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Abstract

This work focused on development of reactive systems. A software development process
begins with informal requirements which the target software is expected to meet. The
informal requirements are translated into formal specifications to ensure their consistency.
Then, system designs are developed as models for implementation. Finally, the implemen-
tation is done according to the designs using programming languages. In this development
process, we should verify the fact that the designs satisfy the requirements described by
formal specifications since incorrect designs likely lead to significant costs caused by back
track of the developments. The specification captures the external behaviors including
the results of the operations of the systems. Separately, the design represents the details
of how to make the results. We consider that the formal specification languages such as
Z, VDM, Event-B are appropriate to describe the specification because they provide rich
notions (e.g., set, relation, and function) to facilitate describing the specification. They
also provide tools to assure the consistency of the specification. Promela is an appropri-
ate language for describing the design. In Promela, the design could be described in an
imperative manner. Design decisions are straightforwardly described based on complex
data structures (e.g, record type and array) and various control structures (e.g, selec-
tion and loop). Therefore, we intend to use Event-B and Promela for the specification
and the design to facilitate describing them. Then, we propose a framework to verify
the Promela design against the specification in Event-B. This framework is to verify the
reactive systems.

The first problem we must deal with is that there exists a gap between the specification
and the design. The specification defines what behaviors are produced, whereas the design
defines the detail of how the behaviors are produced. Since there exists such a gap,
we intentionally use different specification languages: Event-B for the specification and
Promela for the design. This in turn leads to the second problem; that is, we have to deal
with difference of specification languages used for the specification and the design. Actions
in Event-B are performed in parallel, whereas actions in Promela may be performed step
by step. Therefore, a state transition in the specification may be followed by multiple
state transitions in the design. Another problem is that the reactive systems just operate
if they receive stimulus from the outside, so-called environments. Therefore, the design
must be verified in communication with the environment. The other problem is to assure
the practicality of the framework. It must provide an ability to check important properties
and detect typical bugs of the reactive systems. It is also possible for users to produce
inputs of the framework. These must be demonstrated by some case studies including
real systems.

The first contribution of the research is a new combination between Event-B and
Promela/Spin included in a framework for the verification of reactive systems. This
framework is to verify the conformance of the design to its formal specification where the
design and the specification are described in different specification languages. Applying
the framework, we can choose appropriate specification languages to describe the spec-
ification and the design for the purpose of verifying the design. With this combination
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between Event-B and Promela/Spin, we can check the design against the consistent and
the correct specification. This would drastically improve the reliability of model checking
results because the specification is reliable. The second contribution of the research is to
fill the gap between the specification and the design. The specification defines abstract
data structures, whereas the design defines implementable data structure. Also, the spec-
ification defines results of operations, while the design defines details of how to make the
results. In the framework, we relate the specification to the design by common semantics,
LTSs, and correspondences between state transitions given by mappings from syntactic
elements in the former to those in the latter. This makes it possible to systematically
verify the conformance of the design to the specification. The third contribution refers to
supports for applying the framework to verify real systems. As mentioned, the users must
produce the formal specifications in Event-B and the proper bounds for the verification
of the system design. We give guidelines for translation from the informal specifications
into the formal specification in Event-B. These facilitate the validation of the formalism.
We also give a procedure to give the proper bounds to direct the verification focus on the
behaviors relevant to intended properties and bugs. Therefore, we could determine ap-
propriate bounds to avoid the state explosion when applying model checking; the critical
cases could not be missed because we use proper bounds for the verification.

To evaluate the applicability and the effectiveness of our framework, we conducted
some case studies in which the target systems are the reactive systems ranging from the
simple systems to complex systems. Specifically, we applied our framework to verify a
real system, an operating system compliant with the OSEK/VDX standard. The results
of the several experiments are shown to demonstrate that this approach can be practically
applied in verification of important properties and detection of typical bugs of the target
systems. This exhibits an ability to deal with the specifications and the designs which
are described in different specification languages. Therefore, we can choose appropriate
specification languages to describe the specification and the design for the purpose of
verifying the design.

Keywords: formal specification, design, formal verification, simulation relation, OSEK/VDX
OS.
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Chapter 1

Introduction

1.1 Motivation

A software development process begins with informal requirements which the target soft-
ware is expected to meet. The informal requirements are translated into formal speci-
fications to ensure their consistency. Then, system designs are developed as models for
implementation. Finally, the implementation is done according to the designs using pro-
gramming languages. In this development process, we should verify the fact that the
designs satisfy the requirements described by formal specifications since incorrect designs
likely lead to significant costs caused by back track of the developments.

We focus on the development of automotive systems. Automotive systems are widely
used in industry and our daily life. Most of them are considered as safety-critical because
their failure may result in loss of lives and assets (e.g. software systems for mobile ve-
hicles). As the reliability of automotive systems is becoming a greater challenge in our
community, increasingly more automotive companies are interested in applying formal
methods to improve the reliability of automotive systems. We are working on a real
design of an automotive operating system (OS, for short) conforming to OSEK/VDX
standard [40] (OSEK OS, for short). Such operating system is considered as important
components to ensure the reliability of the automotive systems. The aim of our work is
to produce a high quality OS by applying automated formal verification.

An operating system is a reactive system responding to environmental stimuli. Reac-
tive systems do not execute by themselves but in combination with their environments.
Environments are the external systems which invoke the services of the target systems,
e.g. software applications running on the operating systems. The specification of such
a reactive system represents its externally visible behavior. That is, the specification
represents what the system does in response to the invocations of its environments. For-
mal specification languages such as VDM[36], Z[39] and Event-B[1] allow us to formally
describe the specification. On the other hand, the design represents the collaboration of
internal components to realize observable behaviors described in the specification. It usu-
ally contains implementable data structures such as record types, flags, and hash tables.
We consider that imperative specification languages like Promela/Spin [23] are appropri-
ate to describe the design since the data structures and behaviors based on them can be
straightforwardly described. Accordingly, we intentionally use Event-B for the specifi-
cations and Promela/Spin for the designs to facilitate describing them. The problem is
how to verify the designs with respect to their specifications when they are described in
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different specification languages.
One may say that some of the formal specification languages provide refinement and

automatic generation of codes. In this way, we can describe the specification in an ap-
propriate specification language; then, we derive the behaviors of the design from the
higher-level specification as adopted in [46]. In order to represent highly optimized be-
haviors of reactive systems, we need to use various complex data structures and control
structures. Therefore, directly deriving these behaviors from the abstract specification is
generally very hard. Our idea is to describe the design in the specification language which
is easy to represent the design. Then, we verify the design against the specification. Our
approach provides another way to ensure that the design is consistent with the specifica-
tion. Another question may arise here. The specification can be described in temporal
logic if we describe the design in Promela/Spin. This approach is adopted in [10]. The
advantage of using Promela is that it allows us to design the highly optimized behavior
of the OS in an imperative manner using various data structures. However, we consider
that temporal logic formulae, which allows us to describe properties about invariants on
some variables and the relative order of event calls, are not adequate for describing the
important properties of the OS. What we need to verify about the OS is the correctness
of the scheduling which can be precisely described by specifying the pre-condition and the
post-condition of each event. For example, when an activation event of a task is called,
the task must become running and the currently running task must become ready in the
states just after the event is called. To specify such a property in temporal logic, as dis-
cussed in [18], we need to explicitly define the execution steps of the events. This makes
the formulae complex and prone to mistakes. Whereas, by using the rich notions (e.g. sets
and relations) in the formal specification languages like Event-B[1][45], one could easily
describe such properties. Therefore, we intentionally use Event-B to facilitate describing
properties of the OS. In Event-B, one can describe the system as a set of events and the
behavior of each event can be specified as pre-conditions and post-conditions using the
rich notions. It also provides a facility to verify the consistency and the correctness of the
properties. Thus, we think that dealing with the specification and the design based on the
different specification languages is appropriate for systems in which there exist a big gap
between the specification and the design like the operating systems. For these reasons,
Event-B and Promela are intended to describe the specification and the design in our
verification of the reactive systems. Consequently, we aim at an approach to ensure the
conformance of design to its formal specification where the design and the specification
are described in different specification languages. In such a combination between Event-B
and Promela/Spin, the designs of the reactive systems could be verified with respect to
reliable specifications.

1.2 Problem Statement

The first problem is that there exists a gap between the specification and the design. The
specification defines abstract data structures and a collection of guarded events which
represent effects of system services. The design defines implementable data structures and
a collection of functions which describe highly optimized behaviors and design decisions
using various control structures. Since there exists such a gap, we intend to use Event-
B and Promela to facilitate describing the specification and the design. This in turn
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leads to the second problem; that is, we have to deal with difference of specification
languages used for the specification and the design. Actions in Event-B are performed
in parallel, whereas actions in Promela may be performed step by step. Therefore, a
state transition in the specification may be followed by multiple state transitions in the
design. For these, we define the semantics of the specifications and the designs commonly
as labelled transition systems (LTSs). We also define a simulation relation [31][34][43]
between them and verify that for all execution sequences of the specification and the
design, this simulation relation holds. In this approach, we generate a labeled transition
system from the formal specification; and, from each state, verification conditions which
must be met by the corresponding state of the design are generated. Then, we apply
model checking [5] to the design to check the verification conditions. In this way, we
can check the correspondence of state transitions, or simulation relation, between the
specification and the design. This shows that the design conforms to the specification.

The third problem is verifying a design of OSEK OS. We have to verify essential be-
haviors of OSEK OS, especially the correctness of scheduling. As an automotive industry
standard of operating system specification, the OSEK/VDX OS specification [40] is widely
applied in the process of designing and implementing the operating system for automo-
tive systems. For applying our framework to verify whether an OS design conforms to
the OSEK/VDX specification, we consider two sub-issues. One of sub-issues is that the
OSEK/VDX OS specification is described in natural language. It is not a direct input
of a formal verification. We need to formalize this specification in Event-B and apply
the framework to verify whether the design conforms to the Event-B specification replac-
ing for the informal specification provided by OSEK/VDX group. Since there exists the
OSEK/VDX OS specification provided by OSEK/VDX group, we cannot change it but
faithfully formalize it. In this case, we need to validate the formal specification against
the informal specification. This validation cannot be checked by the machine; however;
it is important that the validation can be accepted by the clients or the stakeholders.
Therefore, we give a procedure to facilitate the validation of formalization. It is presented
in the form of guidelines to faithfully formalize informal specifications in Event-B. The
other sub-issue is caused by the fact that when checking the simulation relation between
the specification and the design, we need to generate the LTS from the specification. The
problem is that generating all possible execution sequences from the specification makes
the size of the LTS so large that it has a tendency to cause the state explosion [12] when
we apply model checking. To avoid this, we explore only behaviors relevant to the prop-
erties and the bugs to be checked. Consequently, we must direct the verification focus on
the behaviors relevant to intended properties and bugs. We restrict the behaviors to be
checked depending on the corresponding properties. We define such restriction as bounds
of the verification. Thus, we need to give proper bounds for the verification of essential
behaviors. From results of verifying the design of OSEK OS, we have to evaluate the
practicality of the framework. We consider the practicality of the framework according to
some perspectives such as possibility for users to produce inputs of the framework, ability
to verify important properties and detect typical bugs of real systems, and whether the
scalability is reasonable for real systems.
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1.3 Contribution and Impact

The first contribution of the research is a new combination between Event-B and Promela/
Spin included in a framework for the verification of reactive systems. This framework is to
verify the conformance of the design to its formal specification where the design and the
specification are described in different specification languages. The framework is precisely
defined with a formal model whose essential parts are the model of the specification, the
design, the environment, the communication between the design and its environment,
the bounds, and the simulation relation of two LTSs within the bounds. Applying the
framework, we can choose appropriate specification languages to describe the specification
and the design for the purpose of verifying the design. The new combination between
Event-B/Rodin and Promela/Spin is that: the proving in Event-B for the reliability of
the specification and the model checking with Promela/Spin to make sure that operations
described in the design preserve the pre-conditions and the post-conditions as described
in the specification. With such a combination, we can check the design against the
consistent and the correct specification. This would drastically improve the reliability of
model checking results because the specification is reliable.

The second contribution of the research is to fill the gap between the specification and
the design. The specification defines abstract data structures, whereas the design defines
implementable data structure. Also, the specification defines results of operations, while
the design defines details of how to make the results. In the framework, we relate the
specification to the design by common semantics, LTSs, and correspondences between
state transitions given by mappings from syntactic elements in the former to those in the
latter. This makes it possible to systematically verify the conformance of the design to
the specification.

The third contribution refers to supports for applying the framework to verify real
systems. As mentioned, the users must produce the formal specifications in Event-B
and the proper bounds for the verification of the system design. We give guidelines for
translation from the informal specifications into the formal specification in Event-B. These
facilitate the validation of the formalism. We also give a procedure to give the proper
bounds to direct the verification focus on the behaviors relevant to intended properties
and bugs. Therefore, we could determine appropriate bounds to avoid the state explosion
when applying model checking; the critical cases could not be missed because we use
proper bounds for the verification.

1.4 Dissertation Organization

The dissertation is organized as follows.
The first chapter (this chapter) is the introduction about the research. This chapter

sets the context, describes the main contributions, and presents the structure of the
remaining part of the dissertation.

Chapter 2 is about the background of the research. This chapter presents basic con-
cepts referred in the dissertation. This chapter also includes an overview of formal meth-
ods for modelling and analysis which are used in our framework: Promela/Spin and
Event-B/Rodin. In addition, this chapter summarizes the OSEK/VDX OS Specification.

Chapter 3 presents our framework to verify the conformance of the designs to their
formal specification. This framework is for verification of the reactive systems. In this
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chapter, we use a sample system to analyze a gap between the specifications and the
designs of the reactive systems. We also present models of the specifications and the
designs. After that, we present a particular simulation relation between the specification
and the design and present an approach which is based on such a simulation relation to
ensure the conformance of the designs to their specification. In this part, we present a
formal model of the framework and our generator to automate steps of the framework.
We also present applications of our framework to simple systems to discuss on generality
and practicality of the framework.

Chapter 4 presents a case study to verify an OSEK OS design using its formal speci-
fication. We present a workflow to apply the framework in verification of the OS design
using its specification in Event-B. After that, we present our process of formalizing the
OSEK/VDX OS specification in Event-B. We apply the the framework flexibly: various
ranges are considered to give appropriate bounds for the verification; and they need to be
defined depending on the properties to be checked. In the case study, we mainly explain
how we defined the appropriate bounds to check our desired properties. We also show
the results of the experiments and evaluate the effectiveness and the practicality of the
framework.

In chapter 5, we discuss on some aspects of the framework and evaluate advantages
and disadvantages of our approach. In chapter 6, we present related works. Chapter 7 is
the conclusion of the dissertation and a short description of our future works.

In this dissertation, Chapters 3, 4 deliver the main works of the research.
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Chapter 2

Background

This chapter briefly introduces background of the dissertation. The first section of the
chapter is about definitions of the simulation relation. Promela/Spin and Event-B/Rodin
are separately introduced in Section 2.2 and Section 2.3. Our work aims at a combination
of these two techniques and its application. The final section presents the main part of
the OSEK/VDX standard, that is the OSEK/VDX OS specification.

2.1 Simulation Relation

The simulation relations (simulations, for short) have been considered in many earlier
works. The simulations are generally defined based on in state-based formalisms. Typi-
cally, [31] defines the simulation between two automata. [34, 22, 51] define the simulation
between two LTSs. We present here the simulation between two automata of [31] and
the simulation between two LTSs of [51] because our simulation, which will presented in
Chapter 3, is close to these definitions.

We begin with a definition of an automaton and the simulation between two automata
of [31]. An automaton A consists of:

• a set Q of states

• a nonempty set I ⊆ Q of start states

• a set Σ of actions that includes internal action τ ,

• a set δ ⊆ Q× Σ×Q of transition steps

Note: τ denotes the internal action. If α is a sequence of actions then α̂ is the sequence
obtained by deleting all τ actions from α.

Refinement. A forward simulation from A to B is a relation f over QA and QB that
satisfies:

• If s ∈ IA then r(s) ∈ IB

• If s
a→ s′ ∈ δA, then r(s)

â→ f(s′) ∈ δB
The refinement is the simplest kind of simulation of [31].

Forward simulation. A forward simulation from A to B is a relation f over QA and
QB that satisfies:
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• If s ∈ IA then f(s) ∩ IB 6= ∅

• If s
a→ s′ ∈ δA and u ∈ f(s), then there exists a state u′ ∈ f(s′) such that u

â→ u′ ∈
δB

The forward simulation is generalization of the refinement that allows a set of states of B
to correspond to a single state of A. We write A �b B if there exists a forward simulation
from A to B.

Backward simulation. A backward simulation from A to B is a relation b over QA and
QB that satisfies:

• If s ∈ IA then b(s) ⊆ IB

• If s
a→ s′ ∈ δA and u′ ∈ b(s′), then there exists a state u ∈ f(s) such that u

â→ u′ ∈ δB

We write A �b B if there exists a backward simulation from A to B.
We now present a definition of LTS and the simulation between two LTSs of [51]. An

LTS is a tuple T = (Q,Σ,−→) that consists of:

• A set Q of states,

• A set Σ of labels,

• A transition relation ←→⊆ Q× Σ×Q.

Simulation. Let T1 = (Q1,Σ1,−→1) and T2 = (Q2,Σ2,−→2) be two transition systems
over the same label set Σ. The relation S ⊆ Q1 × Q2 is called a simulation if for all
(q1, q2) ∈ S and q1

a→ q1′, then there exists q2′ ∈ Q2 with q2
a→ q2′ and (q1′, q2′) ∈ S.

According to [51], the simulation between LTSs are used to formally define when one
transition system implements another.

2.2 Promela/Spin

Promela (Process Meta Language)[38] is a specification language, which is used to describe
an abstraction of the system. Promela allows to model concurrently executing processes;
communication between these processes is via message channels. Spin[23] is a model
checker for analyzing the correctness of systems described in Promela. It is so-called a
verifier for the temporal logic properties [19] of models described in Promela. Spin provides
a simulation mode and a verification mode. In the simulation mode, Spin outputs traces
of system behaviors. In the verification mode, Spin explicitly explores reachable states
of the system and checks whether each state violates the desirable property. If so, Spin
outputs a trace for the bugs in the model.

2.2.1 Promela

A Promela model may consist of processes, message channels, and variables. Figure 2.1
show samples of Promela models.

A description of process contains data declarations (e.g., byte tmp;) and statements
(e.g., count:=count+1). Basic data types in Promela include integer data types, bits,
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#define cname  cvalue
type vname1, vname2;
chan qname = [size] of {type}

proctype A(){
            qname!vname1 ... 
}
proctype B(){
            qname?vname2 ...
}
init{
            run A(); run B();
}

byte state = 1; byte count;
proctype A(){
      byte tmp;
      (state==1) -> tmp = state; tmp = tmp+1; state = tmp
}
proctype B(){
      do :: (count != 0) ->  If   :: count = count + 1
                    :: count = count – 1

                               fi
:: (count == 0) -> break

      od
}
init{
      run A(); run B()
}

Figure 2.1: Promela models

and boolean. Users can define complex data structures such as record types, arrays
(one-dimensional arrays). Promela is an imperative language with C-like syntax. The
statements may be assignment of values/expressions to variables, control structures, i.e.
atomic sequences, conditional (if-statement), repetition (do-statement), and uncon-
ditional jumps (go to). The if-statement may have multiple choices (guards). If
there are at least two choices executable, it is executable and the guard is chosen non-
deterministically.

Message channels are used to describe the transfer of data from one process to another.
They are declared either locally or globally. The statement qname!vname1 sends the value
of vname1 to channel qname: the value of vname1 is appended to the tail of the channel.
The statement qname?vname2 receives the value from the head of the channel, and stores
it in variable vname2. The channels pass messages in First-In-First-Out[30] order. In
these sample cases, only a single value is passed through the channel. There may be more
than one value to be transferred per message. If so, multiple values must be separately
listed: each separated by a commas.

2.2.2 Description of properties to be checked

The properties could be described according to various types: basic assertions, LTL formu-
las (Linear Temporal Logic, a branch of temporal logic), end-state labels, progress-state
labels, accept-state labels, never claims, trace assertions. The basic assertions, the LTL
formulas and the never claims are usually used.

The basis assertions are inserted inside process declarations with the following syntax:
assert(<boolean expression>),e.g., assert(a > b). The expression is evaluated each
time the assert statement is executed. If the expression is false, an assertion violation is
outputted. The assertions are usually used to define properties that should be hold in
specific reachable states. To assert that an expression is true in every reachable state, one
must define it in a independently process from the scope of the system.

The LTL formulas are specified globally, that is outside all process declarations, with
the following syntax: ltl [ name ] { formula }. An LTL formula is made up from
a finite set of propositional variables, the logical operators ! (negation), && (and), ||
(or), and the temporal modal operators X (neXt) and U (until). In addition, there are
additional logical and temporal operators as follows:

• →: implication
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• ⇔: equivalence

• []: always

• <>: eventually

• W : weak until

[18] presents patterns to define some typical properties in the LTL formulas. For ex-
ample, Precedence is a pattern that defines “a state/event P must always be preceded
by a state/event Q within a scope” as (<> P → (!P U (Q && !P ))) and some exten-
sions; Response is the one that defines “a state/event P must always be followed by a
state/event Q within a scope” as ([]P →<> Q) and some extensions.

Promela does not contain syntax to specify temporal logic formulae; however, SPIN
has a parser to read and translate temporal logic formulae into Promela syntax. In
particular, LTL formulas are translated into never claims. Therefore, temporal logic is a
part of the language that is accepted by SPIN. However, we use temporal logc to specify
only correctness requirements but not models of target systems.

The never claims also can either be written manually or they can be generated me-
chanically from LTL formulas. Structure of the never claims is as below:

never /* [] p */ {
do

:: p
od

} /* where p is a boolean expression in Promela */
It can be hard to specify intended properties by directly formalizing them in the never

claims. One usually formalizes them in LTL formulas and then translate LTL formulas into
the never claims because LTL formulas are more understandable than the never claims.
However, as discussed in [38], temporal logic formulas are also strictly less expressive.

2.2.3 Spin

Spin is an on-the-fly model checker: constructing the state space and checking the error
at the same time. The main advantage of on-the-fly techniques is that the algorithms
execute until an error is found. Thus, the entire state space need not be explored and
errors, if any, are detected quickly. In the worst case, if the system model is correct, the
entire state space is explored. Therefore, on-the-fly techniques are suitable for systems
detecting errors in the initial stages of design. If errors are found, counter-examples are
generated to help the user with correcting them.

During analysis, Spin stores all data representing reachable system states, such as
local process states, local and global variables, and channel contents, in a data structure
called “state vector”. In default method of storing the state space in Spin, all states are
explicitly stored, as shown in Figure 2.2. Looking up is fast because of hash function.
Total amount of memory used to store the state space is n*m bytes + hash table, where
n is the total number of states and m is the size of a state vector.

Spin uses the search algorithms such as the depth-first search and the bread-first
search to explore the complete state space and check the correctness properties of Promela
models. Some optimized search algorithms are also integrated into Spin to deal with large
state spaces. For example, the partial order reduction techniques are included to reduce
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Figure 2.2: Storing states in Spin

the size of the state space; and, the bit-state hashing is applied to reduce the total memory
required for storing each state.

Depth-first search.

Depth-first search (DFS) is a search algorithm on state transition graphs. The algorithm
begins with the initial state and developed as far as possible according to each branch
of the graph. It traverses the depth of any particular path before exploring its breadth.
Typically, the search process is developed until it finds the first child node that meets some
conditions or until it finds a node without child node. The algorithm then backtracks
previously visited nodes. The search process on a node finishes only when all children
have finished. The following is pseudo code for the DFS algorithm where the state space
is implemented as a stack.

procedure dfs(s: state)
if error(s) then report error fi
add s to Statespace /* states are stored in hash table */
foreach successor t of s do

if t not in Statespace then dfs(t) fi
od

end dfs
Figure 2.3 illustrates the DFS algorithm. Applying the DFS algorithm to the graph

to find G, the order of nodes visited are A, B, E, C, F, G. Also, to find F, the order of
nodes visited are A, B, E, C, F.

A

B C D

E F

G

A

B C D

E F

G

A

B C D

E F

G

A

B C D

E F

G

A

B C D

E F

G

Goal: G

Goal: F

DFS BFS

Figure 2.3: A state transition graph
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Breadth-first search.

Breadth-first search (BFS) is a search algorithm on state transition graphs. The algorithm
begins with the initial state and visits all neighbour nodes until it finds a node that satisfies
some conditions. The following is pseudo code for the BFS algorithm. The state space is
implemented as a queue.

procedure bfs()
remove s from Statespace
if error(s) then report error fi
foreach successor t of s do

if t not in Statespace then
add t to Statespace
bfs()

fi
od

end bfs
Figure 2.3 also illustrates the BFS algorithm. Applying the BFS algorithm to the

graph to find G, the order of nodes visited are A, B, C, D, G. The BFS algorithm requires
to store 5 states whereas the DFS algorithm requires to store 6 states. In this example,
it seems that the DFS algorithms requires much more memory to store states than the
BFS algorithm does. However, if we consider an example at the bottom of the figure, to
find F by the BFS, the order of nodes visited are A, B, C, D, G, E, F. The BFS algorithm
requires to store 7 states whereas the DFS algorithm requires to store 5 states. Generally,
the BFS algorithm requires more memory that the DFS algorithm; but, it could find the
goal faster than the DFS algorithm.

Verification with Promela/Spin.

The system models are described in Promela and the properties to be checked are de-
scribed in various forms such as the LTL formulas and the assertions. A typical output
of a verification is illustrated in Figure 2.4.

In the output, the plus indicates that the search checked for violations of user specified
assertions, and the presence of acceptance. The plus indicates that the search did not
check for LTL formulas and invalid end states. The complete storage of a global system
state required 36 bytes of memory (per state). The longest depth-first search path is 6
(number of transitions from the root of the tree, i.e., from the initial system state).

• 1 errors were found in this search; accordingly, a counter-example trace is generated
in a “.trail” file

• 69 unique global system states were stored in the state space.

• 69 transitions were explored in the search

• Total memory usage was 129.022 Megabytes, including the stack, the hash table,
and all related data structures.

The verification executes until an error is found as shown in the sample of Figure 2.4.
Thus, the entire state space need not be explored and errors, if any, are detected quickly.
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pan:1: assertion violated 0 (at depth 1192)
pan: wrote 2t1e_error.pml.trail

(Spin Version 6.4.2 -- 8 October 2014)
Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:
never claim         - (none specified)
assertion violations +
acceptance   cycles - (not selected)
invalid end states +

State-vector 560 byte, depth reached 1192, errors: 1
       69 states, stored
        0 states, matched
       69 transitions (= stored+matched)
     1125 atomic steps
hash conflicts:         0 (resolved)

Stats on memory usage (in Megabytes):
    0.039 equivalent memory usage for states (stored*(State-vector + overhead))
    0.520 actual memory usage for states
  128.000 memory used for hash table (-w24)
    0.534 memory used for DFS stack (-m10000)
  129.022 total actual memory usage

              BEGIN2:ActivateTask(0, 2)
              END
              BEGIN2:WaitEvent(2, 1)
              END
              BEGIN2:ActivateTask(0, 3)
              END
              BEGIN2:TerminateTask(3)
              END
              BEGIN2:SetEvent(3, 2, 1)
              END
              BEGIN2:WaitEvent(2, 1)
              END
              BEGIN2:TerminateTask(2)
              END
              BEGIN2:WaitEvent(2, 2)

2t1e_error.pml.trail

Figure 2.4: Output of Spin Verifier

2.3 Event-B/Rodin

Event-B and the Rodin platform [1][45] are a formal specification language and an en-
vironment for system modeling and analysis. Event-B is developed from B method [49].
It is intended to model event-driven reactive systems by incorporating action system
formalism[4] into B method. The Rodin platform is easy to use and extend. It provides
support for refinement and mathematical proof. In order to analyze consistency of an
Event-B model, the Rodin tool generates verification conditions in terms of proof obli-
gations. Some of the proof obligations could be discharged automatically by the Rodin
tool, the others require interactive proof.

2.3.1 Event-B

Event-B is a formal specification language based on set theory, arithmetic, and the first
order logic. Typing is expressed through set membership.

• First Order Logic: connective, quantifiers,

• Set theory: sets, relations, functions,

• Arithmetic (on Z, N, N1)

The main concept of formal development in Event-B is a model. An Event-B model
may include several contexts and machines. Within a context, the clause “sets” and the
clause “constants” are defined. Machine defines dynamic behavior of system by defining
events that could occur. Machine models state of system and conditions that must apply
if an event occurs and the changing of system state. A machine may see one or more con-
texts. The later machine may refine the former machine. We say that these two machines
have a refinement relationship. Figure 2.5 demonstrates structures of the contexts and
the machines in Event-B.
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Context
carrier sets
constants
axioms
theorems

Machine
see Context
variables
invariants
theorems
variant
events

Figure 2.5: Structure of Context and Machine in Event-B

A context contains declarations of carrier sets, constants and axioms about these
constants and sets. Axioms define the main properties of the constants. Theorems denote
properties to be proved from the axioms. The contexts can be extended.

In a machine, the constants and the axioms are imported from contexts. Each variable
has some domain of values. States of the machine are described by variable values. The
consistency of the model is defined by a set of invariants. They are constraints that the
variable values must satisfy in every state. Theorems are provable from invariants and
seen axioms. A set of events describe the possible transitions of the machine’s state.
Descriptions of the events contain the condition under which the events may fire and
changes of the states made by the events. It takes the form of a set of (parallel) assignments
or substitutions. Any abstract machine must define a special event called initialisation
for giving initial values to the variables of the machine. Events (other than initialization)
are described in the form of:

• Guards: define the condition that the event can be triggered,

• Actions: reassign some variables of the machine

Each event has the form evt = any x where G(x, v) then A(x, v, v′) end , where x are
parameters of the event, G(x, v) is the guard and A(x, v, v′) is the action. The guard of
an event is the necessary condition for the event to be enabled. The action of an event
comprises several assignments, each has one of the following forms:

• v := E(x, v): deterministic substitution, that updates variable v to be a value
E(x, v).

• v :∈ E(x, v): non-deterministic substitution, that updates variable v to be either
some member of a set E(x, v).

• v : | Q(x, v, v′): non-deterministic substitution, that updates variable v to satisfy a
before-after predicate Q(x, v, v′).

Actions are supposed to be performed in parallel.
Event-B provides an approach to model the system step by step by a technique, that

is refinement. Refinement is a technique that supports modeling the system gradually
from a high level of abstraction to lower levels. In Event-B, a machine can be refined by
adding new variables, new invariants, new events or more details for the existing events.
Figure 2.6 shows a refinement relationship between two machines, namely M0 and M1.

We say M0 is refined by M1; or, M1 is a refinement of M0. In M1, invariant I(v,w)

establishes a link between variables in M0 and M1. If in the refinement we add new events,
which are considered as internal, a variant V is introduced in such a way that it must
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machine M0
variable v
invariant I(v)
init(v)
events 
    e01: any x where G(x,v) then A(x,v,v )
    e02: 
     
end

machine M1
refine M0
variable w
invariant I(v,w)
Init(w)
variant V(w)
events 
    e11: any x where G(x,w) then A(x,w,w )
    e12: 
     
end

Figure 2.6: A machine and a refinement of it

be decreased by the new events. This is to ensure that the new events are not executed
forever.

The refinement facilitates modeling the systems because we can postpone dealing with
some features of the systems to later refinement steps.

2.3.2 Rodin

The Rodin tool supports not only describe but also verifying Event-B models. In partic-
ular, it has a capable of checking the internal consistency. This capability is provided by
Proof Obligation Generator and Prover [1], which are included in the Rodin tool. The
generator generates verification conditions as proof obligations. Table 2.1 shows types of
proof obligations verified for consistency of the Event-B models. We divide types of proof
obligations into two groups: (I) conditions for the consistency of elements in the same
machine; and (II) conditions for the consistency of elements in different machines, which
have a refinement relationship to each other. The former makes sure that the invariants
are true before the event, and if the event’s guard is true then the invariant must be true
after the event. The latter makes sure that the guards of the concrete event are stronger
than those of the abstract event; and, the effect of the concrete event and that of the
abstract event are not contradictory.

The prover supports for discharging some proof obligations generated. In case of non-
automatic proofs, it helps to interact with the tool. Consequently, the internal consistence
in the whole of formal model could be ensured.

2.4 OSEK/VDX Operating Systems

The OSEK/VDX international standard [40] is widely applied in the development process
of automotive systems. The OSEK/VDX OS specification (OSEK specification, for short)
is a part of OSEK/VDX standard which offer big advantages for automotive systems such
as portability, reliability and integration. The OSEK specification defines the operating
system of automotive systems. Increasingly more organizations have been implementing
operating systems based on this specification.

The OSEK specification mainly specifies the behaviour of automotive operating sys-
tems from the viewpoint of service users. Besides describing the concepts of operating
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Table 2.1: Some types of proof obligation

Group Name Verification condition
I Initialization/inv/INV Initial values must satisfy all in-

variants
init(v) ` I(v)

I Event/grd/WD Guard conditions are not incon-
sistent with invariant expressions

G(x,v) ` I(v)

I Event/inv/INV Invariant is preserved by each
event

G(x,v) ∧ A(x,v,v’) ` I(v’)

II Event/grd/GRD Ensure that the concrete guard
in the refining event are stronger
than the abstract one

I(v) ∧ I(v,w) ∧ G(x,w) ` G(x,v)

II Event/act/SIM Ensure that the concrete guard
in the refining event are stronger
than the abstract one

I(v) ∧ I(v,w) ∧ G(x,w) ∧ A(x,w,w’)

` ∃v’(A(x,v,v’) ∧ I(v’,w’)

systems, the OSEK specification defines a set of system services. The system services
are interfaces between the application software and the OSEK operating system. These
services are visible to the users and invoked from outside of OSEK OS. These services are
also called ‘events’ that are triggered by the application software.

Some main concepts of OSEK OS are as follows:

• Task

A complex software can be subdivided in tasks. Tasks are assigned by the priorities.
Tasks have to change between some states. OSEK OS makes task state transitions
using some system services. Two types of tasks are described in OSEK specification:
the basic tasks and the extended tasks. The extended tasks have four states. They
are sus as suspended, rdy as ready, run as running and wait as waiting. The
basic tasks have three states. They are sus as suspended, rdy as ready, and run
as running.

• Resource

Resources are entities that are typically shared among several tasks. The resources
are assigned priorities, which are determined at the system generation. The priority
of each resource are determined as follows: it must at least equal to the highest
priority of all tasks that access the resource; and it must be lower than the lowest
priority of all tasks that do not access the resource. For this reason, it is a so-called
priority ceiling.

• Ready queue

Ready queues are used to store instances of tasks that are currently in ready state.
There are several ready queues for different task priorities. The ready queues work
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according to the First In First Out rule [30].

The service functions of OSEK OS are classified into groups: task management, re-
source management, event control, interrupt management and alarms.

Task management

Task management includes activation, termination of tasks, and task switching.

Task state model. A task has to change between some states. Extended tasks
have four task states: suspended, ready, waiting, and running. Table 2.2 describes state
transitions of the extended tasks.

Table 2.2: State transitions for extended tasks

Transition Former state New state Description
activate suspended ready A new task is set into the ready state by

a system service. An identifier of the task
is added into the ready queue.

start ready running A ready task starts at the first instruc-
tion. The scheduler decides which task in
the ready queues is executed based on the
priority and the activation order of tasks.

wait running waiting A task transfers from running to waiting
to wait for an event. This is caused by a
system service.

release waiting ready A task have just been set at least one
event; it becomes ready and it identifier
is added into the ready queue.

preempt running ready The scheduler decides to start another
task if the task priority is higher than
the priority of the running task. At the
same time, the running task transfers to
the ready state.

terminate running suspended The running task causes its transition into
the suspended state by a system service.

The state model of basic tasks is similar to the state model of extended task; however,
it contains transitions between three states: suspended, ready, and running. Table 2.3
describes state transitions of the basic tasks.

Activating a task. Tasks are activated by the operating system services including
ActivateTask or ChainTask. After being activated, the task will start at the first instruc-
tion. Multiple activation requests are possible for the basic task but not the extended
task. If the maximum number of multiple requests of a basic task has not been reached,
the request for that task is added into the ready queues. The activation requests of tasks
are queued according to the task priority and the activation order.

Task priority. The scheduler decides on the task priority and the activation order
which task in the ready queues is executed next. The priority of a task is defined statically,
i.e., at the time of system generation.
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Table 2.3: State transitions for basic tasks

Transition Former state New state Description
activate suspended ready A new task is set into the ready state by

a system service. An identifier of the task
is added into the ready queue.

start ready running A ready task starts at the first instruc-
tion. The scheduler decides which task in
the ready queues is executed based on the
priority and the activation order of tasks.

preempt running ready The scheduler decides to start another
task if the task priority is higher than
the priority of the running task. At the
same time, the running task transfers to
the ready state.

terminate running suspended The running task causes its transition into
the suspended state by a system service.

Tasks with the same priority are started depending on their order of activation. A
preempted task is put into the first position in the ready queue of its current priority. It
is treated as the oldest activated task. A task becoming ready from the waiting state is
put into the last position of the ready queue of its priority. It is regarded as the newest
activated task. The scheduler uses multiple ready queues to manage the tasks in the ready
state, each for a distinct priority. The ready queues work according to the First In First
Out rule. Inserting an item in the queues follows the order of activation. Retrieving an
item from the queues follows the scheduling.

Scheduling based on the priority and the activation order:

• Searching for the set of tasks in the ready queue with the highest priority,

• Finding the oldest activated task within the set of tasks returned from the previous
step.

Scheduling policy. Two scheduling policies are available: full preemptive scheduling
and non preemptive scheduling. Full preemptive scheduling allows a task with higher
priority than the currently running task to stop the running task. In this situation, the
preempted task is put into the ready state and resumed later when the higher priority
task has finished its execution. The task context is saved so that the preempted task can
be continued at the location where it was preempted. Rescheduling is performed when
activating a task. Non preemptive scheduling allows a running task with lower priority
to delay the start of a task with higher priority until the next point of rescheduling.
Rescheduling is not performed when activating a task but terminating a task or having
an explicit call from the scheduler.

Termination of tasks. In the OSEK operating system, a task terminates by itself.
Termination of a task is caused by service TerminateTask or ChainTask. When Termi-
nateTask is called, the calling task become suspended. Also, when ChainTask is called,
the calling task terminates and the succeeding task is activated at the same time. The
identifier of the activated task is put into the last position of the priority queue.

17



Interrupt processing

In addition to the task, another entity, which also competes for CPU is Interrupt Service
Routine (ISR or interrupt, for short). ISRs are also managed by the OSEK OS. ISRs have
higher priorities than the tasks. ISRs can interrupt the execution of the tasks. Service
functions for interrupt processing includes SETINTR and RESETINTR.

Event mechanism

Events are entities managed by the operating system. Events are assigned to extended
tasks. Each extended task can owns some events. Every task can set events for the
extended task; only the owner can clear its event. When a running task requires an event,
it transfers to waiting state to wait for that event. When a task in waiting state has
already received an event that it is waiting for, it transfers to ready state.

Resource management

Resources include scheduler, memory areas, hardware, and program sequences. They may
be occupied by the tasks and ISRs. The resource management is used to arrange accesses
of several tasks and ISRs to the resources. Constraints on the resource management are
as follows:

• Two tasks or ISRs cannot occupy the same resource at the same time.

• Priority inversion cannot occur.

• Deadlocks do not occur by use of these resources.

• TerminateTask, ChainTask, WaitEvent cannot be called by a task that is currently
occupying a resource.

• An ISR cannot be finished when it is occupying a resource.

• One task can occupy multiple resources. In this case, resources must be requested
and released following the Last In First Out principle [30].

The priority inversion is a case that some task with the lower priority delays the
execution of a task with the higher priority when the higher priority task is waiting for a
resource that is already occupied. The deadlock is a case in which two tasks are waiting
for two separate resources; however, the first task is waiting for the resource that is already
occupied by the second task; and the second task is waiting for the resource that is already
occupied by the first one. With the priority ceiling of the resources, we could prevent the
priority inversion and the deadlock situation.

2.5 Summary

In this chapter, we have presented two formal methods for modelling and analysis using
Promela/Spin and Event-B/Rodin. As discussed in [2], Event-B is preferred to describe
the system at the high level of abstraction. Whereas, Promela is intended to describe
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the system at the low level of abstraction. With Event-B/Rodin, one could describe the
system from the high level to the low level of abstraction by applying the refinement
technique. However, this requires much interactive proof to confirm the conformance be-
tween two levels. Promela/Spin provides a completely automatic verification of the system
model against the correctness properties. Nevertheless, it does not facilitate ensuring the
consistency of the properties to be checked. Therefore, our work benefits Event-B/Rodin
and Promela/Spin in a verification framework for the reactive systems. This framework
is presented in the remaining chapters.
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Chapter 3

A Framework for Verifying a Design
against Its Formal Specification

Reactive system is a system that continuously interact with its environment by responding
to external stimuli. For example, vending machines, elevator, and operating systems are
reactive systems. The environment of a vending machine includes customers who want to
buy products restocked in that vending machine; and, the environment of an operating
system includes application softwares running on that operating system. Several reactive
systems are considered as safety-critical because their errors cause highly destructive
effects on the human life and the assets (e.g., operating systems for mobile vehicles).
Reactive systems do not operate by only themselves but in communication with their
environment. Therefore, reactive systems cannot be verified without considering how
they communicate with their environment.

Specifications of reactive systems generally describe the desirable properties and the
external behaviors of the systems based on the mathematical data structures using no-
tions of set, relation, and function. Designs must be close to the implementation. The
mathematical data structures must be replaced by the data structures implementable on
a computer and underspecified design decisions must be introduced. Generally, designs
of reactive systems describe implementation of functions which realize the observable be-
haviors appearing in the specifications. In the earlier sections of this chapter, we presents
the specifications and the designs of reactive systems described in appropriate specifi-
cation languages and their formal semantics. To verify the design of reactive systems,
environment models are important; they describe possible entities and behaviors in com-
munication with the target system. The environment model of reactive systems are also
presented here. We use a simple example, a vending machine, to demonstrate the spec-
ifications, the designs, and the environments of reactive systems. After that, we present
our framework to verify whether a design conforms to its formal specification. We give
an intuitive description then we give a formal model of the framework. We also present
the architecture of our generator which is used to automate the main steps of the frame-
work. In the last sections of this chapter, we present some case studies to demonstrate
how applying the framework to practical systems and discuss on the generality and the
applicability of the framework.
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3.1 Preliminary

Transition systems are usually used to describe the behavior of systems. They represent
states and transitions between states, which may be labeled with actions obtained from a
set. A state describes information about a system at a time. A state transition represents
a change from one state to another by an action triggered.

Our work focuses on verifying the correctness of service functions of reactive systems.
The properties to be checked generally refer to the conditions under which the service
functions are called and the effects of these service functions. Our approach is to check a
simulation between the design of the service functions against its specification. Therefore,
our framework uses the LTSs to represent behaviors of components in our verification,
where actions refer to the service functions and succeeding states represent the effect of
these service functions. This section presents basic notions of the LTS. In our definition
of the LTS, we may use different names for notions; however, we keep the consistency of
meaning compared with the same notions presented in Chapter 2.

Definition 1 (LTS). An LTS M is a quadruple 〈 Q,Σ, δ, I 〉 where Q is a non-empty
set of states, Σ is a set of actions, δ ⊆ Q × Σ × Q is a transition relation, we write
(p, a, p′) ∈ δ as p

a→ p′ ∈ δ, and I ⊆ Q is a set of initial states.

An LTS is deterministic if | I| = 1 and (p, a, p1), (p, a, p2) ∈ δ implies p1 = p2. In this
case, we say all actions are deterministic. An LTS is finite if Q and Σ are finite sets.

We are going to define a simulation between the specification and the design based on
semantics of their LTSs in section 3.5. This definition of the simulation relation is similar
to the refinement of [31] and the simulation of [34][43]; however, in our definition, a one-
step transition in M1 may correspond to an n-step transition in M2. This is appropriate
for a simulation from a specification to its design because the behaviors in the design are
usually more concrete than those in the specification. We now define n-step transition
relation.

Definition 2 (n-step Transition Relation). Let M = 〈 Q,Σ, δ, I 〉 be an LTS and Σ+ be
the set of non-empty strings of Σ. Then pn is reachable from p0 with respect to a string
a1a2...an by δ (denoted p0

a1a2...an−→ pn ∈ δ+) if there exist states p1, p2, ..., pn−1 ∈ Q such
that p0

a1→ p1 ∈ δ, p1
a2→ p2 ∈ δ, ..., and pn−1

an→ pn ∈ δ.

In our framework, LTS associated with the specification in Event-B is obtained by
executing this specification. An execution sequence of the specification is an alternating
sequence of states and actions. An LTS represents several execution sequences.

Definition 3 (Finite execution sequence). A finite execution sequence (denoted ρ) rep-
resented in an LTS is a finite (non-empty) sequence σ0

S
a1→ σ1

S, σ1
S

a2→ σ2
S, ..., σn−1

S

an→ σnS
of transitions.

We write ρ1 · ρ2 to denote a concatenation of ρ1 and ρ2.
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3.2 Specifications of Reactive Systems

A vending machine is a machine which dispenses items such as snacks, beverages, cigarettes,
lottery tickets, etc. to customers automatically, after the customer inserts currency or
credit into the machine. The specification of vending machines describes their external
behaviors including (SF1) switching the machine on, (SF2) switching the machine off,
(SF3) inserting credit into the machine, (SF4) returning credit, (SF5) restocking an item,
and (SF6) dispensing an item. Each of them is a so-called service function. The essen-
tial properties of the vending machine refer to pre-conditions and post-conditions of the
service functions. They are shown in Tab.1.

Table 3.1: Properties of Vending Machines

Description of Properties Reference
Pushing a button shall vend a soda of the type corresponding to that button SF6

The machine shall retain exactly item cost for each item vended SF3, SF6

The machine shall return all deposited money in excess of item cost SF3, SF6

The machine shall flash the light for a selected item while vending SF6

is in progress to indicate acceptance of a selection to the buyer
The machine returns the soda after the customer inserts money in excess of SF3, SF6

soda cost and selects the soda to be bought

The properties in the table could be defined in the LTL formulas and checked by
Promela/Spin; however, the LTL formulas have a tendency to be complicated. For exam-
ple, applying the patterns of [18] to define the last property in the table, the LTL formula
may be defined in the following form: <> dispense→ (!dispense U (insert && !dispense
&& (!dispense U select)). This form of the LTL formula is complicated and prone to
mistakes. Our idea is to describe the specification of the vending machine in Event-B and
generate verification conditions from the Event-B specification, which represents desirable
behaviors at a highly abstracted level.

Event-B is appropriate to describe the specification of the vending machine. Service
functions are specified in terms of events with high-level operational definition of state
changes by guarded substitutions. An event is made of two elements: (1) a guard that
states the necessary conditions for the event to occur, and (2) a substitution that defines
the state transition associated with the event. The semantics of the events define the
overall results of the executions; therefore, represent pre-conditions and post-conditions
of the service functions. Figure 4 demonstrates a specification of the vending machine in
Event-B. Variable stock defines a set of items that are currently available to be dispensed.
It has an abstract data type namely PRODUCT. Variable cred defines the total of money
deposited so far and available to make a purchase. Variable state defines the state of
the vending machine. Variable card defines the size of stock. External behaviors are
specified in terms of events in Event-B namely switchon, switchoff, insert, restock,
and dispense. Set operations (e.g. union, set minus) are used to describe what the
system behaves when an item is restocked or dispensed. A mechanism to add an item
into set stock and remove the corresponding item from the set has not been described.
Also, the specification describes what happens when the customers insert cash or credit;
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VARIABLES
stock
cred
state
card

INVARIANTS
stock PRODUCT 
credN 
state{0,1}
cardN

INITIALISATION
stock:= {} 
cred:=0 
state:=0
card:=0

restock= any item
when itemPRODUCT 

state=0
card<MAX

then stock:=stock{item}
card:=card+1

dispense= any item
when itemstock

state=1
then stock:=stock\{item}

cred:=cred-PRICE
card:=card-1

switchon= 
when state=0
then state:=1

insert= any cr
where state=1
then cred:=cred+cr

switchoff= 
when state=1
then state:=0

Figure 3.1: Specification

however, how to recognize them and compute the total deposited money is postponed to
describing the design.

We present a model of specifications based on Event-B. V is the set of variables. D is
the domain, which is the set of values. Exp is the set of expressions in the specifications.
An expression may contain variables in V , values in D, arithmetic operators, logical
operators, and set operators. BExp is the set of boolean expressions (BExp ⊂ Exp)1. A
substitution a : V → Exp is a mapping from V to Exp. We note that value assignments
are also substitutions because D ⊆ Exp. ACT is the set of substitutions for specifications.
A guard is a boolean expression. GRD is the set of guards. An event is a pair 〈g, a〉 of a
guard g and a substitution a. E is the set of events. If e = 〈g, a〉 then we write grd(e) = g
and act(e) = a. A state is a value assignment. [exp]σ denotes the interpretation of the
value of an expression exp in a state σ. We say a guard g holds in a state σ iff [g]σ = tt.
Init is the set of special initialization events that have no guard.
We denote σ

e−→ σ′ for an event e = 〈g, a〉 and states σ and σ′ if σ(g) holds and
σ′ = {v 7→ [a(v)]σ | v ∈ V }.

Definition 4 (Specification models). A specification model is a tuple S = 〈VS,DS,ΣS,
InitS, Inv〉 where VS ⊆ V is the set of variables used in S, DS ⊆ D is the domain, ΣS ⊆ E
is the set of events, InitS ∈ Init is the initialization of S, and Inv ∈ BExp is the invariant
of S. An LTS derived from the specification model S is defined as MS = 〈QS,ΣS, δS, IS〉
where QS = {σ | σ : VS → DS} is a non-empty set of states, δS = {σ e−→ σ′ | σ, σ′ ∈
QS, e ∈ ΣS} is a transition relation, and IS = {act(e) | e ∈ InitS} is a set of initial
states.

In Event-B, a substitution can be deterministic or non-deterministic. We regard a non-
deterministic substitution as multiple deterministic substitutions. Therefore, we assume
that the LTS is deterministic.

Correspondence between an Event-B description and the definition of specification
models is as follows: Each event e in Event-B descriptions has the general form ‘e : any u
where g(x, u) then a(x, u)’, where e is name of the event, u is a set of event parameters,
x is a set of variables, g(x, u) is a predicate over u and x, and a(x, u) is a substitu-
tion. In the execution of a Event-B description, each individual event is instantiated by

1Definition and evaluation of expressions and boolean expressions are presented in the appendix
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a set of possible values of event parameters. If an individual event e is enabled when its
parameter obtains any value in the set {w1, w2, · · · , wn} then we regard this case as n
events e(w1), e(w2), · · · , e(wn) are enabled. Therefore, the transitions are labeled explic-
itly with the form e(w) in the specification model associated to the Event-B description.
For example, the event restock in Figure 3.1 follows the general form, where:

• e: restock,

• u: {item},

• x: {stock,state, card},

• g(x, u): item ∈ PRODUCT ∧ state = 0 ∧ card < MAX, and

• a(x, u): {card = card+ 1, stock = stock ∪ {item}}.

Suppose PRODUCT = {a, b, c}. Instances of the event restock may be restock(a),
restock(b) and restock(c) where:

• restock(a) = 〈a ∈ PRODUCT ∧ state = 0 ∧ card < MAX, {card 7→ card +
1, stock 7→ stock ∪ {a}}〉,

• restock(b) = 〈b ∈ PRODUCT ∧ state = 0 ∧ card < MAX, {card 7→ card +
1, stock 7→ stock ∪ {b}}〉,

• restock(c) = 〈c ∈ PRODUCT ∧ state = 0 ∧ card < MAX, {card 7→ card +
1, stock 7→ stock ∪ {c}}〉.

We note that there are infinitely many variables and events in general. For example,
if tasks is the set of natural numbers in the example above, the set of events contains the
infinite set {activateTask(t) | t ∈ N}.

Definition 5 (The set of reachable states). The set of reachable states associated to S
(denoted Q→S ) is the smallest set satisfying: IS ⊆ Q→S and if σ ∈ Q→S and σ

e→ σ′ for
some e = (g, a) ∈ ES then σ′ ∈ S→S .

An Event-B model is consistent if for all reachable state σ, [InvS]σ = tt.

3.3 Designs of Reactive System

Figure 3.2 shows an architecture design of the vending machine. The system consists
of two sensors Coin in sensor and Button item sensor, a controller, and four actuators
including Coin out, Button Light, Vend and VendMotor. The internal behaviors of the
vending machine are as follows. When a coin is inserted, the Coin in sensor detects the
coin to be inserted and then sends an appropriate electrical signal to the Controller. The
Controller computes the total of deposited money based on the inserted coin evaluation.
When an item is selected, the Button item sensor detects the item to be selected and
then sends a corresponding signal to the Controller. The Controller commands the But-
ton Light to flash. The Controller compares the item cost with the total of the deposited
money. If the item cost is less than the total, the Controller commands the VendMotor
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Coin_in
(sensor)

Button_item
(sensor)

Coin_out
(actuator)
Button_light
(actuator)

Controller
Vend

(actuator)
VendMotor
(actuator)

Figure 3.2: Architecture Design

and Vend to remove the corresponding item from the set of available items and dispense it.
The Controller commands the Button Light to stop flashing and commands the Coin out
to return the correct change.

Designs of the vending machine can be straightforwardly described in Promela. The
abstract data structures are replaced by the implementable data structures, e.g. ar-
ray, record type. Service functions of reactive systems can be described by using inline
functions. In the description of the functions, the behaviors are explicitly defined us-
ing statements of Promela, e.g. expressions, assignment statements, and various control
structures. The execution of the statement may change the value of variables. Additional
variables and constants may be introduced to explicitly describe statements that must be
performed to detect cash and credit for computing the total deposited money. Figure 3.3
demonstrates a detailed design of the vending machine. In the example, variables having
abstract types, e.g. stock ⊆ PRODUCT, are replaced by variables having concrete types,
e.g. ITEM stock[1000]. New constants are introduced, e.g. CENT is used in the case that
a one cent coin is inserted. (Design decisions for how to add a new item into the order
set and to remove one from the corresponding position are explicitly described based on
the implementable data structures and the control structures, e.g. loop and selection
structures).

We now define model of designs in Promela. The design model of reactive systems
includes implementable data structures and a collection of inline functions. Syntactically,
the function signature contains a function name and some parameters (function argu-
ments). The functions are called from the environment. When a function is invoked, its
parameters are instantiated by values specified from the environment. The body of the
function consists of substitutions. We use P to denote a set of parameters (function ar-
guments). In the design, an expression may contain constants, variables, parameters and
arithmetic operators, therefore, a so-called parameterized expression. The set of parame-
terized expressions is denoted as PExp2. A function body is defined as a substitution. The
substitution may contain the parameterized expressions. We use p-substitution to denote
the substitution in the design. p-substitution is a mapping from V to PExp. The set of
p-substitutions is denoted as PSubst. Id is the set of identifiers (used as function names).
For the simplicity, we assume that functions have only one parameter. The design also
includes an initialization function which assigns the initial values for the variables. Design
models are defined as follows.

Definition 6 (Design model). A design model is a tuple D = 〈VD,DD,PD, F, ΣD, ID〉
where VD ⊆ V is the set of variables used in D, DD ⊆ D is the domain of D, PD ⊆ P
is a finite set of parameters for D, F is a set of function signatures defined as F =
{id(p) | id ∈ Id, p ∈ PD}, ΣD is a relation such that ΣD ⊆ F × PSubst, and ID is a set

2Definition of parameterized expressions is presented in the appendix

25



inline insert(coin){
/* detecting coins to be inserted */
s= detect(coin);
/* computing the total money deposited so far */

if :: s== c  -> credit=credit+CENT;
:: s== n  -> credit=credit+NICKEL;
:: s== q  -> credit=credit+QUARTER;

fi;
}

inline remove(s){
i=s*y + 1; /* the 1st item in slot s */
j= i; /* remove the 1st item in slot s */
/* repeating until j reaches (s+1)*x)

{ stock[j] = stock[j+1]; j++; }
stock[j] = 0;
}

#define CENT 1; 
#define x 10; /* number of vend slots */
#define y 20; /* number of availabe items in each slot */
#define MAX x*y;
typedef ITEM {byte id, pr, ...}; ITEM stock[1000]; 

inline dispense(b){
/* detecting button to be pressed */
s= detect(b);  
/* dispending the corresponding item */
remove(s);
credit=credit-stock[s].pr;
}

Figure 3.3: Design

of value assignments of the initialization function such that ID ⊆ {σ | σ : VD → DD}.

We assume that the functions in the design are deterministic to have a unique successor
state for each current state and each called function. This assumption is realistic for the
implementation of the reactive systems like the automotive operating systems.
We can see a gap between the specifications and the designs. The observable behaviors
appearing in the specifications are realized by the optimized behaviors appearing in the
designs. The specifications can be described in a declarative manner whereas the design
can be described in an imperative manner. Our objective is to verify the conformance
between such specifications and designs by using a simulation relation between them.

3.4 Communication of Reactive System and Its En-

vironment

Figure 3.4 illustrates the overall structure of the design (left) and the environment (right)
of the reactive systems. We call them a design model and an environment model, respec-

26



tively. The design model defines data structures and a collection of inline functions; it
cannot operate by itself. To operate it, we need an environment which calls the functions
of the target system. Essentially, the reactive systems need to be verified in the combi-
nation with their environments. The environment model defines entities such as items,
coins and a sequence of function calls to the target system. Generally, the environment
invokes functions in the design in a non-deterministic manner in each state. This is shown
in environment models.

typedef ITEM{byte id, pr,...}

ITEM stock[1000];

#define CENT 1;

#define DIME 10;

inline insert(coin) {   }

inline dispense(b) {   }

inline add(s) {   }

inline remove(s) {   }

inline return() {   }

inline restock(b) {   }

inline switchon(){   }

inline switchoff(){   }

typedef Iteminfor {   }

Iteminfor T10,M18,C5,M25,B6;

switchon();

restock(T10);

restock(M18);

restock(C5);

restock(M25);

insert(CENT);

insert(DIME);

insert(QUARTER);

dispense(M18);

return();

invoke

response

Figure 3.4: Design model and Environment model in Promela

Environment models are defined as follows.

Definition 7 (Environment model). An environment model for a design model D is a
tuple E = 〈VE,DE,ΣE, IE〉 where VE ⊆ V is a set of variables used in E, DE = DD is
the domain, ΣE is a set of invocations to D such that ΣE ⊆ {id(v) | id ∈ Id, v ∈ VE},
and IE is a set of value assignments from VE to DD.

As explained later, the environment is constructed from the specification, and combined
with the design for the verification of the design against the specification.

By combining the design and the environment, we can make a closed system which can
operate by itself. We call this a combination model. In terms of Promela, a combination
model can be obtained by including the Promela code of the design into that of the envi-
ronment model. A combination of a design and an environment describes the execution
of the design according to the environment. An expression in the combination contains
constants from D, variables in V , and arithmetic operators. The set of expressions in
combinations is denoted as Exp′. A substitution for combinations is a mapping from V to
Exp′. The set of substitutions for combinations is denoted as SubstDE. For a mapping π
from P to V and a parameterized expression pexp ∈ PExp, pexpπ is the result of replacing
each parameter p appearing in pexp by π(p). In other words, if a(v) is an expression in
D then a(v)π is an expression in the combination obtained by replacing each parameter
p appearing in a(v) by π(p). Combination models are defined as LTSs as follows.

Definition 8 (Combination model). Let D = 〈VD,DD,PD, F,ΣD, ID〉 be a design model
and E = 〈VE,DE,ΣE, IE〉 an environment model.

1. We denote σ
id(v)−→ σ′ for an invocation id(v) ∈ ΣE and states σ and σ′ if there exist

(id(p), a) ∈ ΣD and a mapping π : PD → VE such that π(p) = v and σ′ = {v 7→
[a(v)π]σ | v ∈ VD ∪ VE}.
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2. The combination model of D and E (denoted as D·E) is an LTS 〈QD·E,ΣD·E,
δD·E, ID·E〉 where QD·E = {σ| σ : VD ∪ VE → DD} is a set of states, ΣD·E = ΣE,

δD·E = {σ id(v)−→ σ′| σ, σ′ ∈ QD·E, id(v) ∈ ΣE} is a transition relation, and ID·E=
ID ∪ IE is a set of initial states of D and E.

3.5 Verification Framework

3.5.1 Overview of Framework

Our framework is to check the conformance of the design in Promela to its formal specifi-
cation in Event-B. The verification technique is used in the framework is model checking.
We check the conformance of two models based on the simulation relation between them.
In particular, we check whether the design simulates the specification. As demonstrated
in Figure 3.1, the specification defines state variables, invariants and events which trigger
state transitions. Formally, the execution of the specification is represented as an LTS.
Also, Figure 3.3 describes variables and functions appearing in the design in Promela.
The variables represent information about the system (states) at certain moments. The
execution of statements changes the values of variables. Therefore, the design can be
interpreted as an LTS if we consider that the variables are states and each function call is
a label to make transitions on the states. In previous section, we defined the semantics of
the specification and the design commonly as LTSs. We now present a simulation relation
between the specification and the design based on their LTS. Suppose that M1 and M2
are two LTSs. Informally, M2 simulates M1 if for each transition in M1 from state p to
state p′ and p relates to state q of M2, there exists state q′ and a corresponding transition
in M2 from q to q′ such that p′ relates to q′. In Figure 3.5, a line arrow connecting p to
p′ represents a one-step transition from p to p′, and a dashed arrow connecting q to q′

represents an n-step transition from q to q′.

a

b1.b2....bn

p p'

q q'

M1

M2

Figure 3.5: Simulation Relation

Figure 3.6 shows our framework to verify the simulation between a specification and
a design using the Spin model checker.

Specification

in Event-B
Execution 

Sequences

(LTS)Bounds

Mappings

Execution 
Sequence 
Generator

Promela Code
Generator

Design 
in Promela

Environment

Assertions
Model checking Counter-

example?

Figure 3.6: Checking simulation of design and its specification

Inputs of the framework include the Event-B specification, the bounds, the Promela
design, and the mappings. The Event-B specification may contain abstract data types and
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infinite types. For example, the specification of the vending machine described cred ∈ N
and stock ⊆ PRODUCT ; N is infinite range of natural numbers and PRODUCT is
an abstract type whose range is not definite. The specification may also describe non-
deterministic behaviors. The bounds are introduced to make sure that every data element,
e.g., variable, constant, or event parameter, obtain values in the finite domain. We assume
that the Promela design describes deterministic behaviors even though the specification
may contain non-deterministic behaviors. The mappings are introduced to relate the
specification to the design. We consider three kinds of mappings. They are mappings
from variables in the specification to variables in the design, mappings from values in
the specification to values in the design, and mappings from events in the specification to
functions in the design. Generally, the mappings may be either one-to-one or many-to-one.

Intermediate outputs of the framework includes LTSs of the specification, environ-
ments and assertions. The LTSs are finite since they are generated from specification
within the bounds. The LTSs are deterministic because we regard one non-deterministic
substitution in Event-B as multiple deterministic substitutions. As mentioned, the design
does not execute by itself; we need environments to trigger functions in the design. We
assume that the environments invoke functions in the design in a non-deterministic man-
ner in each state. Assertions define conditions for the simulation between the specification
and the design. The final output of the framework is the statistic of model checking which
shows whether the design simulates the specification within the bounds.

The framework consists of three steps. Firstly, bounds for the verification are given
and an LTS is generated from the Event-B specification within the bounds. Next, the LTS
is in turn used to generate the environment, which invokes service functions described in
the design. The verification then amounts to checking the validity of certain relations
between variables of the Promela design and variables of the Event-B specification in
every reachable state. This is done using Spin assertions which are generated from states
of the LTS and the given relations represented as mappings between date elements in the
specification to those in the design. Finally, the design is combined with the environment;
and, the combination model is analyzed by Spin against the assertions.

3.5.2 Bounds

Model checking does an exhaustive check of the system. It needs a representation of the
system as a finite LTS. We know that there may exist infinitely many elements of basic
types in Event-B. For example, the specification of the vending machine described cred ∈
N and stock ⊆ PRODUCT ; N is infinite range of natural numbers and PRODUCT is
an abstract type whose range is not definite. When the variables may obtain values in an
infinite domain, the state space of the system may be an infinite set. Similarly, when the
event parameters may obtain values in an infinite domain, there may be infinitely many
events applicable in each state. This results an infinite LTS. Therefore, in order to apply
the model checking technique, we restrict the state space and the set of applicable events
in each state. We define such restrictions as bounds of the verification. The effect of such
bounding process is that the state space and the set of applicable events in each state
becomes finite. We formally define the bounds and the effect of such bounds.

Definition 9 (Bounds). Bounds for LTS 〈Q,Σ, δ, I〉 are defined as a pair B = 〈G,H〉 of
mappings G and H where G : 2Q → 2Q, G(Q) ⊆ Q, and Q′ ⊆ Q′′ implies G(Q′) ⊆ G(Q′′)
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and H : Q × Σ → {tt, ff} and for any state p ∈ Q, there exist finitely many actions
a ∈ Σ such that H(p, a) = tt.

As we mentioned, the bounds are introduced to obtain a finite LTS from the Event-B
specification. A finite LTS is obtained from an infinite LTS when we restrict the state
space and the set of actions that trigger the state transitions within the bounds. The
bounded LTS is defined as follows:

Definition 10 (Bounded LTS). An LTS obtained by restricting an LTS M = 〈Q,Σ, δ, I〉
within bounds B = 〈G,H〉 is defined as M↓B = 〈Q̂, Σ̂, δ̂, Î〉, where Q̂ = G(Q), Σ̂ =

{a | ∀p ∈ Q, a ∈ Σ, H(p, a) = tt}, δ̂ = {p a−→ p′ ∈ δ | H(p, a) = tt}, and Î = G(I).

We now implement the bounds for the Event-B specification. Firstly, abstract types
in Event-B must be replaced by concrete types, e.g., PRODUCT is replaced by a definite
set {a, b, c, d, e}. Then, types having infinite ranges of values like Int and Nat must be
restricted as small ranges by giving the minimum value and maximum value of the ranges,
e.g., cred ∈ [MIN..MAX]. These bounding process is demonstrated in Figure 3.7. The
top part is the original Event-B specification, where exists abstract data types and infinite
types. The bottom part is a bounded specification, where every variable/constant/event
parameter obtain values in a finite domain. This bounding process reduces the size of
execution sequences explored from the Event-B specification and produces a finite LTS
associated to the restricted specification.

VARIABLES
stock
cred
state
card

INVARIANTS
stock PRODUCT 
credN 
state{0,1}
cardN

INITIALISATION
stock:= {} 
cred:=0 
state:=0
card:=0

VARIABLES
stock
cred
state
card

INVARIANTS
stock {a,b,c,d,e} 
cred[1..100] 
state{0,1}
card[1..200]

INITIALISATION
stock:= {} 
cred:=0 
state:=0
card:=0

bounding

Figure 3.7: Bounding process is applied to Event-B model

We introduce mappings XV and XP to represent the implementation of the bounds
for the Event-B specification: XV is a mapping from the variables to a finite set of values;
and XP is a mapping from the event parameters to a finite set of values. When mappings
XV and XP are applied to the specification, both the state space and the set of applicable
events in each state become finite sets. We use ESX(σ) to denote the set of events which
are applicable to state σ and satisfy the restriction defined by mappings XV and XP . It
is obvious that ESX(σ) is a finite set for each σ. (Algorithm 1) presents how to compute
ESX(σ) from the specification with mappings XV and XP .

Suppose S = 〈VS,DS,ΣS, InitS, Inv〉 be a specification model and 〈QS,ΣS, δS, IS〉 an
LTS derived from S. With the mappings XV and XP , we define mappings G and H as
follows: G(QS) = {σ ∈ QS | ∀v ∈ VS.σ(v) ∈ XV (v))}, G(IS) ⊂ G(QS), and H(σ, e) = tt
iff e ∈ ESX(σ).

30



Algorithm 1 Compute ESX(σ)

1: ES = EMPTY ,
2: for each e ∈ ΣS do
3: if ∀u ∈ PARAMETER, σ(u) ∈ XP (u) and [g(u)]σ = tt then
4: if ∀v ∈ VS, [(act(e))(v)]σ ∈ XV (v) then
5: ES = ES ∪ {e}
6: end if
7: end if
8: end for
9: ESX(σ) = ES

10: return ESX(σ)

3.5.3 Exploring Execution Sequences

In order to explore the execution sequences, or LTS, from the specification and bounds,
the LTS Explorer computes all possible transitions and reachable states. Every value
used in the computation must be within the bounds. Starting at the initialization, the
explorer enumerates all possible values for the constants and variables of the specification
that satisfy the initialization to compute the set of initial states. To compute all possible
transitions from a state, the explorer finds all possible values for event parameters of an
individual event to evaluate the guard of that event. Although the guard may be logical
predicates consisting of existential quantification or universal quantification, it is feasible
to enumerate all possible values for event parameter because the range of values for every
variable and event parameter has been bounded since the previous step. If the guard holds
in the given state, the explorer computes the effect of the event based on substitution of
that event. Also, the substitution may be non-deterministic; we can regard an event with
non-deterministic substitution as a finite number of events with deterministic substitution.
When new states are generated, we repeat this process to these states until no new states
are generated.

Figure 3.8 (left and right) illustrates a bounded specification of the vending machine
and an LTS generated from the specification. In the right part, the rectangles represent
the states and the labeled arrows represent the events that are enabled in each states. For
example, two events restock(e), switchon() are enabled in state s0. In our framework,
the states are defined as the value assignments; however, we show them here as values
for readability. For example, s2:(on, {a,b,c,d}, 0) describes that the machine is on;
there are 4 items a, b, c, and d available for buying; and the currently deposited money
is 0, in state labeled s2.

The algorithm to compute execution sequences from a specification model is presented
in (Algorithm 2). Inputs of the algorithm are a specification model S = 〈VS,DS,ΣS, InitS,
Inv〉, and bound B = 〈G,H〉 which is implemented by XV and XP . Output is a finite
LTS. The algorithm uses two data structures: QUEUE storing reachable states, and
V ISITED storing visited states. It uses two routines to accessQUEUE: Push(QUEUE,〈σ〉)
adds state σ as an element into QUEUE, Pop(QUEUE) returns the head of QUEUE.
In each step of while loop, one state is removed from QUEUE, and reachable states from
the state are computed.

Termination. We use N to denote size of the state space within the given bounds. The
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VARIABLES
stock
cred
state
card

INITIALISATION
stock:= {} 
cred:=0 
state:=0
card:=0

restock= any item
when itemPRODUCT 

state=0
card<MAX

then stock:=stock{item}
card:=card+1

dispense= any item
when itemstock

state=1
then stock:=stock\{item}

cred:=cred-PRICE
card:=card-1

switchon= 
when state=0
then state:=1

insert= any cr
where state=1
then cred:=cred+cr

switchoff= 
when state=1
then state:=0

INVARIANTS
stock {a,b,c,d,e} 
cred[1..100] 
state{0,1}
card[1..200]

s0:(off,{a,b,c,d},0)

s2:(on,{a,b,c,d},0)

s3:(on,{a,b,c,d},c1)
dispense(c)

restock(e)

insert(c2)

s5:(on,{a,b,d},c1+c2-
PRICE)

s1:(off,{a,b,c,d,e},0)

s4:(on,{a,b,c,d},c1+c2)

s6:(on,{b,d},c1+c2-
PRICE-PRICE)

dispense(a)

generating

switchon()

insert(c1)

Figure 3.8: Generating LTS from bounded Specification

Algorithm 2 Generating S↓B = 〈Q̂, Σ̂, δ̂, Î〉 from S = 〈VS,DS,ΣS, InitS, Inv〉 and XV ,
XP

1: QUEUE = empty
2: V ISITED = empty
3: Q̂ = Σ̂ = δ̂ = Î = empty
4: for each σ0 ∈ {act(e) | e ∈ InitS} do
5: if ∀v ∈ VS, σ0(v) ∈ XV (v) then
6: Push(QUEUE, 〈σ0〉)
7: Q̂ = Q̂ ∪ {σ0}
8: Î = Î ∪ {σ0}
9: end if

10: end for
11: while QUEUE 6= empty do
12: 〈σ〉 = Pop(QUEUE)
13: V ISITED = V ISITED ∪ {σ}
14: Ê = {e | e ∈ ESX(σ)}
15: if Ê 6= empty then
16: for each event e = (g, a) ∈ Ê do
17: σ′ = {v 7→ [(act(e))(v)]σ|v ∈ VS}
18: if σ′ 6∈ V ISITED then
19: Push(QUEUE,〈σ′〉)
20: Q̂ = Q̂ ∪ {σ′}
21: end if
22: Σ̂ = Σ̂ ∪ {e}
23: δ̂ = δ̂ ∪ {σ e→ σ′}
24: end for
25: end if
26: end while
27: return S↓B

algorithm terminates when N−|V ISITED| = 0. Initially, N−|V ISITED| > 0 because
V ISITED is empty. Lets consider N − |V ISITED| at each step of the while loop.
Since range of values for every variable has been limited, the state space of is a finite set.
N is a definite value. In each step of while loop, one state is added into V ISITED.
Consequently, |V ISITED| increases; N − |V ISITED| decreases. Thus, the algorithm
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must then terminate. When the algorithm terminates, Q̂ stores reachable states and δ̂
contains possible state transitions within the bounds.

Correctness. We use S1↓B = 〈Q̂1, Σ̂1, δ̂1, Î1〉 to denote the bounded LTS, that is defined

in Definition 10. We use S2↓B = 〈Q̂2, Σ̂2, δ̂2, Î2〉 to denote the bounded LTS, that is
computed by Algorithm 2. We remind here that Q→S denotes the set of reachable states
associated to S. We now consider whether S1 ↓B equals to S2 ↓B:

• Î1 = Î2,

• For all σ ∈ Q̂→1 ∩ Q̂→2 such that H(σ, a) = tt and σ′ = {v 7→ [a(v)]σ|v ∈ VS}, we

have σ
a→ σ′ ∈ δ̂1 ∩ δ̂2. Thus, Q̂→1 = Q̂→2 ,

• δ̂1 ∩ (Q̂→1 × Σ̂1 × Q̂1) = δ̂2 ∩ (Q̂→2 × Σ̂2 × Q̂2)

• Σ̂1 = Σ̂2

From the consideration above, we can show that, even though δ̂1 may not equal to δ̂2,
Q̂→1 = Q̂→2 , Σ̂1 = Σ̂2, δ̂1∩ (Q̂→1 × Σ̂1× Q̂1) = δ̂2∩ (Q̂→2 × Σ̂2× Q̂2), and Î1 = Î2. Therefore,
our algorithm is sufficient to compute the set of reachable states of the specification within
the given bounds.

3.5.4 Generating Environments

The environments trigger specific behaviors of the target system; therefore, it is essential
to construct such comprehensive environments that representing all possible behaviors in
the specification. In the previous step, we explored the execution sequences as an LTS of
the specification. In this step, we generate the environment by translating the LTS into
Promela such that the enabled events in LTS are translated to the corresponding function
calls in Promela.

s0:(off,{a,b,c,d},0)

s2:(on,{a,b,c,d},0)

s3:(on,{a,b,c,d},c1)

switchon()

insert(c1)

dispense(c)

(b)(a)

Generating Environment

switchon();
restock(T2);
insert(QUARTER);
insert(DIME);
dispense(T1);
dispense(M1);

restock(e)

insert(c2)

s5:(on,{a,b,d},c1-
PRICE)

s1:(off,{a,b,c,d,e},0)

s4:(on,{a,b,c,d},c1+
c2)

s6:(on,{b,d},c1-
PRICE-PRICE)

dispense(a)

switchon() switchon()

restock(e) restock(T2)

dispense(c) dispense(T1)

insert(c1) insert(QUARTER)

insert(c2) insert(DIME)

dispense(a) dispense(M1)

Figure 3.9: Generation of environment from LTS

Figure 4.14(a) illustrates an LTS generated to the specification within the bounds. The
LTS is translated into Promela to generate the environment, from (a) to (b) of Figure
4.14. For this generation, we give a mapping from the enabled events in the LTS to the
function calls in the environment. We present the mappings in Table 3.2.

In general, it may be a one-to-one mapping or a many-to-one mapping. In the sample
case of the figure, it is a one-to-one mapping. For example, event restock(e) in the LTS
is mapped to function call restock(T2) in the environment. The environment is then
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Table 3.2: Mappings f from enabled events to function calls

Enabled Events Function calls

restock(a) restock(M1)

restock(b) restock(M2)

restock(c) restock(T1)

restock(d) restock(B1)

restock(e) restock(T2)

insert(c1) insert(QUARTER)

insert(c2) insert(DIME)

dispense(c) dispense(T1)

dispense(a) dispense(M1)

... ...

combined with the design to make a combination model, which will be input into the
model checker in the last step of the framework.

We formally define how the environment is generated from the LTS of the speci-
fication model. Let S = 〈VS,DS,ΣS, InitS, Inv〉 be a specification model and MS =
〈QS,ΣS, δS, IS〉 be the LTS derived from S. Based on the given mapping f : ΣS → Σ+

D·E
from the events in the LTS to the function calls in the environment, mapping R′ : VS → VE
and mapping C : DS → DD, the environment model E = 〈VE,DE,ΣE, IE〉 with DE = DD
is generated such that ΣE =

⋃
e∈ΣS

{f(e)} and IE =
⋃
e∈IS
{f(e)}.

3.5.5 Simulation Relation between Specification and Design

In Section 3.5.1, we briefly introduced a simulation between two LTSs. In this section,
we formally define the simulation based on a relation between states of the specification
and the design. The states are value assignments which are mappings from the variables
to the values. Therefore, the relation on states of M1 and those of M2 are established
based on mappings R and C where R is the mapping from variables of M1 to those in M2,
C is the mapping from values in M1 to those in M2. Figure 3.10 (left) shows a relation
between state p of M1 and state q of M2. p relates to q based on R and C because
u = c1 in state p corresponds to v = QUARTER in state q with mappings R(u) = v and
C(c1) = QUARTER. The relation between states is formally defined as follows:

R(u)=v, 
C(c1)=QUARTER

R(u)=v, 
C(c2)=DIME

M1

M2

[v=DIME]

e

f(e)

p p 

q q 

[v=QUARTER]

[u=c1] [u=c2]

p

q

[v=QUARTER]

[u=c1]

R(u)=v, 
C(c1)=QUARTER

Figure 3.10: Simulation Relation

Definition 11 (Relation between states). Let S = 〈VS,DS,ΣS, InitS, Inv〉 be a specifica-
tion model, MS = 〈QS,ΣS, δS, IS〉 the LTS derived from S, D = 〈VD,DD,PD, F,ΣD, ID〉 a
design model, E = 〈VE,DE,ΣE, IE〉 an environment model, and D·E = 〈QD·E,ΣD·E, δD·E, ID·E〉
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the combination model of D and E. We say a state σD·E ∈ QD·E relates to a state σS ∈ QS

based on mappings R : VS → VD and C : DS → DD (denoted σS �R,C σD·E), if for any x
∈ VS and y ∈ VD, R(x) = y implies C(σS(x)) = σD·E(y).

We omit R,C from �R,C if they are clear from the context.
We now present a formal definition of the simulation relation between two LTSs by

extending the given relation on the states. In general, a one-step transition in the spec-
ification is followed by an n-step transition in the design. In Figure 3.10 (right), a line
arrow connecting p to p′ represents a one-step transition from p to p′, and a dashed ar-
row connecting q to q′ represents an n-step transition from q to q′. In the definition, Σ+

denotes the set of non-empty strings of Σ, δ+ denotes an n-step transition relation, and
p
a1a2...an−→ p′ ∈ δ+ denotes an n-step transition from state p to state p′.

Definition 12 (Simulation relation). Let M1 = 〈Q1,Σ1, δ1, I1〉 and M2 = 〈Q2, Σ2, δ2, I2〉
be LTSs, and f : Σ1 → Σ+

2 a function from Σ1 to Σ+
2 . Suppose a relation �⊆ Q1 × Q2

is given. M2 simulates M1 with respect to � if for all q1, q
′
1 ∈ Q1, q2 ∈ Q2, a ∈ Σ1 such

that q1 � q2 and q1
a→ q′1 ∈ δ1, there exist q′2 ∈ Q2 such that q′1 � q′2 and q2

f(a)→ q′2 ∈ δ+
2 .

If M2 simulates M1 with respect to �, we denote M1 � M2.

M2 simulates M1 if for each transition in M1 from state p to state p′ and p relates
to state q of M2, there exists state q′ and a corresponding transition in M2 from q to q′

such that p′ relates to q′. In the example of Figure 3.10 (right), to check whether M2
simulates M1, we check if there exists a reachable state q′ from q such that v = DIME
corresponding to u = c2 in p′ with mappings R(u) = v and C(c2) = DIME.

3.5.6 Generating Assertions

Verification conditions represent constraints on the simulation relation between the spec-
ification and the design. They are also generated from the LTS and encoded as assertions
in Promela/Spin. From states of the LTS, assertions, which must be met by the corre-
sponding states of the designs, are generated. This is based on the mapping R and C
from the variables, the values in the specification to those in the design. For example,
Figure 3.11(a) illustrates an LTS generated to the specification within the bounds. As
shown in the figure, when event dispense(c) fires in state s3, the system reaches succes-
sor s5. From value assignments in state s5 of the LTS, with mappings R(cred) = credit,
R(state) = state, C(on) = 1, C(a) = M1, C(b) = M2, C(c) = T1, and C(d) = B1, the
generator outputs an assertion (state = 1 && credit = 15 && card = 3). This assertion
is to validate the value assignments in the state of the design that is reachable from state
s3 by calling the function dispense(T1).

Formally, the relation on states between the LTS of the specification model and the
combination model is given based on the mappings R : VS → VD and C : DS → DD.
Verification conditions are generated as follows:

• For initialization of the combination, the assertion is:∧
x∈VS ,y∈VD,y=R(x)

(σ0
D·E(y) = C(σ0

S(x))),

• For all (reachable) states σS, σ
′
S ∈ QS and σD·E, σ

′
D·E ∈ QD·E such that

σS
e−→ σ′S ∈ δS↓B , σD·E

f(e)−→ σ′D·E ∈ δ+
D·E, and σS �R,C σD·E,

35



s0:(off,{a,b,c,d},0)

s2:(on,{a,b,c,d},0)

s3:(on,{a,b,c,d},c1)

switchon()

insert(c1)

dispense(c)

(b)(a)

Generating Assertions

restock(e)

insert(c2)

s5:(on,{a,b,d},c1-
PRICE)

s1:(off,{a,b,c,d,e},0)

s4:(on,{a,b,c,d},c1+
c2)

s6:(on,{b,d},c1-
PRICE - PRICE)

dispense(a)

a M1
b M2
c T1
d B1
e T2

c2 DIME
c1 QUARTER

5 NICKEL

cred credit

f(switchon())

f(dispense(c))

f(restock(e))

f(insert(c2))

f(dispense(a))

s0:(state=0  
credit=0card=4)

f(insert(c1))
s1:(state=0  

credit=0card=5)
s2:(state=1  

credit=0card=4)

s3:(state=1  
credit=25card=4)

s4:(state=1  
credit=35card=4)

s5:(state=1  
credit=15card=3)

s6:(state=1  
credit=5card=2)

off 0
PRICE 10

Figure 3.11: Generation of assertions from LTS

the assertion is:∧
x∈VS ,y∈VD,y=R(x)

(σ′D·E(y) = C(σ′S(x))).

3.5.7 Translating Environments and Assertions into Promela

In this framework, the design is combined with the environment. The combination model
and the assertion are input into Promela/Spin to check the simulation relation of the
specification and the design. In terms of Promela, a combination model can be obtained
by including the Promela code of the design into that of the environment model. Figure
3.12 demonstrates the design, the environment, the assertion and the combination model
with the assertions. The states and transitions in the LTS are represented by labels
and if-statements in the combination model. There may be more than one function call
applicable in each state. For example, insert(DIME) and dispense(T1) are applicable
in state s3; which function call actually applied is non-deterministic. The assertion is
inserted at appropriate positions of the combination model. For example, position of the
assertion, which is to validate the value assignments in the state reachable from state s3
by calling the function dispense(T1), is underlined in the figure.

3.5.8 Checking of Simulation Relation.

In the last step, we verify the combination model against the assertions by using the
Spin model checker to confirm the simulation relation of the specification and the design.
Even though there exists a gap between the specification and the design, our framework
can verify the correspondence between state transitions, or simulation relation, of the
specification and the design. Specifically, each state transition in the specification leads
to a function call, which in turn triggers multiple state transitions in the design; after
these state transitions, the design reaches a state where the verification conditions are
asserted.

We verify the simulation relation between the specification and the design within the
given bounds. We now define the simulation relation between two LTSs within bounds.

Definition 13 (Simulation relation of two LTSs within bounds). Let M1 and M2 be two
LTSs, and B be bounds. The simulation relation of M1 and M2 within bounds B is defined
as M1 �B M2 if M1↓B �M2. If M1 �B M2 holds, we say M2 simulates M1 within B.
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Translation into 
Promela/Spin

#include ``design.pml``
s0: if 
  :: restock(T2) -> assert(...); goto s1;
  :: switchon() -> assert(...); goto s2;
fi;
s1:  
s2: if 
   :: insert(QUARTER) -> assert(...); goto s3;
fi;
s3: if 
   :: insert(DIME) -> assert(...); goto s4;
   :: dispense(T1) -> assert(...); goto s5;
fi;
s4:
s5: if 
   :: dispense(M1) -> assert(...); goto s6;
fi;
s6:

switchon();
restock(T2);
insert(QUARTER);
insert(DIME);
dispense(T1);
dispense(M1);

f(switchon())

f(dispense(c))

f(restock(e))

f(insert(c2))

f(dispense(a))

s0:(state=0  
credit=0card=4)

f(insert(c1))
s1:(state=0  

credit=0card=5)
s2:(state=1  

credit=0card=4)

s3:(state=1  
credit=25card=4)

s4:(state=1  
credit=35card=4)

s5:(state=1  
credit=15card=3)

s6:(state=1  
credit=5card=2)

Combination model with Assertion

typedef ITEM{byte id, pr,...}

ITEM stock[1000];

#define CENT 1;

#define DIME 10;

inline insert(coin) {   }

inline dispense(b) {   }

inline add(s) {   }

inline remove(s) {   }

inline return() {   }

inline restock(b) {   }

inline switchon(){   }

inline switchoff(){   }

EnvironmentDesign Assertion

Figure 3.12: Translation into Promela/Spin

In the end, the verification of simulation between the design and the specification has
been completed within the bounds. If no counter-example is found, the design conforms
to the formal specification within the input bounds.

If an error is found when applying our framework to verify the design against the
bounded specification, there actually exists a state transition in the bounded specification
that is not followed by the design. It is obvious that this state transition is also included in
the original specification; thus, the design does not conform to the original specification.
Formally, M1 �B M2 ⇒ M1 � M2. It indicates that the detected error really exists in
the design.

In our framework, Spin can check the simulation relation between the specification and
the design, where they are described in Event-B and Promela, within the given bounds.

3.6 Generator

We implemented a generator that produces the environments and the assertions from the
specification. The architecture of our tool is shown in Figure 3.13. The core of our tool
consists of three modules: Emulator Generator, Explorer and Translator. They are all
implemented in the C++ programming language. The initial input is the specification in
Event-B. The emulator generator performs the lexical and syntactic analysis to emulate
the behaviors of the specification in C++. The explorer implements (Algorithm 2); it
invokes functions which emulate events in Event-B and use the given bounds to outputs
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the execution sequences of the specification within the bounds. The execution sequences
are represented as an LTS of the specification. The enabled events appearing in the
LTS are sources to generate sequences of invocations in the environments. The states
appearing in the LTS are used to generate the assertions. The translator uses mappings
between elements of the Event-B specification and those of the Promela design to output
the environments and the assertions in Promela code.

Explorer
(Algorithm2)

env.pml 
(Promela code)

assert.pml 
(Promela code)

spec.mch 
(Event-B code)

bounds.txt mapp.txt

Emulator 
Generator

variables, 

events,...

Execution 
Sequences 

(LTS)

emulator.hpp
(C++ code)

Translator

Figure 3.13: Architecture of Generator

Generating Description of Specification in C++. The emulator generator ana-
lyzes syntactic structures of the Event-B specification. They are variables, types, events,
guards, substitutions, expressions, set operators, arithmetic operator, etc. These struc-
tures are translated into C++ by following the correspondences presented in Table 3.3.

Table 3.3: From Event-B to C++

Event-B C++

Variable Variable

Enumerated types Enumerated types

Initialization Function namely init()

Events Functions

Event parameters Arguments of function

Guards Conditional structures

Substitutions Assignment statements

Arithmetic operators Arithmetic operators

Set operators (e.g., ∪, \) Library functions (e.g., add, remove)

The emulator generator outputs C++ codes in the targeted file with “.hpp” exten-
sion, which simulate the behaviors of the specification in the form of functions. It is in
turn included in the source code of the Explorer. The Explorer invokes the functions
of the specification to execute the specification and generate the LTS associated to the
specification.

User Guides for Tool. Inputs produced by the users include:

• The Event-B specification file with “.mch” extension, as shown in Figure 3.1

• The bounds described in the file with “.txt”. The bounds of vending machines are
demonstrated in Figure 3.14.
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• The mappings (from elements in the Event-B specification to those in the Promela
design) described in the file with “.txt”. Each correspondence from the source to
the target is presented in a distinct row; the source is separated from the target by
a tab character, as shown in Figure 3.15.

PRODUCT {a1,b2,c1,d3,e1,k4,d2,x5,u7,e3,p9,s1}
nitem 200
cred [1..100]

Figure 3.14: Bounds used in verification of vending machines (“bounds.txt”)

Variables Variables
state state
card card
credit credit
stock stock;

Values Values
a M1
b M2
c T1
d B1
e T2
c3 NICKEL
c2 DIME
c1 QUARTER
off 0
on 1

Enabeld events Invocations
restock(a) restock(M1)
restock(b) restock(M2)
restock(c) restock(T1)
restock(d) restock(B1)
restock(e) restock(T2)
insert(c1) insert(QUARTER)
insert(c2) insert(DIME)
dispense(c) dispense(T1)
dispense(a) dispense(M1)

Figure 3.15: Mappings used in verification of vending machines (“mapp.txt”)

The Explorer and the Translator are integrated into single module namely Explore Translator.
The Explore Translator generates a targeted file with “.pml” extension. This includes the
environment scripts and assertions.

1. From the Windows command line, type emulator_generator spec.mch

2. Make sure that a targeted file with “.hpp” extension generated in the current folder.
The emulator of the specification of vending machines is demonstrated in Figure
3.16.

3. From the Windows command line, type explorer_translator bounds.txt mapp.txt

4. Make sure that a targeted file with “.pml” extension generated in the current folder
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int state;
int card;
int credit;
int nitem;
int stock[1000];

int switch_on(){
if(state ==0){

state=1;
return 1;

}
else return 0;

}

int switch_off(){
if(state ==1){

state=0;
return 1;

}
else return 0;

}

int restock(int i)
{

if(state==0 && card<nitem){
card=card+1;
add(stock,i);
return 1;

}
else return 0;

}

int insert_credit(cr){
if(credit<10 && state ==1){

credit=credit+cr;
return 1;

}
else return 0;

}

int dispense(int i){
if(card>0 && state==1 && credit>=2){

card=card-1;
remove(stock,i);
credit=credit - 2;
return 1;

}
return 0;

}

int add(a,i){
a[i]=1;
return 1;

}

int remove(a,i){
a[i]=0;
return 1;

}

Figure 3.16: Behaviors of specification of vending machine are emulated in C++
(“emulator.hpp”)

3.7 Case studies

The purpose of the case studies is to evaluate the generality and the applicability of our
framework to verify the reactive systems. The target systems used in these case studies are
simple systems: vending machines (VM), controlling car on a bridge (CC), and elevator
controllers (EC). We applied the framework to verify whether the designs of the target
systems conform to their specifications. As we mentioned, the inputs produced by the
users include the Event-B specification, the bounds, the mappings, and the design in
Promela. In this section, we briefly describes the target systems. We also present the
ranges to be restricted with their sizes as the bounds used for separate experiments.

3.7.1 Vending Machine

In Section 3.2, we presented a description of the vending machines. We also illustrated
the Event-B specification and the design in Promela partially in Figures 3.1 and 3.3. In
the framework, bounds are set for the verification by introducing finite ranges of variable
values in the Event-B specification. In practical applications of the vending machines,
the maximum number of available items is given for each machine. In the specification,
constants MAX and PRICE define the maximum number of items, that can be contained,
and the price of items. They are definite values. Variables nitem and cred may obtain
values in infinite ranges. They define the number of items restocked and amount of money
deposited so far. Range of values for nitem must be restricted to a finite set such that
the highest value of the range must be less than or equal the maximum number to be
given. Also, range of values for cred must be restricted to prevent the customers from
inserting a large amount of money. Bounds are introduced to define such restriction. The
mappings between elements of the specification and the design are illustrated in Figure
4.14. For example, a is mapped to M1 and cred is mapped to credit.

3.7.2 Controlling car on a bridge

The main function of this system is to control cars on a bridge connecting the mainland
to an island 3. The number of cars on the bridge and the the island is limited. The bridge

3We refer the specification and the design of the target system in [1]
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is one-way or the other, not both at the same time. In the specification, we compound
the bridge and the island together to obtain the bridge island. External behaviors are
represented as events namely FromML and ToML. They correspond to cars leaving the
mainland and entering the mainland. This is visualized in Figure 3.17(left) and formalized
in Figure 3.17(right).

Bridge_Island
Mainland

FromML

ToML

VARIABLES n
INVARIANTS  n  , n d
INITIALIZATION n:=0
EVENTS
FromML   when n<d then n:=n+1
ToML   when n>0 then n:=n-1

Figure 3.17: The mainland and the bridge island

Figure 3.17(right) is a formal specification in Event-B. Variable n defines the number of
cars on the bridge island; and, constant ncar defines the maximum value for the number
of cars on the bridge island.

To describe the design, we separate the bridge from the island. New variables are
introduced: a - the number of cars on the bridge going from the mainland; b - the number
of cars on the island; and c - the number of cars on the bridge going from the island.
The behaviors are FromML, ToIL, FromIL, and ToML. They correspond to cars leaving the
mainland and entering the bridge, leaving the bridge and entering the island, leaving the
island and entering the bridge, and leaving the bridge and entering the mainland. This
is visualized in Figure 3.18(left) and formalized in Figure 3.18(right).

Island
Mainland

FromML

ToML

byte a,b,c,ncar;
inline ToML(){
if :: c>0 -> c=c-1; 
fi;}
inline FromML(){
if :: a+b<ncar && c==0 -> a=a+1; 
fi;}

ToIL

FromIL

Bridge
a

cb

inline ToIL(){
if :: a>0 -> a=a-1; b=b+1; 
fi; }
inline FromIL(){
if :: b>0 && a==0 -> 

b=b-1; c=c+1;
fi; }

Figure 3.18: The mainland, the bridge, and the island

No complex data structure is required to describe the design of such target system; the
design could be easily described in Event-B and apply the refinement facility to verify the
conformance. However, to obtain a completely automatic verification, we described the
design in Promela and applied our framework to verify the design in Promela against the
specification in Event-B. The environment of the target system includes the cars moving
between the mainland and the island through the bridge. Bounds are introduced to define
the maximum number of cars on bridge and island. Therefore, the range of values for
ncar must be restricted.

3.7.3 Elevator

The elevator has a definite number of floors and each floor has its request buttons (one
for up and another for down) and a control light. A sensor is located at every floor. We
can use these sensors to locate the current position of the elevator cab. The cab itself
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consists of several parts: A door, which can be opened and closed by a motor. Two sensors
inform the control system about the door status. A light sensor can detect objects while
the door is closing. The elevator cab engine moves the cab up or down. Informally, the
elevator behavior is defined as follows. If a passenger presses a request button at a floor,
the request light is switched on. The cab moves to this floor within finite time. When
the floor is reached, the door opens, and the request lamp is turned off. The door stays
open for some time (10 seconds) to allow passengers to enter or exit the cab. After this
time, the door closes. The cab is moved by the elevator motor. If the cab should stop at
a certain floor, the motor is stopped immediately after the reception of a signal from the
corresponding floor sensor. The control system should send an additional signal to the
motor, if the motor should stop the cab at the next floor. The motor uses this signal to
reduce the cab speed. This enables the motor to stop the cab at the exact floor position.
The requests from the individual floors can be served using different strategies. The most
important requirement for such a strategy is fairness. Every request must be served in
finite time.

We summarize main elements of the specification and the design of an elevator con-
troller in Table 3.4. The specification in Event-B describes services which response to
the stimulus from its environment. In this case study, we consider that the environ-
ment of the elevator includes the passengers and the floor sensors. Services are de-
scribed in form of events in Event-B: RequestBPressed, DestinationFlPressed, and
DestinationFlDetected responding to the stimulus when a passenger presses a request
button, when a passenger presses a destination floor button, and when a floor sensor de-
tects a destination floor, respectively. The design contains functions with the same names
as those in the specification, in an implementable level. Additionally, the design describes
internal behaviors of the elevator. For example, strategies to place a request in the queue
and serve the request are described in put_req_inQ and remove_req_fromQ.

Table 3.4: Specification and Design of Elevator Controller

Specification Design
Abstract data Visible Events Data structures Functions

request set RequestBPressed request array RequestBPressed

nfloor DestinationFlPressed nfloor DestinationFlPressed

DestinationFlDetected put req inQ

remove req fromQ

DestinationFlDetected

The number of floors should be a finite value. Therefore, the range of value for nfloor
must be restricted.

All experiments are conducted on an Intel(R) Core(TM) i7 Processor at 2.67GHz
running Linux. Verification results outputted by Spin are shown in Table 3.5. Here, values
in column “Size of Ranges” express bounds of the verification. Column “LTS Generation”
shows statistics of the execution sequence generator. Columns “#State”, and “#Trans”
present the number of distinct states and that of transitions appearing in the execution
sequences, each transition corresponds to a function call; column “Time” present the time
taken (s) for the generation. Column “Model Checking” presents statistics of the model
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Table 3.5: Experiment Outputs

Target Sys. Bounds LTS Generation Model Checking
VM nitem ∈ [0..200] #State #Trans Time(s) Mem(Mb) Time(s) Result

No.1 50 151 252 1.2 129.2 1.0
√

No.2 200 604 1004 50.2 130.4 5.0
√

CCB ncar ∈ [0..20] #State #Trans Time(s) Mem(Mb) Time(s) Result

No.3 10 121 220 1.1 129.2 1.0
√

No.4 20 441 840 60.2 129.2 1.0
√

EC nfloor ∈ [0..20] #State #Trans Time(s) Mem(Mb) Time(s) Result

No.3 10 865 1820 1.1 129.2 1.0
√

No.4 20 2441 6450 60.2 129.2 1.0
√

checker including total actual memory usage, the time taken (s), and the verification
result in which

√
indicates the verification has been completed.

In verification of the vending machine, range of values for nitem is a finite set 0..200.
Case No.1 is conducted with 50 available items; this allows to restock 10 slots of products
and 5 products in each slot. Case No.2 corresponds 20 slots and 10 products in each slot.
This range is appropriate in practical applications of the vending machines.

In verification of the elevator, range of values for nfloor is a finite set 0..20. Case No.1
is conducted with 10 floors; case No.2 corresponds 20 floors. This range is appropriate
for some practical applications of the elevator.

This result offers a high degree of confidence on the conformance of designs with
respect to their specifications within input bounds. We found that the framework could
be straightforwardly applied to verify various reactive systems where the designs described
in Promela and their formal specifications described in Event-B. This shows applicability
of our framework in verification of the reactive systems.

3.8 Summary

This chapter has presented the specification and the design of the reactive systems and
presents a framework to verify the conformance between them. In the earlier sections,
we characterize the specification independently on the design to show a gap between
them. This gap motivates to use different specification languages for the specification
and the design. In the next sections, our verification framework is explained step by step
using simple examples for readability. In addition, this framework is precisely defined by
formal definitions. The core of our approach is base on a simulation relation between
the specification and the design. By verifying such a simulation relation, we could deal
with (i) the difference of the specification languages used for two models and (ii) the gap
between two models; and we could check the correspondence between state transitions
of two models. This shows that the design conforms to the specification. Some case
studies are presented in the last section. The results of these case studies shows that the
framework can be straightforwardly applied to verify various reactive systems.
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Chapter 4

Verifying OSEK/VDX OS Design

As an automotive industry standard of operating system specification, OSEK/VDX OS
specification [40] is widely applied in the process of designing and implementing the op-
erating system (OS) for automotive systems. In order to obtain a high-reliability OS, a
design model is often developed in advance, and some verification techniques like model
checking [5][11] are employed to check whether the design conforms to the OSEK/VDX
OS specification. If the design model has been ensured then the prototype can be de-
veloped following the design model. We are working on a design of the OS compliant
with the OSEK/VDX standard. The aim of this work is to provide a high quality OS by
applying automated formal verification.

In previous chapter, we presented a framework to check the design models of the re-
active systems against their specifications based on a simulation relation [31][34]. The
framework includes three main steps. Firstly, a labeled transition system (LTS) is gen-
erated from the specification. Next, from each state appearing in the LTS, verification
conditions which must be met by the corresponding state of the design are generated. Fi-
nally, the design in combination with the LTS is input into a model checker to check the
verification conditions. In this way, we can check the correspondence of state transitions,
or the simulation relation, between the specification and the design. This ensures that
the design conforms to the specification.

In this chapter, we present a case study of applying the framework to the verifica-
tion of an OS design compliant with the OSEK/VDX standard which is described in
Promela/Spin. In the earlier section of this chapter, we briefly present a workflow to
apply to verify the OS design according to the proposed framework. There exists an in-
formal specification of such operating system, called OSEK/VDX OS Specification. This
specification is not an input accepted by formal verification since it is described in natural
language. In order to formally verify the OS design against the specification, we faithfully
formalize the OSEK/VDX OS specification in Event-B. Then, we apply our framework to
verify the OS design against the formal specification. In the case study, we mainly explain
how we defined the appropriate bounds to check our desired properties of the OS. We also
show the results of the experiments and evaluate the effectiveness and the practicality of
the framework.
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4.1 Overview of Workflow

Our workflow to apply the framework in verification of the OS design using its specifica-
tion in Event-B is shown in Figure 4.1. According to the proposed framework, checking
the conformance of the OS design to the Event-B specification is based on a simulation
relation between them. Here, the Event-B specification and the OS design are defined
as LTSs. Our objective is to verify whether the design satisfies the formal specification.
The technique we use for this verification is model checking. Firstly, we formalize the
OSEK/VDX OS specification in Event-B. The consistency of the behaviors and the prop-
erties are ensured in this step. Secondly, to avoid the state explosion, we give reasonable
bounds for the verification. In this step, we pick up behavior scenarios of the OS from
the OSEK/VDX OS specification. The scenarios provide examples of the intended sys-
tem behaviors which satisfy the desirable properties. Based on the behavior scenarios,
we determine bounds for the verification so that when we apply them to the Event-B
specification, the execution sequences of the specification within the bounds cover at least
the behaviors under consideration and prevent the state explosion. Finally, we apply the
proposed framework to check the OS design conforms to the Event-B specification within
the bounds: generating the LTS of the specification; translating it into Promela to gener-
ate the environment and assertions; and applying model checking. When this check has
been completed, one can say the OS design satisfies the desirable behaviors and properties
within the bounds.

OSEK/VDX OS 
Specification

Behavior 
Scenarios

Esitimating Bounds

Environment
Translating 

into PromelaGenerating LTS
Model Checking

Bounds

Mappings
Design in 
Promela

Assertions

Specification
in Event-B Formalizing

LTS

1

2
3 4

5

Figure 4.1: Model Checking Design using Formal Specification (workflow)

4.2 Formalizing OSEK/VDX OS Specification

In this section, we present formalization of the OSEK/VDX OS specification in Event-
B. Our formalization process is shown in Figure 4.2. In the first step, we analyze the
OSEK/VDX OS specification to capture requirements of OSEK OS. The second step is
to formally define the requirements in Event-B and validate them. In this step, we benefit
refinement and consistency proof provided by Event-B/Rodin to facilitate the validation.

OSEK/VDX OS 

Specification
Analyze

Entities
Attributes

Service Functions

Translate & 

Review

Specification 

in Event-B

Mapping rules

Refinement
Consistency 

Proof

Figure 4.2: Formalizing OSEK/VDX OS Specification
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4.2.1 Analysis of OSEK/VDX OS specification

OSEK specification describes not only the OSEK operating system but also the concepts of
a real time operating system, capable of multitasking and changes from the old versions of
this document. Our formalization focuses on the behavior of OSEK OS. In order to specify
the behavior of OSEK OS, three classes of core features are singled out. They are entities
that the operating system manages, service functions of the system and constraints on the
behavior of the system. The purpose of this work is to formalize only features of OSEK
OS that are described in OSEK specification. This work is not a translation of sentences
one by one from a natural language to a formal language. Therefore, the first step in our
formalization process is to identify features of OSEK OS from OSEK specification and
retrieve their descriptions from that specification.

Entities. Entities/Objects managed by OSEK OS are easily identified from OSEK spec-
ification because they are emphasized in the document. They are task, resource, ready
queue, alarm, event and interruption. When we identify the entities, we need to extract
descriptions of their attributes and relationships and enumerate them as demonstrated in
Table 4.1.

Table 4.1: Attributes and relationships of entities

Entities Attributes
tasks state of task, priority of task
resources state of resource, ceiling priority of resource
event -
interruption -
Relationships: tasks occupy resources, tasks own events

Functions. Functions of OSEK OS are services that OSEK OS performs to manage
and control the entities. Services represent the behavior of the system. When OSEK
OS receives an invocation from the outside, it checks the current state of the related
entities and performs the corresponding service to respond. The performance of service
often makes some state transitions. Hence, it is necessary to analyze the conditions on
the state of some objects before each service served, they are so-called pre-conditions or
guards of each service. We also collect descriptions about actions that make the state
transitions.

Descriptions of each service are usually scattered in the informal specification. There-
fore, we must collect all descriptions of each service. For example, descriptions for service
ActivateTask are collected and represented on the left side of Figure 4.3. From these
descriptions, we see that the service ActivateTask may happen in four different situa-
tions. Each situation is described by a pair of pre-conditions and actionseffects. When
analyzing the OSEK specification, we should separate these situations to facilitate the
formalization. For example, the descriptions of service ActivateTask are rearranged and
decomposed into four situations as shown on the right side of Figure 4.3. Two descriptions
in Figure 4.3 have the same meaning but the right one facilitates not only modeling the
service but also checking the meaning of its correspondence in the formal model. This is
explained more in the latter part of this section.

Pre-conditions are also called local constraints because they need to be satisfied at the
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time only before each service served. They differ from the global constraints which are
satisfied all of the time.

Former state: suspended or ready
New state: ready
A new task is set into the ready state by a 
system service.
A basic task can be activated once or multiple 
times. 
Task activation will not immediately change the 
task state in case of multiple activation 
requests. If the task is not suspended, the 
activation will only be recorded and performed 
later.
The number of multiple requests in parallel is 
defined in the basic task specific attribute 
during the system generation. If the maximum 
number of multiple requests has not been 
reached, the request is queued. The activation 
requests of tasks are queued per priority in 
activation order and performed later.

Situations Pre-conditions Actions

1
For extended tasks,
The state of tasks is 
suspended

The state of tasks is 
transferred into ready. 
Tasks are queued.

2
For basic tasks,
The state of tasks is 
suspended

The state of tasks is 
transferred into ready. 
Tasks are queued.
The counter of multiple 
activation requests is 
increased to 1

3

For basic tasks,
The state of tasks is ready,
The number of activation 
requests is less than the 
maximum number of 
activation request

The counter of multiple 
activation requests is 
increased to 1

4

For basic tasks,
The state of tasks is ready,
The number of activation 
requests is equal to the 
maximum number of 
activation request

Return E_OS_LIMIT

Figure 4.3: Descriptions of service ActivateTask - before and after rearranging

Constraints. The constraints refer to the conditions that must hold in states. As men-
tioned, global constraints are conditions under which the system state must satisfy all
of the time. For example, one constraint on the relation between tasks and resources is
described in OSEK specification:
Two tasks cannot occupy the same resource at the same time.
This constraint means that for each resource, at the most one task can occupy at any
point of time. It must hold at any state of the system.

The result of this step is a list of OSEK OS features retrieved from the OSEK specifi-
cation. The meaning of informal descriptions in the feature list must be captured for the
purpose of translation and validation in the next step.

4.2.2 Translation and Validation

Faithfulness of formalization is validated according to the following criteria: (1) every
feature of OSEK OS is defined correctly in the formal specification and (2) no redundant
feature is added to that specification. Every feature must be translated into Event-B and
meaning of the formal description must be reviewed to make sure that it matches with
meaning of the informal one. We know that the formalization could not be validated by
machine; however, it could be checked intuitively. This is still accepted by the client and
the stakeholder. Our objective is to facilitate the validation of the formalization so that
the formalization could be accepted.

To facilitate the validation, we consider (i) the bi-directional traceability [13] between
each feature described in the informal specification and its appearance in the formal
specification and (ii) the feasibility of checking the meaning of an informal description
with its formalization.

Traceability. The traceability according to the forward direction is used to trace forward
from each feature i in the feature list (denoted L) to a correspondent element j in the
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formal specification (denoted S). The traceability according to the backward direction
is used to trace backward from each j in S to a correspondent feature i in L. For the
forward direction, after tracing each feature i toward the correspondent element j, we
need to review meaning of j against i. For the backward direction, apply this method,
reversely.

To achieve the traceability, we define mapping rules. Each mapping rule represents a
correspondence between a feature class in the list and a notation in the formal specification
language. The mapping rule is constructed in the following form: X → Y. Where X is
a feature class enumerated in L and Y is the formal notation used to specify X. The
meaning of mapping rule is defined that ‘If an instance x of X appears in L then an
instance y of Y must appear in S and vice versa. So, whenever a mapping rule is applied,
a trace link [13] is established to associate each instance x of X with an instance y of Y.
We define the mapping rules by matching feature classes in the list with notations of the
formal specification language to find the correspondences between them.

As we mentioned, the formal specification described in Event-B is regarded as a highly
abstracted level description of the systems. This description mainly consists of state vari-
ables, operations (events) on the variables, and state invariants. The variables are typed
using set theoretic constructs such as sets, relations, and functions. The events are defined
with their guard conditions and substitutions (so-called before and after predicates), which
allow both deterministic and non-deterministic state transitions. Table 4.2 summarizes
the correspondence between features and Event-B notions. We follow this correspondence
to translate features of the OS into Event-B and establish the trace links.

Table 4.2: Matching Features and Notions in Event-B

Features Notions in Event-B
Concepts (Entities) Variables
System Services Events
Pre-conditions Guards (logical expressions)
ActionsEffects Actions (substitutions)
Constraints Invariants

Refinement and Consistency Proofs. As mention earlier, it is impossible to formally
prove that an informal description matches a formal definition. The only way to check
the meaning of a formal definition with an informal description is to review the meaning
of the logical expression and compare with what is understood from the informal descrip-
tion, intuitively. For example, a simple description picked up from the OSEK/VDX OS
specification:
The task <id> is transferred from the suspended state into the ready state.
This description is translated into Event-B in the form of a guard condition and a sub-
stitution as follows:
WHERE tid ∈ tasks ∧ tstate(tid) = sus THEN tstate(tid) := rdy
It is accepted that the meaning of the latter matches that of the former. However, the
features of OSEK/VDX OS are generally complex. Formalization of complex features is
hard and could be wrong. We use mechanisms provided by Event-B/Rodin to facilitate
the formalization and the validation. Firstly, we decompose the complex features into the
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simple ones (sub-features) and distribute them one by one in different levels of abstraction
by applying refinement. We now present how formalizing the ready queues to explain this
idea. The ready queue is used to store instances of tasks which are activated, and record
the order of task activations. We decompose the description of the ready queues into
two levels of abstraction. In one level of abstraction, the ready queue was defined as a
non-order set of items. In another level of abstraction, descriptions of the order of items
have been added to the definition of the ready queue. Finally, we obtained the definition
of the ready queue which sufficiently takes the order into account. After decomposing fea-
tures, a plan for distributing sub-features must be established to ensure the consistency
of the overall model. We apply the refinement technique to distribute sub-features in
different abstraction layers of the system model as illustrated in Figure 4.4 (left). Figure
4.4 (middle) shows formal descriptions of the ready queues as non-order sets. Figure 4.4
(right) shows formal descriptions of the ready queues with the order of items. The Event-
B specification defines several ready queues. Each ready queue rdyQuItem corresponds
to an individual task priority (tpri(t)). We reference a task in the ready queues by its
priority and its order activation. Therefore, each rdyQuItem associates a position in the
ready queues (qsize) to the task which is currently stored at that position. When a task
t is activated, the size of the ready queue that corresponds to the priority of t is increased
by 1, and an instance of t is pushed into the last position of this ready queue.

F

F1

F2

Fn

M_F1

M_F2

M_F3

refine

refine

INVARIANTS   rdyQu tasks

WHERE      t tasks
THEN  rdyQu rdyQu   {t}
WHERE      t rdyQu
THEN   rdyQu rdyQu  \ {t}

INVARIANTS
rdyQu tasks
n  
qu_item 1 n   rdyQu

WHERE    t tasks
THEN        n n+1
                  rdyQu rdyQu   {t}
                  qu_item(n) t
WHERE  t rdyQu
        t=qu_item(1)
THEN  rdyQu rdyQu {t}

 qu_item: qu_item' 1 n rdyQu   
   (n=1 rdyQu= ) 

 ( i·i   qu_item'(i)=qu_item(i 1))
          n n 1

M_F1: M_F2:

Figure 4.4: Two levels of specification of ready queues

Secondly, we benefit the consistency proofs provided by Event-B/Rodin to review the
meaning of the formal descriptions. The consistency proofs should be completed at each
step of the translation. It is stated that the final percentage of automatic proofs is a good
indication of the quality of the model [1]. Furthermore, the proof results are guidelines for
modeling and analyzing the model by showing some hints for where and what should be
improved in the model. Assume that the existing formal descriptions have already been
reviewed, when a new formal description is added, it should be confirmed that the new
one is consistent with the existing ones. If the proof result shows any inconsistency then
the new one needs to be revised based on hints from the proof results. The hints may
show: (i) which invariant should be added; (ii) which guard should be added to strengthen
the model; and (iii) which form of expressions should be specified to get automatic proof.
This requires that we must prove the formal model at each step of the formalization.

Figure 4.5 illustrates the structure of the specification in Event-B. The variables such
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as tasks, res represent all the created tasks and the managed hardware resources. The
invariants represent constraints, e.g. at any time only one task is in running state. System
services are formally defined as guarded events like ActivateTask with guard conditions,
e.g. task t is in a suspended state, and actions that make the state transitions, e.g.
transferring t to ready state and pushing it into the corresponding ready queue.

VARIABLES
tasks, res, evt, isr, tpri, tstate, rdyQuItem, qsize, rdyQSet, acnt

INVARIANTS

rdyQSet  tasks
qsize   0 MAXPRI    1 
rdyQuItem   0 MAXPRI × 0 MAXQSIZE   rdyQSet 
tstate   tasks   STATE
 ta,tb·ta tasks tb tasks tstate(ta)=run tstate(tb)=run ta=tb  

EVENTS

ActivateTask        
any t where t tasks, tstate(t)=sus, acnt(t)<MAXACT
then tstate: tstate' tasks STATE   (tstate(t)=sus   tstate'(t)=rdy) 

rdyQSet: rdyQSet'  tasks   rdyQSet' = rdyQSet   {t} 
rdyQuItem(tpri(t) qsize(tpri(t))+1) t 
qsize(tpri(t)) qsize(tpri(t))+1

Figure 4.5: Formal Specification in Event-B

In summary, the main points of our approach are as follows: (1) Pre-processing of
the original specification, that is, identification of the features and their decomposition to
facilitate the review of the formal specification; (2) Introducing mapping rules to achieve
bi-directional traceability; and (3) proving the internal correctness of the formal model
at each step of the formalization to support for validating the formal model against the
informal specification.

As a result, the specification in Event-B contains a list of state variables, a list of events
which modify states (or state variables), and a list of invariants which are preserved by
events (or transitions). Thus, the possible execution sequences of such specification can
be represented as an LTS.

4.3 OS Design Model in Promela

OSEK OS is an open system. It does scheduling of the tasks if it gets stimulus such
as system call invocations from its environment. The environment of the OS includes
applications running on the OS and the hardware causing interruptions. The operating
system does nothing if it does not get any stimulus. The OS design only defines a collection
of service functions, it cannot operate by itself. To operate it, we need an environment
which calls functions of the OS; the design must be verified in communication with the
environment. As we explained later, the environment is constructed from the specification,
and input to Spin to check the simulation relation.

In Promela, service functions of the OS can be described by using inline functions.
Figure 4.6 (left) illustrates the whole structure of the OS design. We call this model
a design model. It is constructed based on the OSEK/VDX OS specification and de-
scribed in about 2800 lines of Promela code, according to the approach in [3]. It first
defines data structures such as tsk, res, and ready which represent an array of tasks,
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typedef TCB {int id, pr, dpr,   }
typedef RCB {int id, pr, tid,    }
TCB tsk[5]; 
RCB res[5]; 
int ready[25]; 
TID turn;
inline schedule() {   }
inline enq(pr, id, q) {   }
inline  _DeclareTask(tid, pr) {   }
inline  _ActivateTask(tid) {   }
inline  _ChainTask(tid, id) {   }
inline  _TerminateTask(tid) {   }

inline enq(pr, id, q){
do
:: _si < N_TASK_ACT ->
     if
     :: q(pr, _si) == EMPTY ->   q(pr, _si) = id;
 }
inline _ActivateTask(id){
if  
:: tsk_state[ret_ix].actcnt <OS_ACT_MAX   

-> tsk_state[ret_ix].actcnt++;
     if
       :: tsk_state[ret_ix].tstat==SUSPENDED 

-> enq(tsk_state[ret_ix].tpriority,id, q);
         tsk_state[ret_ix].tstat = READY; 
...}

Figure 4.6: OS design in Promela

an array of resources, and ready queues, respectively. Following these data structures, a
set of functions are defined. For example, _ActivateTask and _TerminateTask are the
functions to perform activation and termination of tasks, respectively. Variable turn is
used to store the identifier of the task which is currently in state running. The functions
with “ ” in the names like _ActivateTask are called from the outside of the OS. The
functions without “ ” in the names like enq(pr,id,q) are called internally. Figure 4.6
(right) illustrates the body of the functions which describes the implementation of the OS
services. They mainly consist of statements that represent the behavior of system over
the variables. The variables such as tsk, res, and ready represent information about the
system (states). The execution of statements changes the values of variables. Therefore,
the model in Promela can be interpreted as an LTS if we consider that the variables are
states and each function call is a label to make transitions on the states.

4.4 Simulation relation between Specification and De-

sign of OS

We give a simulation relation between the specification and the design of OSEK OS based
on the relation of variables, values in two models. The relation of variables, values in the
specification and the design are represented by mappings R : VS → VD and C : DS → DD.

Figure 4.7(left) demonstrates an LTS, which is generated from the specification of
OSEK OS. The LTS represents possible sequences of state transitions within the bounds.
Here, the rectangles represent the states and the labeled arrows represent the events
that are enabled in each state. For example, two events AT(t1), AT(t2) are enabled in
state s0, and two events TT(t1), AT(t2) are enabled in state s1. In our framework, the
states are defined as the value assignments; however, we show them here as values, e.g.
(sus, sus, sus), for readability. Similarly, Figure 4.7(right) demonstrates an LTS of
the design. With the given mappings, we can see a particular simulation between the
specification and the design: �= {(p0, q0), (p1, q1), (p2, q2), (p3, q3), (p4, q4), (p5, q5)}.
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p1:(run,sus,sus) p2:(sus,run,sus)

p3:(run,rdy,sus)
p4:(sus,sus,run)

p5:(sus,run,sus)

AT(t1) AT(t2)

CT(t2,t3)AT(t2)

CT(t2,t3)
TT(t1)

TT(t1)

AT(t1)

TT(t3)

q1:(3,1,1) q2:(1,3,1)

q3:(3,2,1)
q4:(1,1,3)

q5:(1,3,1)

p0:(sus,sus,sus) q0:(1,1,1)

LTS of Specification LTS of Design

Mappings: sus -> 1, rdy -> 2, run -> 3

Simulation relation: {(p0,q0), (p1,q1), (p2,q2), (p3,q3), (p4,q4), (p5,q5)}

Figure 4.7: A Simulation between Specification and Design based on Mappings

4.5 Bounding Process

4.5.1 Implementation of bounds

As mention earlier, model checking does an exhaustive check of the system. It needs a
representation of the system as a finite set of all possible states. In previous chapter,
we presented one implementation of the bounds to restrict the range of values for every
variable and parameter. Firstly, abstract types in the Event-B specification must be
replaced by concrete types. Also, types having infinite ranges of values like Int and Nat
must be restricted as small ranges. We consider that such implementation of the bounds
is not sufficient enough to verify the OS design. In this chapter, we additionally introduce
two implementations of the bounds to lead the verification to focus on the intended
behaviors of the OS. Such implementations of the bounds are all to reduce the size of LTS
explored from the Event-B specification.

The size of the LTS depends on ranges: the range of values for every variable and
parameter (DS); the range of operating system services which are defined as events in
Event-B (ΣS); and the depth of the execution of the Event-B specification (d).

As presented in the previous chapter, DS is replaced with its subset D̂S by a mapping
XV and XP such that every variable and parameter obtain the values in the finite domain.
Within this restriction, the state space and the set of transitions of the LTS become finite
sets. Such restriction is essential to apply the model checking technique. In addition, we
could lead the verification to focus on the intended behaviors of the OS by replacing ΣS

with its subset Σ̂S. In this way, we separate verifications to deal with distinct groups of
system services. As a result, set of events that may be enabled in states is reduced; thus,
set of transitions that may be triggered in states of the LTS is also reduced. Also, we could
restrict the depth of the execution of the Event-B specification by giving a finite value for
d. This is useful to check the properties among different groups of system services while
avoiding the state explosion.

Figure 4.8 illustrates the execution sequences of the Event-B model are bounded by:
(i) D̂S; (ii) D̂S and Σ̂S; and (iii) D̂S and d, respectively. Here, we restrict ΣS to obtained
limited sets of enabled events in states as LimEvent(s0) = {b, c}, LimEvent(s2) = {f, g},
LimEvent(s3) = {h}, LimEvent(s5) = {n}, LimEvent(s6) = {o}, LimEvent(s10) =
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Figure 4.8: Behaviors within the Bounds

{t}, LimEvent(s11) = {}. We restrict the depth of the execution sequences by giving
d = 2. The states and the transitions being outside of the boxes are excluded when the
bounds are applied. We determine bounds by studying the properties and the behavior
scenarios of the target system. This step is explained in Section 4.5.2.

As we mentioned, the bounds are given to restrict both of the state space and the
set of triggered transitions. In chapter 3, we defined a general bound with a pair 〈G,H〉
where G is a mapping used to restrict the state space, H is a mapping used to restrict
applicable transitions in each state. Such notion of the bounds could be applied for every
LTS-based model. For the verification of the OS design, as we mentioned earlier, three
implementations of the bounds are applied. Formally, they are denoted by 〈G1, H1〉,
〈G2, H2〉, 〈G3, H3〉 where:

• 〈G1, H1〉 defines the restriction of data elements including the range of values for
the variables and the event parameters. This matches with the bounds defined in
Chapter 3 and refers to case (i) of Figure 4.8.

• 〈G2, H2〉 defines the restriction of both the data elements and the events. This
refers to case (ii) of Figure 4.8.

• 〈G3, H3〉 defines the restriction of both the data elements and the depth of the
execution sequences. This refers to case (iii) of Figure 4.8.

In chapter 3, we also presented the implementation of the bounds to restrict the range
of values for every data element in Event-B model by defining mappings XV and XP .
Such implementation is also applied to 〈G1, H1〉 to verification of OSEK OS.

Suppose MS = 〈QS,ΣS, δS, IS〉 is a LTS associated to the specification. We define
mappings G1 and H1 as follows:

• G1(IS) = {σ ∈ IS | ∀v ∈ VS.σ(v) ∈ XV (v))},

• G1(QS) = {σ ∈ QS | ∀v ∈ VS.σ(v) ∈ XV (v))} and

• H1(σ, e) = tt iff e ∈ ESX(σ).

With these G1 and H1, we obtain a bounded LTS denoted S↓〈G1,H1〉.
As for 〈G2, H2〉, we use ESXE(σ) to denote the set of events which are applicable to

state σ and satisfy the restriction of both D̂S and Σ̂S. We define mappings G2 and H2
as follows:

• G2(IS) = G1(IS),

• G2(QS) = G1(QS) and
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• H2(σ, e) = tt iff e ∈ ESXE(σ).

With these G2 and H2, we obtain a bounded LTS denoted S↓〈G2,H2〉. Algorithm 2 in

chapter 3 is extended by Algorithm 3 to obtain S↓〈G2,H2〉 from S, D̂S and Σ̂S. This
extension is shown at line 12 of Algorithm 3, where ESX(σ) is replaced with ESXE(σ).

Algorithm 3 Main() (Generating S ↓〈G2,H2〉 = < Ŝ, Σ̂, δ̂, Î > from S, XV , XP ), and E

1: Initially, QUEUE = V ISITED = Ŝ = Σ̂ = δ̂ = Î = EMPTY
2: for each σ0 ∈ IS do
3: if ∀v ∈ VS, σ(v) ∈ XV (v) then
4: Push(QUEUE,< σ0, 0 >)

5: Ŝ = Ŝ ∪ {σ0}
6: Î = Î ∪ {σ0}
7: end if
8: end for
9: while QUEUE 6= empty do

10: < σ, i > = Pop(QUEUE)
11: V ISITED = V ISITED ∪ {σ}
12: Ê = ESXE(σ)

13: if Ê ! = empty then
14: for each event e = (g, a) ∈ Ê do
15: σ′ = {v 7→ [(act(e))(v)]σ|v ∈ VS}
16: if σ′ 6∈ V ISITED then
17: Push(QUEUE,< σ′ >)

18: Ŝ = Ŝ ∪ {σ′}
19: end if
20: Σ̂ = Σ̂ ∪ {e}
21: δ̂ = δ̂ ∪ {σ e→ σ′}
22: end for
23: end if
24: end while
25: return S ↓〈G2,H2〉

ESXD(σ) is used to denote the set of events which are applicable to state σ and
satisfy the restriction defined by mapping X and within a depth defined by D. We define
mappings G3 and H3 as follows:

• G3(IS) = G1(IS),

• G3(QS) = G1(QS) and

• H3(〈σ, d〉, e) = tt iff e ∈ ESX(σ) and d ≤ depth.

With these G3 and H3, we obtain a bounded LTS denoted S↓〈G3,H3〉. Algorithm 2 in

Chapter 3 is extended by Algorithm 4 to obtain S↓〈G3,H3〉 from S, D̂S and d. The extension
is shown at line 12 and 13 of Algorithm 4, where ESX(σ) is replaced with ESXD(σ) and
the search depth is limited by d.
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Algorithm 4 Main() (Generating S ↓〈G3,H3〉 = < Ŝ, Σ̂, δ̂, Î > from S, XV , XP ), and d

1: Initially, QUEUE = V ISITED = Ŝ = Σ̂ = δ̂ = Î = EMPTY
2: for each σ0 ∈ IS do
3: if ∀v ∈ VS, σ(v) ∈ XV (v) then
4: Push(QUEUE,< σ0, 0 >)

5: Ŝ = Ŝ ∪ {σ0}
6: Î = Î ∪ {σ0}
7: end if
8: end for
9: while QUEUE 6= empty do

10: < σ, i > = Pop(QUEUE)
11: V ISITED = V ISITED ∪ {σ}
12: if i ≤ d then
13: Ê = ESXD(σ)

14: if Ê ! = empty then
15: for each event e = (g, a) ∈ Ê do
16: σ′ = {v 7→ [(act(e))(v)]σ|v ∈ VS}
17: if σ′ 6∈ V ISITED then
18: Push(QUEUE,< σ′ >)

19: Ŝ = Ŝ ∪ {σ′}
20: end if
21: Σ̂ = Σ̂ ∪ {e}
22: δ̂ = δ̂ ∪ {σ e→ σ′}
23: end for
24: end if
25: end if
26: end while
27: return S ↓〈G3,H3〉

4.5.2 Determining bounds according to properties

We focus on the verification of properties concerned with the correctness of scheduling.
Scheduling is concerned with entities such as tasks, ready queues, resources, events, and
interruption routines. We illustrate important properties of scheduling in Table 4.3.

Bounds are determined based on the properties and behavior scenarios of the target
system. The scenarios provide examples of the intended system behaviors which satisfy
the desirable properties. Each scenario represents a partial behavior of the system. In
the following, we analyze the behaviors of full preemptive scheduling to illustrate how to
determine appropriate bounds for verification of such behaviors.

Figure 4.9 visualizes a scenario which represents desirable behaviors of full preemp-
tive scheduling. This scenario describes the behaviors that satisfy property (P1). Here,
the state transitions of two tasks, T1 with priority 2 and T2 with priority 1, caused by
ActivateTask(T1). Initially, two tasks are both in the suspended state. Next, task T2

transfers to running state after ActivateTask(T2) and task T1 is still suspended. Then,
T2 activates T1. Due to the higher priority of task T1, task T2 is preempted by task T1.
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Table 4.3: Properties

Prp. Description

P1 A task with lower priority is preempted by a task with higher priority
(full preemptive scheduling)

P2 A terminated or chained task goes into the suspended state
P3 An extended task in the waiting state is released to the ready state if

at least one event for which the task is waiting has occurred
P4 If a task or interrupt routine requires a resource, and its current priority is

lower than the ceiling priority of the resource, the priority of the task is raised to
the ceiling priority of the resource

P5 If a task or interrupt routine releases the resource, the priority of this task is
reset to the priority which was dynamically assigned before requiring that resource

P6 The index value is within the bounds of the array (boundary check)
P7 A task must not terminate or chain another task while holding resources
P8 Over activation of a task is prohibited

By counting objects appearing in the scenario, we see 2 tasks, 2 different values for the
task priorities, and 3 enabled events including ActivateTask(T1), ActivateTask(T2),
and TerminateTask (T1) used to describe such behaviors. The least configuration of the
OS to check such behavior includes 2 tasks and 2 different values for the task priorities.
We use TASK and PRI to denote the restricted ranges of values that variables tasks and
pri may obtain. We use S to denote the restricted set of system services. Therefore,
the bounds with TASK = {T1,T2}, PRI = {1,2}, and S including ActivateTask, and
TerminateTask are applied to the Event-B specification for checking the behaviors under
consideration.

suspended running suspended

running ready

T1

T2

ActivateTask(T1) TerminateTask(T1)

runningsuspended

ActivateTask(T2)

Figure 4.9: Scenario representing P1

Figure 4.10 visualizes a scenario which represents desirable behaviors for terminated or
chained tasks. This scenario describes the behaviors that satisfy property (P2). Initially,
two tasks are both in the suspended state. Next, task T2 transfers to running state after
ActivateTask(T2) and task T1 is still suspended. Then, ChainTask(T2,T1) is applied;
this terminates T2 and activates T1. T1 quickly transfers to running. Finally, T1 terminates
by itself. By counting objects appearing in the scenario, we see 2 tasks, 1 value for the
task priority, and 3 enabled events including ActivateTask(T2), ChainTask(T2,T1), and
TerminateTask (T1) used to describe such behaviors. The least configuration of the OS
to check such behavior includes 2 tasks and 1 value for the task priority. Therefore, the
bounds with TASK = {T1,T2}, PRI = {1}, and S including ActivateTask, ChainTask

and TerminateTask are applied to the Event-B specification for checking the behaviors
under consideration.

Figure 4.11 describes desirable behaviors in which the state transitions of two tasks,
T1 and T2 with the same priority, caused by SetEvent(T2,T1). This scenario describes
the behaviors that satisfy property (P3). Initially, two tasks are all in the suspended
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suspended running suspended

running suspended

T1

T2

ChainTask(T2,T1) TerminateTask(T1)

suspended

ActivateTask(T2)

Figure 4.10: Scenario representing P2

state. Next, task T1 transfers to running state after ActivateTask(T1) and task T2 is
still suspended. Then, T1 activates T2. It is expected that T2 transfers to ready state.
After that, since T1 waits for an event, T1 transfers to waiting state and T2 enters running
state. Finally, T2 set an event for T1, it is expected that T1 enters ready state and T2 still
keeps running. The least configuration of the OS model to check such behavior includes 2
tasks and one value for the task priorities. Therefore, the bounds with TASK = {T1,T2},
PRI = {1}, and S including ActivateTask, WaitEvent, and SetEvent are applied to the
Event-B specification for checking the behaviors under consideration.

ready

setEvent(T2,T1,001)

waiting

running

T1

T2

       runningsuspended

suspended ready

WaitEvent(T1)

ActivateTask(T2)

ActivateTask(T1)

Figure 4.11: Scenario representing P3

Figure 4.12 describes desirable behaviors that satisfy properties (P4, P5). Task T1
is running and requests a resource shared with the interrupt service routine INR1. The
priority of task T1 is raised to the ceiling priority of the resource. Task T1 activates
the higher prior task T2. The ceiling priority of the resource is higher than the priority
of T2; task T1 is still running. Interrupt INR1 occurs. Because of the ceiling priority
of the resource, task T1 is still running, the interrupt INR1 is pending. Interrupt INR2
occurs. The priority of INR2 is higher than the ceiling priority of the resource of T1;
INR2 interrupts task T1 and it is executed. After INR2 is done the task T1 is contin-
ued. The task T1 releases the resource. The interrupt service routine INR1 is executed,
the task T1 is interrupted. After INR1 is done the T2 is running. After termination
of task T2 the task T1 is continued. The least configuration of the OS model to check
such behavior includes 2 tasks and 5 values for the priorities. Therefore, the bounds with
TASK = {T1,T2}, PRI = {1,2,3,4,5}, and S including ActivateTask, TerminateTask,
GetResource, ReleaseResource, SETINR and RESETINR are applied to the Event-B spec-
ification for checking the behaviors under consideration.

Property 6 is checked to make sure that the index value is within the bounds of the
array. For example, as defined in the OS design, the bound of array ready is established by
72. To check whether the index value exceeds this bound. We can use 4 tasks, 2 multiple
activation requests, and 10 values for the task priority. However, if we restrict only V with
4 tasks, 2 multiple activation requests, and 10 values for the task priority, the verification
could run out of memory, while we only need to call functions including declaration of
tasks and activation of tasks to check such property. Therefore, an appropriate bound is
to restrict both V and E where V is restricted as presented above and E is defined as a
restricted set containing DeclareTask and ActivateTask.
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Activate(T2)
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Figure 4.12: Scenario representing P4, P5

Figure 4.13 describes desirable behaviors that satisfy property (P7). Initially, two
tasks are all in the suspended state. Next, task T1 transfers to running state after
ActivateTask(T1) and task T2 is still suspended. Then, T1 gets a resource. After that,
ChainTask(T1,T2) is called. It is expected that an error is returned because this is an
irregular behavior when ChainTask(T1,T2) is applied for the task occupying a resource.
The least configuration of the OS model to check such behavior includes 2 tasks and one
value for the task priorities. Therefore, the bounds with TASK = {T1,T2}, PRI = {1},
and S including ActivateTask, GetResource, and ChainTask are applied to the Event-B
specification for checking the behaviors under consideration.

suspendedT1

Activate(T1) GetResource(T1,R)

running

ChainTask(T1,T2)

Error

suspendedT2

Figure 4.13: Scenario representing P7

Over activation of a task is also an irregular behavior of the OS. We expect that when
an over activation happens, an error is returned. The least configuration for verification
of property (P8) includes task T1, one value for the priority, and only ActivateTask.
Table 4.4 shows bounds for checking the focused properties. Here, columns “Prp.” lists
the properties. As shown in Figure 4.5, variables tasks, res, evt, and inr define entities
managed by the OS such as tasks, resources, events, and interrupt routines; variables
tpri, rpri, and ipri define the priorities assigned to tasks, resources, and interrupt
routines; and variable tstate defines the task state. Because of the space limitation, we
show in column “D̂S” restricted ranges of values for tasks, tpri, res, rpri, evt, inr, and

ipri respectively. In column “Σ̂S”, we present the restricted set of OS services required
for checking the corresponding properties, where DT, DR, DI, AT, CT, TT, GR, RR, WE,
SE, SI, and RI stand for DeclareTask, DeclareResource, DeclareISR, ActivateTask,
ChainTask, TerminateTask, GetResource, ReleaseResource, WaitEvent, SetEvent,
SetINTR, and ResetINTR, respectively. Column “d” presents the maximum depth of the
execution sequences from the Event-B specification. “-” indicates that no restriction is
applied to the range.

As shown in Table 4.4, checking the different behaviors of the OS requires to use
different bounds; therefore, when we extend ranges for checking specific properties, we
need to perform the boundary check.

58



Table 4.4: Estimated Bounds

Prp. D̂S for tasks, tpri, res, rpri, evt, inr, ipri Σ̂S d

P1 {T1,T2}, {1,2}, {}, {}, {}, {},{} DT,AT,TT -

P2 {T1,T2}, {1}, {}, {}, {}, {},{} DT,AT,CT,TT -

P3 {T1,T2}, {1}, {},{}, {Evt1}, {}, {} DT,AT,WE,SE -

P4,5 {T1,T2}, {1,3}, {Res1},{6}, {}, DT,DR,DI,AT, -
{Inr1,Inr2}, {4,7} GR,RR,SI,RI

P6 {T1,T2,T3,T4}, {10}, {}, {}, {}, {},{} DT,AT -

P7 {T1,T2}, {1}, {Res1}, {2},{}, {},{} DT,DR,DI,AT, -
GR,RR,CT,TT

P8 {T1}, {1}, {}, {}, {},{},{} DT,AT -

4.6 Environment and Assertions

4.6.1 Variations of Environment

For the case of the OS, the scheduler decides on the basis of the task priority which is
the next of the ready tasks to be transferred into the running state. Additionally, within
the same ranges of values for the priorities, there are several patterns of assignment of
the priorities for tasks, interrupt routines, and the ceiling priorities for resources. For
example, if there are two tasks and the value domain for the task priorities is defined
as [1..2], there are 4 patterns to assign the priority for the tasks. They are (1,1), (1,2),
(2,1), and (2,2). The OS behaves differently with different patterns of assignment of the
priorities for tasks, interruption routines, and the ceiling priorities for resources. Values
for static priority of tasks and interruption routines, and for ceiling priority of resources
must be assigned in the initialization to set the configuration for the operating system.
We describe the configuration data in the environment. Each configuration data reflects
an applied pattern; therefore, it produces a variation of the environment. To investigate
all possible behaviors of the scheduler, we use all patterns to assign the priorities for tasks,
interrupt routines, and the ceiling priorities for resources. Consequently, there are several
variations of the environment for the operating system.

4.6.2 Generating Environments and Assertions

The environment of OSEK OS and assertions are generated from the specification follow-
ing the approach presented in Chapter 3. In previous step of the workflow, we already
generated the LTS of the specification. In this step, we generate the environment and the
assertions and translated them into Promela. Figure 4.14(left) demonstrates an LTS of
the specification of OSEK OS and Figure 4.14(right) demonstrates a combination model
between the design and the environment with the assertions to be inserted.

To generate the environment, we use a mapping from the events in the LTS to the func-
tion calls in the environment. For example, event AT(t1) in the LTS is mapped to func-
tion call _ActivateTask(task1.tid) in the environment; also, event TT(t1) is mapped
to function call _TerminateTask(task1.tid). The states and transitions in the LTS are
represented by labels and if-statements in the environment. To generate the assertions, we
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AT: _ActivateTask, CT: _ChainTask, TT: _TerminateTask
t1: task1.tid, t2: task2.tid, t3: task3.tid

Translation into 
Promela code

typedef Taskinfor {   }
Taskinfor task1, task2, task3;
_DeclareTask(task1.id, task1.pr1);
_DeclareTask(task2.id, task2.pr2);
_DeclareTask(task3.id, task3.pr3);
p0: 
if 
:: _ActivateTask(task1.tid) -> assert(...); goto p1;
:: _ActivateTask(task2.tid) -> assert(...); goto p2;
fi;
p1:
if 
:: _ActivateTask(task2.tid) -> assert(...); goto p3;
:: _TerminateTask(task1.tid) -> assert(...); goto p0;
fi;
p2:
if 
:: _ChainTask(task2.tid,task3.tid) -> assert(...); goto p4;
:: _ActivateTask(task1.tid) -> assert(...); goto p3;fi;...

tsk_state[0].tstat==3 && tsk_state[1].tstat==1 && tsk_state[2].tstat==1

p1:(run,sus,sus) p2:(sus,run,sus)

p3:(run,rdy,sus)
p4:(sus,sus,run)

p5:(sus,run,sus)

AT(t1) AT(t2)

CT(t2,t3)AT(t2)

CT(t2,t3)
TT(t1)

TT(t1)

AT(t1)

TT(t3)

p0:(sus,sus,sus)

Figure 4.14: Generation of environments and assertions from LTS

use the mappings R and C from the variables, the values in the specification to those in the
design. For example, from state p1 of the specification where tstate(a) = run, tstate(b) =
sus, tstate(c) = sus and with mappings R(tstate(a)) = tsk state[0].tstat, R(tstate(b)) =
tsk state[1].tstat, R(tstate(c)) = tsk state[2].tstat, C(sus) = 1, C(rdy) = 2, C(run) =
3 the generator outputs an assertion tsk state[0].tstat == 3&&tsk state[1].tstat ==
1&&tsk state[2].tstat == 1 for the corresponding state of the design.

4.7 Verification results

Our target system is an operating system compliant with OSEK/VDX standard. We
focus on the verification of properties concerned with the correctness of scheduling. In
section 4.5, we decided the proper bounds for the properties to be checked. This section
presents experimental results. We use inputs including the Event-B specification, the
bounds, and the OS design described in Promela and mappings between elements of the
specification and those of the design.

All experiments were conducted on an Intel(R) Core(TM) i7 Processor at 2.67GHz
running Linux. We performed experiments in two phases. In phase (I), we checked the OS
design. No errors were returned in all cases of experiments. This result was considered due
to the fact that the OS design had already been reviewed carefully by many researchers
and engineers. Still, from this result, we can be sure that the OS design is correct with
respect to its specification within input bounds. However, such successful experiment
results do not show the effectiveness of the approach. We evaluate the effectiveness of
the approach based on its bug-detecting ability. To show the bug-detecting ability of
our approach, in phase (II), we intentionally added several bugs into the OS design and
performed an experiment to check the modified OS design. Our purpose here is to make
sure our approach can actually detect the bugs we added. In this paper, we focus on two
kinds of typical bugs of the OS design: (i) the bugs that cause the condition enabling
the OS services not to conform to the specification; and (ii) the bugs that cause the
computational effects provided by the OS services to violate the specification. In practical
environments, such kinds of bugs could be easily added into the design.
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We present the results of experiments in Table 4.5, which are outputted by Spin. Here,
the first column (“No.”) represents experiment number. Cases I.1-I.8 belong to phase
(I) and cases II.1-II.8 belong to phase (II). Column “Prp.” refers to the properties of
the OS. Column “Bounded Ranges” represents bounds used in distinct experiments as
explained above. “t”, “tp”, “r”, “rp”, “i”, “ip”, and “e” present the size of ranges for
tasks, tpri, res, rpri, inr, ipri, and evt, respectively. In column “E”, we show the
size of the restricted set of system services that are required for checking the corresponding
properties. Column “D” presents the maximum depth of execution sequences from the
Event-B specification. “-” indicates that no restriction is applied to the range. Column
“LTS Generation” shows statistic of the execution sequence generator. Here, columns
“#State”, and “#Trans” present the number of distinct states and that of transitions
appearing in the execution sequences; column “Time” presents the time taken (s) for the
generation. Column “Model Checking” presents statistic of the model checker including
total actual memory usage for distinct verification, the time taken (s), and the verification
result in which

√
indicates the successful result - no error returned, and “Fail” indicates

the fail result - unsatisfied property.
Firstly, we use the least ranges to check the desirable behaviors for the enumerated

properties. The verification outputs for such cases are presented in rows I.1, I.2-1, I.3, I.4,
I.5-1, I.6, I.7, and I.8. Then, we extend ranges gradually so that the verification covers
many more behaviors than those focused in previous steps as long as the machine capacity
allows this. For example, rows I.2-2 and I.2-3 show the verification outputs with extended
ranges in comparison with cases in rows I.2-1; and, row I.5-2 presents the case that cover
many more behaviors than case in row I.5-1.

In the cases of I.5-3, I.5-4, and I.5-5, we want to check the interaction of multiple system
services; therefore, we do not restrict the system services in these experiments, i.e. E is
presented as “-” in the table. However, within the given V , the LTS of the specification is
huge. We restrict the depth of the execution sequences of the specification to reduce the
size of LTS. We give values for the maximum depth based on the estimation of the size
of LTS that the machine capacity allows. For example, with currently used machines, we
estimated that the machine capacity allows round 20000 transitions appearing in LTS.
Firstly, we generate LTS with the given ranges for V and no limitation for the depth of the
execution. Then, if LTS is huge, we try some values for the depth. For example, if we use
7 tasks, 1 resource, 2 interrupt routines, 1 event, and depth = 7, then “#Trans” = 14046,
the verification succeeds because the size of LTS is less than that the machine capacity
allows. However, when we use the same ranges for V and depth = 8, “#Trans” = 32599,
the size of LTS is significantly large compared with the used machine capacity. This could
easily cause the state explosion. Therefore, we set the depth to 7 in our experiments as
shown in the case of I.5-4.

From the experiment results, we can see that the time taken and the total actual
memory usage for the generation of the execution sequences from Event-B specification
and the verification of the simulation relation are reasonable. For the model checking
result of phase (I) shown in the table, no errors were returned in all cases of experiments.
However, in phase (II), we added bugs into the OS design. Consequently, some errors are
reported in the model checking results of the modified OS design. From the experiment
results, we can see that bugs are detected in short time and with reasonable total actual
memory usage for the model checking.

We added a bug to the condition expression for waking up the task waiting for an event
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in function SetEvent. This bug is detected in case II.3. A counter-example is shown by
Spin against (P3): ActivateTask(t1); ActivateTask(t1,t2);
WaitEvent(t2, evt1); GetResource(t1,r1);
ActivateTask(t1,t3); SetEvent(t3, t2, evt1):
text of failed assertion: assert((tsk state[1].tstat == 2)). Task t2 in the waiting state
is not released to the ready state, even though evt1 has been set for t2 by tasks t3.
This violates the specification. Because the condition expression for waking up the task
waiting for an event in the OS design includes bugs, t2 does not satisfy this condition.
Thus, t2 is not waked up.

We added another bug in the computational statement of function GetResource. This
bug makes the dynamic priority of tasks not change for any case when the tasks get the
resources. This bug is detected in case II.4. A counter-example is shown by Spin against
(P4): ActivateTask(t1); ActivateTask(t1,t2); WaitEvent(t2,evt1);
GetResource(t1,r1): text of failed assertion:
assert(tsk state[0].dpriority == 6). The priority of task t1 is not raised to the ceiling
priority of resource r1, even though t1 has got r1 successfully. This is because the ceiling
priority of resource r1 is not assigned to the dynamic priority of task t1 even though the
static priority of t1 is lower than the ceiling priority. This violates the specification.

Experiment results above show the ability of our approach to detect the typical bugs
of the OS design such as the bugs in the guard conditions enabling the computations
and those in computational statements of functions. Such bugs cause undesirable design
behaviors of the OS. With the exhaustive verification within the bounds, our approach
provides rapid bug detection of design behavior.

4.8 Additional experiments

Section 4.7 presented the statistics of model checking for the properties shown in Table
4.3. In fact, we additionally conducted several experiments to verify various behavioral
aspects of the OSEK/VDX OS. Firstly, the OS scheduler decides on the basis of the task
priority which is the next of the ready tasks to be transferred into the running state. As we
mentioned, within the same ranges of values for the priorities, there are several patterns
of assignment of the priorities for tasks, interrupt routines, and the ceiling priorities for
resources. For example, if there are two tasks and the value domain for the task priorities
is defined as [1..2], there are 4 patterns to assign the priority for the tasks. They are (1,1),
(1,2), (2,1), and (2,2). The OS behaves differently with different patterns of assignment
of the priorities for tasks, interruption routines, and the ceiling priorities for resources.
To show this difference, we present experimental results of typical cases in cases No.1-14
of Table 4.5. These cases are to verify the task management independently with the other
functionalies of the OS. We define the bounds to restrict the number of tasks and the
range of values for the task priority. Our purpose is to show that our verification returns
different statistics of model checking when we conduct two typical cases: the tasks have
the same priority, e.g, case No.8, and the tasks have different priority, e.g, case No.9, with
the same number of tasks, e.g., five tasks. This is because sequences of functions triggered
in the former case is different from that in the latter case.

Secondly, scalability depends on the machine power. We present statistics of LTS
Generation and model checking in cases No.15-20, cases No.21-27 to demonstrate the
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scalability. In cases No.15-20, we checked the task management independently with the
other functionalies of the OS. The remaining cases verify the combination of functionalities
of the OS.

In the table, two cases of our verification, No.18 and No.21, have not completed due
to out of memory condition. When we extend the bounds, the size of LTS becomes larger.
The total number of invocations increases according to the total number of enabled events
appearing the LTS, which is indicated in column “#Trans”. Using our machine (memory
capacity: 8 gigabytes), Spin can use around 430 megabytes for total memory usage, in
which around 230 megabytes is used to store states. We could estimate the total memory
required to store states based on the size of LTS as follows:

• Total number of invocations: |ΣD·E| = |Σ̂S|, this is because the mapping from
enabled events to invocations is one-to-one mapping

• Total number of states: |Q̂D·E| = |ΣD·E| ∗ c1, where c1 is total number of reachable
states returned after applying each invocation.

• Total memory usage to store distinct states: Mem = |Q̂D·E| ∗ c2, where c2 is the
size of state vector.

We estimated the total memory required to store states in cases No.18 and No.21 as
shown in Table 4.7.

Estimated data indicates that the total memory required to store states in cases No.18
and No.21 is over the total memory Spin can use. Therefore, the verification has not
completed in these cases. However, we could restrict the depth of execution of specification
as shown in cases No.19,20 to make the verification succeed when we still use the same
ranges as No.18. Also, we could check the combination of all functionalities and avoid
the state explosion by use the reasonable configurations as shown in cases No.22,23. In
addition, if we could not check the combination of all functionalities, we at least can check
critical cases as follows:

• The combination between the task management and the interrupt handling (case
No.24)

• The combination between the task management and the resource management (case
No.25)

• The combination between the task management, the resource management, and the
event management (case No.26)

• The combination between the task management, the resource management, and the
interrupt handling (case No.27).

In cases No.24-27, we used the restricted sets of events to check important groups of
functionalities and avoid the state explosion. In the table, column “gf” presents the size
of the restricted sets of events to be checked.
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Table 4.7: Estimation of the total memory required to store states

No. |ΣD·E| c1 |Q̂D·E c2(Mb) Mem(Mb)
18 92160 10 921600 0.0008 737,28
21 93600 10 936000 0.0008 748,880

4.9 Summary

In this chapter, we presented a case study in which we applied the proposed framework
to verify a real system - an operating system design compliant with the OSEK/VDX
standard. To apply the framework, the users need to provide inputs including a formal
specification of the OS in Event-B, the bounds, the mappings, and the design in Promela.
There already exists an informal specification of the OS - the OSEK/VDX OS speci-
fication. This is an international standard for the automotive OS. We cannot change
it but faithfully formalize it in Event-B. We presented the guidelines to obtain a likely
equivalent formal specification with the informal one. The mappings relates elements in
the Event-B specification to those in the Promela design. They could be described in
the tables. The design is described as a collection of inline functions in Promela. As for
simple systems, e.g., the target systems used in the case studies chapter 3, the bounds
could be easily decided. As for the OSEK/VDX operating system, which has multiple
groups of functionalities, the bounds need to be defined depending on the properties to
be checked. In this chapter, we presented the guidelines to determine the proper bounds
for the verification of the properties to be checked. By using the proper bounds, we could
verify various aspects of the OS including (i) individual functionality and combination of
functionalities, (ii) full preemptive scheduling with different priorities for the tasks and
the interruptions, and (iii) regular and irregular behaviors of the OS. We presented the
results of several experiments to show that the framework is able to verify the important
properties and to detect the typical bugs of the OS.
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Chapter 5

Discussion

Assumptions

Our framework is to check the conformance between the design and the specification of the
reactive systems based on the simulation relation between them. In particular, we check
whether the design simulates the specification. In the framework, we assume that (a.1) the
functions in the design are deterministic even though the specification may describe non-
deterministic behaviors. This is realistic because deterministic behaviors are required for
many systems like operating systems. In addition, we assume that (a.2) the environment
invokes functions in the design in a non-deterministic manner in each state. This is also
realistic because the environment could trigger any function of several applicable functions
in a certain moment. For example, when the customers of a vending machine have inserted
money in excess of some item cost, the customers can select the item to be bought or
insert more money. In the framework, the LTS of the specification represents events that
may be applicable in each state. The environment is generated from the LTS; it triggers
functions of the design that correspond to the enabled events. Therefore, we could check
that for each event of the specification is enabled, a corresponding function of the design
is triggered. For example, when event AT(t1) in the specification is enabled then the
corresponding function in the design, i.e. ActivateTask(t1), is also triggered. With
the assumptions, when a function in the design is invoked, there is a unique successor
state with respect to the specification. In this way, we could check whether the effect
of each function interpreted in the reachable state of the design is the same as that
of corresponding function in the specification via the mappings. This shows that the
design follows the specification. Thus, with the two assumptions, checking whether the
design simulates the specification is appropriate to show the conformance between the
specification and the design.

Simulation relation

The simulation relation verified in our framework is similar to the refinement of [31] and
the simulation of [34][43]; however, in our definition, a one-step transition in M1 may
correspond to an n-step transition in M2. This is appropriate for a simulation from a
specification to its design where the latter implements the former.

Considering bi-simulation in [34], a bi-simulation S between M1 and M2 requires that
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M1 simulates M2 by S and M2 simulates M1 by the reverse of S. In this framework,
we check one direction of simulation, that is checking whether the design simulates the
specification. As analyzed above, checking whether the design simulates the specification
is appropriate to show whether the design follows the specification. Accordingly, two kinds
of typical bugs of the design could be quickly detected if they exist in the design. They are
bugs included in conditional expressions under which functions are triggered, and bugs
included in computation of functions. Such kinds of bugs could be easily added into the
design of practical systems. For example, a bug was intentionally included in the condition
expression for waking up the task waiting for an event in function SetEvent of the OSEK
OS design. Even though the function is still called according to the specification, it does
nothing because the conditional expression is not true. This bug was detected in case II.3
of table 4.5. Again, some bugs can be easily included in the computational statement of
functions in the design. For example, a bug in the computational statement of function
GetResource makes the dynamic priority of tasks not change for any case when the tasks
get the resources. However, according to the specification, the ceiling priority of resource
must be assigned to the dynamic priority of the task if the priority of the task is lower
than the ceiling priority. In this situation, the effect of this function in the design is not
as same as that of corresponding function in the specification via mappings. This bug was
detected in case II.4 of table 4.5. Detecting bugs in the design is an important objective
of our framework.

One may say that the design can do something more than the specification. We
consider that this may happen in two situations: (i) the design contains non-deterministic
behaviors that are out of the specification; and (ii) the design contains redundant functions
which are not described in the specification. Considering another direction of simulation
relation, that is verifying whether the specification simulates the design. Checking whether
the specification simulates the design may be appropriate to prevent the design from doing
something more than the specification. Nevertheless, situation (i) is out of our scope due
to assumption (a.1); situation (ii) may happen because the designers may add functions
out of the specification by mistake. In our framework, the redundant functions, if existing
in the design, are never triggered since the environment just calls functions driven by the
specification. Since they are never triggered in our framework, they could not be checked.
This is a limitation of the framework where only one direction of simulation relation is
taken into account.

Verifying whether the specification simulates the design may be appropriate to show
there is no extra behavior added into the design with respect to the specification. We
planed to consider this in the future. On the other hand, the opposite direction, checking
whether the design simulates the specification, is sufficient to show every behavior in the
specification are actually followed by the design; it is also sufficient to detect typical bugs
if they exist in the design.

Bounds

We introduce a formal definition of the bounds for verifying the simulation relation of
the design and its formal specification. These bounds can be applied generally to any de-
sign and its formal specification as long as the formal models of the inputs are defined as
LTSs. In section 3.5, we present the interpretation of the bounds in a concrete model, i.e.,

68



Event-B model. Data elements including variables, constants and parameters in Event-B
model can obtain values in infinite domains such as NAT or INT. Therefore, an LTS of
Event-B model may be infinite LTS in which the state space and the set of actions may
be infinite sets. Applying the model checking technique requires a finite representation
of the target system. Firstly, the bounds are defined to restrict the range of every data
element including variables, constants and parameters. We can obtain a finite LTS asso-
ciated to the Event-B specification within the bounds. Basically, the restriction of every
data element produces a finite representation of the target system; this makes possible to
apply the model checking technique. This is shown in some case studies such as vending
machines, elevators, controlling cars on a bridge. On the other hand, as for complex sys-
tems like OSEK/VDX operating systems, which include several data elements and several
functionalities, the size of the LTS may be so large that it could easily cause the state
explosion when we apply model checking, event though the LTS is finite. To avoid the
state explosion, our idea is to lead the verification to focus on partial behaviors of target
systems. We additionally define restriction of service functions of the target system and
the depth of the execution as well. With these restrictions, we can check each functionality
of OSEK/VDX OS independently from the other functionalities, e.g., the task manage-
ment is checked independently from the resource management, the event management,
and the interrupt handling. We also can check each small groups of functionalities instead
of all at one, e.g., checking the combination of task management, resource management
and event management. Each of these groups represents some essential behaviors of the
target system. We could distribute partial behaviors in variations of the environment. In
our idea, partial behaviors are decided according to the properties and the bugs of the
target systems to be checked. For example, one important property of the OS is that “An
extended task in the waiting state must be released to the ready state if at least one event
for which the task is waiting has occurred”. In order to check this property, we need use
two tasks, one event, and three service function including ActivateTask, WaitEvent, and
SetEvent. We found that one could avoid the state explosion if we use reasonable ranges
for data elements and service functions. Even though we cannot show the conformance
of the design and the specification in the infinite scope but if an error is returned within
the bounds, we can show it really exists in the design.

Mappings

In the framework, we use three kinds of mappings to relate elements in the Event-B
specification to those in the Promela Design: Variables → Variables, Values → Values,
and Events → Function calls.

In Event-B, variables have either basic types, set types, or types defined by relations
and functions. In Promela, variables have either basic types or complex data structure
types like arrays and record types. We consider possible mappings for variables in Event-B
and Promela as follows:

• Mappings relate variables having basic types in Event-B to those in Promela, e.g.,
cred 7→ credit

• Mappings relate variables having set types in Event-B to arrays in Promela, e.g.,
stock 7→ stock
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• Mappings relate variables, which are elements of a set in Event-B (stock = {a, b, c}),
to variables, which are elements of an array in Promela (byte stock[3]), e.g., a 7→
stock[0]

• Mappings relate variables defined by relations (tstate ∈ TASK×STATE) or func-
tions (tstate ∈ TASK → STATE) in Event-B to variables being elements of a
record type in Promela (typedef TCB{byte tstat; ...}; TCB tsk state[N TASK];):
e.g., tstate(a)7→tsk_state[0].tstat

We found that we dealt with all mappings for variables as mentioned above in the case
studies; and, it is not difficult to define those mappings. In the case studies, we just
enumerate all variables appearing in the specification and the design and then relate
them to each other.

There are several variations to define mappings from values in the Event-B specification
to those in the Promela design even though every range of values has been bounded. For
example, we consider the range of values for tasks. We define a carrier set namely TASK

as a finite domain for task. TASK consists of identifiers of tasks defined in Event-B, e.g.
TASK = {a,b,c}. In the Promela design, identifiers of tasks may obtain values in range
[0..255] of byte. Therefore, a may be mapped to any value in [0..255]. Similarly,
any value in [0..255] is possible for b and c as long as values mapped to a, b, and c

are not identical. Consequently, there are 255 ∗ 254 ∗ 253 variations to define mappings
for values in TASK in Event-B to [0..255] in Promela. A question may arise here, i.e.,
whether we need to take all variations into account in the verification. Firstly, we consider
variations for the task priority, as explained in section 4.8, if there are two tasks and the
value domain for the task priorities is defined as [1..2], there are 4 variations to assign the
priority for the tasks. They are (1,1), (1,2), (2,1), and (2,2). The OS behaves differently
with different variations of assignment of the priorities for tasks, interruption routines,
and the ceiling priorities for resources. To make sure all possible behaviors to be checked,
all variations should be taken into account in the verification. Then we consider variations
for the task identifier. We assume that the behaviors of target system are independent
from what variation is used for the task identifier in the verification. Therefore, we can
choose one of variations to use in the verification. Thus, we consider that if the behaviors
of the target system depend on what variation is used, all variations should be used so
that the verification could cover all possible behaviors of the target system. Otherwise,
we can choose one of variations to use in the verification. However, if the range of values
is large, e.g., hundreds of elements, it takes the users significant time to enumerate all
variations. Regarding to mappings for values, another question here is that in an actual
implementation of vending machines, the customers can press two buttons, left and right,
to select the same drink; how to define mappings for values in the specification and the
design in this example. We suppose that b is a value in the specification that represents a
drink to be selected by the customers; and, left and right are two values in the design
that represent the same drink to be selected. We need to relate b to left and right.
Generally, we may define one-to-one and many-to-one mappings. For this example, we
can define two one-to-one mappings: one mapping is relating b to left; and another is
relating b to right.

To relate events in the Event-B specification to function calls, we enumerate all enabled
events appearing in the LTS generated from the specification; we also enumerate all
function calls which can trigger functions in the design. Then we define mappings to
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relate the events to the corresponding function calls. Mappings may be one-to-one when
one event in the specification is realized by one function in the design like mappings
defined in case studies of vending machines (e.g., restock(a)7→restock(M1)), operating
systems (e.g., GR(b,res1)7→_GetResource(task2._tid,res1._rid)); or, many-to-one
when multiple events in the specification are realized by a function in the design. Many-
to-one mapping is defined when the specification include non-deterministic actions. We
regard an event with a non-deterministic action as multiple events with deterministic
actions. For example, event e in Event-B with a non-deterministic action has the general
form ‘e : any u where g(x, u) then x′ :∈ [a1(u), a2(u)]’. We suppose that event e is realized
by function F in the design. We regard e as two events with deterministic actions: ‘e1
: any u where g(x, u) then x′ := a1(u)’ and ‘e2 : any u where g(x, u) then x′ := a2(u)’.
It seems that two events e1 and e2 in the specification are realized by one function F in
the design. Therefore, f(e1) = F and f(e2) = F . We consider that it is not difficult to
define this kind of mappings.

Coverage

The coverage of this verification is evaluated by how much of the specification is satisfied
by the design. In our experiments, the design is checked against the LTS which are gen-
erated from the specification within input bounds. There are two viewpoints to evaluate
how much of specification is represented in the LTS. They are structure and behavior.
Structure refers to a set of entities concerned with the configuration. Behavior refers
to system services. Therefore, we divided the coverage criteria into two types: structure
coverage means how large of the configuration is used in the verification; and behavior cov-
erage refers to not only functions called but also the order of function calls. For structure
coverage, we determine the bounds of the execution sequences based on the properties of
interest. Specifically, we define the bounds at least as large as to cover the configuration
appearing in the scenario corresponding to the property. For these bounds, we were able
to check important properties of the OS within a reasonable time and memory space. To
get more reliability in the verification, we need to extend the bounds as large as possible
depending on the machine capacity.

For behavior coverage, we have checked each functionality such as task management,
resource management, event handling independently of others, including both of regular
sequences and irregular sequences. Even though we cannot check all the functionalities
at once due to the state explosion we still need to check at least the combination of
functionalities such as the combination of resource management and event handling, and
combination of event handling and interrupt processing. Checking this combination is
important because it is known that bugs often come from the interaction of different
functionalities. In order to check multiple functionalities at once while avoiding the state
explosion, we need to make the bounds of configuration as small as possible. We consider
that it is important to have a good balance between the ranges of structures and behaviors
based on the properties to be checked.

It is important to check that the intended scenarios are actually contained in the
execution sequences generated from the Event-B specification. This can be easily checked
by traversing the execution sequences accordingly with the scenarios. By checking this,
we can raise the reliability of the Event-B specification as a generalization of the scenarios.
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We can also ensure that the design model is checked at least with these scenarios.

Generation of Environment

The behaviors of the target systems depend on sequences of function calls from their
environments. The size of the environment depends on the number of invocations and
relations between them. The number of invocations equals to the number of transitions
in the LTS generated from the specification. Considering the statistics shown in Tables
3.5, 4.5, and 4.6, the number of transitions (#Trans) may reach thousands or more. For
the comprehensive verification, we need to use the environments that cover all possible
sequences of invocations, this means, all possible relations between invocations must be
included. It is hard to manually describe the environment with hundreds of invocations
or more. Accordingly, an advantage of our framework is that it is able to systemati-
cally generate all possible sequences of invocations from the execution sequences of the
specification in Event-B. This is essential to generate the environments for the compre-
hensiveness of verification with respect to the specification. Another advantage of the
framework is to produce reliable environments that there is no contradiction between
sequences of invocations.

Target of Framework

Our framework was applied to verify the designs of practical systems. The framework
directly checks the designs against their formal specifications. Although we show the
experiments, when our framework is applied to the automotive operating system, the
vending machine, controlling cars on a bridge, and elevator controller, it is not limited to
these applications. Characteristic of the framework is as follows:

• The simulation relation is defined based on LTSs.

• The states are interpreted as value assignments.

• The design is described as a collection of functions which update the value assign-
ments.

• The environment is described as a collection of invocations.

Reactive systems are event-driven systems; it is convenient to describe each event as a
function. Therefore, this style of models is adopted not only for target systems used in
our case studies but also other reactive systems. If a system is described according to this
style, it can be verified by straightforwardly applying our framework.

In our case studies, Promela is used as a specification language to describe the design
and the environment; however, our framework can be applied for the designs described in
not only Promela but also other languages as long as they can deal with a collection of
functions for the design and sequences of invocations for the environment.
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Languages for Specification and Design

In the framework, we use different languages to describe the specification and the design.
In particular, Event-B is adopted for the specification and Promela is adopted for the
design. From case studies, we found Event-B is indeed convenient to describe the spec-
ification. We can easily define abstract data types using carrier sets (e.g., PRODUCT
in case of vending machines) and define effect of operations using set operators (e.g., set
minus used to describe effect of moving an item from a container). In addition, Event-B
provides tools to show the consistency of the specification before using the specification
to check the design. Hence, we could check the design against a reliable specification.
This would drastically improve the reliability of model checking results because the spec-
ification is reliable. We introduced the bounds for the verification. Such bounds could be
easily implemented in Event-B model. Also, Promela is convenient to describe the design.
It provides implementable data structures, e.g., arrays, record types, and various control
structures, e.g., loops, selection. We could straightforwardly describe design decisions by
using these control structures based on complex data structures. Due to this convenience,
low cost and low effort are required for describing the specification and the design. This
also improves the quality of the specification and the design.

Verification of OSEK/VDX OS Design

We applied the framework to verify the design of OSEK OS. We aimed at some essential
behaviors of OSEK OS including effect of each function, combination of functions, and
scheduling policy. We aimed at both of regular and irregular behaviors of OSEK OS. We
described all essential behaviors, that we intended to verify, in Event-B. We found that it
is convenient to describe these behaviors in Event-B. We strictly followed the procedure
to formalize the behaviors of OSEK OS in Event-B. Therefore, we believe in the quality
of the specification of OSEK OS before using it to verify the design. To avoid the state
explosion, we used proper bounds so that the verification focused on partial behaviors
of OSEK OS. The bounds are determined according to the properties of interest. The
mappings were easily defined in this case study. Consequently, essential behaviors of
OSEK OS were really verified against intended behaviors appearing in the specification.
All bugs, which were intensionally added into the design of OSEK OS, were detected
quickly. After verifying the design of OSEK OS by applying our framework, we get high
confidence in quality of the OSEK OS design. In addition, we also considered that there
may be some kinds of bugs that could not be detected by our framework. For example,
boundary check could not be checked for large number of tasks (e.g., hundreds, thousands
of tasks). However, this kind of bugs is easy to review. Separately, the correctness of
scheduling is an important property of OSEK OS. It is difficult to review; however, it
could be checked by the framework.

Practicality of Framework

We performed some case studies to apply the framework to verify reactive systems in-
cluding vending machine, elevator, a system for controlling cars on a bridge, and OSEK
OS.
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We consider the scalability based on outputs of our experiments. Using our machine
(memory capacity: 8 gigabytes), Spin can use around 430 megabytes for total memory
usage, in which around 230 megabytes is used to store states. The outputs of the experi-
ments show that the framework can handle around 25,000 invocations and store 400,000
states. This scalability is reasonable with OSEK OS because we could have a good balance
between structure and behavior perspectives of OSEK OS in the verification. OSEK OS
provides several groups of functions and its design describes several complex data struc-
tures. These easily cause the state explosion; however, we could properly distribute the
partial behaviors to be checked in variations of the environment by using bounds decided
according to the properties of interest. Thus, we consider that this framework could be
applied to verify real systems that are similar to OSEK OS.

In the framework, the bounds are introduced to restrict the behaviors to be checked.
Even though the verification focuses on a finite scope, the intended properties could not be
missed if we follow the procedure to decide the proper bounds. In particular, the essential
behaviors satisfying the intended properties are included in the behavior scenarios, which
must be studied to determine the bounds. Then, we could check that these scenarios are
actually contained in the execution sequences generated from the Event-B specification
by traversing the execution sequences accordingly with the scenarios. This makes sure
that the essential behaviors are really verified. Accordingly, the typical bugs, which could
be included in the conditional expression and the computation of functions, could be
detected by the framework. We consider that the framework can be applied to detect
such kinds of bugs in real systems.

In order to apply the framework to verify the practical systems, the users must provide
inputs: the formal specifications in Event-B, the bounds, the mappings, and the design
in Promela. It is not avoidable to manually produce the first two inputs; however, we
presented guidelines to facilitate these tasks. As for the third tasks, based on the case
study of a real system, we consider that the users could easily give the mappings and
describe them in the form of tables. As for the last tasks, it is possible to generate the
design from the specification. Some existing tools support this task; for example, [37]
supports translating from Event-B to Promela. Then, we add details of design decisions
into the target model. Consequently, it is possible for the users to provide the necessary
inputs for applying the framework to check the designs of the reactive systems.

One may have a question that whether this framework is appropriate for every reactive
system. In our case studies, the target systems range from simple (e.g., vending machines
with a few of service functions, or controlling cars on a bridge with only basic data types) to
complex (e.g., OSEK/VDX OS with several groups of service functions and complex data
structures). The framework could be straightforwardly applied to verify these systems.
However, with regard to the system for controlling cars on a bridge, which contains only
basic data types, one can easily describe both the specification and the design in Event-B.
In this case, one can check the consistency between the specification and the design in
Event-B based the refinement technique provided by Event-B. As for the other systems,
which contain complex data structures and highly optimized behaviors, describing the
design in Event-B returns a lot of proof obligations, whereas it is convenient to describe
the design of such systems in imperative languages like Promela. Therefore, we consider
that our framework is appropriate to apply to the reactive systems that contain complex
data structures and highly optimized behaviors.

74



Chapter 6

Related works

Verification of reactive systems

There are some research directions for verification of the reactive systems. We present
here typical researches in this topic. [50] proposes an approach for modeling and verifi-
cation of reactive systems using Rebeca (Reactive Object Language). Rebeca is an actor
based language, which is precisely defined with a formal foundation; however, it could be
easily used by software engineers. Furthermore, Rebeca facilitates applying compositional
verification techniques by a modular design approach. [50] also provides a tool to trans-
late the Rebeca models into target languages of existing model checkers, e.g., SMV and
Promela. This makes it possible to applying model checking to actor-based models. The
properties to be checked are described in LTL-X, that is LTL without the next operator.

[17] proposes a natural integration of information flow properties into linear-time tem-
poral logics. This is to verify the information flow properties with constraints such as
when and under which conditions a variable has to be kept secret. A case study is pre-
sented to demonstrate the motivation. The target system is used in the case study is a
conference management system. A typical property to be checked is “All intermediate de-
cisions of the program committee are never revealed to the author until the notification”.
The approach presented here is adding a new modal operator (hide), that expresses the
requirement that the observable behavior of a system is independent of the choice of a
secret, into the linear-time temporal logics.

[35] proposes an approach to verify the liveness properties of the reactive systems
using the Event-B method. By considering the limitation of the Event-B method, this
work focuses on applying the language TLA+ to verify the liveness properties on Event-B
models. TLA+ is an extension of the temporal logic introduced in [41]. The contribution
of this work is divided into two parts. The first part extends the expressivity and the
semantics of the Event-B model to be able to transform the Event-B model to a TLA+
module. The second part is to verify the liveness properties of both finite systems and
infinite systems, which are described in the extended Event-B. For the finite model, the
TLC model checker[55] is used. For the infinite model, the refinement technique of Event-
B is applied to preserve the liveness properties through refinement steps.

[2] applies the Reactive Systems Development Support (RSDS) method to specify and
verify the reactive systems. A RSDS is verified using the B theorem-prover. B however
requires user interaction and is not capable of proving temporal properties easily, this
work extends RSDS by integrating model checking so that temporal properties can be
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verified. The model checker used is the Symbolic Model Verifier (SMV).
The above researches aim at the verification of the reactive systems against the tem-

poral logic properties. The target systems are originally described or translated into
languages of the verifiers. Our motivation is the gap between the specification and the
design of the reactive systems. For this gap, we use appropriate specification languages
for each of them, separately. We adopt Event-B for the specification and Promela for the
design. Our verification framework is an integration between Event-B and model check-
ing technique when Promela/Spin is used in the framework. However, this integration is
different from the integrations presented in [35] and [2]. We originally describe the design,
model of the system to be checked, in Promela, whereas both [35] and [2] describe the
system model in Event-B. The specification is described in Event-B to ensure the internal
consistency. The verification conditions are generated from the Event-B specification and
encoded in assertions which can be checked by Promela/Spin.

Verification of operating systems

[10] and [24] present case studies on checking the operating systems compliant with
OSEK/VDX. In [10], the authors describe the properties of interest in temporal logic
formulas and describe the design in Promela. In [24], the authors express the properties
in terms of the first-order logic and model the OS as CSP process. In these works, the
limited configurations are used in the experiments to apply the model checking; however,
how to estimate appropriate configurations for the verification is not explained. By using
Event-B, we easily specify the properties and the external behaviors of the OS and ensure
the quality of the specification before using it to check the design. In addition, we present
a way to determine the appropriate bounds for the verification of desirable properties.

[26] and [28] present approaches to verify the OS kernels based on theorem proving.
Theorem proving can be used to verify the infinite systems; however, it generally requires
a lot of interactive proofs. In our framework, we use model checking combining with
tools of Event-B. Although, ranges are bounded due to the limitation of model checking;
however, we are able to improve quality of the properties checked and get completely
automatic verification. Therefore, we have a high degree of confidence in the verification
results.

Verification of systems based on simulation relation

FDR [46] is a refinement checker for the process algebra CSP. Inputs of FDR are the
specifications and the implementations written in the same language, that is CSP. FDR
has been applied in some verification frameworks as presented [8, 47, 15, 48]. These
frameworks require to produce models of the target systems (both high-level and low-level
descriptions) in CSP. Our framework, different specification languages are used for the
high-level and the low-level descriptions. This allows to choose the appropriate languages
to facilitates describing the specification and the design.

The simulation of two LTSs was introduced in [34] in which the key point is to find a
relation between state spaces of two LTSs such that the simulation rule holds. In our ap-
proach, the relation between state spaces of two LTSs is given based on mappings between
the variables and the values of two models. The verification conditions are generated for
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such relation. In the last step of the framework, Spin checks whether the verification
conditions hold. If so, we could show that the design simulates the specification by the
given relation.

Generation of LTS from Event-B model

[29] presents the ProB tool which supports interactively animating B models. Using
ProB, users can visualize the current state and the enabled operations in each state.
Users also can set an upper limit on the number of ways that the same operation can
be executed. However, ProB requires some interactions with the users. In our work,
we firstly set finite ranges for types; for complex systems like operating systems, we
may restrict the functionalites and the depth of the execution sequences in the Event-B
specification. Then, we explore all possible sequences of state transitions within defined
ranges. Our work does not support visualizing the LTS; however, the generation of the
LTS is completely automatic.

[6] defines the semantic of Event-B model as labeled transition systems to reason about
behavioral aspects of specifications in Event-B. We define the semantic of Event-B model
in order to check the simulation relation by using Spin. Therefore, several notions used in
our definition are different from those in [6]. In addition, we precisely define finite ranges
of variable values in Event-B specification as bounds of our verification; then, we generate
all possible behaviors from Event-B specification within defined ranges. We use tools of
Event-B to ensure the internal consistency of the specification before using it to generate
the properties to be checked.

Construction of environments of the open system

[52] specifies assumptions about environment behaviors to form a model of the environ-
ment. The approach is implemented in the Bandera environment generator (BEG) which
automatically generates the environment scripts. The environment scripts are used to
reason about properties of several nontrivial concurrent Java programs. This approach
has been applied to web applications [42] and commercial softwares [53].

[54] verifies the OSEK OS by constructing a general model of the environment from
scratch: the environment model includes a class diagram and state diagrams of objects
in the environment. These diagrams are composed to generate the environment scripts.

In our work, the environment is generated from the Event-B specification. Hence, by
construction, it is comprehensive with respect to the specification. The environment is
used to exercise the design and check the given relation between variables of the Promela
design and variables of the Event-B specification in every reachable state. This guarantees
that the design conforms to the specification. Also, the correctness of the specification is
guaranteed by tools of Event-B; the quality of the environment is improved.

Combination of Event-B model and model checking

For combination of Event-B and model checking, tools such as ProB[29] and Eboc[32] work
as model checkers for Event-B. In these approaches, the target models are described in
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Event-B. ProB and Eboc directly check the target models against the internal consistency.
We use tools of Event-B to ensure the internal consistency. We use our own tool to
generate the LTS of the Event-B specification.

In another approach, [37] translates Event-B model into Promela model and use Spin
to check the model. We have not directly translated Event-B code into Promela but use
the LTS of the Event-B specification to generate environments and assertions which are
translated into Promela. Then, we use Spin to check the simulation relation between the
design model and the specification by confirming the assertions.

Generation of C code from Event-B model

[33] presents a translation tool that automatically generates efficient target programming
language code (C, C++, Java and C#) from Event-B formal specification. This work uses
software model checking tool according to different target language like BLAST [9] for ’C’
language. The software model checking tools are complement of the analysis conducted
on Event-B specification by making it possible the verification of property preservation
at the code level. Our tool also translates Event-B code to C++ code; however, our
intention is different from that of [33]. [33] translate Event-B model to C code to obtain an
implementation. Our intention is to generate the LTS of the specification. For generation
of the LTS, we must execute the Event-B specification within some bounds. Our tool
translates the specification from Event-B to C++ to execute the specification in C++
and generate the LTS.

From informal specification to formal specification

There are three steps in a general process of formalizing an informal specification: (1)
Analyze the informal specification; (2) Interpretation and (3) Validation [7]. These steps
match the step A, D1 and D2 in our framework, respectively. The steps B and C are
added in our framework to support for validating the formal specification against the
informal specification. The list of features can be given automatically thanks to some
natural processing techniques [25]. When translating the informal descriptions of the
constraint to the logical predicates, we can refer to some guidelines for translating from
informal requirements to temporal logic formulae proposed by [20].

[16] applied B method to specify the main functionalities of FreeRTOS, a mini and
specific RTOS has been implemented in C and assembly language. This work represented
the first step of a formal modeling using B method. This model provides a functional
specification of operations related to task management and message queues. It is the
result of analysis of the documentation of the system as well as of the source code of
its implementation. Checking the presented model with the document of the system is
not discussed. Compared to this work, our work targets a faithful formalization of the
OSEK/VDX OS specification. We present some ways to support for validating the formal
specification against the original specification.

[9] introduced integrating specification techniques proposed by contributions from
WIFT, 1998. These techniques only integrate Object Oriented models and formal models.
Similarly, [21] focuses on integrating the structure analysis diagrams and formal models
using Z. The common fundamental approach of the existing contributions is to define rules
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for mapping the graphical constructs to the constructs in the formal modeling notations.
Their objective is to increase the complement of formal and informal specification. Our
work focuses on using Event-B to develop a formal model of RTOS from a specification
that is written completely in natural language. Our objective is the likely equivalence
between the formal specification and the original specification.

[27] proposed an approach to establish a traceability from informal requirements to
formal refinements. In this approach, they used WRSPM reference model to provide
structure to both of informal requirements and formal model for the purpose of achieving
the traceability. This approach involves taking a requirement and identify phenomena and
artifacts of the environment and system for that requirement. The identified phenomena
and artifacts are then modeled and traceability information is produced. In our approach,
we establish direct trace links from features singled out from the informal specification to
the correspondent elements in the formal specification.

[14] formally specified a conventional paradigm of operating system. He used Z and
Object-Z as formal specification languages in this work. Compared to our work, this work
makes the formal specification from scratch and our work formalized an existing informal
specification.
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Chapter 7

Conclusion and Future Directions

Conclusion

We proposed an approach to verify designs against their formal specifications which are
described in different specification languages respectively. This is a new combination be-
tween Event-B and Promela/Spin. A primary achievement of the approach is to make it
possible to describe the specification and the design in appropriate languages for a verifi-
cation of the design. Formal specification languages are intended to facilitate describing
the specifications. Promela is intended to analyze the designs. Our approach follows these
intentions faithfully. In fact, as mentioned in Chapter 2, it is natural for reactive systems
like operating systems to describe the designs in the imperative specification languages.
On the other hand, describing their detailed properties in temporal logic is generally hard.
It is easy to imagine that the temporal logic formulas representing the specification shown
in the case study become very complex and prone to mistakes. Instead of the temporal
logic, we provide a way to represent the specification in formal specification language
Event-B and check the design against it with the Spin model checker. Event-B is appro-
priate to represent the specification because it has rich notions such as sets and relations.
By using appropriate specification languages for the specification and the design, we could
deal with the gap between them. We also deal with the difference of languages used to de-
scribe two model by checking a simulation relation between them based on the semantics
of the LTSs. In addition, Event-B allows us to ensure the consistency and the correctness
of the specification by its verification facilities such as discharging proof obligations and
refinement. That is, we can check the design against such consistent and correct specifi-
cation. This would drastically improve the reliability of model checking results because
the specification is reliable.

We conducted some case studies in which our framework is applied to verify the prac-
tical systems. The target systems used in our case studies range from simple systems, e.g.,
vending machines, to complex systems, e.g., automotive operating systems. Especially,
we applied the framework to verify a real OS design which complies with the OSEK/VDX
standard. The framework is straightforwardly applied to check the designs of the target
systems with respect to their specifications in Event-B. The bounds can be effectively
applied in the Event-B specifications. In addition, it is feasible to generate the LTS from
the Event-B specifications. This is a source to generate exhaustive sequences of function
calls for verification of the design. The results of the experiments demonstrate that this
approach can be practically applied in verification of important properties and detection
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of typical bugs of the target systems. This exhibits an ability to deal with the specifica-
tions and the designs which are described in different specification languages. Therefore,
we can choose appropriate specification languages to describe the specification and the
design for the purpose of verifying the design.

Future directions

There are some directions for our future works.

Detecting redundant behaviors in the design. The behaviors of the design are trig-
gered by stimulus from the environment. In our framework, the environment is generated
from the specification. Hence, by construction, it is comprehensive with respect to the
specification. We are going to consider the behaviors of the design that are redundant
compared with the specification. Such behaviors are never triggered by the environ-
ment; therefore, they could not be verified. An preliminary idea is to firstly construct
an universal environment from scratch. Then, we could use this environment to exercise
the behaviors of both specification and the design and check the correspondence of the
results.

Extending of the framework for multiple languages of the specification and the
design There is a possibility that our approach is applicable not only for Event-B and
Promela but also the other specification languages. We plan to extend the verification
framework to accept the additional choice of the specification languages. One of main
tasks in the framework is to generate the LTS from the specification. Therefore, the
framework could be extended to accept the different languages for the specification as long
as it is feasible to generate the LTS from the specification described in those languages.
In the framework, the design is described as a collection of functions which update the
value assignments. The environment is described as a collection of invocations. Our
framework can be extended to accept the designs described in not only Promela but also
other languages as long as they can deal with a collection of functions for the design and
sequences of invocations for the environment.

Generating test cases from the Event-B specification. Verification operates on
formal models. This makes sure that the design satisfies the specification. Unlike veri-
fication, conformance testing is performed on the real implementation of the system by
means of interactions between the implementation and test cases derived from the spec-
ification. Hence, the two techniques are complementary. In the proposed framework, we
generated the LTS from the Event-B specification. This LTS contains all possible exe-
cution sequences described in the specification within the given bounds. Therefore, we
could generate the test suite from the LTS. In this way, the test suite is exhaustive with
respect to the specification within the given bounds.
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Appendix A

Expressions

A.1 Expressions and Boolean Expressions in Specifi-

cation

The set of expressions in specification models is defined as Exp ::= A|S, where A ::=
c|x|N|A1+A2| A1−A2| A1∗A2|A1/A2 and S ::= ∅|{A}|S1∪S2|S1∩S2| S1\S2|S. where “A”
is arithmetic expression, “S” is set expression, “c” is constant, “x” is variable, and “N”
is natural number.

Definition 14 (Evaluation of expressions in Event-B). Let [exp]σ denote the value of an
expression exp in state σ. [exp]σ is inductively determined as follows: [N]σ = N, [x]σ =
σ(x), [c]σ = c, [A1 +A2]σ = [A1]σ + [A2]σ, [A1−A2]σ = [A1]σ − [A2]σ, [A1 ∗A2]σ = [A1]σ
∗ [A2]σ, [A1/A2]σ = [A1]σ / [A2]σ, [∅]σ = ∅, [{A}]σ = {[A]σ}, [S1 ∪ S2]σ = [S1]σ ∪ [S2]σ,
[S1 ∩ S2]σ = [S1]σ ∩ [S2]σ, [S1 \ S2]σ = [S1]σ \ [S2]σ, and [S]σ = [S]σ.

The boolean expression is defined asBExp ::=>|⊥|A1=A2|A1≥A2|B1∧B2 |B1∨B2|¬B|x ∈
S. where “B” is boolean expression, “>” is ‘true’, and “⊥” is ‘false’.

Definition 15 (Evaluation of boolean expressions). Let [bexp]σ denote the value of a
boolean expression bexp in state σ. [bexp]σ is inductively determined as follows:

[>]σ = tt,
[⊥]σ = ff ,

[A1 = A2]σ =

{
tt, if [A1]σ = [A2]σ
ff, otherwise,

[A1 ≥ A2]σ =

{
tt, if [A1]σ ≥ [A2]σ
ff, otherwise,

[B1 ∧B2]σ =

{
tt, if [B1]σ = tt and [B2]σ = tt
ff, otherwise,

[B1 ∨B2]σ =

{
tt, if [B1]σ = tt or [B2]σ = tt
ff, if [B1]σ = ff and [B2]σ = ff,

[¬B]σ =

{
tt, if [B]σ = ff
ff, if [B]σ = tt.
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A.2 Expressions in Design

Expression in the design is defined as PExp ::= c | x | p | PExp1 + PExp2 | PExp1-
PExp2 | PExp1 ∗ PExp2 | PExp1 / PExp2. where ‘c” is constant, “x” is variable, and
“p” is parameter.
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Appendix B

Mappings used in verification of OS

Table B.1: Correspondences between values in Event-B and those in Promela

DS DD

task identifier a 10
b 11
c 12

task priority 1 1
2 2

task state sus 1
rdy 2
run 2

Table B.2: Relating variables in S to those in D by using itermediate variables in E

Pattern No. VS VE VD
1 a task1 tsk state[0]

b task2 tsk state[1]
c task3 tsk state[2]

2 a task1 tsk state[1]
b task2 tsk state[2]
c task3 tsk state[0]
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Table B.3: Correspondences between enabled events and function calls

Enabled events Function calls
AT(a) ActivateTask( task1. tid)

CT(a, b) ChainTask( task1. tid, task2. tid)
AT(c) ActivateTask( task3. tid)
AT(b) ActivateTask( task2. tid)

CT(a, c) ChainTask( task1. tid, task3. tid)
CT(b, c) ChainTask( task2. tid, task3. tid)
TT(b) TerminateTask( task2. tid)
TT(c) TerminateTask( task3. tid)
TT(a) TerminateTask( task1. tid)

GR(a, res1) GetResource(task1. tid, res1. rid)
WAITEVT(a, evt1) WaitEvent(task1. tid, 1)

SETINTR(inr1) SetINTR(isr1. iid)
SETINTR(inr2) SetINTR(isr2. iid)

RESETINTR(inr2) ResetINTR(isr2. iid)
GR(b, res1) GetResource(task2. tid, res1. rid)

RESETINTR(inr1) ResetINTR(isr1. iid)
RR(b, res1) ReleaseResource(task2. tid, res1. rid)
RR(a, res1) ReleaseResource(task1. tid, res1. rid)

SETEVT(b, a, evt1) SetEvent(task2.tid, task1.tid, 1)
GR(c, res1) GetResource(task3. tid, res1. rid)
RR(c, res1) ReleaseResource(task3. tid, res1. rid)
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