verifiable Secret Sharing. The VSS protocol has a two-phase structure: In a
primary phase, the dealer D distributes a secret s, while in a second, later phase,
the players cooperate in order to retrieve it. More specifically, the structure is
as follows:

– Sharing phase: The dealer initially holds secret s ∈ K whereK is a finite field
of sufficient size; and each player Pi finally holds some private information
vi.

– Reconstruction phase: In this phase, each player Pi reveals (some of) his
private information vi. Then, on the revealed information v′i (a dishonest
player may reveal v′i ̸= vi), a reconstruction function is applied in order to
compute the secret, s = Rec(v′1, ..., v

′
n)
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2.2 Security Definitions and Model

A deterministic function G : {0, 1}d → {0, 1}m is a (t, ϵ) pseudo-random gen-
erator (G) if d < m, G(Ud) and Um are (t, ϵ) indistinguishable. Information
disclosure in G refers to the leaking of the internal state, or seed value, of a
PRNG. Leaks of this kind can make predicting future output from the PRNG
in use much easier. Here in this paper. we follow the formal security model for
PRNGs with input was proposed in 2005 by Barak and Halevi (BH model) [3]
and its extension by Dodis et al. [8].There is a proof that the security definition
imply the following security notions in [8].

– Resilience: The internal state and future output of PRNG must not able to
predict even if an adversary can influence or attain the entropy source used
to initialize or refresh the internal state of the PRNG;

– Forward security and backward security: an adversary must not be able to
predict past and future outputs even if he can compromise the internal state
of the PRNG.

Our security model is based on Dodis et al. [8]’s modified BH model, the
adversary A can access several oracle calls as follows:

– D-refresh. This is the key procedure where the distribution sampler D is run,
and where its output I is used to refresh the current state ST . Additionally,
one adds the amount of fresh entropy to the entropy counter c, and resets
the corrupt flag to false when c crosses the threshold γ.

– get-state and set-state. These procedures provide A with the ability to either
learn the current state ST , or set it to any value ST ∗. In either case c is
reset to 0 and corrupt is set to true. We denote by qS the total number of
calls to get-state and set-state.

– next-ror and get-next. These procedures provide A with either the real-or-
random challenge (provided that corrupt = false) or the true PRNG output.
As a small subtlety, a gprematureh call to get-next before corrupt = false
resets the counter c to 0, since then A might learn something non-trivial
about the (low-entropy) state ST in this case. We denote by qR the total
number of calls to next-ror and get-next.

This model involves an internal state that is refreshed with a (potentially bi-
ased) external random source, and a cryptographic function that outputs random
numbers from the continually internal state. The game continues in this fashion
until the attacker decides to halt with some output in {0, 1}. For a particular
construction G = (setup, next, refresh), we let Pr[A(m,H)I(G) = 1] denote the
probability that adversary A outputs the bit 1 after interacting as above with
the system. Here I(G) stands for the ideal random process and note that we only
use G in this game to answer queries that are made while the compromised flag
is set to true.
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Definition 1. We say that G = (setup, next, refresh) is a robust pseudo-random
generator (with respect to a family H of distributions) if for every probabilistic
polynomial-time attacker algorithm A, the difference

Pr[A(m,H)G = 1]− Pr[A(m,H)I(G) = 1] < ϵ

in some security parameter as follows:

– G with input has (t, qD, γ∗, ϵ)-recovering security if for any adversary A and
legitimate sampler D, both running in time t, the advantage of recovering
the internal state with parameters qD is at most ϵ.

– G with input has (t, ϵ)-preserving security if the advantage of any adversary
A running in time t of distinguishable G output and internal state from true
random sample is at most aϵ.

3 Our Proposal on Distributed PRNG

The PRNG used by the cloud server relies on external entropy sources. Entropy
samples are collected from system events inside the kernel, asynchronously and
independently from output generation. These inputs are then accumulated into
the input pool. Beyond the difficulty of collecting truly random data from various
randomness sources, the problem of insufficient amount of truly random data
which can be effectively solved by using pseudo-random data is also important.
Our protocol overcomes this problem by sharing the collecting the entropy in
cloud computing environment.

1. We apply a hash function or symmetric key encryption scheme to protect the
vulnerable PRNG outputs. If a PRNG is suspected to be vulnerable to direct
cryptanalytic attack, then outputs from the PRNG should be preprocessed
with a cryptographic hash function.

2. Occasionally generate a new starting PRNG state, a whole new PRNG state
should occasionally be generated from the current PRNG. This will ensure
that any PRNG can fully reseed itself, given enough time and input entropy.
The best way to resist all the state-compromise extension attacks is simply
never to have the PRNG’s state compromised.

3.1 Distributed Pseudo-random Number Generator

A nice PRNG should always have a component for harvesting entropy. Even if
entropy is only used to seed a PRNG, the infrastructures using PRNG should
still harvest their own entropy, because experience shows that pawning the re-
sponsibility for entropy harvesting onto clients leads to a large number of systems
with inadequately seeded PRNGs. Entropy gathering should be a separate com-
ponent from the PRNG. This component is responsible for producing outputs
that are believed to be truly random. The following work reviewed is due to
Gutterman, Pinkas and Reinman [10].
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Our work focus on how to overcome the security problems in existing PRNG
based on Linux. Furthermore, we apply the Lacharme’s linear corrector [17] to
implement the entropy addition and update to get more high entropy compared
to existing Linx-based PRNG [10].

We assume that there are k distributed users or cloud servers online to gen-
erate the pseudo-random number. Let Gi : {0, 1}m → {0, 1}n+l be a distributed
pseudo-random generator, where 1 ≤ i ≤ k, and a ensemble of external input I.
We then model our PRNG construction as follows:

– Initial phase: It uses a function setup() to generate the seed = (s, s′) ←
{0, 1}n+l at first.

– State refresh phase: Given seed = (s, s′) as input, the refresh algorithm
refresh(ST, I) outputs a next internal state ST ′

– Random bits output phase: The generator Gi outputs a random string R
and a new state ST ′.

The Protocol for Distributed Pseudo-random Number Generation

1. Each party translates system events into bits which represent the underlying
entropy and then share out their entropy to other parties.

2. Each party also collecting entropy for other other party. Because the system can-
not consume more entropy than it has collected, and once the entropy counter
for the input pool has reached its maximum value, the party starts ignoring
any incoming events in order to save CPU resources. Thus, it collects no more
entropy.

3. Each party run the setup() to get the initial seeds as input of PRNG G, after that
each party adds these bits to the generator pools using add input randomness()
function in Linux PRNG.

4. Each party use function refresh() to extract entropy and update the entropy
pool. If the accumulated entropy from both internal events and external events
of other parties can pass the test of entropy estimator, send the bits as input of
function next().

5. When bits are read from the generator, each party uses function next() to gen-
erates the output of the generator and the feedback which is entered back into
the pool.

6. Each party runs its internal G, let the random data generation be done in
blocks of 10 output bytes. For each output block, 20 bytes, produced during the
process, are injected and mixed back into the source pool to update it.

Fig. 1. The Distributed PRNG
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3.2 The details of our Protocol

There are four asynchronous procedures: the initialization, the entropy accumu-
lation, pool updating with entropy addition and the random number output. We
provide some details of our construction in the following paragraphs.

Initialization Operating system start-up includes a sequence of routine actions.
This sequence, including initializing the PRNG with constant OS parameters and
time-of-day, can easily be predicted by an adversary. If no special actions are
taken, the PRNG state will include very low entropy. The time of day is given
as seconds and micro-seconds, each is 32-bits. In reality this has very limited
entropy as one can find computer uptime within an accuracy of a minute, which
leads to a brute-force search of 60seconds×106microseconds < 226 which is feasible
according the [11]. Even if the adversary cannot get the system uptime, he can
check the last modification time of files that are created or modified during the
system start-up, and know the uptime in an accuracy of minutes.

To solve this problem, PRNG simulate continuity along shut-downs and start-
ups. This is done by skipping system boots. A random-seed is saved at shut-down
and is written to the pools at start-up. A script that is activated during system
start-ups and shut-downs uses the read and write capabilities of /dev/urandom
interface to perform this maintenance.

The script saves 512 bytes of randomness between boots in a file. During
shut-down it reads 512 bytes from /dev/random and writes them to the file,
and during start-up these bits are written back to /dev/random. Writing to
/dev/random modifies the primary pool and not the random pool, as one could
expect. The secondary and the random pool get their entropy from the primary
pool, so the script operation actually affects all three pools.

The author of [24] instructs Linux distribution developers to add the access
control of initial seed in order to ensure unpredictability at system start-ups.
This implies that the security of the PRNG is not completely stand-alone but
dependent on an external component which can be predictable in a certain Linux
distribution.

2. Collecting and Sharing Entropy Each party collects entropy from events o-
riginating from the keyboard, mouse, disk and interrupts on each client’s local
computer while collecting the event entropy from other parties. When such an
event occurs, four 32-bit words are used as input to the entropy pools: For each
entropy event fed into the Linux PRNG, three 32-bit values are considered: the
num value, which is specific to the type of event 2, the current CPU cycle count
and the jiffies count at the time the event is mixed into the pool. Here, we can use
three functions for Linux PRNG: add disk randomness(), add input randomness()
and add interrupt randomness().

The sequence from the three function represent the jiffies counts (the time
between two ticks of the system timer interrupt) of the events, and is thus an
increasing sequence. Since the estimation of the entropy should not depend on
the time elapsed since the system was booted (beginning of the jiffies count),
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only the sequence of time differences are considered. A built-in estimator Ent is
used to give an estimation of the entropy of the input data used to refresh the
state ST . It is implemented in function add timer randomness which is used to
refresh the input pool.

3. Entropy Addition and Pool Updating LINUX PRNG uses an internal mixing
function which is implemented in the built-in function mix pool bytes. It is used
in two contexts, once to refresh the internal state with new input and secondly to
transfer data between the input pool and the output pools., used to refresh the
internal state with new input and to transfer data between the pools. The design
of the mixing function relies on a Twisted Generalized Feedback Shift Register
(TGFSR) as defined in Section 2. In the entropy pools, we add Lacharme’s linear
corrector with mixing function to update the pool, it is a deterministic function
to compress random sequence in order to reduce statistical weakness [17]. Let C
the [255, 21, 111] BCH code, D the [256, 234, 6] dual code of C, with generator
polynomial

H(X) = X21 +X19 +X14 +X10 +X7 +X2 + 1 (1)

The input 255-tuple (m1, ...,m255) is coded by a binary polynomial m(X) =∑2
55i=1miX

i. Therefore the function f mapping F 255
2 to F 21

2 , defined by
m(X) 7→ m(X) mod H(X) is a (255, 21, 110)-resilient function. This poly-
nomial reduction is implemented by a shift register of length 21 with only seven
xor gates.In this case, with an important input bias e/2 = 0.25, it give an output
bias of: ∀y ∈ F 21

2 |P (f(X) = y)− 2−21| ≤ 2−111. Therefore, the minimal entropy
of the output is very close to 21.

We can use a general constructions of good post-processing functions. We
have shown that linear correcting codes and resilient functions provide many
correctors achieving good bias reduction with variable input sizes. Linear feed-
back shift register are suitable for an hardware implementation where the chip
area is limited.

If input pool does not contain enough entropy. Otherwise, estimated entropy
of the input pool is increased with new input from external event. Entropy
estimation of the output pool is decreased on generation. Data is transferred
from the input pool to the output pools if they require entropy. When the pools
do not contain enough entropy, no output can be generated with /dev/random.

4. Random Bits output Entropy estimations of the participating pools are up-
dated according to the transferred entropy amount. Extracting entropy from a
pool involves hashing the extracted bits, modifying the pool inner-state ST and
decrementing the entropy amount estimation by the number of extracted bits.
Such tasks are executed by next() function in G. It extracts 80 random bytes
from the secondary pool one time.It uses SHA-1 and entropy-addition opera-
tions before actually outputting entropy in order to avoid backtracking attacks.
In addition it uses folding to blur recognizable patterns from 160 bits SHA-1
output into 80 bits.
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Once mixed with the pool content, the 5 words computed in the first step are
used as an initial value or chaining value when hashing another 16 words from the
pool. These 16 words overlap with the last word changed by the feedback data. In
the case of an output pool (pool length = 32 words), they also overlap with the
first 3 changed words. The 20 bytes of output from this second hash are folded
in half to compute 11 the 10 bytes to be extracted: if w [m...n] denotes the bits
m, ..., n of the word w, the folding operation of the five words w0, w1, w2, w3, w4 is
done by w0⊕w3, w1⊕w4, w2 [0...15]⊕w2 [16...31]. Finally, the estimated entropy
counter of the affected pool is decremented by the number of generated bytes.

4 Application to Distributed Data Random Perturbation

Data random perturbation is a technology when preserve the data privacy by
adding the random noise to the original data, in recent years, it has been reviewed
and the such as differential privacy is the state-of-the-art privacy notion [7] that
gives a strong and provable privacy guarantee for aggregated data. The basic
idea is partial random noise is generated by all participants, which draw random
variables from Gamma or Gaussian distributions, such that the aggregated noise
follows Laplace distribution to satisfy differential privacy.

Here in this section, we propose a application of our distributed PRNG.
Combined with randomness extractor We assume that the adversary has some
control over the environment in which the device operates (temperature, voltage,
frequency, timing, etc.), and it is possible that that changes in this environment
affect the distribution of X. In the Barak-Shaltiel-Tromer model, they assumed
that the adversary can control at most t boolean properties of the environment,
and can thus create at most 2t different environments.

Definition 2. (Barak-Shaltiel-Tromer randomness extractor [2]) A function E:
{0, 1}n×{0, 1}t → {0, 1}m is a (k, ϵ)-extractor if for every random variable X of
min-entropy at least k it holds that E(X,Ut) is ϵ-close to the uniform distribution
over {0, 1}m.

Definition 3. (The security definition of Barak-Shaltiel-Tromer randomness
extractor [2])

– An adversary chooses 2t distributions D1, . . . , D2t over {0, 1}n, such that
H∞(Di) > k for all i = 1 · · · , 2t.

– A public parameter π is chosen at random and independently of the choices
of Di.

– The adversary is given π, and selects i ∈ {1, ..., 2t}.
– The user computes Eπ(X), where X is drawn from Di.

Given n, k, m, ϵ, δ and t, an extractor E is t-resilient if, in the above setting,
with probability 1-ϵ over the choice of the public parameter the statistical distance
between Eπ(X) and Um is at most δ.
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We can apply this random extractor to a distributed environment with k
participated database owners Pi, i = 1, ..., k by using the Verifiable Secret Shar-
ing scheme [5] which allows any party distributes his shares of a secret, which
can be verified for consistency. The Gaussian noise can be generated and all the
participants cooperatively verify that the shared values are legitimate. Finally,
each party site Pi, i = 1, ..., n can cooperatively reconstruct the original data
density by using the reconstruction technique of the verifiable secret sharing
scheme. In our proposal, we need that all parties must generate the noise from
the same probability distribution. yi and bi can be generated interactively among
all parties. The protocol is shown in Fig.2.

Protocol for distributed random noise generation for cloud database service

1. Before upload data to cloud database, the client i will generate random bits
string using the G we proposed in last section and get a1,i, ..., ak,i.

2. Every client collaborative executing the coin tossing protocol some random bits
b1, ..., bn with a pre-determined distribution and share out those bits via
verifiable secret sharing.

3. The client i can apply a randomness extractor Ext() with the input πi(b1, ..., bn)
where πi is a random permutation and get the random bits c1,i, ..., ck,i

4. Then client i computes a1,i ⊕ ck,i, ..., a1,i ⊕ ck,i and then converts these random
bits GF (2) to random noise on GF (q). The sequences of random noise is
serially uncorrelated and the output has good statistical characteristics due to
the randomness extractor.

Fig. 2. The Distributed Random Noise Generation

Each party i shares a random bit by sharing out a value bi ∈ {0, 1}GF (q),
using a non-malleable verifiable secret sharing scheme, where q is sufficiently
large, and engages in a simple protocol to prove that the shared value is indeed
in the specified set. And then suppose for a moment that we have a public source
of unbiased bits, c1, c2, ..., cn. By XORing together the corresponding b’s and c’s,
we can transform the low quality bits bi (in shares) into high-quality bits bi⊕ ci
in shares. Finally, each participant party sums her shares to get a share of the
random noise.

The principal costs are the multiplications for verifying random noise in
{0, 1}GF (q) and the executions of verifiable secret sharing. Note that all the
verifications of random noise parameters are performed simultaneously, so the
messages from the different executions can be bundled together. The same is
true for the verifications in the VSS. The total cost of the scheme is Θ(n) mul-
tiplications and additions in shares, which can be all done in a constant number
of rounds.
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5 Security Proofs and Experimental Analysis

In this section, we provide security proofs and the experimental analysis.

5.1 Security Proof of the distributed PRNG

We show the security of our scheme in Theorem 1 and Theorem 2 as follows:

Theorem 1. Our PRNG has t′, qD, ϵ-recovering security.

Proof. The adversary A compromised a state and get the value ST0 of the G,
let’s consider the game as follows:

– The challenger choose a seed seed ← setup(), after that he sample the D
and get some assemble σk, Ik, γk, zk), where k = 1, ..., qD. Here γ is some
fresh entropy estimation of I, z is the leakage about I given to the A.

– The adversay get γ1, ..., γqD and z1, ..., zqD , after that he launch an attack
against qD + 1 step computation of G, he can call D-fresh along with other
oracle

– The challenger sequentially computes STj = refresh(STj−1, Ij , seed) for j =
1, ..., d. If b = 0, A is given (ST ∗, R) = next(STd) and if b = 1, A is given
(ST ∗, R)← {0, 1}n+l.

– The adversary A output a bit b∗.

Adversary can query the oracles in security definition and try to distinguish the
internal state from the random sample. Let Game 0 be the original recovering
security game above: the game outputs a bit which is set to 1 iff the A guesses the
challenge bit b∗ = b. We define Game1 where, during the challengerfs computa-
tion of (ST ∗, R)← next(Sd) for the challenge bit b = 0, it chooses U ← {0, 1}m
uniformly. We can know that Pr[(Game0) = 1]−Pr[(Game1) = 1] ≤ ϵ according
the argument in [8].

Theorem 2. Our PRNG has t, ϵ-preserving security.

Proof. Intuitively, it says that if the state S0 starts uniformly random and un-
compromised, and then is refreshed with arbitrary (adversarial) samples. Here
in this paper, we adapt the security notions which is simplified by Dodis [8]
based on BH model we mentioned above. I1, ..., Id resulting in some final state
Sd, then the output (S∗, R) ← next(Sd) looks indistinguishable from uniform.
Formally, we consider the following security game with an adversary A who try
to compromise the PRNG. We consider the game as follows:

– The challenger chooses an initial state S0 ← {0, 1}n, a seed seed ← setup,
and a bit b← {0, 1} uniformly at random.

– A gets seed and specifies arbitrarily long sequence of values I1, ..., Id with
Ij ∈ {0, 1}n for all j ∈ [d].

– The challenger sequentially computes STj = refresh(STj−1, Ij , seed) for j =
1, ..., d. If b = 0, A is given (ST ∗, R) = next(STd) and if b = 1, A is given
(ST ∗, R)← {0, 1}n+l.
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– A outputs a bit b∗.

Without loss of generality, we will assume that all compromised next queries
that the A makes are to get − next. Let Game 0 be the original preserving
security game: the game outputs a bit which is set to 1 iff the attacker guesses
the challenge bit b∗ = b. If the initial state is ST0 ← {0, 1}n, the seed is seed =
(X,X ′), and the adversarial samples are Id, ..., I0 (indexed in reverse order where
Id is the earliest sample) then the refreshed state that incorporates these samples
will be Sd := S0 ·Xd+Pj = Ij ·Xj . As long as X = 0, the value STd is uniformly
random (over the choice of S0). We consider a modified Game 1, where the
challenger simply chooses STd ← {0, 1}n. We can use using the hybrid argument
and get the advantage of A is |Pr[b]− 1

2 | < ϵ.

5.2 Security Analysis of application of PRNG in random data
perturbation

In order to determine the effect of a perturbation method, it is necessary to
consider the security provided by that method. If two data matrics X and X ′

differ in a single row, the statistical difference between X and X ′ is 1/n. Let X
be a random variable and Pr[X = x] be the probability that X assigns to an
element x. Let H∞(X) = log( 1

maxx∈XPr[X=x] ). By definition, it is easy to verify

that the following claims:

– If maxx∈XPr[X = x] ≤ 2−k if and only if H∞(X) ≥ k;
– If maxx∈XPr[X = x] ≥ 2−k if and only if H∞(X) ≤ k.

To design randomness extractor E : {0, 1}n → {0, 1}m, we need to consider
its input and mathematical structure. It is well-known result that one cannot
extract m bits from a distribution X with H∞(X) ≤ m − 1. H∞(X) ≤ m − 1
implies Pr[X = x] ≥ 2−(m−1). For any candidate extractor function E : {0, 1}n
→ {0, 1}m, we know that Pr[y = E(x)] ≥ 2−(m−1). It follows that E(x) is far
from being uniformly distributed. Another well-known result is that there exists
no single deterministic randomness extractor for all high-entropy sources X.
Consider the goal of designing an extractor for all distributions X with H∞(X)
≤ n−1. One can show that there exists a design for function E : {0, 1}n → {0, 1}.
For an arbitrary adversaryA, there are two statistically similar data matrix, only
differ in on row, after the linear transformation, he can not indistinguish between

the transcript T (X) and T (X ′). Because T (X)/T (X ′) is at most e−
X−X′

σ , where
σ is . Using the law of conditional probability, and writing ti for the indices of

t, Pr(T (X)=t)
Pr(X′+Y=t) ∈ exp(± |X−X′|

σ ).

5.3 Experimental Analysis

Our experiment is executed on Note PCs with 2.6GHz, the OS is 32-bit Ubuntu
13.10. We collect the entropy from three other PC and generate the pseudo-
random from 100 bytes to 1000 bytes. We did not use linux kernel APIs in
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linux/net.h and /linux/netpoll.h to send UDP packets, but to collect three PC’s
entropy and form them into a file which is used for the fourth experiment PC.
So we only calculate the computation time as shown in Fig. 3.

Fig. 3. A Comparison of Stand-alone Linux PRNG and our Distributed PRNG

From the Fig.3, we can see that our proposed is faster than the stand-alone
Linux PRNG dev/random. We also can see that the time for generating pseudo-
random number from dev/random does not always increases progressively with
the output size. That is due to the unpredictability of the event entropy which
imply a stronger security and robustness than dev/urandom which repeatedly
use the pool entropy without enough update input for random events.

6 Conclusion and future works

In this paper, we proposed a distributed pseudo-random number generator based
on Linux kernel and its PRNG. After that, we provide a solution for using the
proposed PRNG to do the distributed random data perturbation which can be
used to preserve the data privacy before using the cloud database service. The
future direction should be modifying the our PRNG to make it more efficient
and secure, we may try to use of a newer hash function, for example SHA-3 or
AES to do the extracting output. It would require a significant change of the
design, and an investigation of Linux PRNG.
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