
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
静的プログラム解析に基づくオブジェクト指向プログ

ラムからアスペクト指向プログラムへの変換改善手法

Author(s) 王, 林

Citation

Issue Date 2015-03

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/12750

Rights

Description Supervisor:鈴木　正人, 情報科学研究科, 博士

Improving Transformation of Object-Oriented

Program to Aspect-Oriented Program with Static

Analysis

by

Lin Wang

submitted to
Japan Advanced Institute of Science and Technology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Supervisor: Associate Professor Masato Suzuki

School of Information Science
Japan Advanced Institute of Science and Technology

March, 2015

Abstract

Separation of concerns is expected to be supported by development methodology or pro-
gramming languages through enabling encapsulation of each different concern in its own
unit of modularity. Unfortunately, current object-oriented languages and development
methodology fail to provide a complete and effective support for the separation of con-
cerns. Undesirable phenomena such as code scattering and code tangling occur.

Aspect-Oriented Programming (AOP) technique supports the separation of crosscut-
ting concerns. Aspect-orientation proposes a technique to obtain better software modular-
ity in a practical situation where object-oriented development/programming and associ-
ated design patterns are not appropriate. There is a prospect of aspect-oriented program-
ming becoming a mainstream technology in the near future. The questions of how to deal
with existing legacy object-oriented software system when aspect-oriented becomes stan-
dard practice and how to introduce aspects to an existing legacy object-oriented software
system are emerged. The traditional object-oriented programming technique has known
limitations, which it could not modularize the implementation of crosscutting concerns in
existing software systems. Thus, applying AOP technique to transform the legacy object-
oriented software system is one way to obtain the benefits of aspect-oriented programming
technique.

In this dissertation, we explore the approach to resolve two obstacles in the trans-
formation of object-oriented (OO) program to aspect-oriented (AO) program with static
program analysis techniques. First, we propose a new heuristic algorithm for optimizing
the combination of input metrics for clustering based aspect mining. Aspect mining is
the first phrase in the aspect-oriented refactoring (AOR). Aspect mining aims at detect-
ing the code which is likely to implement a crosscutting concern. Aspect refactoring is
the second phrase in the AOR, while it is a way to remove the code implementation of
crosscutting concerns from an object-oriented program into aspects. Second, After aspect
refactoring, the pointcuts is created with pointcut abstraction rules. The pointcuts are
always implemented as name-based or enumeration pointcuts, however, these pointcuts
are known as fragility against program evolution. We propose a framework Nataly to solve
the fragile pointcut problem by (1) automatic inferring the intention properties from the
join points matched by the given name-based pointcuts and (2) generating a method to
check whether the given join point satisfies the properties or not. We also give a deep
discussion of aspect interference problem in the AOR. In this discussion, we propose an
idea to check the aspect interference by using static control flow analysis.

The result of experiments revealed that the metric selection approach increased the
accuracy of aspect mining in the aspect mining. The fragile pointcut problems are also
alleviated, because the pointcuts which are generated automatically by our framework are
more robust than the name-based or enumeration counterpart.

i

Acknowledgments

Foremost, the author wishes to express his sincere gratitude to his principal advisor
Associate Professor Masato Suzuki of Japan Advanced Institute of Science and Technology
for his constant encouragement, advices, kindly guidance and support.

The author would like to extend his gratitude to the rest of his thesis committee: Pro-
fessor Kokichi Futatsugi, Associate Professor Toshiaki Aoki and Professor Kazuhiro Ogata
of Japan Advanced Institute of Science and Technology, and Professor Hidehiko Masuhara
of Tokyo Institute of Technology for their valuable reviews, advices and suggestions.

Last but not least, the author is grateful to assistant professor Tomoyuki Aotani of
Tokyo Institute of Technology for helpful discussions, suggestions and continuous encour-
agements.

ii

Contents

Abstract i

Acknowledgments ii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Approach . 3
1.4 Discussion and Future work . 3
1.5 Dissertation Outline . 3

2 Setting the Scene 5
2.1 Research Background . 5

2.1.1 Static Program Analysis . 5
2.1.2 Crosscutting Concerns . 6
2.1.3 Aspect-Oriented Programming . 8
2.1.4 AspectJ . 9
2.1.5 Fragile Pointcut Problem . 12

2.2 Aspect Mining . 15
2.3 Aspect Refactoring . 17

3 Reliable Metric Selection for Aspect Mining 19
3.1 Clustering-based Aspect Mining with different metrics 19

3.1.1 Metrics . 20
3.1.2 Scenario 1: Selecting Fan-out Value/Fan-in Value as Metric 21
3.1.3 Scenario 2: Selecting FIV and FOV as Metrics 22
3.1.4 Scenario 3: Selecting FOV and Cp as Metrics 23
3.1.5 Scenario 4: Selecting FOV, FIV and MSig as Metrics 23
3.1.6 Summary . 24

3.2 Formalized Metrics . 25
3.3 Metric Selection Algorithm . 27

3.3.1 Evaluation algorithm QeA-SOM . 27
3.3.2 Heuristic Algorithm QAHSSS . 28

4 Translating Name-based Pointcuts to Analysis-based Pointcuts 30
4.1 Analysis-based Pointcut . 30
4.2 Translation Framework-Nataly . 31

4.2.1 Relationships . 31

iii

4.2.2 Relationship graphs . 32
4.2.3 Intention Property . 34
4.2.4 Intention Pattern . 35
4.2.5 Code generator . 39

5 Evaluation 41
5.1 Metrics Selection . 41

5.1.1 Benchmark . 41
5.1.2 Metric Models . 42
5.1.3 Criteria of Evaluation . 43
5.1.4 Results of Banking Program . 44
5.1.5 Results of Dijkstra’s Algorithm Application 45

5.2 Framework Nataly . 47
5.2.1 Experiment Result . 49

5.3 Concluding Remarks . 55

6 Discussion for Aspect Interference 57
6.1 Aspect interference . 57

6.1.1 Scenario 1 . 58
6.1.2 Scenario 2 . 61

6.2 Preliminary Idea . 63
6.2.1 Model Property for OO program 64
6.2.2 Model for AO program . 66
6.2.3 Checking Aspect Interference . 67

6.3 Further discussion on case studies . 67

7 Related Work 75
7.1 Aspect Mining . 75
7.2 Handling Fragile Pointcut Problem . 76
7.3 Management of Aspect Interactions . 79

8 Conclusion and Future Work 82
8.1 Contributions . 82
8.2 Future Work . 83

References 84

Publications 92

iv

List of Figures

2.1 Outline of Class Point and Line . 7
2.2 Code Scattering and Tangling . 8
2.3 Figure editor example . 13
2.4 Outline of the aspect CanvasRepaintAspect with traditional pointcut . . . 14
2.5 Programmer adds new a method changeColor in class Point and Line . . . 14
2.6 Programmer adds a new method setDate in class Point and Line 15

3.1 Outline of the class Point . 20
3.2 Outline of the class Line . 21
3.3 Crosscutting concerns in Figure example 22
3.4 Effect of FOV on clustering . 22
3.5 Effect of FIV on clustering . 23
3.6 Effect of FIV and FOV on clustering . 24
3.7 Effect of FOV and Cp on clustering . 25
3.8 Effect of FOV, FIV and MSig on clustering 26

4.1 An example of Seed . 33
4.2 An example of T-Pattern . 39

5.1 Quality of the different set of input metrics in banking program 46
5.2 Quality of the different set of input metrics in LDA application 47
5.3 Hybrid automobile control system . 49
5.4 A new fuel cell class . 50
5.5 The seeds for pointcut limitspeed . 50
5.6 Relationship Graph for method increase(double) 51

6.1 Outline of Class Call . 59
6.2 Outline of Aspect Timing and Bill . 60
6.3 Code layouts of the woven method in Telecom 61
6.4 Outline of Class BinaryAlgorithm . 62
6.5 Outline of Logging aspects . 62
6.6 Outline of monitoring aspects . 63
6.7 Code layouts of the woven method in search engine 63
6.8 A simple example . 64
6.9 CFG and CNF Model for Simple Example (OOP) 65
6.10 The IDT for Telecom example . 66
6.11 Interprocedural control flow graph for advice holder hangup 67
6.12 CNF for the AO program of simple example (a) 68
6.13 CNF for the AO program of simple example (b) 68

v

6.14 Example of refactoring: Timing and Billing 69
6.15 CFG and CNF model for Telecom (OOP) 70
6.16 Interprocedural control flow graph for Telecom 71
6.17 CNF for the AO program of Telecom (a) 72
6.18 CNF for the AO program of Telecom (b) 72
6.19 Example of refactoring: Exception Handler and Command Pattern 73
6.20 Example of refactoring: Logging and Monitoring 74

vi

List of Tables

2.1 Examples of pointcuts in AspectJ . 11

5.1 Characteristics of Benchmark Programs . 42
5.2 QUALITY OF METRICS FOR MODEL 1 IN BANKING 45
5.3 EVALUATION OF BANKING EXAMPLE FOR HC 45
5.4 EVALUATION OF BANKING EXAMPLE FOR KAM 46
5.5 QUALITY OF METRICS FOR MODEL1 IN LDA 47
5.6 EVALUATION OF LDA FOR HC . 48
5.7 EVALUATION OF LDA FOR KAM . 48
5.8 Execution times for NatalyAJ . 51
5.9 Number of matched join point shadows captured by pointcuts in different

versions . 52
5.10 EXPERIMENT MATCHING RESULTS 54

vii

Chapter 1

Introduction

1.1 Motivation

In software engineering, humans cannot concentrate on many concerns or subjects simulta-
neously. Instead, they abstract from most of the concerns so that they can concentrate on
a particular concern in order to cope with it effectively. To concentrate on such particular
concerns, developers break, or decompose complex problems into several sub-problems.
This is a basic idea of the technique of separation of concerns which are proposed by
Dijkstra [2] and Parnas [1].

A concern is used to organize and decompose a software system into manageable and
comprehensible parts [3]. Separation of concerns is the ability to keep every concern in its
own unit of modularity. Modularity gives a great contribution to software development.
It lets humans are able to solve an issue of the software system at a time. In this case,
human can make things easier for themselves. Units of modularity include functions,
procedures, modules, method, classes and packages and so on. Modularity is a way of
achieving separation of concerns. Effective separation of concerns makes a system easier
to understand, change and debug [4].

Object-oriented programming provides a way of modularizing concerns. Classes in
object-oriented model perform a single specific function. However, not all of a software
system’s code can be separated. Code related to a concern that cannot be modularized
usually results in code scattering and code tangling. Code scattering represents small
code fragments spread over several different units of modularity. Code tangling represents
intertwined mixture of code fragments in an available unit of modularity. Concerns that
suffer from such problem are known in the literature as crosscutting concerns, which its
code cuts across several units of modularity. Scattering and tangling increase the difficulty
in reading, understanding, maintaining and reusing code.

In many cases, we find that many parts of software systems have code fragments for
different exception handling strategies, synchronization policies, distribution strategies,
different supports for monitoring, logging optimisation, debugging, authorization and
other such tasks. Solving such crosscutting concerns can be quite difficult when using
object-orient programming technique. For instance, dealing with the implementation of
concerns that generally spread over several different modules of the system; such codes
even aren’t related related to the function implemented by the module. For that, we need
more powerful composition mechanisms. Aspect Oriented Programming (AOP) is a novel
technique that improves on object-oriented programming (OOP) in this regard.

1

AOP aims at solving the problems of scattering and tangling, by modularizing cross-
cutting concerns in a unique unit, called aspect. Aspect encapsulates behaviors which
affect multiple unit of modularity into reusable modules. For example, a software system
can be developed according to its main functional requirement, which the possibility for
non-functional requirement (such as monitor and persistence) can be defined in a separate
aspect.

1.2 Problem Statement

Aspect-oriented programming provides explicit constructs to develop software systems
whose concerns are better modularized because they are no longer tangled together and
they are clearly separated from farraginous construct into a standalone unit. In practice,
AspectJ [5] is the most prevalent one in the mainstream aspect-oriented programming
languages. It is an extension of Java [6] that includes mechanisms to support the concepts
of AOP. AspectJ introduce three elements: join point, pointcut and advice. A join point
is a point in the execution of a program where will be inserted the advice code. A pointcut
describes a set of join points. An advice consists of pointcut and code body. Advice is
executed at the join point which is matched by its pointcut.

To extend the benefits of aspect-oriented technique to a large number of legacy object-
oriented programs, a refactoring approach is proposed by many researches [7, 8] that
refactoring the code of crosscutting concerns into aspects. The aspect-oriented refactoring
consists of two important phases: aspect mining [9, 10] and aspect refactoring [11, 12, 13].
In aspect mining the problem is analyzing the source code of legacy program for detecting
the code slides which are likely to implement the crosscutting concerns. The aspect
refactoring focuses on how to remove these crosscutting concerns from the source code of
object-oriented program and move them into aspects.

However, there are two significant problems obstacle the refactoring of object-oriented
program into an expected aspect-oriented program.

First of all, there is little or no knowledge about how to choose the helpful metrics
for aspect mining. Method level aspect mining is the activity of classifying methods
that belong to the crosscutting concerns, in a given object-oriented program. A number
of researches [14, 15, 16, 17] intend to achieve the aspect mining by using clustering
techniques which can classify the similar concerns into the same groups. Each group is
called a cluster and it consists of methods which are similar [18]. A clustering algorithm
classifies the methods in terms of metrics [19], which are introduced for measuring how
program constructs (class, method, field, etc.) are used in the design and development
process. However, it is difficult to decide whether the given metrics are suitable or not
for each clustering algorithm.

Second, when the code slice of crosscutting concern is refactored into aspect. For
example, in AspectJ [5], the pointcut always depends on specific names to match the join
points (e.g., enumeration of join points). In this case a fragile pointcut problem arises.
A pointcut in a version of the program is said to be fragile if, after the program evolves,
(1) it does not match all the expected join points or (2) captures unexpected join points.
The refactored pointcuts are particularly fragile when they are written in an enumerative
form or specific name-based pattern, whereas an intentional pointcut is expected to be
more robust.

2

1.3 Approach

In this dissertation, the problems of refactoring a legacy object-oriented program to an
aspect-oriented program have been addressed by dividing it into three phases.

In the aspect mining phase, we propose a heuristic metric selection algorithm that
optimizes the combination of metrics for a given clustering-based aspect mining method.
Metric is obtained by static analyzing the structure of object-oriented program. For a
given combination of metrics, the selection algorithm selects one metric from the com-
bination into an input metric set and evaluates the quality of such input metric set in
an iterative process. In each step a metric is selected from the given combination and
moved into the input metric set. How to choose the metric from the given combination
is decided by an evaluation algorithm for each step. The selection algorithm outputs the
input metric set, which obtains the best quality, for the clustering algorithms.

Next, after the aspect refactoring phase, we propose a framework that translates
name-based pointcuts to analysis-based pointcuts automatically. Analysis-based point-
cuts match join points with an intention pattern which is the core concept of analysis-based
pointcuts that abstracted from the relationship graphs by static analysis. Relationship
graphs describe the relationships (e.g., method call, field declaration) between the program
elements (e.g., classes, methods). The common/stable vertexes within the relationship
graphs are kept in the process of abstraction of intention pattern. Such intention patterns
are more stable than the immediate name-based one, so that the analysis-based pointcuts
give contribution to the robustness of aspect against program evolution.

1.4 Discussion and Future work

In the aspect refactoring phase, the detected codes of crosscutting concerns are moved
into aspects. Such aspects codes inject the crosscutting concerns in the program when the
aspect weaver weaves the program. We observe that when such aspects are composed the
interference between them are potentially dangerous and can result in erroneous behavior
of the generating aspect-oriented program. Without dealing with such interference, the
generating aspect-oriented program probably is broken after aspect refactoring. Therefore,
in this dissertation, we give a further discussion about this problem and propose an idea
to cover this problem. We propose an idea for checking the aspect interference by using
control flow analysis in the future. In our idea, first, we extract a constraint property
from the OO progress. Second, we extract a model from the generating AO program. We
change such problem to a satisfiability problem. We expect to use Satisfiability Modulo
Theories (SMT) solver to check whether the model satisfy the property. If it does not
satisfy, it indicates that aspect interference potentially arises.

1.5 Dissertation Outline

This dissertation consists, apart from the introduction, seven chapters.
Chapter 2 presents the general research background behind our approach for trans-

forming object-oriented program to aspect-oriented program. In particular, the static
program analysis is presented as the basic method for our work. In addition, the aspect
mining and aspect refactoring are two significant phases in the transformation process.

3

Chapter 3 starts to present the metric selection for aspect mining. Why need to select
the suitable metrics for the clustering-based aspect mining is explained first. Next, a
formalized metric representation and two primary algorithms for evaluating the input
metric and find the optimized one are described in detail in this chapter.

Chapter 4 presents a framework Nataly which translates the name-based pointcuts
(or enumeration pointcut) to analysis-based pointcuts automatically . This chapter also
discusses the fragile pointcut problem after refactoring the object-oriented code to aspects.

Chapter 5 illustrates details of case studies first, and assesses the performance and
effectiveness of our approaches through case studies and experiments.

Chapter 6 give a further discussion about the aspect interference awareness. We
describe two example to illustrate such problem. We also propose an idea to show a
smart way to resolve aspect interference problem in the future work.

Chapter 7 summarize some related works to our research.
Chapter 8 re-states the major contributions of this dissertation and outlines directions

of future work.

4

Chapter 2

Setting the Scene

In this chapter, we will present background material for better understanding this disser-
tation.

Section 2.1 introduce the research background, which covers work in different research
domains that our dissertation draws on, including crosscutting concerns, aspect-oriented
programming, a mainstream aspect language-AspectJ, static program analysis and the
fragile pointcut problem of aspect-oriented program.

Section 2.2 and section 2.3 introduce two important phases in the transformation
of object-oriented program in aspect-oriented program: aspect mining and aspect refac-
toring. The first phase is to identify code which is likely to implement a crosscutting
concern from the object-oriented program. The second phrase is to refactor the codes of
crosscutting concerns into aspects without changing their behavior.

2.1 Research Background

2.1.1 Static Program Analysis

Static program analysis is performed on source code or object code in most cases, and
is performed without actually executing programs. It predicts dynamically generated
behaviors of a program when executing them [21]. Typical examples would be compute
where values derive from and may flow to, what possible values that expression may be
evaluated to, and what values may reach a certain program point of interest.

Static program analysis is used to optimize code generally [22]. A growing number of
static analyses have been used in the verification of properties for safety critical software
as well as discovery of bugs in potentially vulnerable code [23].

The analysis provides approximate properties of the programs, which are usually di-
vided into three classes according to their analysis nature:

• Over approximation captures the entire behavior of a program. It estimates the
program behaviors that may happen along all the execution paths.

• Under approximation captures a subset of all possible behaviors of a program.
It estimates the program behavior that should happen along all execution paths.

• Undecidable approximation cannot decide whether the approximation behavior
belongs to the program or not. Its result usually cannot give meaning full informa-
tion.

5

In order to get a satisfactory analysis result, the types of analysis technique will be
adopted according to the nature of the properties.

It is important that the program analysis should be semantics based, which means that
the information obtained from the analysis can be proved to be correct with respect to the
semantics of a programming language. There are various types of analysis techniques for
answering analysis questions on programs with different language constructs, the main-
stream techniques are control flow analysis, data flow analysis, abstract interpretation
and type system [21].

Model checking [24] is complementary to static analysis techniques. It can test whether
the given model meets certain specifications by performing exhaustive exploration of the
possible states in a software system. Model checking is a powerful technique for precise
verification of software and hardware. However, it suffers a state explosion problem, and
becomes intractable for program with large state spaces and undecidable for infinite one.

In this dissertation, we use static analysis to understand the behavior of the program,
the relationship between the different program elements and find the potentially malicious
code. In Chapter 3, we propose a static analysis approach to calculate the quality metrics
for the software structure. In Chapter 4, we use a control flow analysis to obtain the
control flow graph of an object-oriented program and an interprocedural control flow
graph of an AspectJ program, respectively. In Chapter 5, the static analysis is used
to generate the relationship graph (e.g., call graphs) and properties which support for
matching join points.

2.1.2 Crosscutting Concerns

Some concerns often interact with each other in such a way that they cannot be encapsu-
lated properly within object-oriented constructs. These interactions lead to code tangling
and code scattering. Code tangling represents when the elements of code for two concerns
are in the same unit and cannot be dissociated, while code scattering represents when a
concern involves code spread across several units. The concerns which are related in such
a way that they imply code scattering or code tangling are said to crosscut each other. A
concern that crosscuts the main functional units is a crosscutting concern.

For example, in a software system that provides its users an e-mail service and a file
repository service, the two sets of objects that provide theses service will have an authen-
tication concern in common. It is a typical example of code-scattering. If monitoring
certain activities in a certain context is required, statements will be added in between
the functional code. It is a typical example of code-tangling. More generally, tracing and
logging are typical examples of concerns that almost always crosscut the main functional
concern: the concern of tracing the behavior and a component is different to the main
concern that is implemented by this particular component.

The code of example is shown in Figure 2.1. A Point includes x and y coordinates.
A Line is defined as two points p1 and p2. Methods setX and setY of the Point involve
two distinct actions. One is updating coordinates in their target object. The other is
triggering the redrawing of the display. Updating coordinates x or y of the objet Point
is clearly corresponds to methods setX and setY, respectively. Similarly, methods setP1
and setP2 of the Line involve the same actions, Updating p1 or p2 of object Line is
clearly correspond to the methods setP1 and setP2, respectively. However, the concern
of updating the display has to be handled after execution of setX, setY, setP1 or setP2.

6

1 Class Point{

2 void setX(int x){

3 this.x=x;

4 Canvas.repaint();

5 }

6 void setY(int y){

7 this.y=y;

8 Canvase.repaint();

9 }

10 //...

11 }

12 Class Line{

13 void setP1(Point p1){

14 this.p1=p2;

15 canvase.repait();

16 }

17 void setP2(Point p2){

18 this.p2=p2;

19 canvase.repaint();

20 }

21 //...

22 }

Figure 2.1: Outline of Class Point and Line

7

Figure 2.2: Code Scattering and Tangling

Therefore, the display repainting concern crosscuts four methods within two classes, and
this concern has to be implemented in several classes.

In Figure 2.2, the red part represents the display repainting crosscutting concerns,
and green part represents a monitoring crosscutting concern. These extra concerns not
only tangle with basic figure operation functionality but also scatter across numerous
other methods in different classes. Improper handling of these concerns leads to loss
of modularity and thus decreases the comprehensibility and maintainability of software
systems.

2.1.3 Aspect-Oriented Programming

Aspect-oriented programming (AOP) [25] emerged and acted as another effective mech-
anism for tackling the issue of crosscutting concerns. AOP aims at enable the clean
modularization of crosscutting concerns. Crosscutting concerns which have been intro-
duced in the previous section often implements many non-functional requirement and
respect in code scattering and code tangling. For instance, security, logging, persistence
and transaction control.

Kiczales et al. [25] propose a new programming technique they dubbed aspect-oriented
as a solution to the crosscutting effect and associated problems. They use the term
aspect to refer to concerns or design decisions difficult or impossible to capture cleanly,
no matter which programming model is used. AOP enables the representation in its own
unit of modularity of code relative to concerns which crosscut several units. A novel
construct which encapsulate the crosscutting concern in a standalone unit of modularity,
called aspect. The various aspects are then composed through a process dubbed weaving
[26, 25], which produces the application through composition of all the intended aspects.

Aspects are composed by weaving aspect code with a base code. This process works
by inlining the instructions from the aspect code into the base code. Although, this

8

process will produce a tangled version, however, it is tangled does not impact negatively
the development process, since it can be regenerated every time when a new version
is required. The inlining analogy used to describe weaving may suggest the processing
and generating of source code, however the earliest aspect-oriented compilers started to
perform this inlining at the binary level, very soon in the technology’s developing process.
This made it clear that weaving could be regarded as more phase in the execution of a
compiler, and that is how it is presently regarded [27]. There is nothing in the aspect-
oriented model stating that the target of the weaving process must be a source or binary
code, or that the weaving process must be static, dynamic, something in between (e.g.,
load-time), or supported at the virtual machine level [28].

AOP is meant to complement other models, not to replace them. It is important to
realize the relative nature of a concept: a given concern may be crosscutting using one
model but may be a cleanly encapsulated one using another. For instance, the procedural
model decomposes systems according to algorithms, and therefore data is scattered across
multiple units of modularity. In object-oriented programming, data and functionalities
comprise the primary decomposition of the system and therefore data is cleanly modular-
ized. Other, non-functional, concerns stand out as crosscutting. This is the reason that
the aspects complement OO program tends to be non-functional.

Often, the various aspects relate to different abstraction domains. Recognizing this
fact, the earliest proposals presented by Kiczales et al. include aspects coded in different,
sometimes concern-specific, languages. This is consistent with the idea of maximizing in-
tentionality. It is the task of the aspect weaver to compose the various aspects into a single
application. For instance, Lopes developed two concern-specific languages COOL and
RIDL [29, 30] designed to express policies of synchronization in multi-threaded environ-
ments and the management of access to remote objects throughout networks. Although
Domain Specific Languages (DSLs) alone yields maximum intentionality to model specific
domains, use of DSLs is also very limiting, since it would require a new DSL as well as its
own specific aspect weaver for each new domain, and possibly for each target application
language or platform. These problems are not present in the AspectJ language, which is
general-purpose.

2.1.4 AspectJ

AspectJ is a mainstream aspect-oriented tool [5, 31, 32], which is a backwards-compatible
extension of Java. Various aspect-oriented tools have later appeared [33], but the majority
is strongly influenced by the design of AspectJ. Currently, AspectJ becomes a standard
for AOP in terms of language design. For this reason, we propose the problems and the
approaches are all based on Java and AspectJ, in addition, we use the terms AOP and
AspectJ interchangeably throughout this dissertation.

AspectJ was designed to be independent of any specific implementation, so that widely
different approaches could be taken to support its mechanisms. For instance, an AspectJ
weaver can take source code as input, or binary code, and its output can be source
code (in which case will have to be compiled again by another compiler), or will directly
output binary code. Depending the specific implementations, the weaving process can
take place at compile-time, run-time or class load-time, or be performed by the virtual
machine itself. The first implementation developed at Xerox Palo Alto Research (PARC)
included a weaver that accepted the source code of the target classes as input and directly

9

generated bytecode-compatible binaries. Later, a second implementation was developed
that supports bytecode-weaving, so both input and output come in binary form. AspectJ
now is a part of IBM’s open source Eclipse project.

AspectJ uses regular Java statements to write the advice, however it defines a lot of
specific constructs for encapsulating aspects and writing pointcuts. For example, some
member functions or data that are related in functionality may be part of different classes
or nested within different functions. Nevertheless, the aspect construct can still encap-
sulate them. In order to understand this dissertation well, we introduce some details of
AspectJ.

Join Point: Join point is a novel concept that makes oblivious quantification [34]
possible. A join point is any identifiable execution point in software system [32]. For
example, a call to a method could be a join point, an access to a field. In addition, a join
point shadow is a location in which advice-execution instruction can be inserted. The
following execution events are all examples of join points:

• The call to a method

• The execution to a method

• The execution of an object’s creation logic

• The invocation of an object’s creation logic

• The access to a field for reading

• The access to a field for writing

• The execution of an exception handler

• The loading of a class

• The Initialization of an object in a constructor

• The pre-initialization of an object in a constructor

Pointcuts: AspectJ includes a novel construct, the pointcut designator, which are
written as logical expression defining which of these join points need to be identified. The
join points are captured by a pointcut designator correspond to non-contiguous places
in the program’s source code. Pointcut expression can include wildcards and specify an
open-ended set of join points. Table 2.1 shows a few legal examples of AspectJ’s pointcut
protocol.

Pointcut in AspectJ include call, execution, initialization, handler, get, set,
this, args, target, cflow, cflowbelow, within, withincode, if, preinitialization
and adviceexecution. A call pointcut invokes a method, and a handler pointcut captures
the execution of an exception handler in an application. A typical format for pointcut is:

pointcut pointcutName([parameters]) : designator(joinpoint)

pointcutName is the name of pointcut, and is used to handle actions. designator decides
when join point will match. A designator is used to expose the object to advice, or to a
narrow pointcut selection. Designators include this, target, and args. The designators

10

Signature pattern Description
call (void Foo.m(int)) A call to the method with signature void

m(int) in class Foo
call (void m*(int)) Calls to void methods whose name starts

with an ’m’ and which have a single param-
eter of type int

call (* m*(..)) Calls to methods of any type whose name
starts with ’m’ and with any parameters

execution (! public Foo.new(..)) The execution of any non public consruction
of Foo

initialization (Foo.new(int)) The initialisation of any Foo object that is
constructed with construction Foo(int)

staticinitialization (Foo) When the type Foo is initialised, after its
class being loaded by the virtual machine

get (int Point.x) When an access for reading the integer field
x in the Point class takes place

set (! private * Point.*) Access for writing the value of any non-
private field in the Point class

handler (IOException+) When an IOException or one of its subtypes
is handled with a catch block

Table 2.1: Examples of pointcuts in AspectJ

of cflow and cflowbelow match join points within a given program flow, whereas, within
and withincode match classes and methods. A pointcut can be combined with three
logical operators and may be combined using set operators such as:
p1 && p2 : it represents all join points in both p1 and p2

p1 || p2 : it represents any join point in p1 or p2

p1 && !p2: it represents any join point in p1 and should not in p2

Advice: The constructs that specify how the behavior of the base code is to be
affected are the advice. Advice is nameless method-like blocks associated with a given
pointcut that execute implicitly, whenever one of the join points is reached. Note that
although advices resemble methods in some way, they do not have call semantics: advices
are never called explicitly, and therefore do not need a name.

Advice can define and use their own temporary variables the same way as methods,
and can use and modify whatever values are exposed by the advices signature. The
same way methods can use and modify values received as parameters. Advice in AspectJ
supports before, after and around:

Before Advice The advice executes immediately before the join point is reached and it
cannot prevent the join point from executing.

After Advice The advice executes immediately after a join point has finished, and there-
fore does not prevent it from executing. After advices can be classified into three
different advices. The first one is unqualified after advice which executes regardless
of the result of the join point. The second one is after returning advice which exe-
cutes after the successful execution of join points. The third one is after throwing
advice which is executed only when the advised join point throws an exception.

11

Around Advice The original join point is executed only if the advice explicitly calls it,
using the proceed keyword. The around advice should declare a return type, which
must conform to the type of the join point which triggered it.

2.1.5 Fragile Pointcut Problem

In this section, we explain the fragile pointcut problem, provide an analysis of the possible
cause of the fragility of pointcut definitions, and illustrate each of them through examples.

Definitions

The fragile pointcut problem[36] is similar to the fragile base class problem in object-
oriented programming. Software engineers cannot determine whether the base class
change is safe only by inspecting its methods independently when in OO development. In
addition, they also need to inspect the methods of subclasses. Translating the problem
to aspects, with the purpose of determining whether the base program change is safe,
developers have to inspect possible influences in the join point shadows which captured
by the particular pointcuts in the program. According to [35, 36], pointcuts are fragile
because when we change the original program, the semantics of pointcuts may change
’silently’, even though the point definition itself is not changed. To match the changed
set of join points, we need to change the semantic of pointcut which captures such join
points. Kellens et al. [37] give a definition of the fragile pointcut problem:

Definition 1 Fragile Pointcut Problem occurs in aspect-oriented software when pointcuts
unintentionally capture or miss particular join points as a consequence of their fragility
with respect to seemingly safe modifications to the base program.

In an aspect-oriented program, no one can tell whether a change to the base code
is safe simply by examining the base program is isolation. Any change to the structure
of behavior of the base program would impact the join points which are captured by
the pointcut definitions, because these pointcuts capture join points based on program
structural or behavioural property shared by those join points. For name-based pointcuts,
they rely on the names of methods, classes, and fields are typical examples. Suppose for
a simple example, a name-based pointcut matches join point which is the execution of
method m. If the name of the method is changed from m to n, then the pointcut has
to change. If in the evolution version of the program, source code entities are changed
accidentally leads to the capture of a join point related to these source code entities,
Kellens et al. [37] describe that it is an unintended join point capture. Conversely,
when the base program is changed is in such a way that one of the join points which
was originally captured by the pointcut is no longer captured, even though it was still
supposed to be captured, they describe that it is an accidental join point miss.

Examples

In order to understand the fragile pointcut problem clearly, we explain about two examples
of the fragile pointcut problem, namely accidental join point captures and misses. We use
the Figure Editor application as a benchmark.

12

The Figure Editor application has a canvas and provides points and lines as the prim-
itive graphical elements to draw a figure on the canvas. It repaints the canvas if the user
adds or moves points and/or lines on the canvas.

1 class Point implements FigureElement{

2 int x,y;

3 void setX(int x){

4 this.x=x;

5 }

6 void setY(int y){

7 this.y=y;

8 }

9 void moveBy(int dx, int dy){

10 x+=dx;

11 y+=dy;

12 }

13 //...

14 }

15 class Line implements FigureElement{

16 Point p1, p2;

17 void moveBy(int dx, int dy){

18 p1.moveBy(dx, dy);

19 p2.moveBy(dx, dy);

20 }

21 //...

22 }

Figure 2.3: Figure editor example

Fig. 2.3 shows the classes Point and Line, respectively. A Point is defined by x and
y coordinates and provides the setters (setX and setY). The following method moveBy

changes the value of x and y. A Line is defined by two points p1 and p2. It provides
method moveBy changes the value of p1 and p2.

Fig. 2.4 shows the implementation of the repaint function in aspect CanvasRepaintAspect.
A traditional pointcut descriptor in this aspect expresses the points in the execution flow
from the methods setX, setY, Point.moveBy and Line.moveBy. It specifies execution of
the methods whose name begin with the text “move” and “set” in class Point and Line.
The piece of advice code associated with this pointcut repaints canvas.

Example 1: Accidental Missing
Fig. 2.5 shows that the programmer adds a new field color with its associated method
changeColor in class Line and Point. The new method represents an operation that
changes the color property of a line and a point.

The fragility of traditional pointcuts in this scenario comes from accidental misses. The
pointcut figureChange cannot capture new method changeColor, because the name of
method changeColor does not begin with the text “move” or “set”. In this case, when
the color property of a line or a point is changed, the program cannot repaint the canvas.

Example 2: Accidental Capturing

13

1 aspect CanvasRepaintAspect {

2 pointcut figureChange():

3 execution(* FigureElement+.move*(..))||

4 execution(* FigureElement+.set*(..)) ;

6 after(): figureChange(){

7 Canvas.repaint();

8 }

9 //...

10 }

Figure 2.4: Outline of the aspect CanvasRepaintAspect with traditional pointcut

1 Class Point implements FigureElement{

2 //...

3 Color c;

4 void changeColor(Color c){

5 this.c=c;

6 }

7 }

8 Class Line implements FigureElement{

9 //...

10 Color c;

11 void changeColor(Color c){

12 this.c=c;

13 p1.changeColor(c);

14 p2.changeColor(c);

15 }

16 }

Figure 2.5: Programmer adds new a method changeColor in class Point and Line

Fig. 2.6 shows the programmer adds a new field date with its associated method setDate

in class Point and Line. New method setDate records the last time when a figure element
is saved in a persistent store.

The fragility of name-based pointcuts in this scenario comes from accidental captures.
The pointcut figureChange captures the new method setDate because its name begins
with the text “set”. After the program executes the method setDate, it will repaint
the canvas. However the method setData does not change any figure element’s visual
properties.

The problem occurs because the pointcut change does not match correct join points;
it accidentally matches the execution of new method setDate in the first case, and misses
the execution of method moveBy in the second case. We call the first problem accidental
join point capture and the second problem accidental join point miss, respectively, in this
dissertation. In order to solve these problems, pointcut languages should be improved in
order to loosen the coupling between aspect and base code’s structure.

14

1 Class Point implements FigureElement{

2 //...

3 Date d;

4 void setDate(Date d){

5 this.d=d;

6 }

7 }

8 Class Line implements FigureElement{

9 //...

10 Date d;

11 void setDate(Date d){

12 this.d=d;

13 }

14 }

Figure 2.6: Programmer adds a new method setDate in class Point and Line

2.2 Aspect Mining

Manually applying aspect-oriented technique to a legacy system is difficult and error
prone process. Because of the large size of such software systems, the complexity of the
implementation, the lack of documentation and knowledge about the system, there is a
requirement for developing a technique that can help software engineers in locating or
documenting the crosscutting concerns in legacy systems.

Aspect Mining is the first phase to implement the transforming of the legacy object-
oriented program to aspect-oriented program. Aspect mining is the activity of detecting
the implementation of crosscutting concerns from an object-oriented program. In this
section, we introduce the activity of aspect mining and have a survey of existing aspect
mining techniques.

Recurring patterns: Breu et al. [38] propose a Dynamic Aspect Mining Tool named
DynAmit. Their tool DynAmit analyses the traces of a program which reflecting the run-
time behavior of a system, for searching the recurring execution patterns. In order to
implement this, they propose the notion of execution relations between method invoca-
tions. In the following is an example of an event trace:

1 A(){

2 B(){

3 C(){}

4 D(){}

5 }

6 }

7 E(){}

There are four different execution relations are discussed in DynAmit: outside-before (A is
called before E), outside-after (E is called after A), inside-first (C is the first call method
in B) and inside-last (D is the last call method in B). The mining algorithm detects
crosscutting concerns based on recurring patterns of method invocations. We assume
that an execution relation is detected as a crosscutting concern if it recurs uniformly. In

15

addition, the recurring relations should appear in different calling contexts. Although
this approach is inherently dynamic, Brue et al. use control flow graphs to calculate the
call relations in their experiment for many times. To remove ambiguities and improve the
result, their approach uses static type information to supplement the dynamic information
[39].

Formal concept analysis: Formal concept analysis (FCA) [40] is a branch of lattice
theory. Given a set of objects and their attributes, such approach creates concepts of a
group of objects which have common attributes. FCA approach organizes such concepts
into a lattice on the basis of the partial order associated with attribute set inclusion.

Dynamo [9] is one of the aspect mining tools which apply FCA. When using it to
analyze a software system, an instrumented version of the software system is executed on
a number of use cases, manually derived from the software documentation. The output
of this execution is a number of execution traces. In the FCA algorithm, the use cases
are the objects, while the methods which get invoked during the execution of a use case
are the attributes. As a result, all concepts are selected which contain traces from exactly
one use case. If the specific attributes of the concept belong to more than one class and
different methods which belong to the same class, are specific to more than one use case
specific concept. As a result, these concepts are considered as possible aspects.

Natural language processing: Natural language processing is under the assump-
tion that the implementations of crosscutting concerns are often on the basis of the rig-
orous naming and coding convention, which is considered as an indicator for possible
aspects. Shepherd et al. [41] use lexical chaining [54] to find the implementation of cross-
cutting concerns. Lexical chaining uses a given collection of words as input, and output
chains of words which are semantically strongly related. A semantic distance measure
between each combination of words is always used here to create the chains.

Detecting unique methods: This mining technique is on the assumption that
crosscutting concerns are often implemented in an idiomatic way [42, 43]. These idioms
are regarded as symptoms of crosscutting concerns. An example of such idiom is the
implementation of a crosscutting concern by means of a single entity in the software
system which is called from numerous places in the code. A new concept of unique
methods is defined as “A method without a return value which implements a message
implemented by no other method” in [42]. The unique methods should be filtered first,
and then the possible aspects are inspected by the software engineer manually.

Clustering-based aspect mining: Clustering is a technique that classifies objects
into different groups. Each group is called a cluster and it consists of similar objects.
The objects which are in different groups are dissimilar to each other [44]. Applying the
clustering technique, the crosscutting concerns would be classified into similar groups and
other general concerns are divided into other groups. We introduce two types of clustering
algorithms here, which are applied in this dissertation.

• Hierarchical clustering algorithm (HC) The hierarchical clustering organizes
objects into a tree [45]. Similar leaves are within the same sub-trees. Leaves also
represent genes in HC. The length of the paths between leaves represents the dis-
tance between them. The hierarchical approach first often finds the similarity or
dissimilarity between each pair of input data. Second, it groups the input data into
a binary, hierarchical tree. Finally it determines where to cut the hierarchical tree
into cluster.

16

• k-means clustering algorithm (KAM) The k-means clustering algorithm par-
titions the objects into k groups, where the distance between the object and its
assigned cluster centroid is minimized [14]. Data being grouped in an exclusive way
(the clusters do not overlap). However, this algorithm can be negatively affected
by a single outlier. The k-means clustering algorithm often needs user to assign
the number of clusters in advance. IF the value of k is equal to 2, the data will be
classified into two groups (crosscutting concerns group and general elements group).

Fan-in analysis: Fan-in analysis aims at finding methods by computing the fan-in
value for each method using static call graph of the software system. The fan-in value
is considered as a good indicator of scattering. For example, Marin et al. [46] noticed
that a lot of the well-known crosscutting concerns exhibit a high fan-in value. Methods
which are called often from different context are possible crosscutting concerns. The fan-in
analysis approach calculates the fan-in value for each method, filter accessor and auxiliary
methods such as toString(), and the number of considered methods is also limited by the
fan-in threshold. Thus, because of the threshold, aspects with a smaller footprint may be
ignored by this approach.

Clone detection: For the clone detection techniques, these approaches are based
on the assumption that crosscutting concerns result in code duplication. There are two
techniques on the basis of such observation for mining the possible aspects. Shepherd et
al. [47] propose an approach that detects the possible aspects on the basis of program
dependence graphs (PDG). Bruntink et al. [48, 49] propose an approach that detects
the possible aspects on the basis of three other clone detection techniques (token-based,
AST-based and metrics-based clone detection).

2.3 Aspect Refactoring

Refactoring is defined as the process of changing a program’s structure without altering
its observable behavior [50]. Refactoring is changing codes in such a way that they corre-
spond to a better design. A procedure reverses the traditional order of design and code
by sequence. The refactor code is meant to be better organized and easier to maintain,
adapt and extend, while providing the same functionality. Each refactoring describes a
disciplined way to modify the code in order to achieve a specific design change, with-
out introducing compiler errors, bugs, or otherwise affecting the application’s externally
observable behavior [50].

Refactoring can be performed either manually or automatically. The earlier research
efforts focused on tools which could automatically perform behavior preserving transfor-
mations on the source code. A typical example for a behavior-preserving transformation
is the remove class refactoring. It only removes the class, if the class exists and if it is
not referenced from other parts of the system. The availability of tool support for code
transformations is very desirable to provide safety in its use and to increase productivity.

A traditional refactoring technique in object-oriented software system cannot directly
apply to aspect-oriented systems because the behavior is not guaranteed to remain pre-
served. The relationship between object-oriented refactoring and aspect-oriented refac-
toring is discussed in [11]. In Additional, popular object-oriented transformations have
been re-defined in order to make them aspect-aware in Flower [50]. In this section, we

17

will introduce a number of novel refactoring techniques which transform the code imple-
mentation of crosscutting concerns into aspects.

Catalogs of refactoring crosscutting concerns form object-oriented code into aspect
code have been discussed in [8, 12]. The feasibility of the approach has been shown
in small case studies, such as the observer design pattern [51]. Behavior preservation
conditions for aspect refactoring are also formally specified [8].

Even small changes in the base code could make a point fail in matching all the
intended join points. This problem is known as the fragile pointcut problem, which has
been introduced in section 2.1.5. Pointcuts are particularly fragile when they are written
in an enumerative form, whereas an intentional pointcut is expected to be more robust.
In Chapter 5, we discuss the fragility of pointcuts which are created in the refactoring
process.

Automated support for refactoring object-oriented code into aspects has been inves-
tigated by [52, 53, 7]. An approach derived from program slicing [52] improves a popular
object oriented refactoring, method extraction. A generalization of this refactoring has
been defined to untangle the crosscutting concerns from the base code and to move them
into an aspect. A library contains some predefined crosscutting concerns together with
those refactoring that should be applied to change each particular concern into an aspect.
Both the crosscutting concern and the refactoring are specified in terms of abstract rules.
A human intensive effort is required to manually map abstract roles to concrete program
elements. Tool supported refactoring [7] presented an approach to refactoring object-
oriented programs, written in Java, into equivalent aspect-oriented programs, written in
AspectJ. A simple set of six refactoring has been defined to refactor the OO program
to the AO program and they implement a tool called AOP-Migrator tool as an Eclipse
plug-in.

Software refactoring aims at making the code easier to understand or maintain on the
basis of modifying the internal program structure but does not alter the external behavior.
However, in all above aspect refactoring techniques, the interactions between the aspects,
which are created in the refactoring process, are not coping with. As a result, the behavior
of the aspect-oriented program may be unexpected or incorrect compare with the original
one. We discuss the details of this problem in Chapter 4 and propose a novel awareness
mechanism to deal with these aspect interactions.

18

Chapter 3

Reliable Metric Selection for Aspect
Mining

In order to transform the legacy object-oriented program to aspect-oriented program,
finding the crosscutting concerns is the first issue that requires to be resolved. Aspect
mining [9, 10] is proposed to detect program elements in a given program that implement
the crosscutting concerns. Clustering algorithm is one way to implement automatic aspect
mining. Clustering algorithm always uses software metrics as a vector input. However,
there is no existing reliable standard metrics for the clustering-based aspect mining ap-
proach. How to decide which metrics are suitable for finding crosscutting concerns with
clustering algorithm is difficult for the program.

In this chapter, we first illustrate four scenarios of using clustering-based aspect min-
ing to find crosscutting concerns with different metrics in section 3.1. A definition of
formalized metrics which is given in section 3.2. In the last section of this chapter (sec-
tion 3.3), we propose two algorithms. One is an evaluation algorithm which calculates
the quality for each metric. Another one is a heuristic metric selection algorithm which
finds an optimized set of metrics for a given program.

3.1 Clustering-based Aspect Mining with different

metrics

In this section we introduce the metrics which are frequently used in software quality
engineering, and explain how significant for selecting a suitable set of metrics for aspect
mining with four concrete scenarios. Each scenario uses a different combination of metrics.
We use a figure editor application as an example [55], which draws points and lines on a
canvas. We utilize the hierarchical clustering method[56] in these four scenarios.

Fig. 3.1 and Fig. 3.2 show the class Point and Line, respectively. The class Point

is defined by x and y coordinates, and provides the getters (getX and getY) and setters
(setX and setY). The following method moveBy changes the value of x and y. The class
Line is defined by two points p1 and p2, and provides getters (getP1 and getP2) and
setters (setP1 and setP2). The following method moveBy changes the value of p1 and
p2.

After changing the location of a figure element, the canvas needs to be repainted. A
glance at Fig. 3.3, the code of the method needsRepaint appears in the six methods, i.e.,

19

1 class Point implements FigureElement{

2 private int x=0, y=0;

3 Point(int x, int y){

4 super();

5 this.x = x;

6 this.y = y;

7 }

8 public int getX(){ return x; }

9 public int getY() {return y; }

10 public void setX(int x){

11 this.x=x;

12 Display.needsRepaint();

13 }

14 public void setY(int y){

15 this.y=y;

16 Display.needsRepaint();

17 }

18 public void moveBy(int dx, int dy){

19 setX(getX()+ dx);

20 setY(getY()+ dy);

21 Display.needsRepaint();

22 }

23 }

Figure 3.1: Outline of the class Point

setX, setY, moveBy in class Point and setP1, setP2 and moveBy in class Line . Hence, we
consider that the method of needsRepaint is scattering, which is one of the characteristic
of crosscutting concern in the figure editor application. By using the clustering-based
aspect mining technique we intend to classify the methods into two groups: Crosscutting
concerns group {Display.needRepaint} and General group {other methods}.

3.1.1 Metrics

Before illustrate the scenarios, we briefly introduce the metrics, which are used in the
following scenarios.

Fan-in Value (FIV): Marin et al. [46] defined Fan-In metric for a method as the
number of distinct method bodies, which can invoke the method. In general, modules
with a large fan-in are relatively small and simple, and are usually located at the lower
layer of the design structure. In contrast, modules that are large and complex are likely to
have a small fan-in. In an experiment presented by [46], one-third of the methods found
with high Fan-In value were seeds leading to aspects.

Fin-out Value (FOV): The number of distinct methods that are invoked by a method
is called FOV. FOV is usually used to measure coupling between components of software
systems.

Henry and Kafura’s structure complexity (Cp): Cp is defined as the square of

20

1 class Line implements FigureElement{

2 private Point p1, p2;

3 Line(Point p1, Point p2){

4 super();

5 this.p1 = p1;

6 this.p2 = p2;

7 }

8 public Point getP1(){ return p1; }

9 public Point getP2(){ return p2; }

10 public void setP1(Point p1){

11 this.p1=p1;

12 Display.needsRepaint();

13 }

14 public void setP2(Point p2){

15 this.p2=p2;

16 Display.needsRepaint();

17 }

18 public void moveBy(int dx, int dy){

19 getP1().moveBy(dx, dy);

20 getP2().moveBy(dx, dy);

21 Display.needsRepaint();

22 }

23 }

Figure 3.2: Outline of the class Line

the product of FIV and FOV metrics. Is formally defined as :

Cp = (fin− in× fan− out)2

Method Signature (MSig): A common definition of method signature in software
engineering consists of method name, parameter types. Return type and exception throws
are not considered generally. If a method’s signature does not change frequently the
signature pattern can be used in determining similarity between methods [62].

3.1.2 Scenario 1: Selecting Fan-out Value/Fan-in Value as Met-
ric

In this scenario, we select only one metric in the clustering algorithm independently to
detect the crosscutting concerns.

We distribute the values of metric FOV in 1-dimensional space in Fig. 3.4. There
are total 12 points that are distributed in a same line and it is ambiguous to define the
clusters on that line. Therefore, only use FOV as a metric independently cannot define
the clusters.

We distribute the values of metric FIV in 1-dimensional space in Fig. 3.5. There are
also total 12 points that are distributed in a same line. Fig. 3.5 is different from Fig. 3.4

21

Figure 3.3: Crosscutting concerns in Figure example

in that the clustering algorithm which use FIV takes values in two separate ranges. It
can be clearly seen that FIV is more helpful for defining the two clusters than FOV.

Figure 3.4: Effect of FOV on clustering

3.1.3 Scenario 2: Selecting FIV and FOV as Metrics

In this scenario, we use FIV and FOV as correlated metrics in the clustering algorithm.
Fig. 3.6 shows the result of the clustering by using FOV and FIV. There are two clusters
with total 12 points that are distributed into two clusters. One cluster in square marker
has 1 point that represents the group of crosscutting concerns. Another cluster in circle
marker has 11 points (include overlapped points) that represents the group of general

22

Figure 3.5: Effect of FIV on clustering

program elements. In this case, the crosscutting concerns can be found in the square
cluster clearly. We calculated the execution time of this algorithm. It spent 2.1254
second in the experiment.

3.1.4 Scenario 3: Selecting FOV and Cp as Metrics

The developer selects two metrics: FOV and Cp in the clustering algorithm. See from
Fig. 3.7, there are two clusters with total 12 points. One cluster in square marker has 3
points that represents the group of crosscutting concerns. Another one in circle marker
has 9 points (include overlapped points) that represents the group of general program
elements. In this case, the crosscutting concerns can be found in the square cluster.
However, the square cluster includes two other methods that are not considered as a
crosscutting concern.

3.1.5 Scenario 4: Selecting FOV, FIV and MSig as Metrics

Msig is a metric that denotes method signature, which has been used in other aspect
mining research [57]. Fig. 3.8 shows the results of the clustering by using FOV, FIV and
MSig. We can see that the methods are classified into two clusters, and the effect is as
well as the previous one which uses two metrics {FOV, FIV} in the scenario 2. Thus, we

23

Figure 3.6: Effect of FIV and FOV on clustering

consider that using all three metrics {FOV, FIV, MSig} is unnecessary. We calculated
the execution time of this algorithm. It spent 2.2211 second in the experiment. Compare
to the scenario2, it spends more time to execute the clustering algorithm.

3.1.6 Summary

In this section, we have described four clustering scenarios that use different combination
of metrics. However, some results of clustering are not correct for aspect mining. In the
scenario 1 there is no cluster can be found, when programmer only uses FOV as a metric.
In scenario 3 the methods can be classified into two groups, nonetheless, the crosscutting
concern group does not only include the crosscutting concern, but also includes two other
general methods. A further important point is that in this case the aspect mining approach
is inefficient and it needs to spend more time to distinguish the un-crosscutting concerns
from the crosscutting concerns cluster. Therefore, the metrics {FOV,Cp} are not suitable
to classify the crosscutting concerns for the Figure editor application. In scenario 2 and
scenario 4, the effects of clustering are same by using the same clustering algorithm.
The different point is that one uses two metrics and the other uses three metrics. Thus,
selecting metrics {FIV, FOV} reduces the dimensionality of the data while forms well
separated clusters. In addition, scenario 2 also saves the execution time of clustering.

The problems are exposed by comparing these four scenarios. The first point is that
some metrics can define the cluster independently, but some ones are not. Therefore, in

24

Figure 3.7: Effect of FOV and Cp on clustering

the metrics selection process how to choose a helpful metric as the basic one is the first
issue need to be focused. The second point is that some metrics are unnecessary for the
clustering algorithm to classify the crosscutting concerns. Deciding which metric is helpful
or not manually is difficult. How to optimize the combination of metrics automatically is
the other issue. Optimizing the combination of metrics means the accuracy of clustering
is as well as or increased even the number of metrics are decreased.

3.2 Formalized Metrics

Based on the observations described in section 3.1, we have defined a formalized metric
for guiding programming to select a basic metric at the beginning of the metric selection
process.

In this dissertation, classes or packages are considered as a set of module elements and
methods are considered as a set of concern elements which will be clustered in a given
program. The crosscutting concern is scattered over various modules and wherein at least
one of these modules is tangled. Scattering and tangling always appear together. Scatter-
ing is caused when single functionality is implemented in multiple modules and tangling is
caused when a module is implemented to handle multiple concerns simultaneously. Here,
we would like to let the basic metrics focus attention on measuring the scattering, which
is one of the characteristic of crosscutting concern.

25

Figure 3.8: Effect of FOV, FIV and MSig on clustering

We define a function f is a trace relationship between a given concern element (method)
and a set of module elements (classes).

f ⊆Mth × P (CLs)

where Mth is the set of all the methods and P (CLs) is the power set of classes. We define
two formulas definedf and calledf :

definedf (m) = {C} (3.1)

calledf (m) = {C1, C2, · · · , Cn} (3.2)

Formula (3.1) means class C defines method m. Formula (3.2) means ∀i ∈ 1, 2, . . . , n. (
∃k ∈Mth, definedf (k) = Ci∧ method k calls method m), where 1 ≤ i ≤ n.

Similarly, we give another function g is a trace relationship between a given method
and a set of methods.

g ⊆Mth × P (Mth)

where Mth is a set of all methods and P (Mth) is the power set of methods. We define two
formulas:

definedg(M) = {C} (3.3)

calledg(m) = {M1,M2, · · · ,Mn} (3.4)

26

Formula (3.3) means class C defines a set of methods M . Formula (3.4) means ∀i ∈
1, 2, . . . , n. Mi calls m, where 1 ≤ i ≤ n.

Firstly, we give a formalized definition of scattering as follows: m ∈ Mth is scattered,
if cd

(
calledf (m)

)
> 1 ∨ cd

(
definedg

(
calledg(m)

))
> 1, where cd refers to cardinality of

module elements. It represents a concern element m has a trace relationship with multiple
module elements. Alternatively, scattering occurs when in a mapping between concern
and module, a concern element is related to multiple module elements.

Secondly, we define the formalized metrics according to the description of the definition
of scattering as:

E = hE
(
fE(m), gE(m)

)
where E is the metrics, the function f and g are the trace relationship, which have been
described in this section, m is the given method. The formalized metric measures concern
scattering for a given program. We consider that if a concern belongs to the crosscutting
concerns, it should be scattered. We presume that when we use basic metric to measure
this concern the result should be different from other general concerns. Based on the
ranking of Qe and Te, we can decide to select which input data is suitable for mining.

A simple example of basic metric is as follows:
The metric of affected classes (AC) [57, 58] measures a number of classes which call

a given method. The fan-in value (FIV) [46] measures the number of distinct method
bodies that call a given method. Considering AC satisfies the formalized metrics of
AC(m) = |fAC(m)×1+|gAC(m)×0| and FIV satisfies the formalized metrics of FIV (m) =
|fFIV (m)| × 0 + |gFIV (m)| × 1.

3.3 Metric Selection Algorithm

Metric selection is difficult because there are no obvious criteria to guide the algorithm.
Consider that if the combination of metrics contains N number of metrics, then the total
number of competing candidate subsets to be generated is 2N . It is a huge number even if
the number of metrics is a medium-size. Therefore, this section gives a heuristic algorithm
that selects the metrics which have contribution to detect crosscutting concerns.

The selection algorithm is based on two error metrics: Qe and Te. Quantization error
(Qe) is the quality error for each input data, which measures the average distance of the
sample vectors to the cluster centroids by which they are represented. The higher value is
the Qe, the higher is the heterogeneity of the data cluster. Thus, in our approach we select
the input data which the Qe value of such input data has a smaller value. Topographic
error (Te) is the most simple of the topology preservation measures. The total error is
normalized to a range from 0 to 1, where 0 means perfect topology preservation. Thus,
our selection algorithm decides to select the input data which has a smaller value of Te.

3.3.1 Evaluation algorithm QeA-SOM

QeA-SOM (Algorithm 1) takes a set of metrics as input, measures the quality for each
metric and then returns a ranking list of metrics which are sorted in the ascending order
according to their quality. A small value of Qe is more desirable, it represents that input
data is better for the mining. The Qe value can be calculated with the existing miming
technical such as self-organizing map (SOM) algorithm [59]. SOM is a clustering technique

27

that converts non-linear statistical relationships between high-dimensional data into two
dimensional geometric relationships. The vector space models which are computed by
SOM are organized into two-dimensional order. In such two-dimensional order similar
models are close to each other in the grid. The pseudo code of QeA-SOM is shown as
follows:

Algorithm 1 QeA-SOM

1: qelist← ∅
2: for j = 1→ k do
3: Dj ← Dselect +Dall[j]
4: Mj ← som make(Dj)
5: qej ← quality(Mj, Dj)
6: qelist← qelist.add(qej, Dj)
7: end for
8: qelist← assending sort(qelist)
9: return qelist

The Algorithm 1 initializes a set qelist to be an empty set of Qe values at line 1.
Dselect and Dall are two inputs in the Algorithm 1. Dselect is the set of metrics which have
been selected as an input data for the aspect mining approach. Dall is the set of metrics
which involving all the given metrics. The Algorithm 1 computes the Qe value from the
first metric to the last one by using function quality. Function som make [60] trains
the input matrix data to the SOM data and function quality [60] computes Qe value for
the j-th metric. The value of Qe will be added into the set of qelist. Finally, function
assending sort sorts the data set qelist according to the values of Qe in the ascending
order.

3.3.2 Heuristic Algorithm QAHSSS

This section defines a QeA-SOM based heuristic metric selection algorithm, called QAHSSS
(Algorithm 2), which is a variant of sequential forward selection (SFS).

QAHSSS algorithm takes a basic metric and a set of other given metrics which already
removed the basic metric from them. The basic metric is a given metric which satisfies
the formalized metrics. QAHSSS measures the quality for the selected set of metrics,
which is defined as an input for aspect mining, in an iterative process. In each step, a
metric is selected by the QeA-SOM algorithm and is moved from the given set of metrics
into the selected set of metrics. The output of QAHSSS is a set of metrics which has the
best quality. The quality in here is a quantization error (Qe) and topographic error (Te).
A small value of Qe and Te is more desirable. The pseudo code of QAHSSS algorithm is
shown as follows:

Algorithm 2 at the beginning initializes a set sortlist to be an empty set of Qe values,
and initializes another set qualitylist to be an empty set of Qe and Te values. Dinit repre-
sents the set of metrics which only involving basic metrics. Dinit is trained by som make
sM into a SOM data sM and the quality is calculated for Dinit at the beginning. After
that the value of Dinit is assigned to Dselect and the set of given metrics is assigned Dall.
The Algorithm 2 computes the evaluation criteria Qe and Te for the combination of met-
rics in an iterative process. In each step, a new metric which is selected by QeA SOM

28

Algorithm 2 QAHSSS Algorithm

1: sM ← ∅
2: sortlist← ∅
3: qualitylist← ∅
4: sM ← som make(Dinit)
5: [qe, te]← som quality(sM)
6: qualitylist← qualitylist.add(qe, te)
7: Dall ← D′

8: Dselect ← Dinit

9: index← ∅
10: repeat
11: sortlist← QeA SOM(Dselect, Dall)
12: j ← find(sortlist)
13: Dall ← Dall −Dall[j]
14: n← n− 1
15: Dselect ← Dselect +Dj

16: Mselect ← som make(Dselect)
17: [qe, te]← quality(Mselect)
18: qualitylist← qualitylist.add(qe, te)
19: until n = 0
20: return index = find(qualitylist)

from Dall will be added into the Dselect and that metric is removed from Dall. Function
som make [60] trains Dselect to the SOM data Mselect, and then function quality [60] cal-
culate the value of Qe and Te for the SOM data Mselect. The values of Qe and Te are
added into the set of qualitylist. Finally QAHSSS algorithm returns the index of the step
which measures the best quality for a set of metrics. The optimized metrics are the one
which is used in the index-th step.

29

Chapter 4

Translating Name-based Pointcuts to
Analysis-based Pointcuts

When refactoring the code bodies of crosscutting concerns into aspects, pointcuts are
always generated using pointcut abstract techniques [10, 70]. As a name-based form, such
as enumeration-pointcut that enumerates a set of explicit join points based on their specific
names. Notice that name-based pointcuts rely on the names of fields, method, classes in
the program, which are well known to be fragile against software evaluation. Analysis-
based pointcuts on the other hand, rely on the properties of the program checkable via
user-defined static program analysis, which therefore are free from the fragility. It makes,
however, user hard to write programs because one has to write her analysis suitable for
his properties.

To overcome the fragile pointcut problem and make analysis-based pointcut easy to
use by programmers, we propose a framework in this chapter, namely Nataly. Nataly
translates name-based pointcuts to analysis-based pointcuts automatically. We first in-
troduce analysis-based pointcuts and illustrate how difficult to write analysis-based point
manually with a concrete example in section 4.1. Next, we present the framework Nataly,
which takes classes, name-based pointcuts as input and output is analysis-based pointcuts,
in section 4.2. Nataly consists of four components, namely relationship analyzer (Section
4.2.1), seed generator (section 4.2.2), T-Pattern extractor (section 4.2.3 and section 4.2.4)
and code generator (section 4.2.5).

4.1 Analysis-based Pointcut

Analysis-based pointcut [102] is one of the approaches to overcome the fragile pointcut
problem. An analysis-based pointcut is defined by using static program analysis, and
matches join points that satisfy the specific conditions which meet the intention of pro-
grammer. After the program has evolved, the source code details have to be changed.
However, the specific conditions are not changed. In this case, the analysis-based point-
cuts still work.

The question we have to ask here is although the analysis-based pointcuts avoid fragile
pointcut problem, however, they are difficult to write manually. We assume that the
programmer expects to use a regular expression in the analysis-based pointcut to match
the join points. The programmer has to familiar with that regular expression. The
following pointcut which matches any method call whose name consists of only lower case

30

character:

1 pointcut executeLowercase()

2 :(execution(* *.*(..)))

3 && if(thisJoinPoint.getSignature())

4 .getName.matches("^[a-z]+$");

The first part of the pointcut matches any method execution. The second part uses a
conditional (if) pointcut to implement the analysis. In AspectJ, the programmer can
write any boolean expression in and if point in order to add arbitrary conditions to a
pointcut.

This example uses Java and AspectJ reflection APIs in order to analyze the program.
The special variable thisJoinPoint is an object that contains information about the join
point, and the methods getSignature() and getName() retrieve signature and name of
the method being executed.

Furthermore, Assuming that the programmer expects to use program structural or
control flow reachability [102] as the user defined analysis, the implementation of analysis-
based pointcuts should be more complex than the regular expression case. Therefore, the
programmer writes analysis-based pointcuts manually is difficult and requires her has
enough experience and knowledge.

4.2 Translation Framework-Nataly

In this section, we propose a framework Nataly, which translate the generated name-based
pointcuts into analysis-based pointcuts in order to avoid fragile pointcut problem. In Na-
taly, name-based pointcuts are used as input and the properties of the join points which
are matched by the input pointcuts, are expressed by a set of relationship graphs. Rela-
tionship describes the trace relationships between program elements such as method call,
field declaration. Analysis-based pointcut matches join points with properties obtained
by static program analysis. These properties are called as intention pattern (T-Pattern),
which is the core concept of analysis-based pointcuts, are abstracted from relationship
graphs in Nataly. The common/stable vertexes are kept in the intention pattern when
abstract them from relationship graphs.

4.2.1 Relationships

The relationship analyzer analyzes six structural relationships between the program ele-
ments based on the static program analysis. We give the definition of six relationships as
follows:

Rdeclared = {(incls, cls), ({retT,mn, args}, cls)}

Rfset = {({delT, retT,mn, args}, {delT ′, fn})}

Rfget = {({delT, retT,mn, args}, {delT ′, fn})}

Rmcall = {({delT, retT,mn, args}, {retT ′,mn′, args′})}

Rmconcretize = {({delT, retT,mn, args}, {retT ′,mn′, args′})}

Rtconcretize = {(cls, pacls), (cls, ins)}

31

Where (incls, cls) ∈ Rdeclared means the class incls (a.k.a an inner class) is declared
by the class cls. ({retT ,mn,args},cls) ∈ Rdeclared means the method whose name is
mn, argument types are args and return type is retT , is declared by the class cls.
({delT ,retT ,mn,args},{delT ′,fn}) ∈ Rfset means the method whose name is mn, ar-
gument type are args, return type is retT and declared class name is delT , sets the
field whose name is fn, declared class name is delT ′. Similarly, ({delT , retT , mn,
args}, {delT ′, fn′}) ∈ Rfget means a field whose value is gotten within a method.
({delT ,retT ,mn,args},{retT ′,mn′,args′}) ∈ Rmcall means the method whose name is mn,
argument type are args, return type is retT and declared class name is delT that calls
the method whose name is mn′, argument types are args′ and return type is retT ′.
({delT ,retT ,mn,args},{retT ′,mn′,args′}) ∈ Rmconcretize means the method whose name
is mn, argument types are args, return type is retT and declared class name is delT ,
overrides/implements the method whose name is mn′, argument types are args′ and re-
turn type is retT ′. (cls,pacls) ∈ Rtconcretize means the class cls extends the class pacls
(a.n.a an super class). (cls,ins) ∈ Rtconcretize means the class cls implements the interface
ins.

For example, if the relationship is described asRfset = {({Point, void setX(Int)}, {Point, x})},
it represents method Point.setX(Int) sets the value of the field Point.x. If the relation-
ship is described as Rtconcretize = {(Point, F igureElement)}, it indicates that class Point
extends an abstract class FigureElement.

4.2.2 Relationship graphs

The set of relationship graphs corresponds to the join point shadows which are selected by
a pointcut. The relationship graph describes six relationships among program elements.
The root of each graph is a join point shadow which is selected by the traditional name-
based pointcut. We give a definition of relationship graphs as follows and explain them
with a concrete example.

Definition 2 (Relationship Graph (RG)) Relationship Graph RG is a quadruple (V,E, φ, r),
where V and E are finite sets and V is a set of vertices which represents a set of pro-
gram elements. E is a set of edges, which represents structural relationships among pro-
gram elements. r ∈ V is a root vertex, and represents a join point shadow which is
matched by a given traditional pointcut, and φ is a function with domain E and codomain
P2(V) = V × V .

In the pictorial representation of the relationship graph, RG = (V,E, φ, r) where

• V = {e1, e2, . . . , en}, n is the number of vertices in RG.

• r ∈ V , r is the root vertex in RG.

• E = {r1, r2, . . . , rm}, m is the number of edges in RG.

• φ =

(
E
V

)

32

Figure 4.1: An example of Seed

Fig. 4.1 shows an example of a set of relationship graphs in the figure editor application.
These graphs shown in (a) and (b) associate with two join point shadows: method exe-
cution of Point.moveBy and Line.moveBy, respectively, which are selected by the name-
based pointcut “execution (* Point.move*(..)) || execution (* Line.move*(..))”. These re-
lationship graphs describe the following structural information: the method Line.moveBy

calls the method Point.moveBy and the method Point.moveBy changes the value of field
x and y simultaneously. Field x and field y are declared by the class Point. The class
Point extends its super class FigureElement.

The pictorial definition of the relationship graph for the method Line.moveBy is de-
scribed as follows:

RG = (V,E, φ, r)

where
V = {P.mv, L.mv, x, y, P, FE}

r = L.mv

E = {fset,mcall, declared, tconcretize}

φ =

(
mcall fset fset declareddeclaredtconcretize

(L.mv, P.mv)(P.mv, x)(P.mv, y) (x, P) (y, P) (P, FE)

)
In this definition, Symbol L.mv and P.mv represent the method Line.moveBy and

Point.moveBy, respectively; x represents the field Point.x; y represents the field Point.y;
P represents the class Point and FE represents the Point’s super class FigureElement.

A significant point in the relationship graph is avoiding loops. The relationship be-
tween the program element and program element itself is not generated in our relationship

33

graph. The output (relationship graph) from the relationship analyzer is fed as input to
the intention pattern extractor.

4.2.3 Intention Property

Intention property is a set of functions which derive from the paths of relationship graphs.
Each function consists of an arc (relationship) and its head vertex (method and field).

We define intention property as PT (ET) = VT . PT is a function from arc (e.g., relation-
ship) ET and its head vertex (e.g., method and field) VT . For example, the relationship
between vertex em and en is rn, then the function Pn(rn) = {en}. We propose two types
of intention properties: common property, and stable property.

Common property is a set of functions which represent the commonality within a
set of relationship graphs. PTc = P1 ∩ P2 · · · ∩ Pm where m is the number of relationship
graphs.

For example, assuming that the pointcut PCA associates with two relationship graphs
RG1 and RG2. Here, RG1 = (V1, E1, φ1, r1), where

V1 = {M,A,B}

E1 = {mcall}

r1 = M

φ1 =

(
mcall mcall
(M,A) (A,B)

)
.

The relationship graph RG2 = (V2, E2, φ2, r2), where

V2 = {N,C,B}

E2 = {mcall}

r2 = N

φ2 =

(
mcall mcall
(N,C) (C,B)

)
.

In this case, M is a method that calls method A, and method A calls method B.
On the other side, method N calls method C, and method C calls method B. Both
of the relationship graphs have a common function calling the method B. Therefore,
PT (mcall) = {B} is the common property.

Stable property is a function PTs such that PTs(mcall) = MNs where its arc (rela-
tionship) is mcall and its head vertex MNs is a set of methods which are declared in the
same abstract class or interface. We consider these methods have stable names. We say
that a name is stable if it appears in an abstract class or an interface. Assuming that we
add some new functions to a program, we rarely change the method in an interface. If we
modify an abstract method, then all the methods in its sub-class must be changed.

Assuming, for example, that the pointcut PCB associate with two relationship graphs
RG1 and RG2. Here, RG1 = (V1, E1, φ1, r1), where

V1 = {M.h,A.m1, F.m1, F}

E1 = {mcall,mconcritize, declared}

34

r1 = M.h

φ1 =

(
mcall mconcritize declared

(M.h,A.m1) (A.m1, F.m1) (F.m1, F)

)
.

The other relationship graph RG2 = (V2, E2, φ2, r2), where

V2 = {N.g,B.m2, F.m2, F}

E2 = {mcall,mconcritize, declared}

r2 = N.g

φ2 =

(
mcall mconcritize declared

(N.g,B.m2) (B.m2, F.m2) (F.m2, F)

)
.

Here, method M.h calls method A.m1, and method A.m1 implements method F.m1.
Method F.m1 is declared in interface F . On the other side, method N.g calls method
B.m2, and method B.m2 implements method F.m2. Method F.m2 is declared in interface
F . Method A.m1 and B.m2 have the stable names, hence the function PT (mcall) =
{A.m1, B.m2} is the stable property.

We give a priority for the two types of intention properties. Assuming that the common
property is not null, the intention property is equal to the common property; otherwise,
if the stable property is not null, the intention property is equal to the stable property.

4.2.4 Intention Pattern

The Intention pattern (TP) is a flexible pattern which is used to match join points that
meet the intention of the developer. Each intention pattern is abstracted from the paths
of relationship graphs, which is associated with a traditional name-based pointcut. We
define intention pattern as follows:

Definition 3 (Intention Pattern) An intention pattern is a set of disjoint rooted trees:
TP = T1∪T2 · · ·∪Tn, n is the number of relationship graphs. Ti is a rooted Tree (1 ≤ i ≤ n)
which is abstracted from the paths of relationship graphs. Each rooted Tree is a quadruple
T = (V ′, E ′, φ, V?∗), where V?∗ ∈ V ′ is a wild-card vertex, representing the root vertex
which can be any program element. V ′ is a finite set of vertexes. V ′ = {V?∗, V? ∪ VT}.
Here, we import an element V?, which is a wild-card vertex. V? represents the vertex which
can be any program element. VT is a set of vertexes within the intention property. E ′ is
a finite set of arcs. E ′ = {r?} ∪ET , where r? is a wild card relationship, which represents
any kind of relationship. ET is a set of relationships within the intention property. φ is a
function with domain E ′ and codomain P2(V ′) = V ′ × V ′.

In order to obtain a rooted tree, the intention property is kept and the program
elements of class and interface are removed from the relationship graphs for each given
set of relationship graphs. The rest certain program elements are replaced by wild-card
V?, and the root vertex is replaced by wild-card V∗?. Finally, the repeated paths are
removed from relationship graph.

Algorithm 3 defines an algorithm that extracts intention pattern from the relationship
graphs. We initialize an intention pattern ∆ to be an empty set to be returned at line
1 and initialize a single pattern as an empty sequence of path. First, algorithm 3 builds

35

Algorithm 3 Extract Intention Pattern

Input: A set of relationship graphs for a given pointcut: R
Output: Intention Pattern ∆
1: ∆← ∅
2: δ ←<>
3: {δ is a single pattern}
4: B ← getCommonProperty(R)
5: {B is a set of common properties}
6: if B 6= ∅ then
7: for i← 1 to n do
8: {n is the number of single common property β in B}
9: δi ← (v)?∗

10: βi ← B[i− 1]
11: δi ← δi + ((r)?, (v)?)
12: δi ← δi + βi
13: ∆← ∆ ∪ δi
14: end for
15: end if
16: A← getStableProperty(R)
17: {A is a set of stable properties}
18: if A 6= ∅ then
19: for j ← 1 to m do
20: {m is the number of single common property α in A}
21: δj ← (v)?∗

22: αj ← A[j − 1]
23: δj ← δj + ((r)?, (v)?)
24: δj ← δj + αj
25: if δj /∈ ∆ then
26: ∆← ∆ ∪ δj
27: end if
28: end for
29: end if
30: if A = ∅ ∧B = ∅ then
31: return ∅
32: else
33: return ∆
34: end if

36

the pattern according to the common property. The algorithm getCommonProperty(R)

returns a set of common properties. The symbol of (v)?∗ represents the root vertex. The
symbol of ((r)?, (v)?) represents a pair of vertex and its relationship. Such vertex and
relationship represents any program elements and relationships, respectively. Second,
algorithm 3 builds the intention pattern according to the stable property. The algorithm
getStableProperty(R) returns a set of stable properties. Our algorithm will exclude the
repeated single pattern from the intention pattern ∆. If our algorithm can not find any
intention property then the algorithm will return an empty pattern.

Algorithm 4 Get Common Property

Input: A set of relationship graphs for a given pointcut: R
Output: A set of common properties B
1: B ← ∅
2: rr ← Random(R)
3: R′ ← R− rr
4: P ← PATH(rr)
5: for all p ∈ P do
6: β ←<>
7: {β is a single common property}
8: for i← 1 to n do
9: {n is the number of < R, V > pairs in path p}
10: π ←<>
11: {π is the < R, V > property, initialize it as an empty pair}
12: π ←< (p)ri + (p)vi >
13: for all r ∈ R′ do
14: if π /∈ r then
15: π ←<>
16: break
17: end if
18: end for
19: if π 6= ∅ then
20: β ← π
21: end if
22: end for
23: B ← B ∪ β
24: end for
25: return B

Algorithm 4 defines an algorithm that find the common property from the relationship
graphs. We initialize the set of common property as an empty set and initialize a single
common property as an empty pair. Random(R) randomly returns a relationship graph
from the set of graphs. PATH(rr) divides the graph into a set of paths. < (p)ri + (p)vi >
represents the ith vertex in the path and its head relationship. Algorithm 4 traverses
every < R, V > pair in each path, and check whether the current pair exists in other
relationship graph. If every relationship graph contains such pair, then it will be added
into the set of common properties.

37

Algorithm 5 Get Stable Property

Input: A set of relationship graphs for a given pointcut: R
Output: A set of stable properties A
1: A← ∅
2: for all r ∈ R do
3: P ← PATH(r)
4: for all p ∈ P do
5: α←<>
6: {α is a single stable property}
7: for i← 1 to n do
8: {n is the number of < R, V > pairs in path p}
9: if (p)ri = Rmconcretize then
10: if (p)ri−1 = Rmcall then
11: α←< (p)ri−1 + (p)vi−1 >
12: end if
13: end if
14: end for
15: A← A ∪ α
16: end for
17: end for
18: return A

Algorithm 5 defines an algorithm that find the stable property from the relationship
graphs. We initialize the set of stable property as an empty set and initialize a single
stable property as an empty pair. Algorithm 5 traverses every relationship graph, and
check whether the current graph contains a method which has a stable name. If it finds
such method has a stable name, then such method and its head relationship will be added
into the set of stable properties.

Fig. 4.2 shows an example of intention pattern which is abstracted from Fig. 4.1 .
The symbol V?∗ in the ellipse indicates that the root vertex can be any program element.
Symbol V? in the rectangle indicates that the vertex can be any program elements. Symbol
R? on a line indicates that it can be any structural relationships. The example of intention
pattern presents two situations: (a) indicates the relationship between the root vertex and
vertex x, y should be fset; (b) indicates there is a vertex that can be any element as long
as the relationship between it and vertex x, y is fset. In addition, the root vertex can
reach this vertex regardless of the relationship.

We give a pictorial description of intention pattern TPex for this example as follows:

TPex = T1 ∪ T2

T1 = (V1, E1, φ1, V?∗)

V1 = {V?∗, x, y}, E1 = {fset}

φ1 =

(
fset fset

(V?∗, x) (V?∗, y)

)
T2 = (V2, E2, φ2, V?∗)

38

Figure 4.2: An example of T-Pattern

V2 = {V?∗, V?, x, y}, E2 = {R?, fset}

φ2 =

(
R? fset fset

(V?∗, V?) (V?, x) (V?, y)

)
When matching the join points with an intention pattern, we define a matching strat-

egy: if the join point is matched by one of the rooted trees, then inferring that the join
point is matched by the intention pattern, which includes that rooted tree.

Next, we illustrate how to match the join point with an intention pattern. Assuming

that the intention pattern is TP=(v?∗
fset−−→ x)∪ (v?∗

fset−−→ y). The given join point shadow
is the method execution of Point.setX. Then the pictorial description of this relationship
graph for this join point shadow is RGex = (Vex, Eex, φex, setX):

Vex = {Point.setX, x}, Eex = {fset}

φex =

(
fset

(Point.setX, x)

)
In this example, the relationship graph for the join point shadow of method-execution

Point.setX is (Point.setX
fset−−→ x). The wild-card v?∗ can be replaced by the method

Point.setX in one of the rooted tree ((v?∗
fset−−→ x)) within the intention pattern TP .

In this case, the join point shadow of method-execution Point.setX is matched by the
intention pattern.

4.2.5 Code generator

We propose an approach that can generate the code of analysis-based pointcut automat-
ically. The code of analysis-based pointcut includes five parts:

1. Access specifier

2. Keyword (pointcut)

3. The name of analysis-based pointcut

4. Pointcut type

39

5. Pointcut signature

For the automatic generated analysis-based pointcut, the Access specifier, keyword and
Pointcut type is not changed compare to the original name-based pointcut. The name of
analysis-based pointcut is changed to a new one in order to distinguish the original one.
The pointcut signature is changed to a wild-card which ignores the method or field name
and their return type and arguments from the original one. Furthermore, a conditional
pointcut designator is intersected into the code. The pointcut expression is appended
with the conditional expressions such as “&&(if(AMethod(jp)))”, where AMethod is an
analysis method that is generated by our approach and jp is a join point shadow that
needs to be matched. The conditional pointcut expression returns true if the join point
shadow is matched with the intention pattern.

Following program slice shows a concrete example of an auto-generated analysis-based
pointcut.

1 pointcut AnafigureChange()

2 :(execution(* FigureElement+.*(..)))

3 && if(isNeedfigureChange(JoinPoint));

4 boolean isNeedfigureChange(JoinPoint shadow){

5 TPattern pattern=new TPattern("figureChange");

6 TMatcher matcher=pattern.match(shadow);

7 return matcher.ismatch();

8 }

The pointcut AnafigureChange matches the method execution, which needs to repaint the
canvas. A T-Pattern of pattern is initialized by using the key-word “figureChange”. The
T-Pattern matching module matcher checks the given join point whether it is matched
by the T-Pattern. The method isNeedfigureChange returns true if the join point is
matched by the T-Pattern. The class TPattern, Tmatcher are defined in the user library.

40

Chapter 5

Evaluation

In this Chapter, we shall discuss the usability, performance and effectiveness of our ap-
proach. We first give several case studies to show whether our approach can resolve the
problem and then access the performance and usability of our approach via experiments.

5.1 Metrics Selection

This section discusses improvements on performance of clustering from the viewpoints
of sensitivity, specificity and accuracy, which are introduced later. We evaluate the
clustering-based aspect mining by using two Java applications. One is a banking system
example in [32] and the other is a Java applet demo of Dijkstras shortest path algorithm
[71]. Improvements on sensitivity, specificity and accuracy are evaluated by comparing
the clustering data between optimized and original metrics. We compare the two cluster-
ing algorithms which are used in AMPA4C. We also analyze the program based on three
different models (combination of metrics).

5.1.1 Benchmark

In order to provide a base for testing the methodology used and to determine whether
our novel approach works, a number of suitable software requires to be selected as a
benchmark. In this dissertation, we select two common software programs, which are
frequently used in many research works. The Banking program [32] and Laffra’s Djikstra’s
algorithm [71] are implemented as a benchmark test suit here. Table 5.1 lists some
characteristic of these two programs. The Loc represents a count of the number of lines
in the target elements that contain characters other than white space and comments.
Efferent Couplings is represents the number of types inside the target elements that
depend on types outside the target elements.

Banking Program
Banking program is frequently used in [32] as an aspect-oriented sample to explain how
to use aspect techniques. The banking program has two crosscutting concerns: logging

before and logging after. In a banking system, we would log each account transaction
with information such as nature of the transaction, the account number, and the transac-
tion amount. During the development cycle, logging plays a role like to a debugger. It is
also usually the only reasonable choice for debugging distributed programs. By examining
the log, a software engineer can spot unexpected system behavior and correct it. A log

41

Benchmark Loc Classes Methods Efferent
Couplings

Crosscutting Concerns

Banking 328 14 35 10 logging before; logging after
Lafra’s Dijk-
stra’s Algorighm
Application

890 7 42 6 show line; repaint; locking;
unlocking

Table 5.1: Characteristics of Benchmark Programs

also helps the software engineer see the interaction between different parts of a software
system in order to detect exactly where the problem might be.

Application of Dijkstra’s Algorithm
The application of Laffra’s Dijkstra algorithm (LDA) has four crosscutting concerns. The
methods showline and repaint are discovered as crosscutting concerns in [58]. The
method showline displays error messages when some preconditions are not met. The
method repaint will be invoked when a new step is executed, or a new execution starts
with new input data, or the algorithm is finished. Another two crosscutting concerns
are locking and unlocking, which are discovered in [9]. They lock or unlock the user
graphical interface each time when a new function was executed.

5.1.2 Metric Models

Model 1: Eleven metrics
Model 1 is a 11-dimensional vector space that consists of eleven metrics, which are fre-
quently used in other aspect mining approach, The metrics are listed as follows: Method
spread (MSP) [57], Fan-in value (FIV) [46], Fan-out value (FOV) [57], method internal
coupling (MIC), method external coupling (MEC) [57], Affected classes (AC)[57, 58],
Henry and Kafuras structure complexity (Cp) [72], return value(RV) [43], the number
of parameters(NPM) [72], method signature(MSig) [57] and cohesion on method (COM)
[72].

First, we give a brief explanation for each metric which is not mentioned before:
Method Spread (MSP): The metric measures level of interaction between the

method and other classes. Modules with a small MSP value are expected to have less
interaction between the method and classes in the software system. MSP is formally
defined as follows:

MSP =
the number of classes which calls the given method

total number of classes

Method Internal Coupling (MIC): Coupling is used to measure how dependent
a software unit is to other units in a software system. The coupling would use to help
differentiate between units of module. MIC is formally defined as follow:

MIC =
|Ml|

|Ml|+ |Me|

where |Ml| represents the number of all local calls to a method, and|Me| represents the
number of all external calls to a method.

42

Method External Coupling (MEC): MEC measures how coupled a method is to
other classes which do not declare this method. The metric shows whether the method is
used frequently by external classes compare with its owner class. MEC is formally defined
as follow:

MEC =
|Me|

|Ml|+ |Me|
where |Ml| represents the number of all local calls to a method, and|Me| represents the
number of all external calls to a method.

Return Value (RV) [43] represents the return value. If the value is 1, it represents
the method has a return value. If the value is 0, it represents the method does not
have a return value. Number of parameter (NPM) [74] represents the number of
parameters within a given method. Cohesion on method (COM) [74] represents how
many percent of the accessing local variables for a given method.

Model 2: Fan-in value and BVector
Model 2 consists of the fan-in value and BVectors B1, B2, · · · , Bm [14, 58], which represent
whether each method is called by other methods in some classes. m is the number of classes
in the given program. The value of Bi is defined as follows:

Bj =

 1 if ∃M ∈ methods(Cj).
M calls Mj in class Cj that calls Mi

0 otherwise

Model 3: SigTokens SigTokens [73] is the signature of tokens for each method.
The name of the method will be split into a number of tokens (from 1 to k). Each
token represents an attribute from A1 to Ak. The vector has x-dimensional, where x
represents the summation of all the unique tokens from all the methods after filtering out
the duplicates and non-significant ones. For the method Mi the vector is defined as

Mi = {Oi1 , Oi2 , · · · , Oim}

Where Oin is 1 if and only if the method mi contains the attribute An. Otherwise Oin is
0 (1 ≤ n ≤ m).

5.1.3 Criteria of Evaluation

We evaluate the performance of aspect mining with respect to three criteria, namely
sensitivity (sen), specificity (spe) and accuracy (acc).

We define the sets of Correctcc, Wrongcc, Correctnc, Wrongnc as follows:

Correctcc = Totalcc ∩Retrievalcc

Wrongcc = Totalcc ∩Retrievalnc
Correctnc = Totalnc ∩Retrievalnc
Wrongnc = Totalnc ∩Retrievalcc

Where Totalcc and Totalnc are the sets includes all methods that are considered as cross-
cutting concerns and general concerns, respectively. Retrievalcc and Retrievalnc are ob-
tained by using a clustering algorithm. They are considered as the set of crosscutting
concerns and the set of general concerns, respectively.

We define four static definitions in order to calculate the sen, spe and acc.

43

• True positive (TP) generally represents the individual has the condition and tests
positive for the condition. It is the number of Correctcc in this paper:

TP = |Correctcc|

• True negative (TN) generally represents the individual does not have the condition
and tests negative for the condition. It is the number of Correctnc in this paper:

TN = |Correctnc|

• False positive (FP) generally represents the individual does not have the condition
but tests positive for the condition. It is the number of Wrongcc in this paper:

FP = |Wrongcc|

• False negative (FN) generally represents the individual has the condition but tests
negative for the condition. It is the number of Wrongnc in this paper:

FN = |Wrongnc|

The criteria include:

• Sensitivity:

sensitivity =
TP

TP + FN

Sensitivity relates to the test’s ability to identify positive result. The sensitivity in
this experiment is the proportion of concerns which are the crosscutting concerns
which test positive for it.

• Specificity:

specificity =
TN

TN + FP

Specificity relates to the ability of the test to identify negative result. The speci-
ficity in this experiment is the proportion of crosscutting concerns which are non-
crosscutting concerns which test negative for it.

• Accuracy:

accuracy =
TP + TN

TP + TN + FP + FN

Accuracy is the statistical measure of how well the crosscutting concerns and non-
crosscutting concerns are correctly identified.

5.1.4 Results of Banking Program

We evaluate our approach based on banking program. Table 5.2 shows the metric selection
result for Model 1 (We do not show the detail data of Model 2 and Model 3 here, due
to a large number of steps). It shows the importance of selected metrics from step 1

to Step 10. The Step 2 gets the best result of Ge, which gets a relative smallest value.

44

Table 5.2: QUALITY OF METRICS FOR MODEL 1 IN BANKING

Step Qe Te Ge
Step 1 0.06326 0.0741 0.00469
Step 2 0.0708 0.0370 0.00262
Step 3 0.1629 0 0
Step 4 0.2581 0.1111 0.02867
Step 5 0.2481 0 0
Step 6 0.4107 0 0
Step 7 0.6522 0.0370 0.02413
Step 8 0.8687 0 0
Step 9 1.1515 0 0
Step 10 1.2698 0.0370 0.04698

Table 5.3: EVALUATION OF BANKING EXAMPLE FOR HC

Metric Models Original metrics Optimized metrics
Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

Model 1 100% 100% 100% 100% 100% 100%
Model 2 100% 4% 11.1% 100% 88% 88.89%
Model 3 100% 4% 11.1% 100% 100% 100%

Ge = Te × Qe, it is a general error that reflects the trade-off between Qe and Te. The
value of Te is zero represents the structure of map is the best one in this case.

Fig 5.1 shows the quality of the different combination of metrics for each step. If the
point appears approximate in the bottom left region, it represents that the algorithm is
better. Notice that in Figure 5.1, although step 3 and step 5 approximate to the left
bottom region, however they are not an optimal solution, because the value of Ge in
these two steps is 0 and the value of Qe are twice times larger than the value of Qe in
Step 2. Hence, they are not the optimal solution. Instead, The Step 2 (Te=0.0370 and
Qe=0.0708) is the optimal solution with the metrics {FIV,MSP,AC}.

The evaluation results can be seen in Table 5.3 and Table 5.4. Table 5.3 shows the
evaluation results which apply the hierarchical clustering algorithm (HC). Table 5.4 shows
the evaluation results which apply the k-means clustering algorithm (KAM). Compare the
data showed in these two tables, we find that the accuracy which are computed from the
optimized metrics are better than the ones which are computed from the original metrics
for both of HC and KAM. In addition, the KAM algorithm cannot obtain a stable cluster
in the experiment when we use the original metrics, because the k-means algorithm has
a problem when the data contains outliers. The irrelevant metrics which are contained
in the original metrics will disturb the k-means algorithm to obtain a stable clustering.
However, see from Table 5.4 we find that the KAM algorithm obtains a stable cluster by
using the optimized metrics.

5.1.5 Results of Dijkstra’s Algorithm Application

We evaluate our approach based on Dijkstra’s algorithm application. Table 5.5 shows
the importance of selected metrics from Step 1 to Step 10 for Model 1 (We do not show

45

Figure 5.1: Quality of the different set of input metrics in banking program

Table 5.4: EVALUATION OF BANKING EXAMPLE FOR KAM

Metric Models Original metrics Optimized metrics
Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

Model 1 NA 100% 92% 92.6%
Model 2 NA 100% 88% 88.89%
Model 3 NA 100% 100% 100%

the detail data of Model 2 and Model 3 here, due to a large number of steps). From Step

1 to Step 9, all of the value of Te and Ge is 0, therefore the value of Qe becomes the
most significant criteria of quality.

Fig 5.2 shows the quality of the different combination of metrics for each step in
Laffra Djikstra’s algorithm application. If the point appears approximate in the bottom
left region, it represents that the algorithm is better. Notice that in Figure 5.2, both
of step 1 and step 2 approximate to the left bottom region, because the number of
metrics in step 1 is smaller than the number of metrics in step 2, so that the step 1

(Qe=0.0754 and Te=0.0) is the optimal solution with the metrics {FIV, MSP }.
For the LDA program the evaluation can be seen in the Table 5.6 and Table 5.7.

Table 5.6 shows the evaluation which applies the hierarchical clustering algorithm. Table
5.7 shows the evaluation which applies the k-means clustering algorithm. Comparing
Table 5.6 with Table 5.7, we find that the accuracy of clustering concerns which are
computed from the optimized metrics are better than the ones which are computed from
the original metrics for both of HC and KAM in the LDA program.

46

Table 5.5: QUALITY OF METRICS FOR MODEL1 IN LDA

Step Qe Te Ge
Step 1 0.0754 0 0
Step 2 0.0754 0 0
Step 3 0.0968 0 0
Step 4 0.1985 0 0
Step 5 0.4300 0 0
Step 6 0.6020 0 0
Step 7 0.8294 0 0
Step 8 0.9094 0 0
Step 9 1.1869 0 0
Step 10 1.4859 0.0179 0.0266

Figure 5.2: Quality of the different set of input metrics in LDA application

5.2 Framework Nataly

In this section, we first use a concrete example as a case study to explain how to extract
Intention Pattern, and how to matching the join point shadows with Intention Pattern
by using analysis-based pointcuts against software evolution.

Fig. 5.3 shows a case study of hybrid powered vehicle control system which has two
power sources: a diesel engine and an electric engine. The method increase(Fuel) and
increase(Current) increase the vehicle’s speed with the HybridAutomobile notified to
calculate the new speed.

We suppose that certain highways have a requirement that notifies vehicles of the
speed limit. An aspect SpeedingViolationPrevention is used to control the vehicle’s
speed. The pointcut speedChange selects join points corresponding to the execution of
DieselEngine.increase(Fuel) and ElectricEngine.increase(Current). Both of the
class Fuel and Current extend an abstract super class Energy. The wild-card Energy+

represents the object references of type Energy and its subclasses. The traditional name-

47

Table 5.6: EVALUATION OF LDA FOR HC

Metric Models Original metrics Optimized metrics
Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

Model 1 20% 100% 92.86% 20% 100% 92.86%
Model 2 20% 100% 92.86% 40% 100% 94.64%
Model 3 100% 2% 10.71% 20% 100% 92.86%

Table 5.7: EVALUATION OF LDA FOR KAM

Metric Models Original metrics Optimized metrics
Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

Model 1 NA 100% 92.16% 92.86%
Model 2 NA 100% 68.63% 71.43%
Model 3 NA 100% 92.16% 92.86%

based pointcut is shown as follows. It matches the method-execution which its name text
is increase and its parameter type is Energy or its subclasses.

1 aspect SpeedingViolationPrevention{

2 pointcut limitspeed():

3 execution(void increase(Energy+));

4 //...

5 }

In this case study, we add a new requirement to the control system, which is about
adding a new fuel cell energy source. In Fig. 5.4 a new class FuelCell is created. In
order to increase the power, a numerical parameter is passed from FuelCell to a method
increase. Intuitively, the aspect SpeedingViolationPrevention should also apply to
the execution of this method. However, Parameter type double is a primitive type that
does not satisfy the wild-card increase(Energy+). This difference causes the pointcut
does not match the method FuelCell.increase(double).

Extracting Intention Pattern
The Intention Pattern derived from the relationship graphs for the traditional pointcut
limitspeed, which is shown in Fig. 5.5. Both of methods notifyChangeIn(Fuel) and
nodifyChangeIn(Current) set the value of field overallSpeed. Therefore, “ the action
of setting the value of overallSpeed” is a common property. The common property is
PT (fset) = {overallSpeed}, and the Intention Pattern for the analysis-based pointcut is

TP = (v?∗
r?−→ v?

fset−−→ overallSpeed). It represents there is a vertex can be any program
element as long as the relationship between it and field overallSpeed is fset. In addition,
the rooted vertex can reach to this vertex regardless of the relationship.

Matching with Intention Pattern
The analysis-based pointcut Analimitspeed is shown as follows. The method isNeedlim-

itSpeed returns true if the join point is matched by the Intention Pattern.

1 pointcut Analimitspeed():

2 execution(* *.*(..))&&

3 if(isNeedlimitSpeed(JoinPoint));

4 }

48

1 class HybridAutomobile{

2 double overallSpeed;

3 public void notifyChangeIn(Fuel fuel){

4 this.overallSpeed+= fuel.calculateDeltaInMPH(this);

5 //update attached observers...

6 }

7 public void notifyChangeIn(Current current){

8 this.overallSpeed+= current.calculateDeltaInMPH(this);

9 //update attached observers...

10 }

11 //...

12 }

13 class DieselEngine{

14 HybridAutomobile car;

15 public void increase(Fuel fuel){

16 //...

17 this.car.notifyChangeIn(fuel);

18 }

19 }

20 class ElectricEngine{

21 HybridAutomobile car;

22 public void increase(Current fuel){

23 //...

24 this.car.notifyChangeIn(current);

25 }

26 }

Figure 5.3: Hybrid automobile control system

Fig. 5.6 shows the relationship graph of the method-executions increase(double).

Assuming that we use the Intention Pattern (v?∗
r?−→ v?

fset−−→ overallSpeed) to match
this relationship graph. Here, the wild-card V?∗ can be replaced by the method in-
crease(double), the relationship wild-card r? can be replaced by the relationship mcall
and the vertex wild-card V? can be replaced by the method nodifyChangeIn. Therefore,
the relationship graph of increase(double) is matched by the Intention Pattern. The
analysis-based pointcut Analimitspeed can capture method increase(double).

5.2.1 Experiment Result

In this section, in order to evaluate whether analysis-based pointcuts can improve the
robustness of AspectJ application against software evolution, we compare the original
name-based pointcuts and analysis-based pointcuts of open source applications over sev-
eral releases in AspectJ.

49

1 class FuelCell{

2 HybridAutomobile car;

3 public void increase(double amount){

4 //...

5 Current current=this.generateCurrent(amount);

6 this.car.notifyChangeIn(current);

7 }

8 }

Figure 5.4: A new fuel cell class

Figure 5.5: The seeds for pointcut limitspeed

Performance

All benchmark programs were executed on OpenSuse 12.1 with Intel Core2 CPU T700
2.0GHz and 2G memory. We executed each program for 5 times, and calculated the
median values.

We evaluate the performance of NatalyAJ, which is an implementation of Nataly
in Java, from micro benchmarks (e.g., Bean) to larger-scale benchmarks (e.g., Heath-
Watcher). Table 5.8 shows the execution times of NatalyAJ for the 12 benchmarking
programs. The columns titled A, R and M are the time elapsed for the three steps in
our performance experiment. A represents the execution time of program analysis, R
represents the execution time for abstracting the T-Patten and refactoring traditional
pointcuts code to analysis-based pointcuts code. M represents the execution time for
the join points matching with analysis-based pointcuts. Column Total represents the
total execution time, which include analysis, refactoring, and matching, in seconds. The
subjects along with an associated Line of code (LOC) range from 84 for Tracing to 9888
for JHotDraw. The number of classes (column Class) ranges from 4 to 222. The average
execution time is 3.37 secs per KLOC and 180 ms per class. The result indicates that the
time required to generate the analysis-based pointcuts and matching the join points are
practical even for large applications.

50

Figure 5.6: Relationship Graph for method increase(double)

Table 5.8: Execution times for NatalyAJ

subject LOC Class A (ms) R (ms) M (ms) Total(s)
MobileMedia 1209 28 2995 1875 2200 7

Telecom 290 14 1926 2019 548 4
Ants 951 34 2263 2147 5679 10
Bean 287 4 313 207 137 0.7

QuickSort 148 5 141 101 98 0.3
Spacewar 1434 37 2661 2418 974 6

Tetris 1076 26 980 841 321 2
Tollsystem 5194 150 5508 2017 5335 13

Tracing 84 4 109 142 87 0.3
JFTP 9724 65 10843 2585 12400 26

JHotDraw 9888 222 18129 3274 16775 38
HealthWatcher 5738 102 7795 1356 4991 14

Setup

We chose five open source applications written in Java, selected several versions from the
archives, and translated the name-based pointcuts to analysis-based pointcuts using our
approach. The software applications chosen were as follows:

1. Figure Editor is a simple application which supports to draw a figure on the canvas.
We translate name-based pointcuts to analysis-based pointcuts which identify the
code fragment that implements the Canvas repaint concern within the same aspect.

2. MobileMedia is a software product line for applications that manipulate photo,
music and video on mobile devices. We translate the pointcuts within the aspects
which implement the exception handling concerns.

3. JFtp is graphical FTP client software in Java for transferring files from one client
to another. We translate the pointcuts within the aspects which implement GUI
updating concern.

51

4. JHotDraw is a Java GUI framework for technical and structured graphics. We
translate the pointcuts within the aspects which implement the Canvas repaint
concern.

5. Health Watcher is a medium size web-based public health monitoring system. We
translate the pointcuts within the aspects which implement the distribution concern.

For each version of the AspectJ application, we count the number of join point shadows
in the next version that are accidentally captured and the number of join point shadows
that are accidentally missed.

Results

Table 5.9: Number of matched join point shadows captured by pointcuts in different
versions

Accidental misses Accidental capture
Version Total MA MD MC CHC Total’ MA MC JPS

Canvas repaint concern v1 - - - - - - - - 9
in Figure editor v2 (2/8) (2/6) - (0/1) (0/1) (0/2) (0/1) (0/1) 9

Exception handling concern v1 - - - - - - - - 24
in MobileMedia v2 (0/3) (0/1) - (0/2) - - - - 25

v3 (4/4) - (4/4) - - - - - 24
GUI updating concern v1 - - - - - - - - 16

in JFTP v2 (0/6) (0/6) - - - - - 16
Canvas repaint concern v1 - - - - - - - - 4

in JHotDraw v2 (1/1) - (1/1) - - - - - 3
Distribution concern v1 - - - - - - - - 20

in Health Watcher v2 (0/19) - - - (0/19) - - - 20

Table 5.9 shows the number of accidental mismatches and accidental captures. There
are five subjects, which are comprised of a series of discrete releases. Each row in the
table corresponds to one version, indicating the following numbers.

• Accidental misses: The number (a/n) corresponds to the number of join point
shadows which are missed by the analysis-based pointcuts and traditional name-
based pointcuts, respectively. Following the total numbers of mismatches, the
numbers in MA, MC and CHC columns show the breakdown by causes of the
mismatches, which are explained below. Lower numbers are better.

• Accidental capture: The number (a/n) corresponds to the number of mismatched
join points which are accidentally captured by the analysis-based pointcuts and
traditional name-based pointcuts, respectively. Lower numbers are better.

• JPS: The number of intended join points which should be matched by each pointcut.

We classified the version of the accidentally missed and accidentally captured into the
following categories and analyzed the effectiveness of analysis-based pointcuts for each
category.

• Method Addition (MA): Adding a newly defined method that should be advised
by an aspect in a new version of the application. In this scenario, because the
traditional name-based pointcuts rely on the specific names of methods it cannot

52

capture the new method. On the contrary, analysis-based pointcuts can work as long
as the new method is matched by the intention pattern. For example, a new method
updateImage is added in version 2 of MobileMedia application, which updates the
photo data in the database. The analysis-based pointcuts would capture this new
method, because the new method updateImage is similar to the existing ones which
execute the open and close operations on a store.

• Method Deletion (MD): Deleting a method which is captured by a pointcut
in the previous version of the application. For example, method call of Fig-

ure.invaliate() is removed from method addtoSelection(Figure) in version
2 of JHotDraw application. In version 2, the join point shadow of method-call
Figure.invaliate() cannot be captured by both of name-based pointcuts and
analysis-based pointcuts, because the method no longer exists. Thus, neither of
analysis-based pointcuts and name-based pointcuts can match this method in the
new version of the application. We merely count the number of deleted methods in
our experiment.

• Method Change (MC): Changing a method’s signature in a new version of the
application. For example, method showImage() and showImageList(String) in
version 1 of MobileMedia application are changed to showImage(String) and show-

ImageList(String, boolean) in version 2 of the application, respectively. The
changed methods are mismatched by the name-based pointcuts because the text of
method signature does not match the wild-card expression or the enumeration ex-
pression. On the contrary, the analysis-based pointcut captures these two methods
showImage(String) and showImageList(String, boolean), because the inten-
tion patterns are not changed.

• Class Hierarchy Change (CHC): Changing a class hierarchy in a new version
of the application, such as inserting a newly defined class into a particular hier-
archy or deleting a class from a particular hierarchy. For example, adding a new
class Circle which extends the abstract class FigureElement in version 2 of Figure
editor application. In version 2, method moveBy(Int,Int) in class Circle is mis-
matched by the name-based pointcut, because the signature of pointcut “execution
(* Circle.moveBy(..))” is not enumerated in the traditional name-based point-
cut. On the contrary, the analysis-based pointcut captures this method execution,
because the new method Circle.moveBy(Int,Int) is similar to the existing one
like Line.moveBy(Int,Int) which changes a figure element’s visual property.

The results show that the fragile pointcut problem occurs frequently against software
evolution. The five case studies exhibit the fragile pointcut problem when we use name-
based pointcuts. The robustness of analysis-based pointcuts which are supported by our
approach is higher than the traditional name-based pointcuts, because the analysis-based
pointcuts match the join points based on intention properties instead of implementa-
tion details. For example, in the MobileMedia application the crosscutting concern of
persistence-exception is applied when the method showImage(), showImageList(String)
and resetImageData() execute. These methods are captured by a traditional pointcut
persistexception with the enumeration expression. In the future version of this exam-
ple, the developer will add a new method updateImage() in class BaseController. In

53

this case, the traditional name-based pointcut is broken, because the method signature
of method updateImage() does not exist in the traditional pointcut’s enumeration. Our

approach automatic infers an intention pattern: (V?∗
R?−→ V?

mcall−−−→ openRecordStroe) ∪
(V?∗

R?−→ V?
mcall−−−→ closeRecordStore). This intention pattern indicates that the crosscut-

ting concern of persistence-exception needs to be applied when the record-store is opened
or closed. In the future version of this application, the analysis-based captures method
updateImage() because method updateImage() calls the function of openRecordStroe
and closeRecordStore.

Through the experiment, we found that the analysis-based pointcuts can improve
robustness against software evolution, especially when the signature of a method changes,
and when a new member/property (e.g., a method or a field) is added into a family.

On the other hand, we also found that generated analysis-based pointcuts may not be
suitable to crosscutting concerns that are selectively applied based on some general non-
functional properties, which are difficult to infer the intention patterns, such as general
exception handling and efficiency.

In this section, we also demonstrate the usefulness of analysis-based pointcuts in a
real-world setting. We evaluate the matching results for join points over releases in As-
pectJ with traditional name-based pointcuts and analysis-based pointcuts, respectively.
In Table 5.9, there are four subjects, which are comprised of a series of discrete releases.
The list LOC records the lines of code in the program. The list class record the number
of classes inside the program. The list jps records the number of intended join points
which should be matched by the pointcuts. The list njps records the number of join
points which are actually matched by the traditional pointcuts. The list ajps records the
number of join points which are actually matched by the analysis-based pointcuts. The
list f-jps records the number of intended join points which is missed by the traditional
pointcuts, but is captured by the analysis-based pointcuts.

Table 5.10: EXPERIMENT MATCHING RESULTS

subject version LOC Class jps njps ajps f-jps
MobileMedia 1 1209 28 24 24 24 0

2 1354 28 25 22 25 3
3 1597 33 24 21 24 3

JFTP 1 9724 65 16 16 16 0
2 11223 76 16 10 16 6

JHotDraw 1 9888 220 135 135 135 0
2 28160 582 179 179 179 0
3 28456 604 178 177 178 1

HealthWatcher 1 5738 102 87 87 87 0
2 6122 112 87 56 87 21
3 6769 132 87 56 87 21

Table 5.10 shows the empirical results produced by applying our approach on the
evaluation subjects described previously. Columns 3-4 show the applications used for
evaluation, the total lines of the Java source code and the number of class files in each ap-
plication. Column jps shows the number of intended join points which should be matched
by the pointcuts. Column njps and ajps shows the number of join point shadows which

54

are actually matched by the enumeration-based pointcuts and analysis-based pointcuts,
respectively. Columns 8-9 show the number of join point shadows which should be cap-
tured, but is mismatched by the enumeration-based pointcuts and the analysis-based
pointcuts, respectively.

In summary, the results in Table 5.9 and Table 5.10 show that there is a significant
reduction in the number of mismatched join point shadows when using analysis-based
pointcuts which are inferred by our approach. If using the straightforward enumeration-
based pointcut, i.e., combining the specific pointcut expression of each join point shadow
with a logical operator, then the number of mismatched join point shadows is high in
the new version of application as indicated in Table 5.10. Through the experiment, we
also found that the analysis-based pointcuts improve the robustness of aspect-oriented
program against software evolution, especially when the signature of a method changes,
and when a new member/property (e.g., a method or a field) is added into a family.

5.3 Concluding Remarks

For Aspect Mining:
The evaluation reveals two phenomena in the aspect mining experiment. Firstly, the
KAM has better sensitivities than HC for all of the three metric models. For the LDA
program, the evaluation which using KAM are better than the one which using HC when
detect the crosscutting concerns. Hence, for the different program the optimal clustering
algorithm is different. Secondly, by comparing the result of HC in the two case studies we
find that the evaluation of HC is the best one for Model 1 in banking program. However
the evaluation of HC isn’t the best one for Model 1 in LDA program. The evaluation for
Model 2 is better than the evaluation for Model 1 in LDA program. It reveals that an
optimized metrics cannot suitable for all the programs. In other words, there is no existing
reliable standard metric for aspect mining. Different programs have different optimized
metrics and it is difficult to select them manually. Thus, it is essential to propose an
approach that can remove the irrelevant metrics and optimize the original combination of
metrics automatically.

For Aspect Interactions:
At the outset of this work, our study was to manually find the interference between
aspects after we transform the implementation of crosscutting concerns from Java code
to AspectJ code. First of all, we find that developer needs to understand the knowledge
of AspectJ and be able to find all the advices which are advised at the same join point
shadow. Second, the developer also needs to know the behavior of the whole program
very well, since many details need to be handled. Otherwise, the developer is difficult
to decide which aspect should have a higher precedence or which advice code cannot be
inserted at a given join point shadow. Our current approach handled such issues, so
that developers do not need to understand all the details of the program. Therefore, we
believe that our approach will greatly improve the practicality of discovering and verifying
aspect interference and will also remind developers to verify whether the behavior of their
generating aspect-oriented program is probably changed or not.

For Framework Nataly:
We evaluate our approach on four different open source programs with three different
versions. The comprehensible results show that the fragile pointcut problem occurs fre-

55

quently against program evolution. Depending on the evolution scenario, all of the four
examples have the fragile problem when they use traditional name-based pointcuts. On
the contrary, the analysis-based pointcuts work well in the future version of the program.
The analysis data shown in the Table 5.9 represents that the analysis-based pointcuts
with Intention Pattern which is generated by our framework are more robust than their
counterpart traditional name-based pointcuts.

56

Chapter 6

Discussion for Aspect Interference

After detecting the crosscutting concerns from the legacy object-oriented program, the
code bodies which implement the crosscutting concerns are removed from object-oriented
code into aspects in the aspect refactoring phase. One of the issues that make aspect refac-
toring hard to be applied in practice is interference [66, 92, 91, 94, 95] among aspects.
Such aspect interference is potentially dangerous and can result in erroneous behavior. If
the behavior of aspect A reinforces the behavior of aspect B, the advice codes in aspect
A should execute before the advice code in aspect B. For instance, Authorization and
Authentication. Authentication verifies the identification of a user and Authorization
establishes whether an authenticated user has sufficient privileges to access the system
resources. Thus, authentication should execute before Authorization. When refactoring
the function of authorization and authentication from object oriented program into as-
pects, the interference between such two aspects is still not dealt with. As a result, the
compiler will free to choose the opposite order. If the execution order of such two aspects
is changed, all of the users cannot access the system resources because all of them are
unauthenticated when they access the system resources. In this case, such program is
broken.

Obviously, checking the aspect interference is necessary in aspect oriented refactoring.
However, it is difficult and inefficient to check such aspect interference manually for the
developer. The reason is that (1) the developer needs to understand the knowledge of
aspect oriented programming language very well. (2) The developer needs to analyze and
understand the behavior of program very well, since many details need to be handled.

In the next section, we will show two scenarios to illustrate the problem of aspect
interference and discuss the influence of such problem further.

6.1 Aspect interference

Aspect interference is derived from disordered aspect interactions. Aspect interactions,
which arise in many software systems such as middleware and product lines , have been
discussed by several groups of researchers [63, 64]. In the aspect-oriented program, as-
pects, which enable modularizing crosscutting concerns, are orthogonal to one another
[65]. However, orthogonality between composed aspects may not be presumed in such
case: aspects may reinforce one another for positive effect or, on the contrary, aspects
may be incompatible for negative effect.

57

In order to understand aspect interference, Sanen et al. [67] have given a classifica-
tion for aspect interactions, which classifies aspect interactions into four types: mutual
exclusion, dependency, reinforcement and conflict, respectively. Dependency represents
one aspect explicitly needs another aspect. Reinforcement represents one aspect offers
extra support for another aspect and makes its extended functionalities become possible.
Mutual exclusion and conflict represent the data/behavior which is added by one aspect,
is incompatible with another and should be prevented. The difference is a conflict can be
solved by mediation [68], however the mutual exclusion cannot. The interaction of depen-
dency and reinforcement are positive aspect interactions. On the contrary, the interaction
of mutual exclusion and conflict are negative aspect interactions.

If the interactions between the aspects are not dealt with when the developer refactor
the code of crosscutting concerns into aspects, then the aspect interference potentially
occurs. Moreover, it is also possible results in aspect interference due to the reorder of
positive aspect interaction.

Next, we illustrate two different scenarios of aspect interference with two concrete
examples. For each example, we also compare the different behavior of the program
before and after the aspect refactoring. We assume that the potential codes of aspects
have been detected. Additionally, such codes are moved from object-oriented codes into
aspects which are written in AspectJ in each example. The aspect refactoring approach
which is used in these examples is on the basis of Tools supported Refactoring [7].

6.1.1 Scenario 1

A Telecom application models a telecommunication administration system in Java. The
base application includes two crosscutting concerns called Timing and Billing. Timing
keeps track of the duration of a phone call, while Billing uses this information to calculate
the amount money that the user are changed.

Fig. 6.1 shows class Call, which includes a method hangup that hangs up a call and
drops connection. After the call is hanged up the Timing function and Billing function
perform in sequence. The code statements in block b1 implements the Timing function
and the code statements in block b2 implements the Billing function.

Timing function and Billing function (codes with underline) are refactored from
class Call into aspects Timing and Billing, which are shown in Fig 6.2. Pointcut
endTiming matches all the method-call join points for the methods which their names are
the text of “drop” in class Connection. The instruction of after-advice in aspect Timing
is executed after calling method Connection.drop in order to record the duration of a
calling. The instruction of after-advice in aspect Billing is executed after the calling
method Connection.drop in order to calculate the cost of a phone calling.

Depending on the precedence of two aspects, the code layout of the woven method
will look like (a) and (b) in Fig 6.3. The Billing aspect works differently by the following
reasons:

1. When the Billing aspect precedes the Timing aspect in (b). The billing advice will
always receive 0 when read the duration time for a call because the duration time
is recorded after calculating the cost. The behavior of the aspect-oriented program
is totally different with the original object-oriented one.

58

1 Class Call{

2 //...

3 public void hangup(Customer c){

4 for(Enumeration e=

5 connections.elements();e.hasMoreElements();){

6 Connection c=(Connection)e.nextElement();

7 c.drop();

8 //block b1 for the Timing function:

9 getTimer(c).stop();

10 c.getCaller().totalConnectTime+=

11 getTimer(c).getTime();

12 c.getReceiver.totalConnectTime+=

13 getTimer(c).getTime();

14 //

15 //block b2 for the Bill function:

16 long time=getTimer(c).getTime();

17 long rate=conn.callRate();

18 long cost=rate*time;

19 getPayer(c).addCharge(cost);

20 //

21 }

22 }

23 //...

24 }

Figure 6.1: Outline of Class Call

59

1 Aspect Timing{

2 //...

3 pointcut endTiming(Connection c):

4 call(void Connection.drop()) &&

5 target(c);

6 after(Connection c):endTiming(c){

7 getTimer(c).stop();

8 c.getCaller().totalConnectTime+=

9 getTimer(c).getTime();

10 c.getReceiver.totalConnectTime+=

11 getTimer(c).getTime();

12 }

13 }

14 Aspect Billing{

15 //...

16 after(Connection c):Timing.endTiming(c){

17 long time=getTimer(c).getTime();

18 long rate=c.callRate();

19 long cost=rate*time;

20 getPayer(c).addCharge(cost);

21 }

22 }

Figure 6.2: Outline of Aspect Timing and Bill

60

Connection.drop
Timing(after proceed)
Billing(after proceed)

(a) When Timing precedes Billing

Connection.drop
Billing(after proceed)
Timing(after proceed)

(b) When Billing precedes Timing

Figure 6.3: Code layouts of the woven method in Telecom

2. When the Timing aspect precedes the Billing aspect. The duration time will be
recorded first, and Billing can calculate the cost correctly. The behavior of the
aspect-orient program is not changed.

6.1.2 Scenario 2

Supposing a search engine includes a number of search algorithms. Each algorithm in-
cludes two crosscutting concerns called performance monitor and logging. Performance
monitor records the real-time execution time of the algorithm, while logging writes the
input and output information of an algorithm into a log file.

Fig 6.4 shows class BinaryAlgorithm, which implements a binary search algorithm.
Field logging is an instance of class Logger, which implements the logging function with
method log. Method run calls the method search to find the object which its value
is v from the given list source. Method System.nanoTime returns the current value of
the most precise available system timer, in nanoseconds. Field spendtime represents the
execution time of method search.

The code statements of performance monitoring and Logging are removed from class
BinaryAlgorithm into aspects LoggingAspect and MonitoringAspect, which are shown
in Fig 6.5 and Fig 6.6. Pointcut p1 and p2 match all the method-execution join points
for the methods which their names are the text of “run” in class BinaryAlgorithm. The
instruction of around-advice in LoggingAspect is executed around the method-execution
BinaryAlgorithm.run in order to record the input and out message of method search.
Similarly, the instruction of around-advice in MonitoringAspect is also executed around
the method-execution BinaryAlgorithm.run in order to calculate the execution time of
method search.

However, depending on the precedence of two aspects, the code layout of the woven
method will look like (a) and (b) in Fig 6.7. The monitoring aspect works differently by
the following reasons:

1. When the performance monitor precedes the logging aspect in (b). Performance
monitoring traces an incorrect execution time of the search algorithm because the
performance monitoring does not only trace the execution time of such search al-
gorithm but also trace the execution time of logging. As a result, the outcome of
performance monitoring is not correct.

2. When the logging aspect precedes the performance monitoring in (a). The logging
aspect encloses the around advice performance monitoring. The monitoring only
traces the execution time of the search algorithm. The behavior of the generating
AO program is as same as the original object-oriented program.

61

1 Class BinaryAlgorithm{

2 //...

3 Logger logging;

4 public void run(List source, String v){

5 logging.log(source+v);

6 long start=System.nanoTime();

7 String result=search(source, v);

8 long complete=System.nanoTime();

9 long spendtime=complete-start;

10 System.out.println("SpendTime: "+spendtime);

11 logging.log(result);

12 //...

13 }

14 //...

15 }

Figure 6.4: Outline of Class BinaryAlgorithm

1 Aspect LoggingAspect{

2 private Logger logging;

3 //...

4 Pointcut p1(String source, String v):

5 execution(void BinaryAlgorithm.run(..))

6 &&args(source,v);

7 around(String source, String v):

8 p1(source,v){

9 logging.log(source+v);

10 String result=

11 proceed(source,v);

12 logging.log(result);

13 return result;

14 }

15 }

Figure 6.5: Outline of Logging aspects

62

1 Aspect MonitoringAspect{

2 //...

3 pointcut p2(String source, String v):

4 execution(void BinaryAlgorithm.run(..)) &&

5 args(source) && args(v);

6 around(String source, String v): p2(source, v){

7 long start=System.nanoTime();

8 String result=proceed();

9 long complete=System.nanoTime();

10 long spendtime=complete-start;

11 System.out.println("SpendTime:"

12 +spendtime);

13 return result;

14 }

15 //...

16 }

Figure 6.6: Outline of monitoring aspects

logging(before proceed)
monitoring(before proceed)

binarySearch
monitoring(after proceed)

logging(after proceed)

(a) When Logging precedes monitor-
ing

monitoring(before proceed)
logging(before proceed)

binarySearch
logging(after proceed)

monitoring(after proceed)

(b) When Performance precedes log-
ging

Figure 6.7: Code layouts of the woven method in search engine

All in all, when a developer moves the implementation of crosscutting concerns from
an object-oriented program into aspects, the behavior of the generating aspect-oriented
program may be changed and becomes unexpected. Therefore, it is essential to find a way
to manage and detect the interference among such aspects in aspect-oriented refactoring.

6.2 Preliminary Idea

To check such aspect interference, an easy way is to walk through the execution order
of the generating AO program and compare with the original OO program. However,
there is a shortcoming in this way, which is we need to repeated walk through the entire
program. It is difficult and inefficient. The reasons are (1) there are always too many
repeated statements makes the execution order is difficult to analyze; (2) the code im-
plementations of crosscutting concerns belong to several different aspects are inserted at
the same location. It does not need to walk through the entire program; (3) if there are
n number of aspects are inserted at the same location, the number of the permutation of
such aspects will be n!. In this case, the developer requires to walk through the entire
program for n! times.

63

Class A{
 int a=0, b=0,c=0,d=0;
 void main(){
 this.fun1();
 this.fun2();
 this.fun3();
 this.fun4();
 }
 void fun1(){
 a++;
 }
 void fun2(){
 c++;
 }
 void fun3(){
 b=a+1;
 }
 void fun4(){
 d=b-1;
 }
}

Aspect B{
 pointcut p1 (A This):
 execution(void main()) &&
 this(This);
 after(A This): p1(This){
 This.fun3();
 }
}

Aspect C{
 pointcut p2 (A This):
 execution(void main()) &&
 this(This);
 after(A This): p2(This){
 This.fun4();
 }
}

Class A{
 int a=0, b=0,c=0,d=0;
 void main(){
 this.fun1();
 this.fun2();
 }
 //...
}

Figure 6.8: A simple example

In this section, we explain our idea for checking aspect interference efficiently in aspect-
oriented refactoring on the basis of SMT. First, our approach extracts a model property P

from the original OO program. Second, our approach extracts a model M for the generating
AO program. If M |= P (M models P), then there is no aspect interference occurs. If M
6|= P (M does not model P), then it is possible to construct a counterexample showing
where the property does not hold in the AO program. The aspect interference would be
identified easily from such counterexample.

We use a simple example which is shown in Fig. 6.8 to explain our idea. We assume
that in Fig. 6.8, there are two implementations of crosscutting concerns: fun3 and fun4.
Method fun3 calculate the value of field b on the basis of field a. Similarly, method fun4

calculates the value of field d on the basis of field b. In the aspect oriented refactoring, we
moved the codes of crosscutting concerns from class A into aspects B and C, respectively.

6.2.1 Model Property for OO program

For the OO program, first, our approach generates a CFG on the basis of static control flow
analysis for each advice holder. An advice holder is a method which a part of its code is
removed from its body into aspects. For instance, class A in Fig. 6.8. Second, our approach
translates such CFG into a model which is described by Conjunctive Normal Form (CNF).
How to translate the control flow graph into a CNF model is shown in Fig. 6.9. Third, our
approach extracts a property from such CNF model according to the control flow effective

64

fun1

fun2

fun3

fun4

Advice holder: main

M:= (fun1>fun2)∩

 (fun2>fun3)∩
 (fun3>fun4)

CFG

CNF

void main(){
 fun1();
 fun2();
 fun3();
 fun4();
}

Source code

Figure 6.9: CFG and CNF Model for Simple Example (OOP)

statements. Control flow effective statements include (1) interdependent statements; (2)
Exceptions which their try blocks contain the same code statements; (3)return statement;
(4) Special system APIs, such as System.exit, System.nanoTime. The reason is because
even such statements do not access the same resource, when the execution order of such
statements is changed, they will still affect the behavior of the program.

How to judge two statements are independent is defined in the Definition 2. In the
Definition 2, a statement is a tuple s = (id, Rr, Rw). Where, id is the identifier of the
statement s, Rr is the set of common resource (such as, variables, memory, files) which is
read by the statement s, Rw is the set of common resource which is written or consumed
by the statement s.

Definition 4 Let two statements s = (id, Rr, Rw) and s′ = (id′, R′r, R
′
w). Independence

of s and s′ is: s u s′ = ∅, where symbol u represents get the accessed common resources
of s and s′, while symbol ∅ represents there is no accessed common resource. s u s′ =
(Rr ∩R′w) ∪ (Rw ∩R′r) ∪ (Rw ∩R′w).

On the basis of the Definition 2, we construct a control effective table (IDT) for the
object-oriented program. For example, the independence table for the simple example is
shown in Fig. 6.10. Note that, in the IDT, “1” represents that two statements are control
effective, “0” represents the two statements are not control effective.

Next, we design an algorithm to extract the model property on the basis of IDT
from the CNF model. The algorithm is shown in Algorithm 6. In Algorithm 6, if two

65

fun1 fun2 fun3
fun1
fun2
fun3

0 0 1
0 0

0
0
1 0

fun1: Rr={a} Rw={a}
fun2: Rr={c} Rw={c}
fun3: Rr={a} Rw={b}

fun4
0
0
1

fun4 10 0 0 fun4: Rr={b} Rw={d}

Figure 6.10: The IDT for Telecom example

Algorithm 6 : Model Property Extraction algorithm
Input: independent table IDT, a list of statements Π within CNF model τ (OOP)
Output: two sets of logic formulas S and S′

1: m:= the number of list Π
2: for (int j=1;j¡m;i++) do
3: for (int k=j+1;k¡m;k++) do
4: if IDT [j, k] = 1 then
5: // statements Πj and Πk are not independent
6: create logic formula: Πj > Πk

7: S′.add(Πj > Πk)
8: end if
9: end for

10: end for
11: return

statements are not independent, then we create a logic formula for them. For example,
we extract the model property P of simple example as follows:

P : = (fun1 > fun3) ∧ (fun3 > fun4)

6.2.2 Model for AO program

For an object-oriented program, it is easy to obtain CFG with control flow analysis.
However, for an aspect-oriented program, unlike explicit method call, the advice is inserted
implicitly at a certain join point shadow. A join point shadow is a location in which advice-
executing instructions can be inserted. Therefore, the traditional control flow analysis
does not suit to analyze the aspect-oriented program (such as AspectJ application). Here,
we select an interprocedural control flow analysis approach, which is first proposed in
AJANA [20]. In our approach, we generate an interprocedural control flow graph (ICFG)
for the generating aspect-oriented program that handles multiple advices at the same join
point shadow.

Interprocedural control flow graphs (ICFGs) (1) include a standard CFG and also (2)
interaction graphs (IGs) [69]. For multiple aspects, the IGs are built according to the
precedence rules of the aspect-oriented program. If there is no precedence to reference,
then the IGs are built for each permutation of advices which are inserted at the same join
point shadow.

The example of ICFG is shown in Fig 6.11. There are two different types of ICFGs
in Fig 6.11, because there is no precedence are specified for the aspect B and C. Thus the
IGs are built for each permutation of advices.

Similarly, ICFG can be translated into CNF model. The example of how to translate
the ICFG of the simple example to its CNF model is shown in Fig. 6.12 and Fig. 6.13.
Note that the advice nodes are removed from the CNF model. Compare with the CNF
model of the object-oriented program, there are two different CNF models are generated
for the aspect-oriented program.

66

A.main()

entry

fun1

exit

fun3 fun4

entry

C.after1

B.after1 C.after1

entry

exit
return

exit

return

CFG edge interprocedural edge

B.after1

A.main()

entry

fun1

exit

fun4 fun3

entry

B.after1

C.after1 B.after1

entry

exit
return

exit

return

C.after1

(a) (b)

fun2 fun2

Figure 6.11: Interprocedural control flow graph for advice holder hangup

6.2.3 Checking Aspect Interference

In this section, the target of our approach is checking whether the generating aspect-
oriented program has erroneous aspect interference or not. We assume that there is no
erroneous interference among the implementation of crosscutting concerns in the original
object-oriented program. Our approach applies a Satisfiability Modulo Theories (SMT)
solver (such as Z3 [106], Yices [107]) to verify the CNF models. Satisfiability Modulo
Theories (SMT) is an area of automated deduction that checks the satisfiability of logic
formulas with respect to some logical theory [108]. If the property P does not hold in any
of the models. As a result, erroneous aspect interference will be probably arising. In this
case, our approach analyzes the counterexample and gives an awareness of such aspect
interference for the developers.

For the simple example, our approach uses (¬P ∧M1 (in Fig.6.12)) and (¬P ∧M2 (in
Fig.6.13)) as inputs, respectively, for the SMT solver. The SMT solver returns that the
formula of (M2 ∧¬P) is satisfiable. It indicates that the property P does not hold in M2.
In this case, SMT solver also returns a counterexample (for instance, {(fun4 > fun3)}
). When we analyze this case, we find that the code statements of fun3 are inserted after
the code statements of fun4. As a result, when the program executes, the value of field d
will be always receive −1, because the value of field d should be always 0. The behavior
of such generating aspect-oriented program is totally changed.

6.3 Further discussion on case studies

In this section, we discuss on three case studies. To show how our idea works, we also
give a concrete interprocedural control flow graph and conjunctive normal form in the
first case study.

Telecom Application. As a typical example for an aspect interaction problem,
inspired by an example of Telecom application, which has been introduced in Chapter 4 as

67

A.main()

entry

fun1

exit

fun3 fun4

entry

C.after1

B.after1 C.after1

entry

exit
return

exit

return

B.after1

fun2

M:= (fun1>fun2)∩

 (fun2>fun3)∩
 (fun3>fun4)

CNF

Figure 6.12: CNF for the AO program of simple example (a)

M:= (fun1>fun2)∩

 (fun2>fun4)∩
 (fun4>fun3)

CNF

A.main()

entry

fun1

exit

fun4 fun3

entry

B.after1

C.after1 B.after1

entry

exit
return

exit

return

C.after1

fun2

Figure 6.13: CNF for the AO program of simple example (b)

the first example to explain the aspect interaction problem. Here, we use this application
as a case study to evaluate our approach.

In the aspect refactoring process the crosscutting concerns’ implementation of Timing
and Billing are removed from the Java code into aspects Timing and Billing, respectively.
A partial of code is shown in Fig. 6.14.

Method hangup hangs up a user’s call and drops connection. After method drop

is called, the implementation of crosscutting concern Timing and Billing are executed
in sequence. The call to method getTimer(conn).stop (id3) and the following two
assignment statements (id5 and id6) are removed from the body of hangup. A new
aspect, named Timing, is created to intercept the execution of hangup and insert id3, id5
and id6 after call method Connection.drop(). Similarly, the statements id7, id8, id9
and id10 are also removed from the body of hangup . A new aspect, named Billing, is
created to intercept the execution of hangup and insert such statements after call method
Connection.drop().

Note that the precedence of the two aspects (Timing and Billing) is not specified
and both of the statements in aspect Timing and Billing are inserted after call method

68

id
#1
#2

#3
#4
#5
#6

#7
#8
#9
#10

Class Call{
 //…
 public void hangup(Customer c){
 //...
 Connection conn=(Connection)e.nextElement();
 conn.drop();
 //for the Timing function
 getTimer(conn).stop();
 System.err.println("Timer stopped: " + getTimer(conn).stopTime);
 conn.getCaller().totalConnectTime+=getTimer(conn).getTime();
 conn.getReceiver().totalConnectTime+=getTimer(conn).getTime();
 //for the Billing function
 long time=getTimer(conn).getTime();
 long rate=conn.callRate();
 long cost=rate*time;
 getPayer(conn).addCharge(cost);
 //...
 }
}

Class Call{
 //…
 public void hangup(Customer c){
 //...
 Connection conn=(Connection)e.nextElement();
 conn.drop();
 System.err.println("Timer stopped: " +
 getTimer(conn).stopTime);
 //...
 }
}

id

#1
#2

#4

Aspect Timing{
 pointcut endTiming (Connection conn):
 call(void Connection.drop()) &&
 target(conn);
 after(Connection conn): endTiming(conn){
 getTimer(conn).stop();
 conn.getCaller().totalConnectTime+=getTimer(conn).getTime();
 conn.getReceiver().totalConnectTime+=getTimer(conn).getTime();
 }
}

id

#3
#5
#6

Aspect Billing{
 after(Connection conn): endTiming(conn){
 long time=getTimer(conn).getTime();
 long rate=conn.callRate();
 long cost=rate*time;
 getPayer(conn).addCharge(cost);
 }
}

Id

#7
#8
#9
#10

Figure 6.14: Example of refactoring: Timing and Billing

Connection.drop(). Thus, there should be two possible cases of the AspectJ program.
We analyze the Java code of Telecom application by static control flow analysis, and

obtain the CNF model from the control flow graph. The CNF model is shown in Fig. 6.15.
The algorithm 1 extracts the model property P from such control flow graph as follows:

P : = (#1 > #2) ∧ (#1 > #3)∧
(#1 > #4) ∧ (#3 > #5)∧
(#5 > #6) ∧ (#3 > #7)∧
(#3 > #8) ∧ (#7 > #9)∧
(#8 > #9) ∧ (#9 > #10)

Next, we analyze the AspectJ code of Telecom application, and obtains the ICFG
which is shown in Fig. 6.16. The CNF models which are extract from such ICFGs are
shown in Fig. 6.17 and Fig. 6.18.

In the case (a), we use (¬P ∧Ma) as inputs for the SMT solver. The SMT solver
returns that the formula of (¬P ∧ Ma) is unsatisfiable. It indicates that the property
P holds in model Ma. There is no aspect interference in the generating AO program of
Telecom application.

In the case (b), we use (¬P ∧Mb) as inputs for the SMT solver. The SMT solver
returns that the formula of (¬P ∧Mb) is satisfiable. It indicates that the property P does
not hold in model Mb. SMT solver also returns a counterexample (for instance #7 > #6).

We analyze the case (b), we find that the code statements of Timing (such as #6)
are inserted after the code statements of Billing (such as #7). As a result, when the
program executes, the code of Billing will be always receive 0 when read the value of
duration time for a user call. The behavior of such generating aspect-oriented program

69

Id

#1
#2

#3

#4

#5

#6

#7
#8
#9
#10

Class Call{
 //…
 public void hangup(Customer c){
 //...
 Connection conn=
 (Connection)e.nextElement();
 conn.drop();
 //for the Timing function
 getTimer(conn).stop();
 System.err.println("Timer stopped: " +
 getTimer(conn).stopTime);
 conn.getCaller().totalConnectTime+=
 getTimer(conn).getTime();
 conn.getReceiver().totalConnectTime+=
 getTimer(conn).getTime();
 //for the Billing function
 long time=getTimer(conn).getTime();
 long rate=conn.callRate();
 long cost=rate*time;
 getPayer(conn).addCharge(cost);
 //...
 }
}

#1

Advice holder: hangup

...

#2

#3

#4

#5

#6

#7

#8

#9

#10

...

M:= (#1>#2)ᴧ
 (#2>#3)ᴧ
 (#3>#4)ᴧ
 (#4>#5)ᴧ
 (#5>#6)ᴧ
 (#6>#7)ᴧ
 (#7>#8)ᴧ
 (#8>#9)ᴧ
 (#9>#10)

Source code

CFG

CNF

Figure 6.15: CFG and CNF model for Telecom (OOP)

is totally changed. To ensure the behavior of such program is not changed, the aspect
Billing should have a higher precedence than aspect Timing in AspectJ version.

From this case study we observe that our approach verifies the aspect interference
successfully and also finds a suggested solution for the given Telecom application.

Health watcher The main goal of this second case study was to assess whether our ap-
proach could verify the interference between the aspects of exception handler. The health
watcher is a web based system designed to monitor public-health-related complaints and
notifications. By allowing people to register several kinds of health complaints, health
care institutions can promptly investigate the complaints and take the required action.
There are several crosscutting concerns in the Java implementation of this system, such
as command pattern, exception handling distribution and concurrency. The code im-
plementations of these crosscutting concerns are removed from Java code to the aspect
code.

In the aspect refactoring process the crosscutting concerns’ implementation of excep-
tion handle and command pattern are removed from the Java code into aspects HWTrans-
actionExceptionHandler and ServletCommanding, respectively. A partial of code is
shown in Fig. 6.19.

70

Call.hangup()

entry

#1

exit

#3
#7

entry

Billing.after1

Timing.after1 Billing.after1

entry

exitreturn

exit

return

CFG edge interprocedural edge

Timing.after1

Call.hangup()

entry

#1

exit

#7 #3

entry

Timing.after1

entry

exit

return

exit

return

Billing.after1

(a) (b)

#2 #2
#5

#6

#8

#9

#10

#4

Timing.after1Billing.after1

#8

#9

#10

#5

#6

#4

Figure 6.16: Interprocedural control flow graph for Telecom

In the original Java implementation, the exception handling handles the operation of
command pattern. When we refactor such code implementation of crosscutting concerns
into aspects, the interactions between them is not dealt with. The precedence of such
aspects does not be specified. Thus the weaver is free to choose the opposite order, as
in this case advice precedence according to the language specification in undefined. As a
consequence, the exception handling does not happen around the command pattern. If
an exception happens in the command pattern, then this exception cannot be caught and
handled. Program behavior is changed and program function is broken.

To address the interactions between the two aspects, we use our approach to verify
the aspect interference. There are three before advices, one after advices and five around
advices in the AspectJ program. For the aspect ServletCommanding (command pattern)
and aspect HWTransactionExceptionHandler (exception handling), there are two loca-
tions that such aspects’ advice codes are inserted at the same time. The SMT solver
returns that the one of the formula of (¬P ∧ M) is satisfiable. It indicates that the
property P does not hold in model M . We find that in this case, the code statements of
transaction exception handler do not around the code statements of command pattern.
As a result, the exception cannot be caught and handled in the AspectJ version. This
case study allows us to verify an aspect interference of reinforcement between two aspects
by our approach.

Search Engine. Search Engine is a module which supports a number of search al-
gorithms. Each algorithm includes two crosscutting concerns called performance monitor
and logging. Performance monitor records the real-time execution time of the algorithm,
while logging record some information of that algorithm into a log file.

Fig 6.20 shows class BinaryAlgorithm, which implements a binary search algorithm.
Field logging is an instance of class Logger, which implements the logging function with
method log. Method run calls the method bin sch to find the object which its value
is v from a String list source. Method System.nanoTime returns the current value of
the most precise available system timer, in nanoseconds. Field spendtime represents the

71

Call.hangup()

entry

#1

exit

#3
#7

entry

Billing.after1

Timing.after1 Billing.after1

entry

exitreturn

exit

return

Timing.after1

#2 #5

#6

#8

#9

#10

#4

CNF Model

M:= (#1>#2)ᴧ

 (#2>#3)ᴧ

 (#3>#5)ᴧ

 (#5>#6)ᴧ

 (#6>#7)ᴧ

 (#7>#8)ᴧ

 (#8>#9)ᴧ

 (#9>#10)ᴧ
 (#10>#4)

Figure 6.17: CNF for the AO program of Telecom (a)

Call.hangup()

entry

#1

exit

#7 #3

entry

Timing.after1

entry

exit

return

exit

return

#2

Timing.after1Billing.after1

#8

#9

#10

#5

#6

#4

Billing.after1

CNF Model

M:= (#1>#2)ᴧ

 (#2>#7)ᴧ

 (#7>#8)ᴧ

 (#8>#9)ᴧ

 (#9>#10)ᴧ

 (#10>#3)ᴧ

 (#3>#5)ᴧ

 (#5>#6)ᴧ
 (#6>#4)

Figure 6.18: CNF for the AO program of Telecom (b)

execution time of method bin sch.
The code implementation of performance monitor and logging are removed from Java

code into aspects LogAspect and Monitor, respectively. Note that the statement id1 and
id2 will be inserted at the same location, while id4, id5, id6 and id7 will be inserted
at the same location when the weaver weaves the aspect-oriented program. However, the
precedence is not specified. Thus, the weaver is free to choose the insert order. When
the aspect performance monitor precedes the aspect logging performance monitor traces
an incorrect execution time of the search algorithm because the performance monitor not
only traces the execution time of the search algorithm but also traces the execution time
of logging. As a result, the results of performance monitor are not correct.

In this case, we define the system function System.nanoTime are not independence
with other code statements which execute within the method run. Therefore, the SMT
solver returns that one of the formula of (¬P ∧M) is satisfiable. It indicates that the
property P does not hold in model M . We find that in this case, the code statements of
logging do not around the code statements of monitoring. As a result, the performance

72

 Class HWServlet extends HttpServlet{
 //...
 public void doGet(HttpServletRequest request,
 HttpServletReponse reponse){
 try{
 String operation=(String)request.getParameter(“operation”);
 CommandServlet command=
 (CommandServlet)commandTable.get(operation);
 command.setRequest(request);
 command.setReponse(reponse);
 setCommand(new CommandInvokerToken(), command);
 }
 catch(TransactionException e){
 PrintWriter out =response.getWriter();
 out.println(“</select></p></center></div>”);
 out.println(“</p>”+e.getMessage()+“</p>”);
 }
 }
 //...
 }

Aspect ServletCommanding{
 //,..
 before(HttpServletRequest request,
 HttpServletReponse reponse):
 (execution (void HWServlet.doGet(..))) &&
 args(request, reponse) &&
 within(HWServlet){
 String operation=
 (Sring)request.getParameter(“operation”);
 CommandServlet command=
 (CommandServlet)commandTable.get(operation);
 command.setRequest(request);
 command.setReponse(reponse);
 setCommand(new CommandInvokerToken(), command);
 }
}

Aspect HWTransactionExceptionHandler{
 //…
 void around (HttpServletResponse response):
 execution(* HWServlet.doGet(..)) &&
 args(response){
 try{
 proceed(response);
 }
 catch(TransactionException e){
 PrintWriter out =response.getWriter();
 out.println(“</select></p></center></div>”);
 out.println(“</p>”+e.getMessage()+“</p>”);
 }
 }
}

Class HWServlet extends HttpServlet{
 //...
 public void doGet(HttpServletRequest request,
 HttpServletReponse reponse){
 }
 //...
}

Figure 6.19: Example of refactoring: Exception Handler and Command Pattern

monitor precedes logging, and an incorrect execution time of search algorithm is returned.
This case study allows us to verify aspect interference between two aspects which are
implemented by system function.

In this section, we discuss the aspect interference in the aspect-oriented. In our prelim-
inary solution, we expect to transform such aspect interference problem into a satisfiability
problem. Such satisfiability problem can be resolved correctly and efficiently by the ex-
isting SMT solver. (1) If the SMT solver returns unsat, then it indicates that there is
no aspect interference in the generating aspect-oriented program. (2) If the SMT solver
returns sat, then it indicates that there is potential aspect interference in the generating
aspect-oriented program.

Our idea successfully checks the aspect interference between aspects in three case
studies. Our preliminary solution addresses this issue with following advantages: (1) we
propose an automatic way for checking the aspect interference when refactoring cross-
cutting concerns into aspects. It is difficult to verify the interference between aspects
manually for the developer. The reason is that first the developer needs to understand
the knowledge of aspect-oriented programming language and be able to find all the ad-
vice instructions which are advised at the same join point shadow. Second, the developer
needs to analyze and understand the behavior of the program very well, since many details
need to be handled. (2) Our solution is practical and efficient, because we transform such
problem into satisfiability problem. In this way, we avoid to analyze and understand the
semantic intention of the program, which is complicated and difficult to be implemented.
(4) Our solution is applicability, because it can be easily implemented as a plugin or
component in the existing tools, such as aspect refactoring tools and aspect interaction

73

 Class BinaryAlgorithm{
 //...
 Logger logging;
 public String run(String source, String v){
 logging.log(source+v);
 long start=System.nanoTime();
 String result=bin_sch(source, v);
 long complete=System.nanoTime();
 long spendtime=complete-start;
 System.out.println("SpendTime: "+spendtime);
 logging.log(result);
 return result;
 }
 //...
 }

Aspect LogAspect{
 //,..
 Logger logging;
 pointcut p1 (String source, String v):
 execution(String run(..)) &&
 args(source) && args (v);
 around(String source, String v): p1(source, v){
 logging.log(source+v);
 String result=proceed(source, v);
 logging.log(result);
 return result;
 }
}

Aspect Monitor{
 pointcut p2 (String source, String v):
 execution(String run(..)) &&
 args(source) && args (v);
 around(String source, String v): p2(source, v){
 long start=System.nanoTime();
 String result=proceed(source, v);
 long complete=System.nanoTime();
 long spendtime=complete-start;
 System.out.println("SpendTime: "+spendtime);
 return result;
 }
}

Class BinaryAlgorithm{
 //...
 public String run(String source, String v){
 String result=bin_sch(source,v);
 return result;
 }
 //...
}

id

#1
#2
#3
#4
#5
#6
#7

Figure 6.20: Example of refactoring: Logging and Monitoring

management tools.
However, we also find that in some rare special cases even the execution order of two

dependent statements is changed, the behaviors of such two programs are still same. The
counter example is shown as follows:

1 Class A{

2 int m=0;

3 void fun(){

4 m=1+2+3+4+5; //id1

5 print("1+2+3+4+5=",m); //id2

6 m=(1+5)*2+3; //id3

7 print("1+2+3+4+5=",m); //id4

8 }

10 }

In the above example, id1 and id3 are dependent. We find that when the execution
order of id1 and id3 is changed, the behavior of the function fun() is not changed. The
reason is that both of them are used to calculate the summation of values from one to
five, but applies different ways. How to distinguish this situation when our solution gives
awareness of potential errors of aspect interference is the subsequent work in the future.

74

Chapter 7

Related Work

In this Chapter, we first present some of the research work has been done on how to
detect the crosscutting concerns from the object-oriented codes. Then we introduce some
related work on management, documenting and detecting of aspect interactions. Finally,
we present some previous works on dealing with fragile pointcut problems, involving some
research that improved our solution in this dissertation.

7.1 Aspect Mining

Feat [75] creates a concern graph. Such concern is derived from the source code. A concern
graph abstracts the implementation details of a concern by storing the key structure
implementing a concern. The relationship between the different elements of a concern
is documented by a concern graph. The developer is able to manipulate and navigate a
concern representation at a more abstract level than the source code without investing any
effort to create the abstract representation. Feat is able to iteratively create, visualize,
and analyze concern graphs for Java program. The scattered concerns are able to be
analyzed by the feat in an existing code base. By using the feat, however, the developer
still need to map the relationship between the specific code and concern manually. It will
spend a number of manual efforts. Our approach is based on the automatic aspect mining
technique, which clustering the concern automatically.

Aspect Browser [76] is similar to the Feat as the visual editor tool of concern. By using
the aspect browser, the developer can effectively describe non-hierarchical, interwoven,
crosscutting module structures. The Aspect browser is different from ours in that our
approach is based on the automatic aspect mining technique, and the aspect browser is a
kind of semi-automatic tool.

Tonella et al. [9] propose an approach which utility formal concept analysis (FCA) to
the execution trace in order to identify aspects. The feature location method based on
formal concept analysis has been adapted to address the problem of aspect mining. Trans-
formation of existing application to AOP is supported by their semi-automated aspect
identification method, which requires the definition of use-case for the main application
functionalities, when there are not already available. These use case scenario is a good
indicator for crosscutting concerns. The use cases are used as elements when analyze
the execution trace using FCA, and methods called from within use cases as properties.
The concepts are considered as aspects if the methods belong to more than one class, or
different methods from a same class occur in multiple use case specific concepts.

75

Another approach based on FCA is proposed by Tourwe [10]. They report an initial
assessing the feasibility of formal concept analysis to discover aspectual view in the source
code of an application automatically. They also define an aspectual view to represent the
set of source code entities which are structurally somehow related to each other. These
entities can be any source code artifact, such as a class hierarchy, a class, a method, a
method parameter or an instance variable. The structural relation between these source
code entities is arbitrary. An aspectual view can contain all source code entities that
participate in visitor design patter. For example, aspectual view offer a view on the
source code that is often crosscutting and that complements the standard views offered
by traditional development environment. Hence, these views improve understandability
and maintainability of the software. This research is different from our approach is that
this approach identify the crosscutting concerns based on the specific indicator, and it
cannot be changed for the different program. Our approach does not have a specific
indicator. The input of optimized metrics should be different for the different program.

Serban et al. [14] propose an approach that is based k-means clustering algorithm. The
input is a vector space model. The distance between the two methods is expressed using
Euclidean distance. They propose four steps to identify crosscutting concerns in their ap-
proach. Step 1 is Computation, which computes the set of methods in the selected source
code, and the attribute set values, for each method in the set. Step 2 is filtering, which
eliminate some methods that belong to the some built-in classes like String, StringBuffer,
etc. Step 3 is grouping, which groups the remaining set of methods into clusters. Step 4 is
analysis, which analyzes the obtained clusters to discover which cluster contains methods
belonging to crosscutting concerns. This approach used clustering based algorithm that
as well as our approach. Nonetheless, our approach does not use only one indicator and
one clustering algorithm. On the contrary, our approach uses a combination of metrics
that each metric is considered as an indicator and compares two clustering algorithms.
Another significant point in the difference is that our approach proposes an algorithm to
optimize the combination of metrics.

Marin et al. [46]propose an aspect mining approach by using fan-in analysis. This
approach aims at finding methods by computing the fan-in value metric for each method
using static call graph of the system. They adopt a systematic approach which consists
of several steps suitable for a high degree of automation. The technique has turned out to
be flexible and easy to combine with other techniques such as clone detection or slicing.
The key contributions of this research are the systematic approach used to identify the
aspects. The fan-in analysis approach calculates the fan-in value of each method, filter
accessor and auxiliary methods, and the number of considered methods is also limited
by the fan-in threshold. However, our approach does not define any threshold to classify
the crosscutting concerns. Our approach aims at using clustering algorithm to detect the
crosscutting concerns by themselves. Fan-in value can be considered as one of metrics for
the clustering algorithm.

7.2 Handling Fragile Pointcut Problem

There are several associated approaches which supporting analysis-based pointcuts or
similar to our approach that attempt to overcome the fragile pointcut problem.

Expressive pointcut languages In order to make pointcut definitions less frag-

76

ile against program evolution, more expressive pointcut languages are currently under
investigation. The Josh[96] and Alpha[97] are new AOP languages. Josh presents an
AspectJ-like language. Such novel language supports extensible pointcut and a few mech-
anisms for generic description. Such extensible pointcut language is on the basis of the
idea of open-compiler approach. This approach is not to make the source code of the
compiler open to public. It is rather to develop easily understandable abstraction of the
internal structure or behavior of the compiler and to provide the programming interface to
customize the compiler through that abstraction. Josh allows expert developers to imple-
ment a new pointcut designator in Java, the developers can define a pointcut designator
useful in particular application domain. Josh also allows a Java expression to be included
within an inter-type declaration. This makes Josh avoiding redundant description of the
inter-type declaration. However, Josh does not support the definition of a pointcut de-
pending on other facets such as data flow, and Josh also does not support type checking
and named pointcuts.

Alpha provides rich program information to the user defined pointcuts. The Alpha
aspect language allows specifying pointcuts at a high-level of abstraction by providing
different rich models of the program semantics and abstraction mechanisms analogous to
functional abstraction. Alpha uses a logic programming language for the specification of
pointcuts. Pointcut in Alpha are logic queries written in Prolog [98]. Nevertheless, the
new pointcut language is difficult to be written by a developer who is not familiar with
logic programming language. Furthermore, its dynamic execution model needs a complex
compilation framework to achieve efficient performance.

Design Rules and XPI These approaches are to explicitly include the pointcut
descriptions in the design of the software and to require software engineer to adhere to
this design. The interfaces which are defined by the design rules, are implemented as
Explicit Pointcut Interfaces (XPIs) using AspectJ [99]. XPIs define contracts or design
rules that base code developers must observe. On the other hand, aspect developers must
rely on the syntactic part XPIs to implement advices that do not directly reference source
code elements. Pointcuts are declared globally and it is possible to verify constraints on
the basis of XPIs. Our approach does not require defining strict design rules that the
base code must conform to.

Annotations In order to avoid fragile pointcut problem, a number of research propose
to define pointcuts in terms of explicit annotations in the code [100]. Similar to inten-
tional view, annotations classify source code entities and thereby make explicit additional
semantics that would otherwise be expressed through implicit programming conventions.
However, using annotation addresses the fundamental cause of the problem only partially.
While the pointcut definitions are defined in terms of semantic properties that would oth-
erwise have remained implicit, the problem is displaced to the annotations themselves.
Instead of requiring developers to adhere to implicit programming rules, we need them to
annotate the base program explicitly. As a consequence, pointcuts are as brittle as the
annotations to which they refer. When the base code has not been correctly annotated,
or when annotations are not correctly updated when the base code evolves, the fragile
pointcut problem still exists. Silva et al. [101] try to cope with this problem by propose
maintainers to inform whether each target element in the lexical range of an annotation
should be annotated or not. The central components of the proposed solution are anno-
tator aspects that super impose annotations to the base code in a non-invasive way. This
solution is particularly recommended in two situations: when it is possible to correlate

77

annotations, and, when it is possible to restrict the scope of an annotation.
Conceptual Models These pointcut languages propose that pointcuts should be

defined in terms of conceptual models of the base program, instead of directly accessing
the program abstract syntax tree. The rationale behind such approaches is that models are
more robust to evolution, because they represent only abstract and consolidated concepts
about the program domain. Kellens et al.[37] propose a novel pointcut construct language,
namely model-based pointcuts. They use a more stable dependency replace the intimate
dependency of point definitions on the base program. The model-based pointcuts are
no longer defined in terms of how the program happens to be structured at a certain
point in time. These new pointcuts are decoupled from the base program structure, fore
conceptual model instead, so that this new kind of pointcut language is more powerful.
However, similar to Alpha, this pointcut language is also difficult to be written by a
developer who is not familiar with the new language. Our solution does not require the
programmer to write the new pointcut by herself. Our framework generates the new
pointcut automatically.

Pointcut Analysis These approaches tackle the fagile pointcut problem by analysing
the program structure and pointcuts. SCoPE[102] is a compilation framework for AspectJ
to support user-defined analysis-based pointcuts. Because it does not change AspectJ,
it would be possible to integrate SCoPE and our framework to eliminate the runtime
overhead of analysis-based pointcuts.

Anbalagan et al.[103] proposes a framework to generate pointcut mutants with dif-
ferent strengths, and to assist the developer inspect the pointcuts and their join points
conveniently. The input of the framework is AspectJ source code and program bytecode.
The output is ranked list of mutants and their join points. There are six components in
this framework: pointcut parser, which identifies pointcuts in the given AspectJ source
code; join point candidate identifier, which identifies join point candidates from the given
Java bytecode, however there approach does not support to pointcuts related to dynamic
contexts such as cflow; mutant generator, which generates pointcut mutants from the
original pointcuts; pointcut tester, which verify the join point candidates compare with
original pointcuts; mutant classifier, which classifies pointcut mutants into three types,
strong pointcut mutant, wee pointcut mutant and neutral pointcut mutant; and dis-
tance measurer, which reduces the numbers of pointcut mutants according to the similar
distance. However, this approach still depends on the name of the join points. The
analysis-based pointcuts in our solution are not depending on the specific name.

Pointcut rejuvenation[104] and Pointcut-Doctor[105] are integration tools that assist
developers to create and analyze the pointcuts. Pointcut rejuvenation picks up a lot of
suggested join points which are ranked by the value of confidence after program evaluation.
They use a path with some wildcard elements as a pattern to match the join points. The
most striking difference is that the T-Pattern in our solution includes three kinds of
intention property and the T-Pattern includes not only one path but also a set of rooted
trees. Pointcut Doctor is extensions of AJDT tools that help developers create correct
pointcuts by providing immediate diagnostic feedback. Their algorithm captures join
points by changing the names in pointcut slightly. Pointcut Doctor could provide much
useful information to help the programmer maintains the pointcuts. Our solution aims at
generating a new pointcut (analysis-based pointcut) which does not need to be changed
very often. In this case, the programmer does not need to spend much time maintaining
the pointcuts.

78

7.3 Management of Aspect Interactions

To the best of our knowledge, this study is the first research which verifies the aspect
interference in aspect-oriented refactoring. We summarize several related works in this
section.

In terms of aspect-oriented modeling, despite a large of research [77, 78] have been
few attempts to handle aspect interactions during modeling. A few of approaches have
been to supply notations for explicitly documenting interactions, such as [67, 79]. Sanen
et al. [67] classify four different types of aspect interaction: mutual exclusion (e.g, differ-
ent policies implemented through different aspects), dependency (i.e., proper function of
aspect requires composition with another specific aspect), and reinforcement and conflict
representing positive and nefarious semantic interactions between aspects, respectively.
They propose an approach for documenting aspect interactions based on these four types
of interactions. Then think aspect interactions can be addressed if they are negative or
kept as part of system documentation if they are positive. The form of knowledge about
interaction which is proposed by Sannen can be useful at different states of the software
like cycle. Bakre et al. [79] propose the Aspect Interaction Charts (AIC) that build on
top of the Live Sequence Charts (LSC) [80] in order to capture the interactions among
various aspects at join points. An AIC captures the interaction among various aspects
and objects at a common join point in a graphical but formal manner. LSCs capture re-
quirements in a formal specification. The play Engine enables the user to feed in scenarios
using the play in mechanism and test them using the play out mechanism. However all
of these approaches only focus on documenting aspect interactions.

Beyond the documenting, various research [81, 82, 83, 84, 85] propose an approach
focus on analyzing conflicts and dependencies of aspect interactions based on modeling.
In [81] the authors aim to manage interaction issues in an aspect-oriented middleware
platform by allowing interaction contracts to be specified which then are enforced at
runtime. Explicitly specifying these contracts improves the management and control of
such interactions. Their work focuses on two main categories of aspect interactions: con-
flicts (two aspects being incompatible) and dependencies (one aspect requiring another).
The solution in the paper includes a component model with a well-defined interaction
model that supports a variety of relationships. These relationships are specified using
interaction contracts that are evaluated at runtime to ensure conflicts do not occur and
dependencies are fulfilled. The interaction model is based on shared elements (such as a
common join point, a component instance or the base application). Its possible to spec-
ify both basic (requires and provides) and advanced (conflict, precedence and resolution)
interaction contracts. The approach has been validated when they apply it to a series of
interaction issues which occured when implementing services for CustAOWare (a flexible
and customizable AO middleware platform). Similarly, Isabel et al. [83] propose an ap-
proach resolve the conflict by using the information which is appraised with respect to
multi-criteria analysis.

Approaches in [82] and [84] are based on requirement modeling. Mehner et al. [82]
propose an approach for analyzing aspect interactions at the level of requirements mod-
eling. Their approach detect conflict and dependencies in behavioral specification of use
cases refined with activity diagrams. Magno et al. [84] propose an approach that analyze
the relevant concerns and scenarios to determine the composition order and rules. The
analysis of concern interactions is based on AO requirements specification.

79

Shaker et al.[85] describe a formal language to detect interactions between aspects
written in the Aspect-UML language. However it requires formal pre-condition and post-
condition specification. All the above mentioned work manages aspect interactions based
on requirement specification or design structure. None of them address the issue on
detecting violation of aspect interaction from the program.

There are also several research that manage the interactions between aspects at the
programming level. Blair et al. [86] proposed a two-level architecture that separates a
feature’s core behavior (in Java code) from aspect-orient code (in AspectJ). Their ap-
proach specifies how features interactions are resolved. However, they have not addressed
the aspect interaction problem. Usage of the history of execution events as a basic mech-
anism for the definition of aspects is one way to handle aspect interactions, which has
been proposed by several researchers, in particular [87, 88] and our previous work [89].
Our previous work gives an approach to detect the interactions between crosscutting con-
cerns based on execution events in aspect refactoring. Taking advantages of semantic
annotations to help detect interactions was also discussed by many researchers such as
[90, 91, 92].

Barreiros et al. [91] define a novel concepts regarding aspect interaction management.
The paper proposes some extensions to the AspectJ [5] language for detecting unintended
aspect interactions. These extensions are aspect and advice cardinality, and meta-aspects.
The authors start off by providing a classification of seven different types of aspect in-
teractions. Some fundamental causes of undesired interactions also are discussed. Next,
aspect and advice cardinality is defined to represent the absolute and relative proportions
of aspect use and advice weaving. Aspect cardinality is the measure of the expected num-
ber of aspect bindings to an application while advice cardinality represents the expected
number of advice weaving per aspect binding. Its the developers responsibility to ensure
that multiple weavings at the same join point behave coherently depending on a certain
applicable execution order. Finally, meta-aspects are generic, abstract specifications of
concrete aspects with a number of advantages. These concrete aspects usually can be de-
rived automatically with all generic pointcut definitions being instantiated into specific,
narrow-scoped expressions.

Mussbacher et al. [92] present a novel approach for semantically detecting interactions
between aspect-oriented scenarios. Each aspect is annotated with domain-specific mark-
ers. In addition, a separate influence model in their approach describes how semantic
markers from different domains influence each other.

They propose three important extension to a framework [93]. They augment the
underlying aspect language by introducing variables allowing the sharing of information
between different parts of an aspect. The language becomes much more expressive but the
absence of interactions between aspects can still be checked statically. They also propose
some new composition operators for aspects. These operators are particularly useful to
resolve conflicts between interacting aspects. Interaction arises when distinct aspects
match the same join point. Each aspect is annotated with domain-specific markers and a
separate influence model describes how semantic marker from different domains influences
each other.

Static analysis is an another typical approach to detect interactions, such as [94, 95].
Stateful aspects [94] introduces a generic framework [93] for detecting aspect interactions
on the basis of pointcuts with explicit states. They extend the underlying aspect language
by introducing variables which allowing the sharing of information between different parts

80

of an aspect. The language becomes much more expressive but the absence of interactions
between aspects can still be checked statically. They also propose some new composition
operators for aspects. These operators are particularly useful to resolve conflicts between
interacting aspects. Interaction arises when distinct aspects match the same join point.
All in all, they propose an abstract formal semantics of their aspect language, which allow
for detection of aspect interaction. This approach detects shared join points, however,
Fraine et al. [95] propose an approach that has tried to go beyond shared join points
to detect control flow-based interaction. They demonstrate the feasibility of a technique
for managing control-flow interactions, one important kind of such interactions that they
experience in layered architecture. This technique proposes to document aspects with
policies that specify the expected interactions between different aspects, or between as-
pects and the base application. The policies are expressed as logic formulae that employ
a set of predicates that represent relevant control-flow situation. They use the static anal-
ysis of the woven application to detect violations of these policies. Comparing with the
previous research, our approach verifies the interference between aspects on the basis of
SMT which does not need to extend aspect language to give any additional information.

Additionally, for the constraint solving, the SMT solver such Z3[106] and Yices[107]
are becoming increasingly powerful with the advance of theorem provers and decision
procedure. Said et al. [109] present a work that uses SMT-based analysis to detect data
races. Our idea is inspired by this work. Unlike our approach, [109] does not consider
control flow, they requires the whole trace read-write consistency.

81

Chapter 8

Conclusion and Future Work

In this dissertation, we have investigated the use of static program analysis technique
in conjunction with the transformation of object-oriented program to aspect-oriented
program approach to improve the accuracy of aspect mining result and translate the
enumeration pointcut or name pattern-based pointcuts to analysis-based pointcuts. Our
main thesis is that:

Aspect-oriented refactoring extends the benefit of aspect-oriented technique to legacy
object-oriented programs without re-developing such legacy program. Static program
analysis techniques can improve the aspect-oriented refactoring, and resolve the obstacle
which existing in the refactoring process.

We have presented software metric selection and translation framework in this disserta-
tion that resolves the significant problems which obstructed the aspect-oriented refactoring
work.

Metrics selection proposed QAHSSS algorithm, a heuristic metric selection algorithm
for clustering based aspect mining. This work addresses two issues. First, it reduced the
size of the metric structure. Second, it removed the irrelevant metrics and increased the
accuracy of aspect mining. Nataly is a framework for translating name-based pointcuts
to analysis-based pointcuts. It addressed two issues: one is alleviating the fragile pointcut
problem; the other is generating analysis-based pointcuts automatically instead of writing
it manually. A deep discussion about aspect interference are also given in this dissertation.
We have discussed how to extract the property and model from the source code and how
to use SMT solver to check such models.

The results of our experiment evaluation lead us to conclude that the metrics selection
approach would optimize the input metrics for clustering-based aspect mining algorithm,
because the accuracy of aspect mining is improved after using the optimized metrics.
The generated analysis-based pointcuts are more robust than the name pattern-based
pointcuts or enumeration pointcuts, which are created in the aspect refactoring process.

The remaining parts of this chapter will recapitulate the technical contributions we
developed and discuss a number of directions for future work.

8.1 Contributions

• We develop a heuristic algorithm QAHSSS for aspect mining. It would find the
optimal subset of input metrics and remove irrelevant metrics from the given input
set of metrics.

82

• We implement an IDE based tool for helping to detect the crosscutting concerns au-
tomatically. The tool supports two different clustering algorithms and 14 frequently
used metrics in software quality engineer. The tool is also easy to extend for adding
new metrics.

• Automatic inference of intention pattern: In Nataly, an intention pattern is ab-
stracted from a set of relationship graphs of join points matched by a given input
pointcut. The process of abstraction can be implemented automatically based on
static program analysis.

• The automatic generated pointcuts are better integrated with the existing AOP
language. In Nataly, the analysis-based pointcuts is implemented by conditional (if)
pointcuts. It merely relies on existing AOP constructs and introspective reflection
libraries. In addition, the existing compiler SCoPE [102] can be used for our analysis-
based pointcuts directly.

• The automatic generated pointcuts have clear semantics. In Nataly, the analysis-
based pointcut does not change the semantics of existing AOP language. This helps
the programmer understand the program behavior after the translation.

• We pointcut an aspect interference problem in the aspect-oriented refactoring. The
generating aspect-oriented program will be probably broken when such problem is
not handled in the aspect-oriented refactoring.

• We propose an idea that transforms such aspect interference problem into a satisfi-
ability problem. Furthermore, such satisfiability problem can be resolved correctly
and efficiently by the existing SMT solver.

8.2 Future Work

To sum up, our plans for future work, We plan to extend our current work to support
more aspect language in the future. For the metrics selection algorithm, classify and
conclude what kinds of metrics are suitable for which kinds of projects for detecting
crosscutting concerns is an interesting direction. In addition, using Intention Pattern
to avoid advice repeated proceed problem is another interesting issue. We also plan to
implement our idea of aspect interference awareness in the future. How to generate the
CFG and ICFG automatically and how to find a way to extract the constraint property
and model automatically will be the continue work in the future. Last but not least, how
to implement our approaches for various legacy object-oriented program in practical is a
significant direction. How to integrate all the techniques proposed in the aspect-oriented
refactoring research to an integrated tool to help software engineers reusing their legacy
object-oriented software system with the aspect-oriented techniques easier in practical is
another attractive direction.

83

Bibliography

[1] Parnas D. L., ”On the criteria to be used in decomposing systems into modules”,
Communications of the ACM 15 (12), pp. 1053-1059, December (1972).

[2] Dijsktra E., “A Discipline of Programming”, Prentice Hall, (1976).

[3] O. G. Imed Hammouda, Olcay Guldogan. “Tool-supported customization of uml class
diagrams for learning complex system models”, In Proceedings of the 12th IEEE In-
ternational Workshop on Program Comprehension, page 24. IEEE Computer Society,
(2004).

[4] J. Aldrich. “Evaluating module systems for crosscutting concerns”, In University of
Washington, (2000).

[5] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. “An
overview of aspectj”, In Proceedings of the 15th European Conference on Object-
Oriented Programming, ECOOP ’01, pp. 327-353. Springer-Verlag, (2001).

[6] Gosling J., Joy B., Steele G., “The Java Language Specification”, second edition.
Addison Wesley, (1996).

[7] D. Binkley, M. M. Ceccato, M. Harman, F. Ricca and P. Tonella. “Tool-Supported
Refactoring of Existing Object-Oriented Code into Aspects, IEEE Transactions on
Software Engineering, vol.32, pp.698-717, (2006).

[8] L. Cole and P. Borba. “Deriving refactorings for AspectJ”, In Proceedings of the 4th
international conference on Aspect-oriented software development (AOSD ’05), pp.
123-134, (2005).

[9] P. Tonella and M. Ceccato, Aspect Mining through the Formal Concept Analysis of
Execution Traces, Proc. 11th Working Conf. Reverse Eng. (WCRE), pp. 112-121,
(2004).

[10] T. Tourwe and K. Mens, Mining Aspectual Views Using Formal Concept Analysis,
Proc. Fourth IEEE Intl Workshop Source Code Analysis and Manipulation (SCAM
04), pp. 97-106, (2004).

[11] S. Hanenberg, C. Oberschulte and R. Unland, Refactoring of Aspect-Oriented Soft-
ware, Proc. Fourth Ann. Int’l Conf. Object-Oriented and Internet-Based Technolo-
gies, Concepts, and Applications for a Networked World (Net.ObjectDays), pp. 19-35,
(2003).

84

[12] M.P. Monteiro and J.M. Fernandes, Towards a Catalog of Aspect-Oriented Refactor-
ings, Proc. Fourth Int’l Conf. Aspect-Oriented Software Development (AOSD), pp.
111-122, (2005).

[13] A. van Deursen, M. Marin and L. Moonen, Aspect Mining and Refactoring, Proc.
First Int’l Workshop Refactoring: Achievements, Challenges, Effects (REFACE),
with WCRE, (2003).

[14] G. Serban and G. Soffa Moldovan. “A new k-means based clustering algorithm in
aspect mining”, In Proceedings of 8th International Symposium on Symbolic and
Romania, (2006).

[15] F.J. Mitropoulos S.G. Maisikeli. “Aspect mining using self-organizing maps with
method level dynamic software metrics as input vectors”, In Proceedings of 2nd
International Conference on Software Technology and Engineering, (2010).

[16] G. Yao Z. Danfeng and C. Xiangqun. Automated aspect recommendation through
clustering-based fan-in analysis. In Proceedings of 23rd IEEE/ACM International
Conference on Automated Software Engineering, (2008).

[17] G. Serban G.S. Moldovan. “Aspect mining using a vector-space model based cluster-
ing approach”, In Proceedings of Linking Aspect Technology and Evolution work-
shop, (2006).

[18] M. Kamber J. Han. “Data Mining: Concepts and Techniques”, Morgan Kaufmann
Publisher, (2001).

[19] H. Liu M. Dash. “Feature selection for classification”, Journal of Intelligent Data
Analysis, (1997).

[20] G. Xu and A. Rountev. “AJANA: a general framework for source-code level inter-
procedural dataflow analysis of AspectJ software”, In Proceedings of the 7th inter-
national conference on Aspect-oriented software development (AOSD 08). pp.36-47,
(2008).

[21] F. Nielson, H. R. Nielson, and C. Hankin, “Principles of Program Analysis”, 2nd.
Berlin, Germany: Springer, (2005).

[22] A. V. Aho, R. Sethi, and J. D. Ullman, “Compilers: principles, techniques, and
tools”, Addison-Wesley, (1986).

[23] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. On-
drusek, S. Rajamani, and A. Ustuner, “Thorough static analysis of device drivers,
ACM SIGOPS Operating Systems Review, vol. 40, (2006).

[24] C. Baier and J. Katoen, “Principles of model checking”, The MIT Press, (2008).

[25] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes,J.-M. Loingtier, and
J. Irwin, “Aspect-oriented programming, in Proceedings of the European Conference
on Object-Oriented Programming, ECOOP97. Springer, pp. 220242, (1997).

85

[26] Hillsdale E., Hugunin J. “Advice Weaving in AspectJ”, Proceedings of the 3rd In-
ternational Conference on Aspect-Oriented Software Development (AOSD 2003), pp.
26-35, (2004).

[27] Avgustinov P., Christensen A. S., Hendren L., Kuzins S., Lhotk J., de Moor O.,
Sereni D., Sittampalam G., Tibble J., “abc: An Extensible AspectJ Compiler”,
In Proceedings of the 4th International Conference on Aspect-Oriented Software
Development (AOSD 2005), pp. 87-98, (2005).

[28] Popovici A., Alonso G., Gross T., “Just-In-Time Aspects: Efficient Dynamic Weaving
for Java”, In Proceedings of the 2nd International Conference on Aspect-Oriented
Software Development (AOSD 2003), pp. 100-109, (2003).

[29] Lopes C. V., D, “A Language Framework for Distributed Computing”, Ph.D. thesis,
College of Computer Science, Northeastern University, (1997).

[30] Lopes C. V., Kiczales G., D: “A Language Framework for Distributed Programming”,
Xerox PARC, Palo Alto, CA. Technical report SPL97-010 P9710047, (1997).

[31] Kiczales G., Hilsdale E., Hugunin J., Kersten M., Palm J., Griswold W. G., “Getting
Started with AspectJ”, Communications of the ACM, 44(10):59-65, (2001).

[32] Laddad R., “AspectJ in Action. Practical Aspect-Oriented Programming”, Manning
(2003).

[33] Kersten M., “AOP tools comparison, parts 1 and 2”. Developer Works (first article
of the AOP@Work series), IBM, (2005).

[34] Filman R. E., Friedman D. P., “Aspect-Oriented Programming is Quantification and
Obliviousness”, Workshop on Advanced Separation of Concerns at OOPSLA 2000,
Minneapolis, (2000).

[35] Stoerzer, M., Graf, J. “Using pointcut delta analysis to support evolution of aspect-
oriented software”, In 21st IEEE International Conference on Software Maintenance
(ICSM), (2005).

[36] Koppen, C., Stoerzer,M. “Pcdiff: Attacking the fragile pointcut problem”, In First
European Interactive Workshop on Aspects in Software (EIWAS), (2004).

[37] A. Kellens, K. Mens, J. Brichau, and K. Gybels. “Managing the evolution of aspect-
oriented software with model-based pointcuts”, In Proceedings of the 20th European
conference on Object-Oriented Programming (ECOOP’06), (2006).

[38] Breu, S., Krinke, J. “Aspect mining using event traces”, In Conference on Automated
Software Engineering (ASE 04), (2004).

[39] Breu, S. “Towards hybrid aspect mining: Static extensions to dynamic aspect min-
ing”, In 1st Workshop on Aspect Reverse Engineering, (2004).

[40] Ganter, B., Wille, R. “Formal Concept Analysis: Mathematical Foundations”,
Spring-Verlag, (1999).

86

[41] Shepherd, D., Tourwe, T., Pollock, L. “Using language clues to discover crosscutting
concerns”, In Workshop on the Modeling and Analysis of Concerns, (2005).

[42] Gybels, K., kellens, A. “An experiment in using inductive logic programming to
uncover pointcuts”, In First European Interactive Workshop on Aspects in Software,
(2004).

[43] Gybels, K., kellens, A. “Experiences with identifying aspects in Smalltalk using
unique methods”, In Workshop on Linking Aspect Technology and Evolution, (2005).

[44] J. Han. “Data Mining: Concepts and Techniques”, Morgan Kaufmann Publishers
Inc., (2005).

[45] Karanjkar, S. “Development of graph clustering algorithms”, Master’s thesis, Uni-
versity of Minnesota, (1998).

[46] Marin, M., van Deursen, A., Moonen, L. “Identifying aspects using fan-in analysis”,
In Working Conference on Reverse Engineering (WCRE 04), IEEE Computer Society,
pp. 132-141, (2004).

[47] D. Shepherd, E. Gibson, and L. Pollock. “Design and evaluation of an automated
aspect mining tool”, In International Conference on Software Engineering Research
and Practice, (2004).

[48] M. Bruntink. “Aspect mining using clone class metrics”, In 1st Workshop on Aspect
Reverse Engineering, (2004).

[49] M. Bruntink, A.v.Deursen, R.v. Engelen, and T.Toruwe. “An evaluation of clone
detection techniques for identifying crosscutting concerns”, In Proceeding of IEEE
International Conferences on Software Maintenance (ICSM 04). IEEE Computer So-
ciety Press, (2004).

[50] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. “Refactoring: Improving
the Design of Existing Code”, Addison-Wesley, (1999).

[51] Garcia A., SantAnna C., Figueiredo E., Kulesza U., Lucena C., Staa A., “Modulariz-
ing Design Patterns with Aspects: A Quantitative Study”, In Proceedings of the 4th
International Conference on Aspect-Oriented Software Development (AOSD 2005),
ACM press, pp. 3-14, (2005).

[52] Ran E., and Mathieu V,. “Untangling: a slice extraction refactoring”, In AOSD
’04: Proceedings of the 3rd international conference on Aspect-oriented software
development, pages 93-101, (2004).

[53] Jan H., Gail C. Murphy, and Gregor K. “Role-based refactoring of crosscutting con-
cerns”, In AOSD ’05: Proceedings of the 4th international conference on Aspect-
oriented software development, pp. 135-146, (2005).

[54] Morris, J., hirst, G. “Lexical cohesion computed by thesaural relations as an indicator
of the structure of text”, Computational Linguistics, pp. 21-48, (1991).

87

[55] Sable Benchmarks. The classic figure editor example. Available from:
http://www.sable.mcgill.ca/benchmarks/#aspectj.

[56] Peter J. Rousseeuw Leonard Kaufman. “Finding Groups in Data: An Introduction
to Cluster Analysis”, Wiley-Interscience, (1990).

[57] F.J. Mitropoulos S.G. Maisikeli. “Aspect mining using self-organizing maps with
method level dynamic software metrics as input vectors”, In Proceedings of 2nd
International Conference on Software Technology and Engineering, (2010).

[58] G. Serban G.S. Moldovan. “Aspect mining using a vector-space model based cluster-
ing approach”, In Proceedings of Linking Aspect Technology and Evolution work-
shop, (2006).

[59] T. Kohonen. “Self-Organizing maps”, Series in Information Sciences, (1997).

[60] E. Alhoniemi J. Vesanto, J. Himberg and J. Parhankangas. “Self-organizing map in
matlab: the som toolbox”, In Proceedings of the Matlab DSP Conference, (1999).

[61] K. Kiviluoto. “Topology preservation in self-organizing maps”, In Proceedings of
International Conference on Neural Networks, (1996).

[62] J. Whitehead E. Sunghun. “When functions change their names: Automatic detec-
tion of origin relationships”, In Proceedings of 12th Working Conference on Reverse
Engineering (WCRE’05), (2005).

[63] L. Blair, G. Blair, and J. Pang. “Feature interaction outside a telecom domain”,
Workshop on Feature Interaction in Composed Systems, (2001).

[64] X. Liu, G. Huang, W. Zhang, and H. Mei. “Feature interaction problems in middle-
ware services”, International Conference on Feature Interactions (ICFI ’05), (2005).

[65] R. E. Filman, T. Elrad, S. Clarke, and M. Aksit. “Aspect-oriented software develop-
ment”, Addison-Wesley, (2005).

[66] R.E. Filman, K.Havelund, and K.Technology. Realizing aspects by transforming for
events. In IEEE, editor, Automated Software Engineering, ASE ’02, (2002).

[67] Frans Sanen , Eddy Truyen , Wouter Joosen. “Classifying And Documenting Aspect
Interactions”, In Proceedings of the Fifth AOSD Workshop on Aspects, Components,
and Patterns for Infrastructure Software, (2006).

[68] S. Sandra I. Casas, J. J. Baltasar G. P., and C. Claudia A. Marcos. “MEDIATOR: an
AOP Tool to Support Conflicts among Aspects”, International Journal of Software
Engineering and Its Applications (IJSEIA), pp. 33-44, (2009).

[69] G. Xu and A. Rountev. “Regression test selection for AspectJ software”, In Pro-
ceeding of International conference on Software Engineering (ICSE ’07), pp. 65-74,
(2007).

[70] K. Gybels and A. Kellens, “An Experiment in Using Inductive Logic Programming to
Uncover Pointcuts”, Proc. First European Interactive Workshop Aspects in Software,
(2004).

88

[71] C.Laffra. Dijkstra’s shortest path algorithm. Available from:
http://carbon.cudenver.edu/hgreenbe/courses/dijkstra/Dijkstrapplet.html

[72] Stephen H. Kan. “Metrics and Models in Software Quality Engineering”, Addison-
Wesley Longman Publishing Co., Inc., (2002).

[73] G. Yao Z. Danfeng and C. Xiangqun. “Automated aspect recommendation through
clustering-based fan-in analysis”, In Proceedings of 23rd IEEE/ACM International
Conference on Automated Software Engineering, (2008).

[74] Stephen H. Kan. “Metrics and Models in Software Quality Engineering”, Addison-
Wesley Longman Publishing Co., Inc., (2002).

[75] Martin P. Robillard and Gail C. Murphy. “Concern graphs: finding and describing
concerns using structural program dependencies”, In Proceedings of the 24th Inter-
national Conference on Software Engineering. ICSE, (2002).

[76] J. Neddenriep M. Shonle and W. Griswold. “Aspectbrowser for eclipse: a case study
in plug-in retargeting”, In Proceedings of the 2004 OOPSLA workshop on eclipse
technology eXchange, (2004).

[77] Klein J, Helouet L, Jezequel J-M. “Semantic-based weaving of scenarios”, Aspect-
Oriented Software Development ACM Press, pp. 2738. (2006).

[78] France R, Ray I, Georg G, Ghosh S. “Aspect-oriented approach to early design
modeling”, Software, IEE Proceedings, vol. 151, pp. 173-185. (2004).

[79] Shubhanan Bakre and Tzilla Elrad. “Scenario based resolution of aspect interactions
with aspect interaction charts”, In Proceedings of the 10th international workshop
on Aspect-oriented modeling (AOM ’07), pp. 1-6, (2007).

[80] Harel and R. Marelly. “Come, Lets Play:Scenario-Based Programming Using LSCs
and the Play-Engine”, Springer-Verlag, (2003).

[81] P. Greenwood, B. Lagaisse, F. Sanen, G. Coulson, A. Rashid, E. Truyen and W.
Joosen. “Interactions in Aspect-Oriented Middleware”, In proceedings of 2nd In-
ternational Workshop on Aspects, Dependencies and Interactions at ECOOP ’07,
(2007).

[82] Mehner, K.; Monga, M.; Taentzer, G., “Interaction Analysis in Aspect-Oriented
Models”, Requirements Engineering, 14th IEEE International Conference, pp.69-78,
(2006).

[83] Isabel S. B., Filipe V., Ana M., and Rita A.R. “Handling conflicts in aspectual re-
quirements compositions”, In Transactions on aspect-oriented software development
III, Awais Rashid and Mehmet Aksit Springer-Verlag, (2007).

[84] Magno, J., Moreira, A. “Concern Interactions and Tradeoffs: Preparing Require-
ments to Architecture”, Aspects, Dependencies and Interactions Workshop at
ECOOP ’06, (2006).

89

[85] Shaker, P., Peters, D., “Design-level Detection of Interactions in Aspect-Oriented
Systems”, Aspects, Dependencies and Interactions Workshop at ECOOP ’06, (2006).

[86] Blair L, Pang J. “Aspect-oriented solutions to feature interaction concerns using
AspectJ”, Feature interactions in telecommunications and software systems VII, IOS
Press, pp 87-104, (2003).

[87] Robert E. F., Klaus H. “Realizing aspects by transforming for events”, In IEEE,
editor, Automated Software Engineering (ASE ’02), (2002).

[88] Robert J. Walker , Gail C. Murphy. “Joinpoints as ordered events: Towards applying
implicit context to aspect-orientation”, In Proceedings of ASOC Workshop at ICSE
’01, (2001).

[89] Lin W., Tomoyuki A., Masato S. “Interaction awareness for aspect refactoring”, In
Proceedings of the 8th international workshop on Advanced modularization tech-
niques at AOSD ’13. (2013).

[90] Bergmans LMJ. “Towards detection of semantic conflicts between crosscutting con-
cerns”, Analysis of aspect-oriented software (AAOS) at ECOOP ’03, (2003).

[91] Barreiros, J., Moreira, A. “Aspect interaction management with meta-aspects and
advice cardinality”, In Proceedings of the Second International Workshop on Aspects,
Dependencies and Interactions at ECOOP ’07, pp. 11-16. (2007).

[92] Mussbacher, G.; Whittle, J.; Amyot, Daniel, “Semantic-Based Interaction Detection
in Aspect-Oriented Scenarios”, 17th IEEE International Conference on Requirements
Engineering (RE ’09), pp.203-212, 2009.

[93] Douence, P. Fradet, and M. Siidholt. “A framework for the detection and resolu-
tion of aspect interactions”, In Proc. of the Conf. on Generative Programming and
Component Engineering, pages 173-188, (2002).

[94] Douence, R., Fradet, P., Sudholt, M. “Composition, reuse, and interaction analysis
of stateful aspects”, In Proceedings of the 3rd international Conference of Aspect-
oriented Software Development (AOSD ’04), (2004).

[95] de Fraine B, Quiroga PD, Jonckers V. “Management of aspect interactions using
statically verified control flow relations”, In: Workshop on aspects, dependencies
and interactions at ECOOP ’08, (2008).

[96] S. Chiba and K. Nakagawa. “Josh: An open AspectJ-like language”, In Proceeding
of the 3th International Conference on Aspect-Oriented Software Development, pp.
102-111, (2004).

[97] K. Ostermann, M. Mezini, and C. Bockisch. “Expressive Pointcuts for increased
modularity”, In Proceeding of the 19th European Conference on Object-Oriented
Programming, pp. 214-240, (2005).

[98] L. Sterling and E. Shapiro. “The Art of Prolog”, MIT Press, (1994).

90

[99] W.G. Griswold, K.J. Sullivan, Y. Song, M. Shonle, N. Tewari, Y. Cai, and H. Rajan.
“Modular software design with crosscutting interfaces”, IEEE Software, pp. 51-60,
(2006).

[100] Kiczales, G., Mezini, M. “Separation of concerns with procedures, annotations,
advice and pointcuts”, In Proceedings of European Conference on Object-Oriented
Programming (ECOOP), (2005).

[101] L. Silva, S. Domingues, and M. Valente. “Non-invasive and non-scattered annota-
tions for more robust pointcuts”, In Proceeding of 24th International Conference on
Software Maintenance, pp. 67-76, (2008).

[102] T. Aotani and H. Masuhara. “SCoPE: An AspectJ compiler for supporting user-
defined analysis-based pointcuts”, In Proceeding of the 6th International Conference
on Aspect-Oriented Software Development, pp. 161-172, (2007).

[103] P. Anbalagan and T. Xie. “Automated generation of pointcut mutants for testing
pointcuts in AspectJ programs”, In Proceeding of 19th International Symposium on
Software Reliability Engineering, pp. 239-248, (2008).

[104] R. Khatchadourian, P. Greenwood, A. Rashid, and G. Xu. “Pointcut rejuvenation:
Recovering pointcut expression in evolving aspect-oreient software”, In Proceeding
of 24th International Conference on Automated Software Engineering, pp. 575-579,
(2009).

[105] L. Ye and K. De Volder. “Tool support for understanding and diagnosing pointcut
expressions”, In Proceeding of the 7th International Conference on Aspect-Oriented
Software Development, pp. 144-155, (2008).

[106] Leonardo De Moura and Nikolaj Bjorner. Z3: an efficient SMT solver in TACAS,
(2008).

[107] Bruno Dutertre and Leonardo De moura. The Yices SMT solver. Technical report,
(2006).

[108] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Saisfiability Modulo Theories.
volume 185, chapter 26, pages 825-885. IOS Press, (2009).

[109] Mahmoud Said, Chao Wang, Zijiang Yang, and Karem Sakallah. “Generating data
race witnesses by an SMT-based analysis”, In Proceedings of the Third international
conference on NASA Formal methods (NFM’11),pp. 313-327, (2011).

91

Publications

[1] Lin Wang, Tomoyuki Aotani, Automatic translation from name-based pointcuts to
analysis-based pointcuts for robust aspects, on 8th Workshop on Reflection, AOP
and Meta-Data for Software Evolution (RAM-SE’11) in TOOLS Federated Confer-
ences. ACM, 2011.

[2] Lin Wang, Tomoyuki Aotani, and Masato Suzuki. Feature selection for clustering
based aspect mining. In Proceedings of the 4th international workshop on Variabil-
ity & composition(VariComp ’13) in AOSD13. pp. 7-12. ACM, 2013.

[3] Lin Wang, Tomoyuki Aotani, and Masato Suzuki. Interaction awareness for as-
pect refactoring. In Proceedings of the 8th international workshop on Advanced
modularization techniques (AOAsia ’13) in AOSD13. ACM, pp. 15-18. 2013.

[4] Lin Wang, Tomoyuki Aotani, and Masato Suzuki. Improving the quality of As-
pectJ application Translating name-based pointcuts to analysis-based pointcuts. In
Proceeding of the 14th International Conference on quality Software (QSIC14). pp.
27-36. IEEE, 2014.

92

