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Abstract

This thesis concentrates on joint optimization of transmit power allocation and receive
filtering in multiuser, multi-antenna communications. Due to the increasing number of
wireless devices, the design of energy-efficient communication links is becoming in-
creasingly important. In cellular mobile communications, reducing the average power
consumption in uplink transmission is beneficial for users in order to extend battery life
and, hence, energy efficiency in general. However, the power consumption of the high
power amplifier (HPA) at the transmitter depends on the peak power of the transmission.
This thesis focuses on power allocation problems for single-carrier (SC) frequency divi-
sion multiple access (FDMA) and orthogonal FDMA (OFDMA) transmission assuming
iterative reception.

The goal in the first scheme presented in this thesis is to reduce the average power
consumption by designing a power allocation method that takes into account the con-
vergence properties of an iterative receiver in multiuser uplink communications. The
proposed scheme can guarantee that the desired quality of service (QoS) is achieved
after a sufficient number of iterations.

Reducing the peak-to-average power ratio (PAPR) in any transmission system is
beneficial because it allows the use of inexpensive, energy-efficient power amplifiers.
The goal in the second scheme presented in this thesis is to control the PAPR of the
transmitted signal. Hence, in addition to the QoS constraint, the instantaneous PAPR
constraint is derived for SC-FDMA and OFDMA transmission. Moreover, a statisti-
cal approach is considered in which the power variance of the transmitted waveform is
controlled. The QoS and PAPR constraints are considered jointly and, therefore, the
proposed power allocation strategy jointly takes into account the channel quality and
the PAPR characteristics of the power amplifier. However, the PAPR constraint can be
adopted to any SC-FDMA or OFDMA framework and it is not restricted to the scheme
presented in this thesis. The objective of the optimization problems considered through-
out the thesis is to minimize the sum power. The majority of the derived constraints are
non-convex and therefore, two alternative successive convex approximations (SCAs)
are derived for all the non-convex constraints considered.

The numerical results show that the proposed power allocation strategies can signif-

icantly reduce the average transmission power of users while allowing flexible PAPR




control. Hence, the proposed methods can be used to extend battery life for users and

especially improve the QoS at the cell edges.

Keywords: Power minimization, soft interference cancellation, MMSE receiver, mul-

tiuser detection, single carrier, OFDMA, EXIT chart, convergence constraint
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Symbols and abbreviations
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a complex phase shift at the m™ time instant associated with the com-
bination of the g™ and n™ phase shifts on the Fourier precoders at the
SC-FDMA transmitter

a complex symbol belonging to a modulation alphabet ‘B

transmitted symbol of user u at time instant /

estimate of the /™ transmitted symbol of the u user

soft estimate of the ™ user’s /™ symbol

transmitted multiuser symbol vector (UNF X 1)

soft estimate vector of the multiuser symbols (UNg x 1)

soft estimate vector of the u™ user’s symbol vector (N X 1)
transmitted symbol vector of user u

vector for the detected data stream of the '™ user with elements |l§7\2
(Np x 1)

the output time domain symbol vector of the ZF filter for the u™ user
binary number field

modulation symbol alphabet

transmitted bit for the u™ user associated with the /™ bit position
interleaved encoded bit for the u™ user associated with the /™ bit posi-
tion

transmitted bit associated with the ¢ position of a symbol b;
antipodally modulated transmitted bit associated with the g™ position of
a symbol b;

transmitted bit vector associated with a symbol b;

encoded bit vector of user u

interleaved encoded bit vector of user u

complex number field

forward error correction code of user u

a parameter depending on the transmitted symbol sequence of user u at
the /™ frequency bin

a parameter depending on the transmitted symbol sequence of user u

at the m™ time instant associated with the combination of the symbols
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from frequency bins n; and n;

the expectation operator

the EXIT function of the equalizer of user u

the EXIT function of the equalizer of user u having equal a priori inputs
from all the decoders

the EXIT function of the decoder of user u

an element of the DFT matrix for the m™ row and the /™ column

DFT matrix (Ng X Ng)

block diagonal DFT matrix having DFT matrices on the diagonal (NgN X
NpN)

an element (k,m) of the SC-FDMA precoder

fading gain for the /™ multipath component in the channel between the

h yser and the ! receive antenna

ut
block circulant channel matrix of user u (NgNr X UNF)

circulant channel matrix of user u associated with receive antenna r
(Nr X NF)

the average MI between the transmitted interleaved coded bits ¢’ and
the LLRs i; at the output of the equalizer

the average MI between the transmitted interleaved coded bits ¢’* and
the LLRs L., at the output of the equalizer of the u'™ user at the k™ MI
index

the average MI between the transmitted interleaved coded bits ¢’* and
the LLRs L, at the input of the equalizer

the a priori MI for the equalizer of user u provided by the decoder of
user /

the average MI between the transmitted coded bits ¢* and the LLRs Ly,
at the input of the decoder

the average MI between the transmitted coded bits ¢* and the LLRs L,
at the output of the decoder

the average MI at the output of the decoder of the u™ user at the k™ MI
index

the average MI at the output of the decoder at the k™ MI index

target for the equalizer’s a priori mutual information

an identity matrix (N X N)

function which maps its argument value to mutual information



function which maps its argument value to mutual information assuming
Ng-ary quadrature amplitude modulation

number of MI indices

a log-likelihood ratio at the output of the equalizer associated with the
interleaved encoded bit ¢’}

a log-likelihood ratio at the input of the equalizer associated with the
interleaved encoded bit ¢’}

a vector of log-likelihood ratios at the output of the equalizer associated
with the interleaved encoded bit vector ¢’*

a vector of log-likelihood ratios at the output of the decoder associated
with the encoded bit vector ¢

a vector of log-likelihood ratios at the input of the decoder associated
with the encoded bit vector ¢

modulation mapping function of user u

a complex noise sample of the equivalent AWGN channel at the output
of the MMSE filter for the u™ user associated with the m™ frequency
bin

number of bins in discrete Fourier transform

length of the channel impulse response

number of bits per modulation symbol

number of receive antennas

number of frequency bins allocated to user u

a set of all frequency bins

a set of frequency bins allocated to user u

Circularly symmetric complex normal distribution with mean p and
variance 6>

I'™ diagonal element of the transmission power matrix P, associated
with the u™ user

the maximum value of transmission power

the average value of transmission power of user u

diagonal power allocation matrix (UNF x UNp)

diagonal power allocation matrix for the ™ user (Ng x Nr)

power allocation matrix for the m™ frequency bin (U x U)

received time domain signal vector (NN x 1)

received frequency domain signal vector (NgNF X 1)

11
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the input signal vector for the MMSE filter after ZF equalization
received frequency domain signal vector associated with the m™ fre-
quency bin (Ng x 1)

the output vector of soft cancelation (NgNfp x 1)

the output vector of soft cancelation for the u'" user after ZF equalization
the output vector of soft cancelation associated with the m™ frequency
bin (Ng x 1)

combination of the residual and the desired signal associated with the
uh user (NgNp x 1)

combination of the residual and the desired signal associated with the
uh user’s m™ frequency bin (Ng x 1)

real number field

forward error correction code rate of user u

transmitted symbol of user u at time instant / after IDFT

transmitted symbol vector of user u after IDFT

an auxiliary variable bounding the per subcarrier SINR for the " user’s
n™ frequency bin at the k™ MI index

a point for the local approximation

a set of auxiliary variables bounding the per subcarrier SINR

number of users

vector of noise samples (NgNr X 1)

vector of noise samples at the m™ frequency bin (Ng x 1)

zero forcing vector for the u™™ user associated with the m™ frequency bin
zero forcing matrix for the m™ frequency bin (U x Ng)

zero forcing matrix for the u user (N X NrNF)

a diagonal matrix with elements ||wy | ?

a set containing all the receive beamformers in SC-FDMA

a set containing all the receive beamformers in OFDMA

information bit vector of user u

a variable related to the power as P, ,, = e%m

a set of variables related to the power as P, ,, = e®m, u=1,2,...,U,
m=1,2,...,Np

a parameter depending on the transmitted symbol sequence of user u
at the m™ time instant associated with the combination of the symbol

power from frequency bins n; and ny
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channel vector for the m™ frequency bin of user u (Ng x 1)

frequency domain channel matrix (NgNr x UNF)

frequency domain channel matrix for the u™ user (NgNr X Nf)
frequency domain channel matrix for the u™ user’s m™ frequency bin
(Ng X NR)

frequency domain channel matrix composed of U channel vectors in the
m™ frequency bin (Ng x U)

a user-specific parameter controlling the PAPR

average residual interference of the soft symbol estimates of the u™ user
average residual interference of the soft symbol estimates at the <™ MI
index

a function controlling the minimum gap between the EXIT function of
the equalizer of user u and the inverse of the decoder’s EXIT function
of user u

a gap between the EXIT function of the equalizer of user u# and the
inverse of the decoder’s EXIT function of user u

a gap between the EXIT function of the equalizer of user u and the
inverse of the decoder’s EXIT function of user u at the k™" MI index

the effective SINR for the u" user in SC-FDMA

the effective SINR for the u™ user at the k™ MI index in SC-FDMA
the effective SINR for the u™ user at the k™ MI index in SC-FDMA with
ZF equalization

the effective SINR for the ™ user in OFDMA

the effective SINR for the u™ user’s m" frequency bin in OFDMA

the effective SINR for the u™ user’s m™ frequency bin at the k™ MI
index in OFDMA

a scaling factor of the MMSE filter for the u'" user at the k™ MI index
in SC-FDMA

a scaling factor of the MMSE filter for the u™ user at the k™ MI index
in OFDMA

a parameter depending on the transmitted symbol sequence of user u
at the m™ time instant associated with the combination of the symbols
from frequency bins n; and n;

normalization factor

a parameter depending on the transmitted symbol sequence of user u

13



the average power of the transmitted signal of user u

a noise sample in frequency domain at the m™ frequency bin

a vector of noise samples in frequency domain

auxiliary constant for the CCPA in SC-FDMA

auxiliary constant for the CCPA in OFDMA

random permutation matrix associated with user u

variance of noise

variance of the LLRs

the variance of the LLRs at the output of the equalizer of the u™ user at
the k™ MI index

the variance of the LLRs at the output of the equalizer of the u™ user’s
m™ frequency bin at the k™ MI index

the variance of the LLRs at the input of the decoder of the u™ user at the
k™ MI index

a parameter controlling the variance of the power of the transmitted sig-
nal of the u™ user

interference covariance matrix of the m™ frequency bin in SC-FDMA
(NR X Ng)

interference covariance matrix of the m™ frequency bin at the k™ MI
index in SC-FDMA (Ng X Ng)

interference covariance matrix of the m™ frequency bin at the k™ MI
index in OFDMA (Ng x Ng)

interference covariance matrix of the m™ frequency bin of the u™ user
in OFDMA (Ng X Ng)

channel gain of the equivalent AWGN channel at the output of the MMSE
filter for the u™ user associated with the m™ frequency bin

the output frequency domain symbol of the ZF filter for the u'" user at
the m'" frequency bin

data symbol in frequency domain for the u™ user at the m™ frequency
bin

data symbol vector in frequency domain

data symbol vector in frequency domain for the u' user

data symbol vector in frequency domain at the m™ frequency bin

the output frequency domain symbol vector of the ZF filter at the m™

frequency bin
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diag()
BEP
BER
BPSK
cC
CCDF
CCPA
CDMA
Ccov

receive beamforming vector for the m™ frequency bin of user u in SC-
FDMA (Ng x 1)

receive beamforming vector for the m™ frequency bin of user u at the
k™ MI index in SC-FDMA (Ng x 1)

receive beamforming vector for the m™ frequency bin of user u in OFDMA
(Nr x 1)

receive beamforming vector for the m™ frequency bin of user u at the
k™ MI index in OFDMA (Ng x 1)

filtering matrix for the u™ user in SC-FDMA (NgNr X Nr)

filtering matrix for the u™ user associated with the " receive antenna
in SC-FDMA (N x Nf)

the Kronecker product

there exists

Euclidean norm

transpose of the argument

complex conjugate transpose (Hermitian) of the argument
Moore-Penrose pseudo-inverse

values for arguments obtained through optimization

complex conjugate of the argument

takes the element (m,n) of the argument matrix

takes the elements from m to n, n > m of the argument vector
calculates the arithmetic mean of the elements of the argument vector
generates a block diagonal matrix that has the argument matrices on the
diagonal

circulant operation, in which each column of the matrix is a cyclically
shifted version of the successive column

generates a diagonal matrix that has the argument values on the diagonal
bit error probability

bit error rate

binary phase-shift keying

convergence constraint

complementary cumulative distribution function

convergence constrained power allocation

code division multiple access

change of variables
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CP
CSI
DFT
DL
EDGE
EP
EXIT
FD
FDE
FDMA
FEC
GP
GPRS
GSM
HPA
IBI
IDFT
IMT-A
IRC
ISI
1S95
ITU
ITU-R

LHS
LLR
LMMSE
LTE
LTE-A
MAP
MCS
MI
MIMO
MMSE
MRC
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cyclic prefix

channel state information

discrete Fourier transform

downlink

Enhanced Data Rates for GSM Evolution
equal power allocation

extrinsic information transfer

frequency domain

frequency domain equalization
frequency division multiple access
forward error correction

geometric program

General Packet Radio Service

Global System for Mobile Communications
high-power amplifier

inter block interference

inverse discrete Fourier transform
International Mobile Telecommunications-Advanced
interference rejection combining
inter-symbol-interference

Interim Standard 95

International Telecommunication Union
International Telecommunication Union - Radio Communications Sec-
tor

left-hand side

log-likelihood ratio

linear minimum mean square error

Long Term Evolution

Long Term Evolution-Advanced
maximum a posteriori

modulation coding scheme

mutual information

multiple-input multiple-output

minimum mean square error

maximal ratio combining



MSE
MU
MUI
NMT
OES
OFDM
OFDMA
OFDMA-ZF
PAPR
PAP
PSK
PTS
QAM
QoS
QPSK
RHS

RX

SC
SC-ZF
SCA
SCACOV
SCAGP
SC-FDMA
SDMA
Sftl/SftO
SIMO
SINR
SISO
SLM
SNR
TDMA
™

X

UL
UMTS

mean square error
multiuser

multiuser interference

Nordic mobile telephone

orthogonal allocation via exhaustive search
orthogonal frequency division multiplexing
orthogonal frequency division multiple access
OFDMA with ZF equalization

peak-to-average power ratio

power allocation problem

phase-shift keying

partial transmit sequences

quadrature amplitude modulation

quality of service

quadrature phase-shift keying

right-hand side

receiver

single carrier

SC-FDMA with ZF equalization

successive convex approximation

successive convex approximation via change of variables
successive convex approximation via geometric programming
single carrier frequency division multiple access
spatial division multiple access

soft-in / soft-out

single-input multiple-output
signal-to-interference-plus-noise-ratio
single-input single-output

selected mapping

signal-to-noise ratio

time division multiple access

transmission mode

transmitter

uplink

Universal Mobile Telecommunications System
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WCDMA
WiMAX
ZF

1G

2G

3G
3GPP
3GPP2
4G

5G
16-QAM
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wideband code division multiple access
Worldwide Interoperability for Microwave Access
zero forcing

first generation

second generation

third generation

3rd Generation Partnership Project

3rd Generation Partnership Project 2

fourth generation

fifth generation

16-ary quadrature amplitude modulation
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1 Introduction

Due to the increasing number of mobile devices, energy efficiency has become one of
the main design criteria in future wireless networks. Reducing the power consumption
of transmission devices is a straightforward and effective approach to achieving more
energy-efficient wireless communications systems. This thesis deals with power allo-
cation methods aiming to decrease both, the average power consumption and the peak
power of the transmission. This joint approach inevitably results in improved energy
efficiency for users and, therefore, extends the battery life of mobile devices.

This introductory chapter starts with a brief historical overview of mobile cellular
networks, from the first generation system up to current technology and requirements.
Furthermore, the key technical concepts used in this thesis are briefly introduced. The
scope and objectives of the thesis are then stated, followed by an overview of the con-

tributions.

1.1 Motivation and history

Economic and competitive mobile wireless services require efficient sharing of channel
resources. All sharing methods in practice introduce interference of one sort or another
which is proportional to the transmitter (TX) power. Therefore, TX power control is a
key technique to obtain better balance between the received signal and the interference,
which in turn enables more efficient sharing of channel resources [1]. Power control
is an intelligent mechanism to select TX power output such that the system achieves a
good performance. In this section, a historical overview of mobile cellular networks is
given from the power control perspective .

A new mobile generation has appeared approximately every ten years since the first
1G system, Nordic Mobile Telephone (NMT), was introduced in 1981. 1G systems were
based on analogue cellular technology and were capable of handling very limited data
or no data at all [2]. The cell sizes in an NMT network range from 2 km to 30 km. The
smaller cells were usually located in city areas to maintain better service for the larger
number of users. Car-phone versions of NMT used a transmission power of up to 15
watts (NMT-450) and 6 watts (NMT-900), and handsets up to 1 watt. The NMT system
was based on frequency division multiple access (FDMA) [3], i.e. the total bandwidth

of the system is divided into narrow frequency channels using bandpass filters. These
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channels are then allocated to users. No TX power control was employed in 1G systems,
i.e. the transmit power was designed to be large enough to cover the majority of a cell
[4]. However, the theoretical gains in power control were already known [5, 6].

The 1G system was followed by 2G in 1991. The difference to 1G was that the
data transmission technique migrated from analogue to digital, bringing the advantage
of simpler signal processing. The widely used standard was called the Global System
for Mobile Communications (GSM) [7, 8]. Later on, the General Packet Radio Service
(GPRS) [9] and Enhanced Data Rates for GSM Evolution (EDGE) [10] were also intro-
duced. In the current GSM standard, the transmission power in the handset is limited to
a maximum of 2 watts in GSM 850/900 and 1 watt in GSM 1800/1900. The cell sizes
vary according to the implementation environment; there are five different cell sizes:
macro, micro, pico, femto, and umbrella cells. The multiple access technologies used
in GSM are time division multiple access (TDMA) [11] and FDMA, such that the users
are still assigned to distinct subcarriers but these are further divided into several time
slots. In GSM, the transmission power of the mobile station was controlled by a power
control message sent by the base station [12]. In the 1990s, power control was also an
active research area in academia [13-16]. The 2G standard used in the United States
(UYS) is referred as cdmaOne/IS95 [17, 18].

The first 3G [19] system, the Universal Mobile Telecommunications System (UMTS)
[20] was introduced in 2001 and it was based on wideband code division multiple ac-
cess (WCDMA) [21]. The objective in 3G networks was naturally to solve the problems
faced in earlier networks. One of the major goals was to achieve a 3G standard that
would work over European, North American, and Asian wireless air interfaces. CDMA
was already being used in 2G in the US, and therefore separate standards bodies were
required to achieve backwards compatibility: the 3rd Generation Partnership Project
(3GPP) in Europe and Asia and 3GPP2 in North America. In 2002, CDMA2000 [22]
was standardized by 3GPP2 and it was used especially in North America and South Ko-
rea, sharing infrastructure with IS95. In CDMA systems, users transmit their signals si-
multaneously in the same frequency band. User separation is achieved by a user-specific
spreading code and hence, the time-frequency resources can be utilized efficiently. The
correlation between the spreading codes is, ideally, zero. However, this is not the case
in practice due to multi-path propagation and the limited number of orthogonal codes
[23]. Therefore, CDMA is interference limited and adaptive power control is neces-
sary to maintain the ability to serve the increasing number of users. While there have

been numerous articles considering power control in CDMA systems (see e.g. [24—26])
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the focus during the last decade has been towards multi-carrier techniques where full
orthogonality between subcarriers can be achieved. Such a technique is called orthogo-
nal frequency division multiplexing (OFDM) [27], where orthogonality among users is
maintained by allocating different subcarriers to different users. Resource management
for multiuser (MU) OFDM systems has been investigated in numerous articles (see e.g.
[28-33]). A comprehensive article on power allocation in wireless cellular networks is
found in [34].

The most recent wireless communication systems, i.e. 4G systems [35] were stan-
dardized in 2008. The standard is called Long Term Evolution (LTE) and it was not
considered to be a 4G standard before 2010, when International Telecommunications
Union-Radio Communications Sector (ITU-R) declared that LTE and Mobile WiMAX
could nevertheless be considered 4G, providing a substantial level of improvement in
performance and capabilities with respect to the initial 3G systems [36]. However, LTE
and WiMAX do not completely satisfy the International Mobile Telecommunications-
Advanced (IMT-A) requirements for cellular systems. The key features of IMT-A cel-
lular systems are [37, 38]:

All-IP packet-switched network

— Peak data rates of up to approximately 100 Mbit/s for high mobility such as mo-
bile access and up to approximately 1 Gbit/s for low mobility such as nomadic/local
wireless access

— Able to dynamically share and use network resources to support more simultaneous
users per cell

— Use of scalable channel bandwidths of 5-20 MHz, optionally up to 40 MHz

— Peak link spectral efficiency of 15 bit/s/Hz in the downlink (DL), and 6.75 bit/s/Hz
in the uplink (UL) (meaning that 1 Gbit/s in the DL should be possible over less than
67 MHz bandwidth)

— System spectral efficiency is, in indoor cases, 3 bit/s/Hz/cell in DL and 2.25 bit/s/Hz/cell

in UL,

— Smooth handovers across heterogeneous networks

The ability to offer high quality of service for next generation multimedia support.

LTE Advanced (LTE-A) was released in 2012 [39], and it was to provide higher bi-
trates in a cost-efficient way and, at the same time, completely fulfil the requirements set
by the International Telecommunication Union (ITU) for IMT-A. The key performance
improvements in LTE-A are [40]:
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Increased peak data rate: DL 3 Gbit/s, UL 1.5 Gbit/s
Higher spectral efficiency, from a maximum of 16 bit/s/Hz in LTE to 30 bit/s/Hz in
LTE-A

Increased number of simultaneously active subscribers

Improved performance at cell edges, e.g. at least 2.40 bit/s/Hz/cell for DL 2x2
multiple-input multiple-output (MIMO).

The main objective of this thesis is to improve performance at cell edges by introducing
a novel power allocation method, taking into account the properties of an iterative re-
ceiver (RX) and the characteristics of a transmit power amplifier. The iterative RX and
the impact of the transmit power amplifier will be in focus in the following two sections,
respectively.

After 1G, the development of each of the systems mentioned above took about ten
years, measured from the start of the research to the first standardization. One of the key
concepts in 4G systems is multi-antenna transmission and reception, i.e. MIMO tech-
nology. In MU MIMO, user separation is performed in the spatial domain and hence,
the same frequency and time resources can be used by distinct users. The concept of spa-
tial division multiple access (SDMA) and its theoretical gains was already known in the
early 90s [41, 42]. However, the problem was that even though significant power gains
can be achieved with directed beams, the control information needs to be broadcasted.
The technology used at that time was not able to handle adaptive transmit beamforming
efficiently. However, interference rejection combining (IRC) was used on the RX side
to decrease multiuser interference (MUI) by noise whitening and to coherently combine
the different signal components using the matched filter [43]. IRC is actually a scaled
version of minimum mean square error (MMSE) RX and it can be viewed as a receive
beamforming technology. In the LTE-A standard, transmit beamforming is based on
code books, i.e. transmit beamformers are selected based on information about the
channel state [44]. However, it should be noted that, in practice, MIMO is beneficial
only for high-quality radio channels because the channel state information (CSI) is not
available or imperfect. For situations with a low signal-to-noise ratio (SNR), it is bet-
ter to use other types of multi-antenna techniques to instead improve the SNR, e.g. by
means of TX diversity. In this thesis, the focus is on single antenna transmission with
multi-antenna MU detection. However, the extension to multi-antenna transmission is
straightforward.

4G systems are based on frequency division duplex (FDD), i.e. the DL and UL
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signals are transmitted in different frequency bands. 5G systems are likely to be based
on time division duplex (TDD) where the DL and UL signals are transmitted in different
time slots. This allows the use of the channel reciprocity, which makes CSI available at
the TX. Therefore, it will be possible to utilize more advanced TX precoding schemes

in 5G systems.

1.2 Frequency domain multiple access and iterative equalization

Frequency domain equalization (FDE) for single-carrier (SC) transmission [45] and
multi-carrier schemes based on OFDM are known as efficient techniques for tack-
ling the inter-symbol-interference (ISI) problem in frequency-selective fading channels.
Both of the aforementioned techniques can be extended to MU communications yield-
ing SC frequency division multiple access (FDMA) [46] and orthogonal frequency divi-
sion multiple access (OFDMA) [47], respectively. In OFDMA all available subcarriers
are grouped into different subchannels' that are assigned to distinct users. User sep-
aration at the RX side is straightforward due to the orthogonality of the subchannels.
OFDMA has been selected as the DL transmission scheme of the 3GPP 4G mobile
broadband standard [44].

SC-FDMA [46] has been selected as the UL transmission scheme for the 3GPP
LTE-A standard [44], due to its good peak-to-average power ratio (PAPR) properties.
SC-FDMA can be viewed as a form of OFDMA [47] in which an additional discrete
Fourier transform (DFT) and an inverse DFT (IDFT) are added at the TX and RX ends,
respectively. A DFT precoder spreads all the symbols across the whole frequency band,
forming a virtual SC structure which is known to lead to a reduced PAPR. The deriva-
tion of the physical layer quality of service (QoS) constraints, such as SINR or rate con-
straints, differ in these two schemes: In OFDMA, the frequency domain (FD) channel
matrix is block diagonal and, therefore, subcarriers’ signal-to-interference-plus-noise
ratio (SINR) values decouple. The DFT spreading in SC-FDMA leads to the average
SINR constraint where the average is taken over the subcarriers. Hence, the SINR

constraint is convex for OFDMA and non-convex for SC-FDMA.

IThe bandwidth of each subchannel is less than the coherence bandwidth of the channel which results in flat

fading subchannels.
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1.2.1 Turbo equalization

Optimal MU detection in SC-FDMA in the presence of a frequency-selective channel
results in prohibitively high computational complexity. A linear minimum mean square
error (LMMSE) detector provides an attractive low-complexity scheme for the detection
of FDMA signal in the presence of ISI and MUI utilizing the circulant structure of
channel matrices [48, 49].

Iterative FDE techniques can achieve a significant performance gain over linear
FDE in ISI channels [49]. In iterative FDE, the key idea is to utilize the feedback from
a soft-output forward error correction (FEC) decoder that is updated according to the
"turbo" principle. To exploit the full merit of an iterative RX, the convergence properties
of the RX need to be taken into account jointly at the TX and the RX. In [50], extrinsic
information transfer (EXIT) analysis [51] is utilized to determine the optimal power
allocation in an MU turbo-coded CDMA system. In [52], convergence analysis for iter-
ative minimum mean square error (MMSE) equalizer is performed using SNR variance
charts [49]. Furthermore, the authors in [52] use convergence analysis to formulate the
TX power allocation problem in frequency-selective single-input single-output (SISO)
channels with the iterative RX mentioned above, assuming the availability of perfect
CSI at both the TX and the RX. In [53, 54], the impact of precoder design on conver-
gence properties of the soft cancelation FD MMSE equalizer is demonstrated. In [55],
precoder design for MU MIMO ISI channels based on iterative LMMSE detection is
considered. The design criterion of the precoder in [55] is to maximize the SINR at the
end of the iterative process. In [56], in-depth analysis of the power allocation problem

in SC MIMO systems with iterative MMSE equalization has been presented.

1.2.2 Extrinsic information transfer chart

The advantages of soft information processing were truly realized after the foundation
of turbo codes [57] in 1993. However, the convergence properties of this type of itera-
tive process were not yet fully understood. The EXIT chart is one of the most powerful
tools for analysing and optimizing parameters in iterative processing [58—60]. The con-
vergence of an iterative process can be predicted by investigating the exchange of extrin-
sic information of soft-in/soft-out (Sftl/SftO) blocks in the form of mutual information
(MI) between transmitted bits and the corresponding log-likelihood ratios (LLRs). The
analysis can be performed independently for each block, which eliminates the neces-
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sity of time-consuming chain simulations. When applied to joint equalizer and FEC
decoder design, the objective is to guarantee an open convergence tunnel between the
EXIT functions of the equalizer and the decoder. To be more specific, the EXIT func-
tion of the equalizer has to be above the inverse EXIT function of the decoder until the
"MI convergence point’, which determines the communication reliability achieved by
the iterative equalizer, represented by bit error probability (BEP). Therefore, the width
of the tunnel and the MI convergence point are the key parameters when optimizing an
iterative process using EXIT charts [61, 62].

1.3 PAPR problem in multi-carrier transmission

It is well known that power allocation in multi-carrier transmission provides significant
improvement in terms of total power consumption [43]. In [56, 63], a power allocation
technique taking into account the convergence properties of an iterative RX was derived
for SC-FDMA showing substantial improvement in terms of reducing the SNR require-
ments for the desired QoS target. However, the use of FD power allocation leads to an
increased value of the PAPR. Motivated by this fact, a framework is constructed in this
thesis by which the PAPR can be controlled via FD power allocation. The proposed
PAPR constraints are applied to the optimization framework introduced in [63]. How-
ever, the PAPR constraints themselves are general and can be applied to any SC-FDMA
or OFDMA framework.

In addition to the average power of the transmitted signal, the power consumption
of the power amplifier also depends on the peak power of the transmission. Hence, the
wasted supply power can be reduced by decreasing the PAPR of the input signal [64].
Furthermore, since the peak power in cellular systems is limited by local authority, the
average uplink power has to be limited to take into account the high peaks. Hence,
the proposed method is especially beneficial for power-limited cell edge users. In this
section, the PAPR problem is described starting with the fundamentals followed by
a literature review of PAPR reduction techniques. Since SC-FDMA can be viewed as
DFT precoded OFDMA, the PAPR problem described for OFDMA applies equivalently
to SC-FDMA.
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1.3.1 Fundamentals

An OFDM signal consists of independently modulated subcarriers. The high peak
power occurs when the subcarriers add up coherently. E.g., when N subcarriers are
added with the same phase and amplitude, the peak power is N times the average power
of the signal [65]. The relation between the peak power and the average power is called
the PAPR. From the mobile user’s perspective, the PAPR problem is characterized into

two main categories:

1. The energy consumed by the high-power amplifier (HPA) is related to the peak
power values. Therefore, transmitting the signal with a high PAPR is inefficient,
because the peaks of the wave do not transport any more information than the aver-
age power of the signal over time.

2. Distortion-free transmission of such a signal requires linear operation of HPA over

arange N times the average power.

In practice, the high peak values are not tolerable because the wasted supply power has
a harmful impact on either battery life in mobile applications (UL) or the energy cost of
network operation (DL). Furthermore, from a technology viewpoint, it is challenging
to provide such a large linear range of HPAs. Therefore, the HPA output signal is cut
off or clipped at some point relative to the average power [64], resulting in a distorted
signal due to intermodulation among the subcarriers. Furthermore, the clipping intro-
duces out-of-band radiation, resulting in the necessity to increase a spectral guard band
between adjacent services, zero-input subcarriers, or some kind of out-of-band reduc-
tion method [66]. The PAPR problem raises several challenges that system designers
need to consider: one challenge is to adjust HPA parameters, i.e. HPA backoff and
digital predistortion, in some specific way, taking into account the trade-off between
power efficiency and nonlinear distortion, which has an impact on data transmission at
a global scale [64]. The high PAPR has also an incremental impact on the complex-
ity of analogue-to-digital and digital-to-analogue converters. Another approach to the
PAPR problem is to process the baseband signal using some kind of PAPR reduction al-
gorithm. Thus, it is obvious that the PAPR problem involves joint optimization of HPA,
predistortion, and a signal processing unit. However, the joint optimization approach
that is also considered in this thesis has only been marginally addressed so far.

From the network design perspective, a high PAPR is a limiting factor when the

coverage of a base station is considered. The coverage of a base station is determined
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by the average uplink power. On the other hand, the peak power of the transmission
is limited by the local authority and the peaks exceeding this threshold are clipped,
resulting in a distorted signal. Therefore, the average uplink power is restricted to take
into account the high peaks. Hence, if the peak power can be reduced, the average

power can be increased, which results in improved QoS for cell edge users.

1.3.2 Existing PAPR reduction techniques

Reducing the PAPR in any transmission system is always desirable, as it allows the use
of more efficient and inexpensive power amplifiers at the TX. Selected mapping (SLM)
[67] and partial transmit sequences (PTS) [68, 69] are classic methods for reducing
the PAPR in multi-carrier transmission. The idea is to generate multiple redundant
candidate frames and select the best for transmission. By using suitable transforms
or mappings, the main goal is to achieve statistical independence between candidates’
metrics [64]. Many transforms have been proposed and efficient algorithms have been
derived for SLM and PTS (see e.g. [70]). The main drawback in SLM and PTS is that
side information is required to decode the transformed sequence at the RX. Another
method for PAPR reduction is constellation shaping [71-73], where the objective is to
find a constellation in the N-dimensional FD, such that the resulting shaping region in
the time domain has a low PAPR. Even though the simulation results look promising,
the drawback in constellation shaping is the high implementation complexity.

One of the popular solutions for PAPR reduction is clipping the amplitude of the
OFDM signal. The drawback is that the clipping increases the noise level by inducing
a clipping noise. Recent work [74, 75] on practical schemes indicates that the main
source of the loss is not the distortions or errors introduced, but simply reduced output
power. Compressed sensing has been considered for cancelling the clipping noise in
[76, 77]. The problem in these approaches is that the performance is restricted due to
the weakness of the compressed sensing against noise. In the past, the PAPR problem
has been addressed in many papers and overview articles, e.g. [78, 79]. The existing
techniques achieve a reduced PAPR at the expense of a transmit signal power increase,
bit error rate (BER) increase, data rate loss, computational complexity increase, etc. Re-
cent work on minimizing the PAPR in SC-FDMA transmission can be found in [§0-82],
where the authors propose different precoding methods for PAPR reduction. However,
these methods do not take into account the FD transmit power allocation, the channel
or the RX.
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1.4 Optimization methods

In this section, the optimization tools used in this thesis are briefly discussed.

1.4.1 Alternating optimization

If some sets or blocks of optimization variables are not coupled through the objective
function of the optimization problem, the optimization may be performed independently
along these blocks of coordinate vectors; the algorithm updates the coordinates itera-
tively such that one block of coordinates is considered at a time, while the other ones
are fixed. The convergence of this method is guaranteed if the solution obtained in each
optimization step is unique. This method is called the block coordinate descent (BCD)
method [83].

In this thesis, a similar concept is applied to joint TX-RX optimization where the
algorithm alternates between the TX and RX optimization problems. In the optimiza-
tion problem presented in this thesis, the sub-problems in the iterative algorithm are not
convex and thus, the solution is not necessarily unique. However, the convergence of
the objective value can be justified by showing that each step improves the objective. In
this thesis, the iterative TX-RX optimization algorithm is referred as alternating opti-

mization.

1.4.2 Successive convex approximation

Some of the constraints in the optimization problems considered in this thesis are non-
convex, even for a fixed RX filter. Therefore, the successive convex approximation
(SCA) [84] method is used for those constraints. The idea is to transform a non-convex
optimization problem into a convex form such that the solution of the transformed prob-
lem always satisfies the constraints of the original problem. An example of SCA is a
local linear approximation of a concave function. Updating the approximation point
iteratively, a local solution of the original problem can be obtained. A more detailed
description of SCA and its convergence properties can be found in [84, 85]. In this
thesis, two different SCA methods are applied: successive convex approximation via
change of variables (SCACOV) and successive convex approximation via geometric
programming (SCAGP).

SCACOV is based on the idea presented in [86] where a change of variables (COV)
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is performed to create a log-concave objective function. In this thesis, the technique
is used to approximate non-convex constraints as convex ones. SCAGP utilizes the
concept derived in [87] where the denominator of the objective is approximated as a
monomial such that the problem can be approximated as a geometric program (GP)
[88]. A comprehensive article on GP and its applications is found in [§9]. As SCACOV
and SCAGP most likely end up with the same result, the decision of which method
to choose has to be made case by case. For instance, the number of approximated
constraints can be different depending on the approximation method.

1.5 Scope and objectives of the thesis

This thesis concentrates on the design of FD UL power allocation for FDMA? trans-
mission. The thesis can be divided into two parts: in the first part, the aim is to jointly
optimize the multiuser TX power allocation and the complex weights at the RX filter
such that the convergence properties of an iterative equalizer are taken into account.
More specifically, the gap between the EXIT curves of the decoder and the equalizer is,
at minimum, the desired value until the predetermined convergence point. The conver-
gence point is the MI after the detection determining the QoS of each user. In the latter
part of the thesis, the characteristics of a transmit power amplifier are also taken into
account. In other words, the instantaneous and statistical PAPR are controlled via FD
power allocation. As depicted in Fig. 1, the optimization algorithms can be executed at
the base station or on the mobile user side depending on the available information. If
global CSI is needed for optimization, the optimization is performed at the base station
and the power allocation obtained is reported to the users. If all the parameter values
needed in the optimization are available on the mobile user side, the algorithm can be
executed by users themselves resulting in reduced signalling.

The concept of convergence-constrained power allocation (CCPA) was originally
derived in [56] for single-user MIMO systems with SC-FDMA transmission. The au-
thors show that the convergence constraints (CCs) transfer to multiple SINR constraints.
In a single-user MIMO, the subcarriers can be perfectly decoupled using singular value
decomposition leading to convex SINR constraints. The objective of the optimization
problem is to minimize the sum power over the subcarriers. Therefore, the optimization
problem derived in [56] is a convex problem. This thesis extends the concept of CCPA

to MU single-input multiple-output (SIMO) systems, showing that substantial gains in

2Here FDMA includes SC-FDMA and OFDMA.
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User 2

Decentralized optimization based
on the local CSI

Centralized optimization based
on the global CSI

Fig. 1. Single cell system with multiple users and a base station with multiple antennas.

terms of total power consumption can also be achieved in MU systems. Furthermore,
the objective is also to extend the concept from binary phase-shift keying (BPSK) and
quadrature phase-shift keying (QPSK) to 16-ary quadrature amplitude modulation (16-
QAM) providing a concept for the generalization towards higher-order modulations.
Moreover, in addition to SC-FDMA, OFDMA is also considered. Since the power al-
location strategy is novel, only a single-cell system is considered in this phase of the
research; the multi-cell scenario is left for future work. The extension to a multi-cell
scenario is rather straightforward, i.e. the interference from the other cells is taken into
account in the SINR constraints. The majority of the derived power allocation strategies
presented in this thesis require full CSI, although suboptimal alternatives can be derived
where only the local CSI is required.

The motivation for using SC-FDMA is that it has better PAPR characteristics than
OFDMA. However, it was observed that CCPA increases the PAPR. The objective in the
latter part of the thesis is to find out a way to flexibly control the PAPR in multi-carrier

transmission.
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1.6 Contributions and outline

The system model assumed throughout the thesis is presented in Chapter 2. UL trans-
mission with multiple single-antenna users and a base station with multiple antennas
is considered. Iterative equalizers are derived for SC-FDMA and OFDMA systems in
Sections 2.2.1 and 2.2.2, respectively.

Chapter 3 is mainly based on [63, 90] although the CC for OFDMA was introduced
in [91]. The novel aspect of Chapter 3 is the derivation of the CC for MU commu-
nications. The presence of multiple users leads to multidimensional EXIT functions,
which makes the optimization very complex as such. A suboptimal solution referred
as diagonal sampling is presented in Section 3.1.2. The CC is applied for MU SIMO
UL communications in Sections 3.1.3 and 3.1.4, where BPSK, QPSK, and 16-QAM
are considered. The constraints are derived for both SC-FDMA and OFDMA. In [56],
only QPSK is considered. In this thesis, a heuristic approach for 16-QAM is also de-
rived. Unlike in [56], the joint optimization of the multiple TXs and the RX is not
convex. Thus, the non-convex joint optimization problem is split into separate TX and
RX optimization problems. Section 3.3.3 demonstrates that the MMSE RX is a power
minimizing RX and, therefore, the objective value in this type of alternating optimiza-
tion converges towards a local solution.

Unlike the power minimization problem with the classic per-subcarrier SINR con-
straint [92], the problem considered in this thesis cannot be formulated as a convex
problem even for a fixed RX filter. Therefore, two efficient algorithms, SCACOV and
SCAGTP, are proposed for solving the TX optimization problem for fixed receive beam-
formers. The SCAs are presented in a general form in Section 3.2 and then applied to
CCPA considered in this thesis in Section 3.3.

Chapter 4 is based on [91, 93, 94]. Two approaches for PAPR-aware power al-
location in multi-carrier transmission are presented. The first approach, presented in
Section 4.1, optimally restricts the PAPR to below a preset threshold value while guar-
anteeing the preset QoS target. The second approach, presented in Section 4.2, controls
the PAPR by statistically controlling the variance of the power of the transmitted sig-
nal. The instantaneous PAPR and the variance are derived for SC-FDMA and OFDMA.
The PAPR and power variance derivations presented in this thesis apply to any normal-
ized data modulation technique. The PAPR constraints are applied to the optimization
framework presented in Chapter 3 and SCACOV and SCAGP are derived for each of

the constraints.
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Finally, conclusions are drawn in Chapter 5 with a discussion about the future re-

search directions.

1.7 Author’s contribution

This thesis is written as a monograph based on five original publications [63, 90, 91, 93,
94], including one accepted [63] and one submitted [91] journal paper and three confer-
ence papers [90, 93, 94]. The author of this thesis had the main role in developing the
ideas, deriving the equations, writing the MATLAB code and writing the papers. The
role of the co-authors was to provide guidance, ideas and criticism during the research
and writing process.

In addition to publications [63, 90, 91, 93, 94], which comprise the main content of
the thesis, publications [95-97] by the author and the co-authored publication [98] are
not included in the thesis.

In summary, the main contributions of the thesis include:

— The derivation of a convergence constraint (CC) for MU systems

— Diagonal sampling for discretization of CC

— The derivation of CC in MU SIMO uplink SC-FDMA and OFDMA communications
with BPSK, QPSK and 16-QAM

— Two suboptimal approaches for convergence-constrained power allocation

— The joint optimization of a transmit power allocation and receive filter in SC-FDMA
and OFDMA

— The derivation of an instantaneous PAPR constraint for SC-FDMA and OFDMA
transmission

— The derivation of a transmission power variance constraint for SC-FDMA and OFDMA
transmission

— The derivation of two successive convex approximations for all the non-convex con-

straints considered.
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2 Multicarrier transmission and iterative
equalization

In this chapter, the system model of UL transmission in a single cell system with U
single antenna users and a base station with Ng antennas is presented. Furthermore, the

RX with iterative FD turbo equalization is derived.

2.1 Multi-carrier transmission

The TX side of the system model is depicted in Fig. 2. Each user’s data stream x, €
BRNoNF = 1,2,...,U, is encoded by a FEC code ¢, with a code rate R < 1. Ny
denotes the number of bits per modulation symbol and N is the number of frequency
bins in DFT. The encoded bits

¢ =[c},c5,. . engny | € BV (1)
are bit-interleaved by multiplying ¢ by pseudo-random permutation matrix

HI,{ c ]BNQNF XNQNF

resulting in a bit sequence ¢/# =TT, ¢". After the interleaving, the sequence ¢ is mapped
with a mapping function .#Z,(-) onto a 2Ve-ary complex symbol b% € C, 1 =1,2,...,Np,

resulting in a complex data vector
T
b* = (b, bY,... bl ]T € C. )

After the modulation, in SC-FDMA each user’s data stream is spread across the sub-
channels by multiplying b* by a DFT matrix F € CNr*Nr Vu = 1,2,...,U, where the

elements of F are given by

1
(2x(m—1)(I—1)/NF) 3)
e )
VNr

m,l =1,2,...,Nr. In OFDMA, this spreading is omitted. Each user’s data stream is
1

fm,l =

multiplied with its associated power allocation matrix P7, where
P, = diag([Pu1, Pz, Pung]") € RN “
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Fig. 2. Block diagram of the transmitter side of the system model.

with P, ; being the power allocated to the /th frequency bin. Finally, before transmission,
each user’s data stream is transformed into the time domain by the IDFT matrix F~!
resulting in

T
s =[s1,5%,. ., SN, ], V. )

A cyclic prefix (CP) is added to mitigate inter-block interference (IBI) in SC-FDMA
and IST in OFDMA.

2.2 Receiver

In this section, an iterative RX is presented for SC-FDMA and OFDMA.

2.2.1 SC-FDMA

The RX side of the system model is depicted in Fig. 3. After the CP removal, the signal

can be expressed as’

1 U 1
r=H,F 'P;Fb*+ ) H,F 'P}Fb’ +v, (6)
yF#u
where
H, = [H, H2,.. HYRT ¢ CNeNrNF (7

is the space-time channel matrix for user # and

H, = circ{[hz,l,hzz, ... ’h;J\’L’OlXprNL}T} € CNFxNp (8)

3In this thesis, single cell scenario is considered and the impact of inter-cell-interference is omitted.
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is the time domain circulant channel matrix for user u at the receive antenna r. The
operator circ{} generates a matrix that has a circulant structure of its argument vector,
N denotes the length of the channel impulse response, and ], ,, [ = 1,2,... Ny, r =
1,2,...,Ng, is the fading factor of multi-path channel. A vector v € C’tF in (6) denotes
white additive independent and identically distributed (i.i.d.) Gaussian noise vector with

variance sz. The signal r is transformed into the FD by using DFT matrix

Fy, = Iy, ® F € CNrNFXNeNF )
resulting in
= TPZFyb+Fy,v, (10)
where
[=[[,T,,... . Ty] € CNeNexUNF (11)
with
ru = bdiag{ru,l 5 ru,2> cee 7ru.Np} S (CNRNFXNF (12)

being the space-frequency channel matrix for user u expressed as
I, =FyHF ' (13)
T, € CVR*Nk is the diagonal channel matrix for the m™ frequency bin of the u™ user,
Fy =Iy @F € CVNr<UNr, (14)

and
b=[b'" b, ... bV T e CUN. (15)

The power allocation matrix is composed by
P = diag(P;,P,,...,Py) € RUNF><UNr (16)

The block diagram of the FD turbo equalizer is depicted in Fig. 4. The FD signal
after the soft cancelation can be written as

# —F—TP2Fb, (17)

where
b=[b! b2 ... bV |TeCUM (18)
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Fig. 3. Block diagram of the receiver side of the system model.

is composed by
b = [bY,b4,...,bly |" € C'F. (19)
The soft symbol estimate Eﬁ is calculated as [56]

by =E{by} =Y biPr(bl=by), (20)
bieB

where ‘B is the modulation symbol alphabet, and the symbol a priori probability can be
calculated by [99]

No
Pr(bjy = bi) = [T Pr(¢'Non-1)+g = i)
g=1

Ng

1\ No _ .
- (E) ql;[l(l B cqu tanh(L:A(n—l)NQ+q/2)); 21
with
g = 2iq = 1 22)
and
C; = [C/i,l 5 C/i,za .. ,C/i,NQ]T (23)

is the binary representation of the symbol b;, depending on the mapping rule for modu-

. O/
lation. Lu7(n—1)NQ+q

of user u. After the soft cancelation, the residual and estimated received signal of user

is the a priori LLR of the bit ¢’ ;:/Q(n—l) 44> Provided by the decoder

u are summed, yielding ¥, € CN’NF as [100]
1o
i, =t+T,P;Fb". (24)
The time domain output of the receive filter for the #'™ user can be written as

N _1=H_
b =F'Q, ¥, (25)
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where

o o1 %2 < Ng

Q. =[Q,Q,,. . . QF" cCNeNexNe (26)

u

is the filtering matrix for the u user and fl; € CNr*NF s the filtering matrix for the

' receive antenna of the u™ user. The effective SINR of the prior symbol estimates for

the u'M user can be expressed as

H H
. 1 N Pu.,mmu7m7u7ml},u,mwuvm
NF wl,;ljmzf-,m wu,m

Cu ; ©2))

m=1
where ¥, ,, € CMr consists of the diagonal elements of T, i.e., Yum 1s the channel
vector for the m'™ frequency bin of user u.
1 <2 <N, T
wu,m = [[Qu]m,ma [Qu]m,m sy [QuR]m,m:| S CNR (28)
is the receive beamforming vector for the m™ frequency bin of user «. Using the MMSE

criterion, the receive beamforming vector is shown to be [101]

1

- —1
o gl 1 eV @)
where g, € CNR*NR s the interference covariance matrix of the m™ frequency bin
given by
S I 2

Zf‘,m = Z H,MYLmﬁmA + o, INR' (30)

I=1
Al = ave{ly, —b'} (31)

is the average residual interference of the soft symbol estimates and
b! = (|5} %, |1312\2,...,|55VF\2}T e CMr, (32)

The scalar Al is an approximation which is reasonably accurate for normalized 22-ary
phase-shift keying (PSK) as well as for rectangular 2V¢-ary quadrature amplitude mod-
ulation (QAM) with an appropriate normalization [56]. For QAM, both the transmitted

symbol vector b* and soft-symbol vector b* have to be multiplied by the normaliza-
3

2020 1)

sequence. With the appropriate normalization, A’ = 1 when no a priori information is

tion factor Kk = . Note that A’ is the average taken over the whole symbol

available and A’ = 0 when perfect a priori information is available. In fact, Al is an
essential approximation in order to use higher order modulations where the power of
a symbol is not equal to one. In order to use the approximation A, the expectation of
symbol power has to be one and the length of a block needs to be large enough.
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Fig. 4. Block diagram of frequency domain turbo equalizer.

222 OFDMA

The received signal at the m™ subcarrier is

U
Fp = Z Yu,m\/IT,mb‘rln +Vm € (CNR, (33)
u=1

where v,, € CM® consists of noise samples associated with the mt subcarrier. The FD

signal after soft cancelation is expressed as

U
B =Fn— Y, Y/ Pumbiy. (34)
u=1

The component which is to be filtered is the summation of the residual and the received
signal:
Eum =F+ Yy mo /Py mbl. (35)

The filtered signal can be expressed as
by = @l Eum, (36)

where @, ,, € CNMr s the receive filter of the u™ user at the m™ subcarrier which can be
found by solving
minimize E, ,, (37)

@y
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where
Eu,m :Eb,"nf’m{(bzz*z;run)(bzl*z;run)}l} (3%)

Assuming normalized PSK or rectangular QAM modulation, the mean square error

(MSE) given by (38) can be rewritten as

Eu,m = Zﬁ)uH,mYM,m V Pu,m"’

U
&,Iz;l,m(l),umﬁmpu-,m + Z YI,mﬁmPLm(l - |b17m|2) + G\?INR)&)NJM (39
Zu
Similarly to the SC-FDMA case in Section 2.2.1, the interference cancelation term

1 — |byn|* can be approximated Vm as A! = avg{1y, —b'}. Taking the derivative of
(39) with respect to d)zfm and equating to zero yields

(b“-,m = (%t,mﬁmpum + ig,m)_l'}'u,m V P”J"’ (40)
where v
i“g,m = Z )ﬁmﬁmPZ,MAl + GVZINR . 41)
=1
1F#u

Substituting the solution of (37) to (36) gives the MMSE estimate of the transmitted

symbol as
% = [(Yu,mﬁmpusm + i“f’{,m)il 7u,m V Puvm}Hil‘M-,m> (42)
The SINR after the MMSE filter is given by

PM-,m|YMH,m&)MJn‘2
ZIU:I |Yﬂma)u-m|2pl,mAl + 62| @y ] |2.
1#u

gu,m =

(43)
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3 Transmitter-receiver optimization

In this chapter, a general description of the CC in MU communications is provided.
Then the CC is applied for the system model presented in Chapter 2. General descrip-
tions of two different SCA methods are given in Section 3.2. In Sections 3.3.1 and
3.3.2, suboptimal alternatives for the CC are derived based on orthogonal allocation
and spatial zero-forcing (ZF) [43], respectively. The alternating optimization method
is proposed for solving the joint TX-RX optimization problem in Section 3.3.3 and the
convergence of the min power objective value is proven in the case of MMSE RX. After
the description of the alternating optimization, the SCAs are applied to non-convex CCs
in Sections 3.3.4 and 3.3.5. The numerical results are given in Section 3.4, followed by

a summary in Section 3.5.

3.1 Convergence constraints

In this section, the joint power allocation and receive beamforming optimization prob-
lem for the iterative RX is formulated. The general problem formulation follows from
[56], where CCPA is derived for single-user MIMO systems. However, the major dif-
ference compared to [56] is that the EXIT space now has U + 1 dimensions.

This section is outlined as follows: First of all, the general problem formulation for
MU SIMO systems is provided. It is demonstrated that convergence is guaranteed as
long as there exists an open tunnel between the U + 1-dimensional EXIT surfaces until
the desired MI point. After that, a diagonal sampling approach is introduced which
makes the problem solvable without performing an exhaustive search. Furthermore, the
mapping of the MI constraints to LLR variance constraints is derived in the cases of
BPSK and QPSK. Finally, CCPA is applied to the case of 16-QAM and it is shown
that the proposed CC guarantees convergence for 16-QAM as well. Gray mapping is

assumed as a modulation mapping throughout the derivation.

3.1.1 General problem formulation

Let [ denote the average MI between the transmitted interleaved coded bits ¢* and the
LLRs

L, =L, vz;,z e ’i‘/uA,NQNF]T 44)
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at the output of the equalizer calculated as [56, Eq. (18)]

NoNrp

Z I(c;“;I:;J). (45)

j=1

. 1
F=
NoNr

For notational convenience, equalizer refers to the combined block of the receive filter
and soft mapper/demapper. Similarly to [56], a maximum a posteriori (MAP) soft
mapper/demapper is used in this thesis. Moreover, let [* denote the a priori MI at the

input of the equalizer and

fu:10,1]Y = [0,1] (46)

denote a monotonically increasing EXIT function of the equalizer of the ™ user. Simi-
larly, let If denote the average MI between the transmitted coded bits ¢” and the LLRs
L, at the output of the decoder and

fu:[0,1] = [0,1] (47)

denote a monotonically increasing EXIT function of the decoder of the u™ user. A
sufficient condition for the convergence of the turbo equalizer can be written as

HIEeo,1] %1 CFE B TEY > N IE 46, () Yu=1,2...,U, (48)

i.e., for all u, there exists a set of outputs from the decoders of all the users except
u such that the EXIT function of the equalizer of user u is above the inverse of the
EXIT function of the decoder of user u plus &,(I¥) : [0,1] —]0, 1] which is a function
controlling the minimum gap between the U + 1-dimensional EXIT function of the
equalizer of user u and the inverse of the decoder’s EXIT function of user u. In other
words, convergence is guaranteed as long as for all the users there exists an open tunnel
between the two EXIT surfaces until the convergence point. Constraint (48) is much
more challenging to deal with than [56], where the EXIT chart is two-dimensional.
This is illustrated in the case of two users in Fig. 5, where the impact of the a priori
information input from the other user’s decoder can be clearly obtained.

In the following, it is demonstrated that (48) guarantees convergence: Let U =2 and
assume that there exists an open tunnel between the EXIT surfaces until the convergence

point as presented in Fig. 5. Let
if,target’ 0 < iE,targel < 17 (49)
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Fig. 5. An example of three-dimensional formulation of the problem for user 1. U =2, Ny =38,

N =1, K = 11, [Etaroet jtareet

=08, If =0.9999, &, =0.1, u=1,2, R, = 1/3, N, = 5.

be the target MI point of user u after iterations. Furthermore, let i, € N be the index of

iteration and Iofiu denote the MI after iteration i, such that

g >0k

uyiy+1 = fugiy

Focusing on user 1, condition (48) is written
R E) = ) +eir),

such that for each

°F °F °E, target
Iy O I <177,

there exists at least one

7E ?E oE target
by, 0=hy, <1

(50)

D

(52)

(53)

that satisfies the condition. Let the output value after the first activation of the decoder
1 be IT‘I, such that (51) holds for some Ioinz' Due to the monotonicity of the EXIT
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function, condition (51) holds for all indices ip > 7. Activating the decoder of user 1

again, the output of the equalizer is then given by
If condition (51) does not hold at the point

(iF’ig"iF):(fEbiE 7f1(iF2aiE )) (55)

2,1 2.0

in the three-dimensional EXIT chart, i.e.,
T, B57)) < fr ' () +edh), (56)

there exists at least one iZE.iz that satisfies (51). Hence, i, can be increased, i.e. decoder
2 can be activated until the condition holds*. This process can be repeated until the
convergence point is reached.

Let us sample the EXIT functions as
It € [0,00 Y, k,=1,2,... K, (57)

where Io,‘(‘u is the average MI at the output of the decoder of the uM user at the k" MI
index. To make the problem tractable, the continuous convergence condition (48) is

discretized and replaced with
3l e0.1] ki e {1,2,...,1@}};] Rl B Y S F ) e,
iu
Vk,=1,2,...,K,,Yu=1,2...,U, (58)
with &, 4, €]0,1 —fobjl(f,?u)]. Note that the indices k,, u = 1,2,...,U in (58) denote the
points in the EXIT chart and not the indices of iterations in real chain simulations. This

definition is used in the remaining part of the thesis.

3.1.2 Diagonal sampling

In this section, the discussion is restricted to the minimum power problem only, i.e. the
objective is to minimize the sum power with constraint (58).

To ease the handling of the problem, let K, = K, Yu = 1,2,...,U, i.e. the number
of discrete points in the EXIT chart is the same for all users. Moreover,

B >0, V=12, K1, (59)

4If U > 2, all the decoders (excluding the decoder of user 1) can be activated until (51) holds.
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i.e. the indexing is ordered such that the MI increases with the index.

A three-dimensional EXIT chart for user 1 is depicted in Fig. 5 for the case of U = 2.
ff* / Io,]f, u = 1,2 denotes the a priori information for the equalizer of user 1 provided by
the decoder of user u. The double arrows with &; ¢, k; = 1,2,...,11, denote the actual
gap that is obtained from simulations with constraint (58) and are placed at the diagonal
sample points where condition (58) is checked. Since €, denotes the minimum gap
between the EXIT surfaces, it holds that & ¢, > £ x,. In this example, we have selected
K =11, even though in many cases a smaller K is enough to guarantee convergence.
The number of samples and their positions depend on the shape of the decoder EXIT
function and must be chosen appropriately case by case [56]. For instance, if the FEC
is strong, the inverse of the decoder’s EXIT curve is low until it is very close to the
convergence point and, therefore, the leftmost part of the EXIT chart is not as crucial
as the rightmost part. In other words, the number of sampling points should be larger in
that part of the EXIT chart where the gradient of the EXIT function is large. However,
the optimal sampling is left for future study.

The number of constraints in (58) is KU. However, to find the minimum power
solution with constraint (58), the optimal set of sample points has to be found from

{IF € 0.1}, (60)
iFu
foreach u = 1,2,...,U. To find the best set of sample points, i.e. the path from origin
to the convergence point which leads to a minimum power consumption, one should be
able to check all the possible paths in U + 1-dimensional EXIT space from the origin
to the convergence point and choose the one which gives the best result. This leads to a
combinatorial optimization problem which is difficult to solve.

If the EXIT surfaces of the decoder and the equalizer do not intersect at any sampled
point, the only active constraints are the ones where there is no a priori information
available from other users. This can be justified by assuming that the EXIT function is

monotonically increasing with its arguments, i.e.

[0 N ) gfu(i,gl,...,igu,...,i,gy) if I gi,gu, Yu=1,2,....U. (61)
In such a case, constraint (58) can be written as

fu(0,0,...,0,¢ 0,...,0) > fi ' (B ) + &g, Yu=1,2...,U, Yk, = 1,2,... K. (62)

This is the tightest possible constraint and it clearly cannot provide the best solution
because with high probability there is another sampling which guarantees convergence
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with lower power consumption. However, if the user does not know the modulation
coding scheme (MCS), i.e. FEC codes and mapping rules for modulation of other users
at the TX, one may consider using constraint (62) to guarantee the reliable communica-
tion.

A pragmatic approach is to check only the points in the U + 1-dimensional EXIT
space where all the decoder’s outputs are equal, i.e. the K points on the line from the
origin to the convergence point is selected. In other words, A’ in (30) is equal to Ay,
Vli=1,2,...,U, where Ay is the average residual interference at the k™ MI index. Thus,
the U + 1-dimensional EXIT function of the equalizer is replaced by a two-dimensional
function

Fu@l 09 = 2P (I (63)

and the constraint is written as

2 > £ () + €, V= 1,2, K,Yu=1,2...,U. (64)

u

This approximation technique is referred to as diagonal sampling, which is assumed
throughout the remaining part of the thesis.

An example of the impact of diagonal sampling on the resulting equalizer’s EXIT
surface is depicted in Fig. 6 for a system with two users and one receive antenna. It can
be obtained from Fig. 6(a) that there is a path to the convergence point if the a priori
information coming from the decoder of user 2 is high. Fig. 6(b) demonstrates that
the equalizer’s EXIT surface is higher compared to Fig. 6(a) because of the diagonal
constraints.

An example of the impact of diagonal sampling on the resulting equalizer’s EXIT
surface is depicted in Fig. 7 for a system with two users and two receive antennas. It can
be seen that the EXIT surfaces in exhaustive search and diagonal sampling are identical.
This is due to the fact that a user separation can be performed in a spatial domain and

the impact of a priori information coming from user 2 is no longer as crucial.

3.1.3 BPSK / QPSK

Similarly to [56], the MI constraint of (58) can be transformed to a variance constraint

using the approximation of the inverse of the ’J-function’ [60]

1 1 Hy
oz =J"1(I) ~ <—Hllog2(1—lz”3)> ; (65)
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where G% is the LLR variance, Iz € [0,1] is the MI, and the parameters H;, H, and H3
can be found by the least squares (LS) curve fitting with the constellation constrained

capacity (CCC) equation [102]. Now, the MI constraint of (64) can be written as

651> 65 Vk=12,... KVu=12....U, (66)
where
6o =T (P (67)

is the variance of the conditional LLR distribution at the output of the equalizer of user

u depending on the MI at the output of all the decoders and
i =171 (i) + &) (68)

is the variance of the conditional LLR distribution at the input of the decoder of user u
depending on the MI at the output of the decoder of user u.

SC-FDMA

In [56], a result presented in [103] is used to find an analytical expression of the LLR
variance at the output of the equalizer in the case of QPSK. The same result can be
used by noting that A = A in (30) when diagonal sampling is used. In the case of
SC-FDMA, the LLR variance at the output of the equalizer is calculated as [56, Eq.

)

2 4 .
6op= T 69
uk 1— C;fAk ) ( )
where . -
k 1 & PMA,mwu,m'yu,mYu,mwu,m
Cu = Ni H vk L ; (70)
F m=1 wu,mzf,mwu,m
and
k J 2
Zen = 2 Pn¥in i+ 0Ly (71)

=1
a){‘,’m denotes the receive beamforming vector for the u™ user’s m™ frequency bin at the

k™ MI index. The EXIT curve of the equalizer of the ™ user can now be obtained using
(69) and (65). Substituting (69) in (66) the CC is written as

k> &, Yu=12...,UYk=12,... K, (72)
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where s
c;u,k

__ Juk 73
éu,k 4+ CoflikAk ( )

is a constant that depends on the FEC code.

OFDMA

Similarly to the case of SC-FDMA [103], the output of the MMSE filter can be approx-
imated as the output of an equivalent AWGN channel having b}, as its input

b = @b, +n, (74)

where n, ~ .4©(0,62). The channel gain can be calculated as

~ Eu m
m=E{bip" = ——— (75)
dum = (B} = 25
and the variance is computed as [101]
Gy = Qum — P (76)
The SNR of the equivalent channel (74) is given by [101]
¢u m P2
— = . 77
g = G (77)

Utilizing [56, Eq. (17)] the LLR variance for the ™ user at the m™ subcarrier at the k™

MI index can be calculated as

~k \2 Zk
(Gu,m) =4 u,m> (78)
where " 5
=k — P”,m YM,mwu,m| (79)

u,m

~ k ~ k 9
ZZ:é] ‘YEmwu,mPP],mAk + G&' |wu,m| |2
u

and d)ﬁ,m denotes the receive beamforming vector for the u" user’s m™ frequency bin
at the k™ MI index. Let 6%, be the standard deviation of the LLRs of the u™ user’s m™
subcarrier at the k™ MI index. The average MI over the subcarriers at the output of the

equalizer of the u™ user is obtained as
S B
I,=—))J (6u m) , (80)
“* Np mz='1 ’
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where [60]

H3
J (6"") _ <1 2_H1(61;,,1>2”2> , (81)

In the remaining part of the thesis, the LLR variance is assumed to be the same for all

. . ~k
the subcarriers, i.e., (6,,,

)? = 62,. Hence, the CC is given by

Cr > EuYu=1,2...,U¥m=1.2,... .Np,Yk=1,2,... K, (82)
where
. 8%
Suk =" (83)

3.1.4 A heuristic approach to 16-QAM

Similarly to the QPSK case, the MI at the output of the demapper can be transformed to
the variance of the conditional LLR distribution by using (65). However, the parameters
H,, H, and Hj are found by fitting function (65) with the corresponding 16-QAM results
[101]. Let J, and J4 denote the J-functions for QPSK and 16-QAM, respectively. With
these notations, the MI constraint of (64) for 16-QAM can be written as

AP =3 () +ep) V=12, K Yu=1,2...,U.  (84)

The difference in system models with different modulation schemes arises in the
soft demapper. To achieve the final form of the CCs in (72) and (82), expressions
(69) and (78) were used, respectively, where Gray-mapped QPSK is assumed. With
16-QAM, the mapping between the SINR and the variance of the LLR distributions
used for the derivation of the CCs does not hold anymore. However, by substituting the

parameter values from [101, Table I] in (65), it can be easily verified that
I3 (12) 235 (Iz), VIz € [0,1] (85)

with equality when Iz = 0 or Iz = 1. Inequality (85) can also be verified from Fig.
8, where the inverse J-functions are plotted for different modulation schemes. It is
obtained that when modulation order increases, a larger LLR variance is needed to

achieve the same SINR, i.e.
NEPU) = 3 (B UF)) = 634 (86)
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Fig. 8. Inverse J-functions for different modulation schemes. Parameters H,, H, and H; are
provided in [101].

It can be concluded that for 16-QAM, CC (72) is conservative, i.e. the resulting EXIT
curve of the equalizer is never above the true I:Ek, Vu,k. Hence, CC (72) guarantees
convergence even with 16-QAM. It should be noted that the difference in CCs between
the QPSK and 16-QAM arises in (73) where &,427,{ is obtained using either J, Uor J;l

depending on the modulation.

3.2 Successive approximation methods

If the transmit power and the RX beamformers are not decoupled in the joint TX-RX
optimization problem, the alternating optimization method can be used to find a local
optimum. The alternation is between the transmit power and the receive beamformers
such that the problem is first solved for fixed RX beamformers and then for fixed TX
power allocation using the receive beamformers from the previous iteration and so forth.
In many cases, such as in the examples presented in this thesis, alternating optimization
is guaranteed to converge to a local optimum [63]. The convergence will be shown in
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Section 3.3. In this section, the general power allocation problem for fixed RX filter
coefficients is considered.

In this section, the focus is on a power allocation problem that has the form

minilgnize 20(P)

87)
subjectto  z;(P) <0,i=1,2,...,N,
where the constraints z;(P), i =1,2,...,N are assumed to be in the form of a generalized
posynomial:
K i i o
4(P) = Y PP PNy al € R, (88)

k=1

which is, in general, a non-convex function. However if y;; > 0, Vk, function (88) is
in the form of a posynomial and the constraint z;(P) < 0 can be transformed to an
equivalent convex constraint [88]. In order to find an efficient way to solve problem (87),
it should be reformulated or approximated as a convex problem. Because the problems
that are to be solved in this thesis are non-convex problems, (87) is reformulated and the
solution is found iteratively by solving a series of convex problems. In the following,
two different approaches for solving (87) are presented: SCACOV and SCAGP. The
motivation for introducing two SCAs is to give alternative methods for implementation.
The decision of which one to choose depends on the optimization framework and it
should be considered case by case. Without loss of generality, the user index can be
omitted through the derivation of SCACOV and SCAGP, ie. P, [ =1,2,...,Np is
considered instead of P, ;, u =1,2,...,U, [ =1,2,... ,NF.

3.2.1 Successive convex approximation via change of variables

The generalized posynomial (88) can be split as
k i+ ab, b a}-\,k k i_a . d a}-\,k
Z(P) =Y y'P Ry Py Y P Py Py (89)
k=1 k=1

where y{" =max{0,y!} and y;” =min{0, ! }. Using the approach in [88, Chapter 4.5],
new variables are defined as P, = ¢% and the inequality constraint in (87) is rewritten

as

K NE i i+ K NF i i—
In ( Z elnm1 Gy OnHIn Yy ) —In ( Z eLn—1 4y CntHIn(=yy >) <0. (90)
k=1 k=1
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The left-hand side (LHS) of (90) is now a difference of convex functions’. Similarly to
[104], the concave part of (90) can be approximated with its best convex upper bound,
i.e. local linear approximation. Let the concave part of (90) be denoted as T'(@), & =
[a1,0,...,0n,]T. The linear approximation of T'(@) at a point & is given by

. N . NE 9T . N
(e, &) =T(@)+ ), 5--(&)(o— &). 1)
k=1 Y%

Hence, the SCA for the power allocation problem with constraint (90) can be written as

minimize zp(ot)
.a K NF i Invi+ A N (92)
subjectto In (Zk:1 eXn=1 Gy O FIn ) <T(a,&).

The SCA algorithm starts with a feasible initialization &y = &,EO),Vk. After this,
(92) is solved to obtain a solution a,g*> which is used as a new point for the linear
approximation. The procedure is repeated until convergence. The SCA algorithm is
summarized in Algorithm 1. By projecting the optimal solution from the approximated
problem (92) to the original constraint (90), the constraint becomes loose and thus,
the objective can always be reduced. Hence, this algorithm guarantees a monotonic

convergence of the objective value to a local optimum.

Algorithm 1 Successive convex approximation via change of variables.
- Set & = &%) Vk.
2: repeat
3:  Solve Eq. (92).
4:  Update &y = ,E*),Vk.

5: until Convergence.

3.2.2 Successive convex approximation via geometric programming

Another algorithm for solving (87) can be derived by using the approach introduced in
[87] where the SCA is implemented via a series of GPs. The inequality of weighted
arithmetic mean and weighted geometric mean states that for any set of ®,,, o, > 0,

SNote that if aqu >0, Vn, k, there is no need to take the logarithm.

56



Nr b Np
M > ° H apn 93)
m=

n=1 In

where & = ZZFZI ®,,. Choosing ®,, = Z,\f:’;’ ,tn>0,m=1,2,...,Np, and denoting

Oy = é;’; , yields
1,
Y o> T] ()%, (94)

for all ®,,,t,, >0,m=1,2,... ,Np

Using definition (89), the inequality constraint in (87) can be written as

’*P WP < o (P), (95)

I [V]><>

where

K ab ANk
Z )P ”P %Py (96)

&/ (P) can be approximated by its monomial underestimate using inequality (94), yield-

ing ,
R —y i— )Palkpazk _.P;}:Fk @
H 5 : 97)
k=1 k
where _
i\ AT A AINpk
) 7yl PIkPZk"'P F
o= )0 T, 98)

al
AN, k/
K (o R B

13n >0,and P, >0,n=1,2,...,Nr. Hence, constraint (95) can be approximated as

P 1AP“2k ._Pu;VFk ¢’2
%) N (99)

i 1+P lkPaZk . NF1‘<H< (p;(

Therefore, constraint (99) is a valid GP constraint. The reader should know that GP
is not convex as such, but it can be reformulated as a convex problem [88]. Convex
transformation is performed by going through the COV procedure presented in the pre-
vious section. Changing the variables as P, = ¢% and taking the logarithms, (99) can
be written as

K NP Inyi+ K
In ( Z eZn:l 4y OnFHnyy ) Z

k=1

m%w+%x (100)

i M,,
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where

bl = @} In(—k-). (101)

The LHS of (100) is a logarithm of a summation of exponentials and the right-hand side
(RHS) is a linear function. Hence, (100) is a convex constraint.

The SCA via GP for the power allocation problem with constraint (95) can be writ-
ten as

minimize zo(P)
P

. o d, oddb ; 102
; K it p®ik pf Npk K Fyf)Pf]kP;kaPNng i (192

subjectto Y, _ v PP, Py, SHk:l( q);'(

The SCA algorithm is summarized in Algorithm 2. Because the monomial approxima-
tion is never above the approximated summation (97), the same arguments describing
the convergence presented in Sec. 3.2.1 also apply in this case. Hence, it is guaranteed
that the objective value in SCA with approximation (102) monotonically converge to a
local optimum. It can be seen that both approximations, SCACOV and SCAGP, yield an
equivalent constraint where the LHS is a logarithm of a summation of exponentials and
the RHS is a linear function. The major difference in these approximations is the form
of constraint for which the approximation is performed. In SCACOV, the logarithm is
taken first and the logarithmic term is approximated as a linear function. In SCAGP,
the constraint is approximated as a monomial before taking the logarithm. This has an
impact on the implementation of the solver and it may have an impact on the speed of

convergence of the iterative algorithm.

Algorithm 2 Successive convex approximation via geometric programming.
- Set B = B k.
2: repeat
3:  Calculate CIJ};, Vk,i, using (98)
4:  Solve Eq. (102).
5. Update P, = P,f*>,Vk.

6: until Convergence.
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3.3 Convergence constrained power allocation

In this section, algorithms for solving the TX-RX optimization problem are presented.
Sections 3.3.1 and 3.3.2 present suboptimal approaches where the problem reduces to
a single-user power loading. In Section 3.3.3, the joint TX-RX optimization problem is
split into separate TX and RX optimization problems, which is referred to as alternating
optimization. The TX optimization for fixed RX is a convex problem for OFDMA but
non-convex for SC-FDMA. The non-convex TX optimization problem for a fixed RX

is considered in Sections 3.3.4 and 3.3.5.

3.3.1 Orthogonal allocation

In this section, the best possible orthogonal allocation obtained by performing exhaus-
tive search (OES) over all possible subcarrier combinations is considered. Orthogonal

in this context indicates that only one user is active in each subcarrier at a time.

SC-FDMA

The CC for OES can be written as

L PM«,m||7u,m||2
Nr meNH P”-m| |'YM,m‘ |2Ak + sz

> gu,lm (103)

where ;" is the set of frequency bins allocated to user u and A}/ N A = @, VI # u,

U_, A = . Calculating the Hessian matrix of the LHS of (103) it can be verified
that (103) is a convex constraint Vk, u [56]. Because there is no MUI in OES the optimal
RX is the filter matched to the channel.

To find the best possible orthogonal allocation, one needs to check all the possible
orthogonal allocations and choose the best. This exhaustive search becomes infeasible
when Nr increases. Hence, to reduce the number of combinations, we derive a neces-
sary condition for the minimum number of frequency bins Ny to be allocated to user u:

Constraint (103) can be written in the form

1 Ni — & xNF AL
mEJVFL‘ Pu7m| |YL¢,m | |2Ak + G\% N sz

, (104)

where N is the cardinality of the set .47. A necessary constraint for the minimum
number of frequency bins that has to be allocated to user u is obtained from the non-
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negativity of the RHS of Eq. (104) as

N> ENey, Vk=1,2,... K. (105)

OFDMA

The OES constraint for OFDMA is written as

P o 12
Mzguk u=12,..U,me N k=12,... K, (106)
o?|| @), ’
v Jn

u

which reduces to

P“>m||Yu,m||2

o >Exu=12,...U me N (107)
However, in orthogonal allocation the symbols b%,, m ¢ A, are multiplied by P, , =0,
and therefore, the MI target cannot be satisfied by using OES without increasing the
modulation order on the allocated subcarriers. This illustrates the fundamental differ-
ence between SC-FDMA and OFDMA. SC-FDMA is more robust to orthogonality in
terms of achieving the MI target because all the symbols are spread across the sub-
carriers by using DFT. Hence, while in OFDMA some of the transmitted symbols are
completely erased, in SC-FDMA the loss is distributed through the whole symbol se-

quence. The loss can then be recovered with the help of a FEC decoder.

3.3.2 Spatial domain zero-forcing equalization

In this method, the aim is to completely remove MUI by spatial domain ZF equalization
[43]. Consequently, the users can be decoupled and the problem reduces to multiple
single-user problems. However, the noise power increases, which can be a problem
in a low-SNR regime. Although this procedure is suboptimal, the problem becomes
significantly less complex. After spatial ZF, the ISI still remains and, therefore, MMSE

is needed to take care of that.

SC-FDMA

Spatial domain ZF is performed separately for each frequency bin. For that purpose, we

use the following notations: let
f‘m: [YI,m772,m""77U,m] € (CNRXU (108)

60



be the FD channel matrix composed of U channel vectors in the m™ frequency bin.
Similarly, let
P, = diag([Pim, Poyns-- -, Pum]") € RVXU (109)

be the power allocation matrix for the m™ frequency bin. The data symbol vector in FD
is denoted as
T T T
v=[v' v .y T =FybeC'M, (110)

where
vi= [yl v,y T e (111)

The received signal, focusing on the m™ frequency bin, is derived as

1

Fp = f‘mf)gll”m"_V[(mfl)NR+l:mNR]7 (112)
where
Y, =V, Vi o] eC? (113)
and
V=[Vi,Va,...,VNpnp) T = Fyv € CVRNE (114)

The ZF matrix W,l;ll € CY*Mr is the Moore—Penrose pseudo-inverse [105] of the channel
matrix I, calculated by
H  af ~He | _1H
w,=rI,={,Tn" T, (115)

The U symbols can be extracted from the m™ frequency bin by

fi’m = ng'm
1
=P, + WiV e Vet L (116)
where
v, =W, 02, ¢l T el (117)

Finally, the time domain symbol estimate vector for the u" user can be expressed as

b =F ", (118)
where
V=9, T e (119)
After ZF, the input for the MMSE is
1
=, 2 «H
i = PZFb" + WHFy, v, Vu=1,2,...,U, (120)
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where

H
w,, O 0
H
WuH _ 0 wu,Z 0
- )
H
0 0 W“=NF NF XNRpNfp

and W, ,, is the ' row of WE. The output of the MMSE filter for u'" user at the <™ MI

index can now be written as

~ 1 1 1 . -
b = g (F'Pi (PEAP] + 0y W,) 877 + G7ThY),  (121)
W avg{b }+1
where 1
f,u,ZF _ i;u,ZF o PZ FBu (122)
and
W, = diag([[[Wi 1|7 [Wanl?, - W [[P]7) € RN, (123)
CC (72) reduces to
ChF > &4, (124)
where N
kze _ 1 x5 Pum . (125)
" Nr = PymAr+ o2 ||Wum||?

Calculating the Hessian of (125), it can be verified that (124) is a convex constraint
[88].

OFDMA
Using ZF equalization in OFDMA, constraint (82) reduces to

> Euks (126)
which is also a convex constraint.

3.3.3 Joint optimization of RX filters and TX powers

SC-FDMA

The block diagram illustrating the optimization flow is depicted in Fig. 9. The idea is to
perform joint optimization by alternating between the TX and RX optimizations, where
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\ A | closed form expression with variables

- P
P

A

\ P=pP@
\ / (29)

Fig. 9. Block diagram of the optimization flow for SC-FDMA.

SCA is employed for TX optimization.
The power minimization problem for SC-FDMA with the CC derived in Section 3.1
is expressed as
mirllj%ryfr/lize tr{P}
subjectto C¥>E&,4, u=1,2....Uk=1,2,... K, (127)
Pw=>0, u=12,....Um=1.2,... Np,

where
W ={e}, u=12,..,Um=12,.. Npk=12,... K} (128)

Problem (127) is not convex with respect to the optimization variables.

The joint TX-RX optimization problem (127) can be solved by using alternating
optimization where the non-convex joint optimization problem is split into separate TX
and RX optimization. The algorithm starts with a feasible initial guess® P(°) followed
by the calculation of the optimal receive filter. After that, problem (127) is solved for
a fixed #. The overall algorithm is presented in Algorithm 3, where P(*) represents a
solution to problem (127) for fixed # and # *) represents the optimal % for fixed P.

A monotonic convergence of the objective value in alternating optimization can be
justified by the fact that each step improves the objective. In the following, it is shown
that the soft cancelation MMSE RX (29) is a power-minimizing RX.

Differentiating the Lagrangian of (127) with respect to the receive beamforming

vectors and equating to zero yields

kH k
a Pu’mwu,m‘}'u,mYMH,mmu,m
k k
05, o Tt ok

t,m > u,m

—0. (129)

6Can be found by e.g., using ZF algorithm [43].
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Algorithm 3 Alternating Optimization for SC-FDMA.

1. 1 Initialize P = P()
2: repeat
3 Calculate the optimal % from (29).
4 Set# =™ and solve problem (127) with variables P.
5. Update P = P
6: until Convergence

Calculating the derivative in (129) and solving a)’,;m results in

o ¥k @k
k u,m=tm*“um k k -1
[ : o P X (8 ,)" Yum/ Pum (130)
u,m Bl,mmﬁgnYM,mYE;nmﬁ,m u,m > u,m ) T,m u,m ’
where

kH yk k
wu,mzf',ma)u,m +

o " — eR*. (131)
MAmwu.mYM,mYu,mwu,m

Further assuming that

Vi@ €R, (132)

the optimal receive beamforming vector for the m™ frequency bin of the ™ user at the

k" MI index is given by

o}, =18 (EE ) Yum v/ Pums (133)

where X5 denotes the interference covariance matrix for the m™ frequency bin at the
k™ MI index and n¥ € R. Assumption (132) is justified by the fact that the RX @f ,
can be multiplied by any factor ¢/%, 6 € [0,27], such that e/®yl @k, € R, without
changing the SINR. Hence, the optimal RX (29) is actually the MMSE RX used in
[100, Chapter 5] up to a scalar multiplier leading to exactly the same SINR. The scaling
factor n¥ should be chosen such that it matches with the assumptions made in the soft
demapper. With the notations given in Chapter 2, the turbo equalizer works properly
only if the scaling factor n¥ is chosen to be [101]

k l

B 134
M= e (B G+ 1 (139
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OFDMA

The power minimization problem for OFDMA with the CC is expressed as
minimize tr{P}
P/
subjectto  CF, >&u, u=12...,Um=12,... Np,k=1.2,... K, (135)
By >0, u=12,....Um=1,2,...,Np,
where
W = {a) =1,2,...,Um=1,2,...,Np,k=1,2,... . K}. (136)

u,m ‘u
For fixed ¥, the objective and all the constraints in problem (135) are linear. Hence,
(135) is convex for fixed # . Differentiating the Lagrangian of (135) with respect to the
receive beamforming vectors and equating to zero yields

(9 P” md)ﬁ}rInYM mYMH mﬁm
20 P uk o =0, (137)
m”*m 2"rm u,m
where

S 2

tm = Z YI,mﬁmPl,mAk + 0y Ly, (138)
=1
l#u

Calculating the derivative in (137) and solving @ﬁm results in

VP,
]l;,m = ~k“m ﬁ um l‘m \/ qu'Yum (139)

u,m

S

where V~1:”‘m € R*. Similarly to the SC-FDMA case, it can be assumed that ¥}, @% , €

u,m

R. Hence, the optimal receive beamforming vector for the m™ frequency bin of the 1™
user at the k™ MI index is given by

= A EEm) ™ Yum P (140)

where fh’f € R. It remains to show that (40) and (140) lead to the same SINR. Using the
matrix inversion lemma [106]7, MMSE filter (40) can be rewritten as

i 1 K
wﬁm: Tk 2|"fm Yum\/ u,ms (141)
’ 1 + CM ,m
where € R™. It can be seen that (140) and (141) are equivalent up to a scalar

1+ Cum
multiplier and hence, lead to the same SINR. The alternating optimization algorithm

for OFDMA is presented in Algorithm 4.
7(A+CBcT)—I — Al _A—lc(B—] + CTA—lc)—lcTA—]
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Algorithm 4 Alternating Optimization for OFDMA.

1. 1 Initialize P = P()
2: repeat
3 Calculate the optimal # from (40).
4 Set W =#™ and solve problem (135) with variables P.
5. Update P = P
6

: until Convergence

3.34 Successive convex approximation via change of variables

In the following two subsections, the focus is on solving problem (127) for fixed 7/,
denoted as power allocation problem (PAP).

To ease the handling of (127), the problem is written in equivalent form by splitting
the CC into sum SINR and per subcarrier SINR parts as follows:

Nr
Z tl{im Z gu.k

m=1

1
Np

Pusn‘wﬁl,_ill’y%np

K o_
Ll Pl oy A+ of | ef |12

t (142)
At the optimal point, the constraints hold with equality, and hence, the equality in (142)
can be relaxed, leading to an equivalent formulation of the PAP as

C .. U Np
minimize Y, Y, " Pum
PW.t

subject to ﬁzﬁ;dgm > & u=1,2,....Uk=1,2,... K,
Pul @87, > 1, (£, PLal @lFi,, P+ 020, I2) k= 1,2, K,
u=12,....Un=1,2,...,Np,

B,>0u=12,....Un=12,... Np,

(143)
where t = {t* u=1,2,... . Uk=1,2,... . K,m=1,2,....Np}. It can be seen that
the RHS of the per subcarrier SINR constraint is a posynomial and the RHS is a linear
function. Hence, it can be transformed to a convex constraint. However, the LHS of
the sum SINR constraint is a posynomial and, therefore, needs to be approximated as
presented in Section 3.2.
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Following the procedure presented in Section 3.2.1, new variables o, , € R are
introduced such that P, ,, = e®m Vu=1,2,...,U,m=1,2,...,Np. The PAP with the

new variables can be equivalently written as

i U vNr Lo
minimize e Ly €

subject to iZZiltk >&u=12,...,Uk=1,2,... K,

Nr um =
. H
ellu.n‘m/,;‘n 7u,n|2 tk k=1.2 K
&7 H Z tuns™ T By sy By
Z;jzle [‘nlmﬁ,n Y]‘,,‘ZA[(-Q-G%H(DE_"HZ ’
u=12,....U, n=12,...,Np,

(144)
where @ = {0, : u=1,2,...,U,m=1,2,...,Np}. Taking the natural logarithm of

the per subcarrier SINR constraint yields

U
G +21n(|0y, 1)~ In(Y e @ffy, 28+ 02 |@k, | 2) > Indk,.  (145)
=1

It is well known that logarithm of the summation of the exponentials is convex. Hence,

the LHS of constraint (145) is concave. The RHS of (145) can be locally approximated

k

with its best convex upper bound, i.e. a linear approximation of Inz; , at a point ff;n:

ko ok ~k (tlf.n - fll,:,n)
Y(tu,mtu.n) = ]ntu,n + — = (146)

u,n

A local convex approximation of (144) can be written as
minir{lize 25:1 ZZF: L e%em
a,
subjectto  YoF 1k > Np&u=12,... . Uk=12,... K,
O +2I0(| @57, ) —In(ELL, e | @57, [P Ak + 07| @f %) =
Y(th o0 ,)u=12,....Uk=12,.... Kn=12,... Np,
(147)
and it can be solved efficiently by using standard optimization tools, e.g. interior-point

methods [88]. The SCA algorithm for PAP is summarized in Algorithm 5.

Algorithm 5 Successive convex approximation for PAP via change of variables.

1 Set i, = itV Vu,k,n.

2: repeat

3 Solve Eq. (147).

4 Update ff, = t,]ffj),Vu,k,n.
5

: until Convergence.
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3.3.5 Successive convex approximation via geometric programming

Another algorithm for solving the PAP can be derived by using the approach presented
in Section 3.2.2 where the SCA is implemented via series of GPs [88]. Using (97),
the summation constraint can be replaced by its monomial underestimate, with which a
local approximation of (127) for a fixed % can be derived in the form of GP, as

L (P
minimize r{P}

)

. Np [ thn \@k
subject to anl(q)T') wn > Np&pu=1,2,...,Uk=1,2,... K,
“H H 148
Pu,m|mﬁ_m ‘}'u,m‘z > (ZIU=1PIA,m|mlL{¢,m Yl,m|2Ak + Gg|m§,m|2)t5,mv ( )
u=12,....U,k=1,2,.... K,m=1,2,...,NF,
Pp>0, u=12,....Um=1,2,...,Np,
where
k By
o u,m
D, = Tyilff;,n. (149)

Now the objective is a posynomial, the LHSs of the inequality constraints are mono-
mials and the RHSs are posynomials. Hence, (148) is in the form of a GP, which can
be transformed to a convex optimization problem [88]. The SCA algorithm for PAP is

summarized in Algorithm 6.

Algorithm 6 Successive convex approximation for PAP via geometric programming.

1: Set pu.m = plg%avu7m

2: repeat

3 Calculate CID’;’m, Yu,m, k, using (149).
4:  Solve Eq. (102).

5. Update B, ,, = P}, VK.

6

: until Convergence.

The motivation for introducing two different SCAs via COV and via GP is to give
alternative approaches for the implementation of the optimization algorithm. The main
difference is in the approximated constraints: In (147), the per subcarrier constraint is
approximated and the number of the approximated constraints is UNpK. In (148), the
sum SINR constraint is approximated and the number of approximated constraints is
UK.
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3.4 Numerical results

In this section, the numerical results obtained by simulations are shown to evaluate
the performance of the proposed algorithms. The stopping criterion of Algorithms
3-6 is that the change in the objective function becomes less than or equal to a small
specific value between two successive iterations. In simulations, the stopping threshold
value was set at 0.05 for Algorithms 3—4 and 0.01 for Algorithms 5-6. EP-SC-FDMA
and EP-OFDMA denote the SC-FDMA and OFDMA transmission with equal power
allocation, respectively. In equal power allocation (EP), equal power is allocated to all
users across the frequency band, where the power level satisfying the CCs is found using
a bisection algorithm [88]. SC-ZF and OFDMA-ZF denote SC-FDMA and OFDMA
transmission with ZF equalization, respectively.

The results were obtained with the following parameters: Np = 8, QPSK (Ng = 2)
and 16-QAM (Ng = 4) with Gray mapping, and systematic repeat accumulate (RA)
code [107] with a code rate of 1/3 and eight internal iterations. It can be seen from
(127) and (135) that the PAPs expand linearly with Nr. The number of EXIT samples
is either K =1 or K = 5. In the case of K = 1, only one of the CCs for each user
is taken into account. More specifically, it means that /*" = 0, and E = harget.
u=1,2, k=K. The feedback from the decoder is not taken into accounf, and hence
it corresponds to the linear equalizer. In the case of K =5, the points were placed
uniformly along the line from the origin to the convergence point, i.e. uniformly over
[0, /B-2¢t]  Furthermore, €4k, = €u» Vky < K and g, x = 0. The SNR per RX antenna

averaged over frequency bins is defined by
SNR = tr{P}/(NgNrG?2). (150)

Two different channel conditions were considered, namely, a static five-path channel
where path gains were generated randomly, and a quasi-static Rayleigh fading five-path
average equal gain channel.

To verify the accuracy of the method, EXIT simulations were carried out in a static
channel, and the trajectories were obtained through chain simulations with a random
interleaver with a size of 240,000 bits. The EXIT curve of the decoder was obtained
by using 200 blocks for each a priori value, with the size of a block being 6,000 bits.
The EXIT curves of the equalizer for SC-FDMA using SCAGP and the decoder, as
well as the trajectories for two and four users with QPSK and 16-QAM, are depicted
in Fig. 10(a). It is found that when U = 2 and QPSK is used, the gap between the
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EXIT curves satisfies the preset condition and the convergence point is very close to the
preset value. Furthermore, the trajectory matches closely with the EXIT curves, which
indicates that the algorithm works properly. When the modulation order is increased to
16-QAM there exists a slight discrepancy between the EXIT curves and the trajectory.
This is because of inequality (86). Due to the conservativeness of the CC in the case of
16-QAM, the real chain simulation provides a larger MI than the approximated EXIT
curves, and hence the actual trajectory reaches the convergence point. Therefore, since
the constraint in (127) provides an upper bound for the true SINR, convergence is also
guaranteed with 16-QAM. Similar results are also obtained for OFDMA, as depicted in
Fig. 10(b). However, for OFDMA the gap between the EXIT curves is larger than g,
resulting in significantly larger SNR requirements compared to SC-FDMA. This is due
to the difference in CCs. In the case of OFDMA, the SINR requirement is the same for
all subcarriers, unlike in SC-FDMA where the average of SINRs over the subcarriers is
used.

To obtain the impact of a finite-length interleaver between the channel code and the
equalizer, the trajectories were simulated using an interleaver with a length of 6,000
bits. The results are depicted in Fig. 11. It is obtained that the trajectories of both SC-
FDMA and OFDMA do not match exactly to the EXIT curves. Furthermore, it can be
seen from Fig. 11(b) that when &, = 0.01, the trajectory does not reach the convergence
point. In practice, this can be avoided by setting €, to a large enough value. Hence, the
derived algorithms also work with finite block length codes.

To obtain further insight into the trade-off between g, and the required SNR to
satisfy the constraints, all the algorithms shown in this chapter were simulated in a static
channel with various g,, and the SNR values and the number of iterations required to
achieve the target point were evaluated. The results are shown in Table 1. It can be
seen that decreasing g, from 0.2 to 0.1 requires only one or two more iterations and the
required SNR can be decreased by roughly 1 dB, depending on the algorithm used. The
required SNR can be further reduced by about 0.5 dB by decreasing €, to 0.01, while
the number of iterations increases approximately three times.

For QPSK, the MI target can be converted to BEP using the equation [51]

\/ J2_1 ( ii\,target) + J2_1 ( fii,target) >

G (151)

In Fig. 12, the required SNR versus BEP is presented, where four different BEP target

1
BEP ~ Eerfc (

values are considered for u = 1,2, namely 1073, 1074, 1075, 107° corresponding to
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(0.2,0.1,0.05,0.01).
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Fig. 10. Verification EXIT chart in a static channel for (a) SC-FDMA by using SCAGP
When U = 2, parameters of users 1 and 2 are used.
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Table 1. Required SNR and number of iterations with various ¢ in the case of SC-FDMA. The

elements in the table are in the form of SNR(dB) / iterations for user 1 / iterations for user 2.

U=2,Ng =2, Ng =2, K =5, "9 — 0.9999, vy, [E1"9%! — 0.7, jE1ar9et _ ) g,

g =8 OES SCAGP SCACOV SC-ZF EP-SC-FDMA
0.01 456/19/18 4.53/20/18 4.53/18/17 6.56/10/10 8.82/3/3
0.1 529/6/6 5.10/6/5 511/6/5 7.08/5/5 8.82/3/3
0.2 6.89/4/4 6.12/4/4 6.13/4/3 7.96/3/3 8.82/3/3

the MI targets (I, [F-"8) — (0.99,0.6185), (15" j“"') = (0.9987,0.673),
([Frereet fETEety — (0.9998,0.7892), (15" [i-1€t) — (0.9998,0.9819), respectively.
It can be seen from Fig. 12(a) that OES, SCAGP and SCACOV achieve the best result
when K = 5. SC-ZF and EP-SC-FDMA with K = 5 are 1.3 dB-3.6 dB worse in terms
of SNR, depending on the BEP target and the algorithm used.

It is worth noting that the solution obtained by SCAGP and SCACOV in this par-
ticular case is very close to the orthogonal solution (OES). This is due to the fact that
when Al =0, VI = 1,2,...,U in (30), all the interference is cancelled and the optimal
RX is the filter matched to the channel. In this case, the optimal allocation strategy to
maximize (27) is to allocate power to the strongest bin. However, this would not nec-
essarily satisfy the constraint in (127) if Ay = 1. Thus, the power has to be distributed
between several bins, which results in higher power consumption. Hence, if the tightest
constraint, i.e. Ay = 1, can be satisfied using only one frequency bin, it is indeed the
best solution. This is the case when the interference level is low, as in the case pre-
sented in Fig. 12. When the number of users increases, interference also increases and
the orthogonal solution may not be feasible. This can be seen by looking at inequality
(105). As was seen in Section 3.1, &, x and Ay depend on the channel code used. Thus, it
can be concluded that the feasibility of OES algorithm can be controlled by varying the
channel code. The following results in this chapter are presented for 16-QAM only with
R. = 1/3 where the OES algorithm is not feasible due to (105). Fig. 12(b) illustrates
that by using the CC, the desired QoS target can also be achieved with significantly
reduced power consumption in OFDMA.

Fig. 13 shows the minimum SNR required to achieve the corresponding MI target
for user 1 for each of the proposed algorithms for U = 2. It is found that the SNR
gain by precoding with K = 5 is significant compared to precoding with K = 1. In Fig.
13(a), the SNRs with SCAGP and SCACOV are approximately equal and they provide
the best results in terms of SNR. As expected, EP with K = 1 requires the highest SNR
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Fig. 14 shows the minimum SNR required to achieve the corresponding MI target
for user 1 for each of the proposed algorithms for U = 4. The results are similar to the
case of U = 2: SC-ZF with K = 5 requires more power than EP-SC-FDMA with K =5
when the MI target is low. However, when MI target increases, SC-ZF performs better
than EP-SC-FDMA with K = 5. In OFDMA, the iterative equalizer is used to remove
the MUI. In OFDMA-ZF, the MUI is already removed by the ZF equalizer and thus, the
MMSE equalizer is not needed. Because in the scheme presented in Fig. 14 the noise
power is low compared to MUI, the SNR required by OFDMA-ZF is not significantly
influenced by the increase of the MI target.

As seen in Section 3.3, both SCAGP and SCACOV are to be solved via series of
convex problems. Many efficient tools for solving convex problems are known in the
literature [88]. Hence, the complexity analysis boils down to the comparison of how
many times the optimization problem needs to be solved for each of the algorithms to
achieve convergence according to criteria described at the beginning of this section. The
number of solver call times that Algorithms 3 and 4 need varies typically between one
and nine depending on the simulation setup. The more users, the more iterations are
needed. The number of solver call times that Algorithms 5 and 6 need in Algorithm 3
varies between one and 13.

The motivation for using SC-FDMA is its favourable PAPR properties. The PAPR

of the transmitted time domain signal of the u™ user is defined as

PAPR(s") = maxy, [$5,° (152)
avgl|si|]

The PAPR of EP-SC-FDMA is only 2.55 dB for 16-QAM due to the equal sizes of DFT
and IDFT at the TX and RX. However, the PAPR is increased when power allocation is
performed across the frequency band. To demonstrate the trade-off between reduction
of the required SNR and increase in PAPR, we measured the PAPR at the output of
IDFT in the TX and evaluated the complementary cumulative distribution functions
(CCDFs) Prob(PAPR(s") > 0) for the algorithms investigated in this thesis. The results
are shown in Fig. 15. It can be seen from Fig. 15(a) that unequal power allocation
increases the PAPR significantly in SC-FDMA. Furthermore, with K = 5 the PAPR is
higher than with K = 1 because with K =5, the power allocation tends to be more
orthogonal. However, it can be seen from Fig. 14 that the required SNR is reduced.

The maximum transmission power is defined as

Poax (dB) = P*._(dB) + PAPR(s")(dB), (153)

avg
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where
. SNRxNgxo?

o= o (154)

denotes the average power per user. Let us consider an example where the maximum
transmission power is to be configured according to 8 dB PAPR, which corresponds
to the 10722 value in CCDF for SCAGP and K = 5. For that same value of CCDF,
the PAPR is 5.14 dB for SCAGP and K = 1. Hence, increasing K from one to five,
the total power gain is Pnax (dB)SAPK=! — B, (dB)SCACPR=S — 15.284B +5.14dB —
4.76dB — 8dB = 7.66dB. Therefore, the increase of K from one to five significantly
increases the coverage of precoded transmission. For OFDMA, increasing K from one
to five gives a total power gain of 10.58 dB. SCAGP with K = 5 requires 6.8 dB lower
SNR than EP-SC-FDMA with K = 5. Using the same 8 dB example as above, the
total power gain is 6.7dB — (8dB — 2.55dB) = 1.25dB. However, this is only the worst-
case comparison, i.e. the DFT and IDFT sizes are not necessarily equal in practice,
and the use of different sizes of DFT and IDFT results in an increase in the PAPR of
EP-SC-FDMA algorithm [82]. In conclusion, even with the worst-case comparison,
SCACOV and SCAGP can achieve significantly larger coverage than EP-SC-FDMA

with significantly lower average power consumption.

3.5 Summary and discussion

In this chapter, the CCPA problem for iterative FD MU SIMO detector was derived. Fur-
thermore, with the novel problem derivation, the generalization for higher-order mod-
ulations is straightforward. This generalization requires knowledge of the J-functions
for different modulation schemes. Then, the derived constraint can be used as an upper
bound to guarantee convergence. In the case of a mixture of different modulations, the
resulting LLR distribution would be a mixture of Gaussian distributions. One way to
perform CCPA for a mixture of different modulation formats is to construct a look-up
table where the J-function is defined for the mixtures, e.g. there would be a J-function
for the mixture that has 60% 16-QAM and 40% QPSK. Again, the CC would serve as
an upper bound and convergence is guaranteed.

Moreover, two SCAs for finding a local solution of the problem were derived. Nu-
merical results indicate that significant gains in terms of average power consumption
can be achieved compared to the linear RXs with and without precoding as well as to
the iterative RX without precoding. Furthermore, it was shown that the PAPR increase
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due to precoding is relatively small compared to the gain in the average power consump-
tion. Thus, the maximum cell size is increased by precoding. Algorithms proposed in
this work allow the utilization of iterative RX and its convergence properties also on the
TX side.

In SC-FDMA, increasing the power in any subcarrier causes self-interference. There-
fore, the starting point in the EXIT chart, i.e. the equalization without a priori informa-
tion, is interference-limited. In Section 3.4, it was obtained that when the number of
users is low compared to the number of subcarriers, the solution obtained by SCACOV
and SCAGP is very close to the orthogonal solution. With no interference, the optimal
receiver is a matched filter and the optimal power allocation strategy is to use only the
strongest bin. However, in SC-FDMA, increasing the power causes interference and
the SINR constraint may not be satisfied by using only one subcarrier. Therefore, the
power has to be distributed to several subcarriers, choosing the ones with the highest
gains. If two or more users choose the same subcarrier, the interference is further in-
creased. However, if Ng > U, the user separation can also be performed in the spatial
domain using multiple receive antennas.

In OFDMA, the starting point in the EXIT chart is not interference-limited in gen-
eral. However, in the case presented in the thesis, the same SINR is required for all
the users in all subcarriers, and therefore increasing the power of one user causes in-
terference to the others. The optimal strategy would be to use the same average SINR
constraint as in the case of SC-FDMA. Then, the optimal solution is likely to be close to
the water filling solution (CC may have some impact on the final results). This solution
would require some major changes for the system model to be able to support the result-
ing bit and power loading strategy. Therefore, the impact of CC on the OFDMA with
sum SINR constraint is left for future work. In OFDMA, the turbo equalizer is used
only for removing the inter-user interference (since there no other type of interference).
If Ng > U, the benefit may be negligible. However, if Ng < U, the turbo equalizer may

compensate for the loss of degrees of freedom for the power allocation problem.
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4 PAPR constrained precoding for iterative
multiuser frequency domain MMSE detector

In this chapter, the PAPR constraint is derived for generalized multi-carrier transmis-
sion. Moreover, a statistical approach is considered where the power variance of the
transmitted waveform is controlled. All the constraints are derived as a function of
transmit power allocation, and two successive convex approximations (SCAs) are de-
rived for each of the constraints based on the COV and GP. The proposed power alloca-
tion strategy takes jointly into account the channel quality and the PAPR characteristics
of the power amplifier. The numerical results show that the proposed power allocation

strategy can significantly improve the transmission of power-limited users.

41 Instantaneous PAPR constraint

In this section, instantaneous PAPR constraints are derived for SC-FDMA and OFDMA.
In addition, SCACOV and SCAGP are derived for each of the constraints.

4.1.1 PAPR constraint for SC-FDMA

Let s be the m" output of the transmitted waveform for the u" user after the IDFT.

The PAPR constraint in general form is expressed as

maxy, |sm|2

<4y, (155)
avg(lsh 2]

where 8, > 1 is a user specific parameter controlling the PAPR. The max operator can

be eliminated by requiring
[sinl”
— e < &y, Vm=1,2,... ,Nr. (156)
avgllsiy[?]

Assuming E{|b%|} = 1, Yu,n and E{b}b}*} = 0, Vn # i, where bl* denotes the
complex conjugate of b, the average can be calculated as
Np

avg[|s" 2 NZ { } ]JFZPW. (157)

m=1

81



The complete derivation of (157) is shown in Appendix 1. The assumption E{|b%|} =1
can be justified for any modulation scheme with a proper normalization factor.

The power of the m™ transmitted waveform can be calculated as

1 &
|S::1|2 = ﬁ Z (K +2d1) u,l + Z ( mnny +nn|n2m) Pu,n]Pu,nzy (158)
F =1 F ny,ny=1

ny>nj

where ¥ € R, Vu, d' € R, Vl,u, and € R, Vny,ny,m,u. It should be
noted that the number of summation terms in (158) increases in the order of N} —
NE(1L+2YN ') + Np + (2" 1), The complete derivation of (158) is given in
Appendix 2.

mn1n27nn|n2m

In Appendix 2, it is shown that the factor k" + 2d;' in (158) has to be non-negative.
However, the factor 3, ,,, + T, »,,m €an be negative, depending on the symbol sequence

and the power allocation. Let

ﬁ}‘l':i;lznl max{07ﬁr1:1nln2 +nlglnzm} (]59)
and
Ay = WD Blty 0 111, O (160)

In such a case, the instantaneous PAPR constraint can be written as

1 N
72 (K‘ —|—2d ) ul+ Z ny’:;:lzm unlpu,nz

I’ll JHp= 1
ny>nj
Nf 2 Nr
SSMZPM71+N7 Z ylflnzm V Pun Puny, Vm=1,2,....Np, Yu=1,2,....U,
=1 ni,ny= 1
ny>ny

(161)

where all the terms in each summation are nonnegative.

The constraint (161) is a non-convex constraint. The term /P, P, », existing on
both sides of (161) is actually a geometric mean and thus a concave function. While
SCA could be directly applied by approximating /P, 5, P,.», on the LHS of (161), two
SCAs are presented so that the reformulated constraint can be incorporated to the opti-
mization framework introduced in Chapter 3. In the following, SCACOV and SCAGP
are applied for constraint (161).
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SCACOV

In SCACOV, constraint (161) is transformed such that it has a convex and concave
part. The concave part can be locally approximated by a linear function, i.e. a local
underestimator, and applying Algorithm 1, a local solution can be found iteratively by
updating the approximation point.

Denoting P,; = ¢!, u=1,2,...,U,1=1,2,...,Np, constraint (161) becomes

Nr

1 N 1
Z(K +2d au[ + Z nrlfl—tlzm % ‘xu‘n|+au,n2)
NF =1 F =1
ny>ny
2 N |
<4, Ze o Y (e (G ) (162)
NF ny,np=1
ny>nj

The summation of exponentials is convex, and hence, both sides of (162) are convex

functions.
Let
Nr 2 Np .
T;n(au) = 614 Z e%ul +— Z ( n:;izm)ei(au-nﬁrau.nz).
=1 F ny,ny=1
np>ng

The best concave approximation of 7,,(¢,) at a point &, is given by

. N AT, .

Ton(u, @) = T (@) + ) = (8) (e — i) (163)
=1 9 Quk
The partial derivative aaof'"k is derived as
T, 1 N fuy b |
aauk 5 e°‘uk+ Z ( n;:nm) (allk+aun>+N7F Z( nrlltkm) 2(05un+auk (164)
F pn=k+1 n=1

The best convex approximation of (162) at a point &, is written as

Nk L N
) (K" +2df)e "l+— Y el <7, 0,8,
=1 Nr ni,np=1

ny>nj

u=12,....Um=1,2,...,Nr. (165)
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SCAGP

For SCAGP, the constraint needs to be in such a form that it has a posynomial on both
sides of the inequality sign. Constraint (161) is directly in that form. Now, the RHS
can be successively approximated by a monomial using (97), and a local solution can
be found iteratively by updating the parameters in monomial approximation.

Let

Np 2 Np
%m(Pu) = 5u Z Pu’[ + Ni Z (_n#lnzm) Pu,anu,nz
=1 nynp=1
np>ny
(166)
Applying (97) to ,(P,) yields a lower bound
e(l) HU— 6’2?2’12"’”{
s HNF P\ A2 v (=0 nym) /Py Py 2
ullj—1 9(1) um [ N n’;,n>2n:1 e’glezmu um
ul 2 1
() > \ i ,
Tum Tum
(167)
where
([1) _ Py
u N, ’
Z['i] Pu,l’
0@ Mnmm /P P 68
mynmymu = N e s ( )
L et~ Mg Par P
nh>n}
and weights 7.y and 7.2 iven i
ghts 7, and T, are given in
ol
Np [ P ) "
(1 oIl (68”)
Tum B 9(1) [U— 9’5221 mu
6 HNF Pu,l ul + lHNF (_nlglnzm)\/[m 172
ullj=1 6(1 Np 1npny=1 6(2
ul ny>ny nynymu
AU— 9}5?)}12 mu
2 HNF (7nn1n2m)\/m
(2) Nr ny,np=1 0 2
— np>ny nynymu
7@ = 2 o (169)
6 HNF M ul + l HNF <7n;:17}'12m)\/ P147n1 Pu.nz 172
ulll=1 6(1) Nr ny,np=1 9(2)
ul ny>ny nynymu
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Hence, constraint (161) can be successively approximated Vu,m as

Np

u Aut+
Z(K +2dl Ml+ Z Mninom Funi Pun,
=1 Nr ny,np=1

np>nj

. (170)

(2)

Tum

(1) AU— 9)'(1221 mu
Np <(nn1n2m)\/Pu¢n1Pu,n2) 12 )Tgn)

el
2 u I 2
6 H () Tl,(tm W H”l =1 2)
< ul np>ng
- (1)

(
en 17pmu
Tum

The LHS is a posynomial and RHS is a monomial and hence, (170) is a valid GP [88]

constraint.

4.1.2 PAPR constraint for OFDMA

Going through a similar derivation as in the case of SC-FDMA, the average power in
the case of OFDMA is

avg||se|’] —ZPM, (171)

i.e. the same as in the case of SC-FDMA.

The power of the m™ transmitted waveform can be calculated as

) 1 N 5 1 N
‘331| = N7F1=21 ‘blu| PMJ + Nin],nZZ:ldVMnnznl Pu,anu,;127 (172)
np>nj
where
dN;rlmznl =2 (‘@[amHZ’ll] (‘%[bZZ]%[bzl] + J[bZZ]j[bZI ]) -
I [amnyn, ] <%[bzz}f[bﬁl] - f[bﬁz]%[bﬁLO) ; (173)
and
2r(m=1)(np—ny)
Qmnyn, = € Np . (174)

The derivation of (172) is provided in Appendix 3. The number of summation terms in
(172) increases in the order or N% — ZQI il fl n. The PAPR constraint for OFDMA can be
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written as

N
Y I} PP+ Z Dy NV Pum Puny < 84 ZP i+ Z ~ sy )\ P, Py
=1 nip,ny= 1 =1 ni,ny= 1
ny>ng np>nj
(175)
where
oy = max{0,dy,,, } (176)
and
drl,:mznl mln{dn1n2n17 } (177)
The major difference between the OFDMA’s PAPR constraint and the SC-FDMA’s
PAPR constraint presented in (161) is in the factors 7, ,,,,, and dmn2n1 Similarly to Sec-

tion 4.1.1, constraint (175) can be successively approximated as SCACOV or SCAGP

or directly approximating /P, , P, 5, as a linear function.

SCACOV

Changing the variables as P, ,, = e%m, Yu,m, the approximation of (175) is written as

1

Z |bu|2 %y + Z d;lnjl’znl 2 (Xu.nl+au7)12) S ﬁn(au,ab{)? (178)
ny,ny= 1
np>nj

where f}n(au,du) is given in (163), T,,(et,) is the RHS of (175) after COV, and the

partial derivatives are given as

dTn o, 1 G u— (O! +n) 1 u— (Ot +a, )
aa = 5u€ uk 4 — Z ( dmkn) kT Oun) | E Z ( dmnk) un Ty (179)
u,k n=k+1 n=1
SCAGP

Applying (97) to the RHS of (175) yields a constraint

Z,|bl|PulJr Z d;lfzja—zn] unlpu,nz

nyny=1
np>nj

(1) (2)

6 uU— emn nyu
< ul> ul (1) HNF (< dmnzm)vpu-"l”"ﬂz) i ) 2)

6 H Tum ”1-,"2=1 6(2) Tum
Gul no>ny mnynyu
(1) (2)
TLﬂn Tum

IN

, (180)
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where

e
Z[/ilpul’

6n(an)znlM: - dquzﬂ] Pumpunz (181)
Z’n’l,nlzzl dmnn P”nlpunz
nb>n

and weights r},},} and qﬁ?n) are given in

(1

N P, eul
u,
5’4 H[:l 9(|)
o) =
1 2
9151 ) av- P P eism)zi” u
5 u. N[: (7 mnyny )\/ u,ny fu,ny
H +I—I"]an2:] 9(2)
ul np>ny 'mnynyu
u 9r£12n)2n1u
Y iy ) /Py Py
ny,np=1 9(2)
1(2) _ np>nj mnynyu (182)
um — (1 (2) .
0 S 6,
6 u ! ul (_derm2n1 )\/ Pu,nl Pu‘nz I
I (ot + Ty 1 B —
ul ny>ny mnynyu

Hence, constraint (175) can be successively approximated Vu,m as (180). The LHS is

a posynomial and the RHS is a monomial and hence, (180) is a valid GP constraint.

4.2 Power variance constraint

In this section, the power variance constraint is derived for SC-FDMA and OFDMA
together with the SCACOV and SCAGP approximations. In [81, 82], it is shown that
decreasing the variance of the power of the transmitted time domain signal decreases
the PAPR in SC-FDMA transmission. The difference between the power variance and
the instantaneous PAPR constraint is that the power variance constraint does not depend
on the transmitted symbol sequence. However, the power variance constraint reduces
the PAPR statistically and cannot track the exact PAPR.

4.2.1 Power variance constraint for SC-FDMA

Let the average power of the transmitted signal of the u™ user be denoted as y, =
Nr ZNF P,;. Assuming E{|bs|} = 1, Vu,n and E{b}, b}>} = 0, Vn| # na, the variance
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of the output power is given by

2 _LNF G4 g2
z (Pu)—NFk;(E{I iy — )

1 F
Z Z 18l Z 7 NETE (183)
F =1 m=1
where
1 N
gz,m = N7F Z V PLt,qaqkm~ (184)
gq=1
The first term reduces to
1 Nr Np
=u,. 185
NF = mZ |gkm u ( )

The second term can be expressed as a function of power allocation as

1 Nr Np 4 1 1 Np
N Z Z | km - + 3 Z Pu Nl un2 + 73 Z \/Bl,nlﬂl,nzﬂl,n3ﬂl,n47
=1m=1 NF ni,meS) NF ni,no,n3,n4€SH
(186)
where
= {mm € (1,2, Ni}im # magmy =y = £Np /2 (187)
and

yZ = {’“7”2;”37”4 S {1,2,...,NF} - n %n27n3 ¢n4,(n1,n2) 7é (n37n4)a
n4—n3E{n1—nz,Np—|—n1—ng,—Np+n1—n2}}. (188)
Substituting (185) and (186) in (183) yields

Nr —1 NE

1 &
ZQ(PM) = N3 (ZPM,I)2 33 Z Pu,anu,nz_
F =1 F nymes

1 Wl
N3 Z \/Pu,nl Pu,nz Pu,ng Pu,n4 . (189)

F ny,ny,n3,ng€.%

. . . . Np
Computer simulations revealed that the number of summation terms in anmm e
is N3 — N2 — Nr. Hence, the number of summation terms in (189) increases in the order
of N} — N? + Nr. The objective is to control the variance of the normalized power, and
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hence P, ; in (189) is divided by Zﬁ:’ I Pun, V1. Hence, the constraint for power variance
is written as

Nr

2(P) < 62(Y P’ (190)
=1

where 62 € R* is the preset upper bound of the variance of transmitted power for the

u'™ user. Plugging (189) into (190) the constraint can be written as

N Nr Nr
(NF - 1)(2 Pu,l)2 < Z Pu,nl Pu,nz + Z \/Pu,m Pu,nzpu,n3pu,n4+
=1 ny,n €S ny,ny,n3,n €5

Nr

()Y P,)?62N}E. (191)
=1

Both sides of (191) are posynomials. Thus, SCA is needed for the RHS. Both, SCACOV
and SCAGP can be applied for approximating (191).

SCACOV

Changing the variables as P, ,, = ¢%, Yu,m, constraint (191) can be approximated as
N .
(Nr = 1)() e*)? < T (e, &), (192)
=1

where T'(@,, &,) is given in (163), T (a,,) is the RHS of (191) after COV, and the partial

derivatives are given as

oT Nr, N, 1
=2 Z eauAn‘Fau,k + 2 Z ej(au,nl ‘qu,nz +au,n3 +au,k)
aa’hk n=1 ny,ny,n3=1
n7k ny#ny,n3 £k
n—k=+Nr /2 (1 m2)#(n3 k)
k—n3e”
Np
+26,Np () e%uittur)?, (193)
=1
where
y:{nl 7n2,NF+n17n2,7NF+n1*n2}. (194)
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SCAGP

Similarly to 4.1.2, applying (97) to the RHS of (191) yields a constraint

Np
2
(NF — 1)(21)14,1) <
=1
(1) (2)
Pu,nl Pu‘nz 9"”1 n (1) Pu7n1 Pu,nz Pu.n3 Pu7n4 9’”‘1 npn3ng )
Hnl,nzeéf’l 9(1) Tu Hl‘ll N3 N4 €SS 6(2) Tu
unjny unynynyny
1 2
Y 2

(3) 9(4)

P2 [°) ! - N, P P, unyny
=273 TNF ul | u (3) 2773 F uny " uny (4)
6, Np 1112, ( (3)) w26, Np Iy =1 0@ T

Oul np>ny unyny
X , (195)

3) 4)
Tu Tu

where the weights are given in

(1) Zn] €S Pu.,nIPu.,nz
T = Nr 2 52073
z"’117"265”1 Buny Puny + Zﬂ17"2,n3~ﬁ4€y2 \/Pusnlpusnzpu-n3pu-n4 + ():I:I PMJ) 6, Ny
(2) an,nz,n37n4efz \/Pu,nlﬂt,nzﬂt,n3ﬂ¢,n4
= NF p \2g2N3
an ,n2€«5{}| PM,Vl] Pu,nz + an ,n27n3,n4€¢72 \/Pu,m I)Lt,l’lzl)u,l’l3l)u,l’l4 + (lel Pu,l) Gu NF
=2n73 vNF p2
23— G Np X2 Py
v Np 252703
an,nzeyl Pu,nl Plt,nz + an,nz,n3,n4€y2 \/Pu,nl Pu,nz Pu,n3 Pu,n4 + (21:1 Pu,l) (O NF
=273 v NP
20—“ NF an np=1 Puvnl Pu:”Z
T(4> — ny>ng
S Nr 227073
2”17"26y1 P”v"IP’h”z + Zﬂlmzynsﬂéxeyz \/Pu=n1Pu=n2Pu7n3Pu7n4 + (21:1 Pu,l) Oy NF
(196)
and
6(l) _ Pu,anu,nz
uniny — I
Zn’l MHES Pu,n’l Pu,n’2
(2) \/Rt,nlﬂt,nzﬂt,n3ﬂt,n4
6u111n2n3n4 =

b
iy il €5 Pun/l Pu,n/ZPu,n/3 Pu,nﬁ1

2
o fu g PunPun 197
= YN pp 2 Pmm = SR (197)
Z"l’=1 u,l’ ) =1 un) Lu
nb>n
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4.2.2 Power variance constraint for OFDMA

In the case of OFDMA, the first term of (183) reduces to

1 & % 212 2
— 2 () gkl =21y,
Ne = =" !

while the second term is simplified to

1 Ne Ne 1 N

S X X letnlt = 32 X

k=1m=1 m=1

Substituting (198) and (199) in (183) yields

2 2 &
r (PM) = N2 Z Pu.,nzPu,nlo
F ny,ny=1
ny>nj

The summation terms in (200) increases in the order of Np(Np — 1) — Y

normalization, the variance constraint is written as

5 N Na 2
2 Z Pu,nzpu,nl S u Z Pu,m .
NF m=1

ny,np=1
np>ng

Nr
n=1

(198)

(199)

(200)

n. After

(201)

Both sides of (201) are posynomials. Thus, SCA is needed for the RHS. Both, SCACOV

and SCAGP can be applied for approximating (201).

SCACOV

Changing the variables to P, ,, = e®m, Yu, m, constraint (201) can be approximated as

2 & R
ﬁ Z eo‘"-"ﬁau:"l S T(a’“ au)7

F ny ,n2:l
np>ny

(202)

where T'(@,,, &,) is given in (163), T (a,,) is the RHS of (191) after COV, and the partial

derivatives are given as

aT

Nr
— 2 =2 eau,nﬁ‘auk .
&(ka u Z

m=1

(203)
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SCAGP

Applying (97) to the RHS of (201) yields a constraint

(2)

() P, P unyn
N, P,im eum (1) u,ny Funy 12 )
2 Nk | i <9<|)) i ZH",I,;;Z,TIIN ( Oy ) K
72 Z u,ny ’“’1 = + £ ) y
F n> Tu Tu
np
(204)
where the weights are given in
(1)
HNF Puzm 9um
(1) m=1 o[}
TL[ — um
Np Puzm 9"5'1") Pun]Pu.nz 915’211”2
I1,= ( ()) + 211, =¥ ( ) )
nm>ny g unny
(2)
Pyuny Pun 6“"1"2
1 2
) 2L e (P52)
_ m>ny g unyny
Tu = N " oD b p 0@ (205)
F u,m umn uny Luny unyny
()™ 2t (222)
um np>np g unyny
and
2
6(1) . Pu,lll
uny — ZNF s
n=1
2 Pu.n Pu.n
o\, = NF# (206)
”,I n’flpunlpun2
nb>n
4.3 Numerical results

In this section, the results obtained in the simulations are presented. To employ the
SCAs considered in this thesis it is necessary to find a feasible starting point for the
iterative algorithm. In the case of SC-FDMA, it can be found by setting the power to
be equal for all subcarriers. The power level has to be high enough to satisfy the QoS
constraints. In equal allocation, the PAPR is 0 dB and 2.55 dB for QPSK and 16-QAM,
respectively, which are the modulation schemes considered in the simulations. As long
as the target PAPR is above this value, the result obtained by equal allocation satisfies
the PAPR constraint for SC-FDMA.
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In the case of OFDMA, a feasible starting point for the iterative algorithm can be
found with the help of spatial ZF RX. Plugging (171) and (172) into the general PAPR

max,, |s% |
avg[lst ]
decreases. Even though this behaviour is not necessarily monotonic, it is straightfor-

ward to show?® that, for OFDMA,

expression

, and then increasing P, , for some 7, one can determine that PAPR

u |2
i % —1, foranyn=1,2,...,N. (207)
Pun—voo avg|[|si[?]

Increasing P, , does not violate the SINR constraint because ZF RX removes all the

interference. The feasible initialization method is summarized as follows:

1. Calculate the ZF matrix.
2. Find the power allocation satisfying the QoS constraint.
3. Increase the power in one subcarrier for all the users until it satisfies the PAPR

constraint.

Step 2 can be performed by allocating the same power for all the subcarriers. The power
level can be found by using a bisection algorithm [88]. This initialization method pre-
sented above applies also with appropriate modifications for a power variance-constrained
problem.

The results are obtained with the following parameters: Ny = 8, QPSK (N = 2) and
16-QAM (Ng = 4) with Gray mapping, and systematic repeat accumulate (RA) code
[107] with a code rate of 1/3 and eight internal iterations. Uniform diagonal sampling
[63] is used for EXIT sampling in the QoS constraint, and the number of samples is
K =5. The SNR per user and per RX antenna averaged over frequency bins is defined
by

SNR = tr{P}/(UNgNFG?). (208)

Two different channel conditions are considered, namely, a static five-path channel (path
gains shown in Table 2 for U = Ng = 2) and a quasi-static Rayleigh fading five-path
average equal gain channel.

Similarly to Chapter 3 the maximum transmission power can be calculated as

Prax(dB) = Pj(dB) + PAPR(dB), (209)
where
Py, =SNR x Ng x 67 (210)

8By applying the L’Hospital’s rule.
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Table 2. Channel Coefficients.

u,r hZ,l hZ,z hZ,} hZ,4 s

1,1 0.1558 - —0.2864 + —0.1480 + —0.2826 + 0.0496 -
0.0101: 0.2518i 0.1714i 0.1016¢ 0.0455i

1,2 0.0035 + 0.0717 - 0.0165 - 0.2329 - —0.0621 +
0.1302i 0.0431i 0.0086i 0.1145i 0.3623i

2,1 0.1958 + —0.2200+ 0.0376 + —0.0072 — —0.1161 —
0.3085i 0.1349i 0.0181: 0.1412i 0.0344i

2,2 0.1144 + 0.0033 + 0.1799 - 0.2341 - —0.0121 —
0.1162i 0.1916i 0.3138i 0.1374i 0.1128i

denotes the average power per user. Thus, the metric SNR(dB) + PAPR(dB) can be
used to compare the algorithms in terms of the range of the transmission.

In order to investigate the impact of different initializations on the convergence of
the SCAs, the optimization algorithms were tested assuming a static channel (path gains
shown in Table 2). The results can be seen in Table 3, where global iterations refer to
TX-RX alternations and local iterations refer to SCA iterations. The stopping threshold
of the optimization algorithms are the same as presented in Section 3.4, i.e. 0.05 for
TX-RX alternations and 0.01 for SCAs. In Table 3, ’proposed initialization’ refers to
the methods derived at the beginning of this Section. In the case of SC-FDMA, we
compare the proposed initialization with the case where the power level in each subcar-
rier is selected to be the value shown in the uppermost row. In the case of OFDMA,
after performing the ZF initialization, the power in one randomly selected subcarrier is
increased by the value shown in the uppermost column. It can be seen that the conver-
gence speed of the SCACOV and SCAGP are approximately equal for OFDMA. In the
case of SC-FDMA, there are differences with some initializations. The SNR after con-
vergence is equal for all the initializations. It was obtained that the PAPR for OFDMA
after ZF equalization was already below the target value. Therefore, the initialization
was feasible for all the cases considered in Table 3. In SC-FDMA a power level of 0.1
is not enough to satisfy the CC, and therefore the initialization is infeasible.

To demonstrate the operational principle of the PAPR constraint, EXIT simulations
were carried out in a static channel for a fixed symbol sequence. The EXIT curve
of the decoder is obtained by using 200 blocks for each a priori value, with the size
of a block being 6,000 bits. The EXIT chart of the turbo equalizer when precoding
with instantaneous PAPR constraint is presented in Fig. 16. SC-FDMA and OFDMA
denote the schemes without the PAPR constraint, i.e. with the QoS constraint only. The
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Table 3. Convergence comparison with various initializations. The values are written in
the form of global iterations / local iterations / SNR (dB). 5, =3dB. U =2, Np =2, Np =2,

Bt _ 7802, iy = 1,2, IE19® = 0.9998, u=1,2, 6, =0.02,u=1,2,b' = 1/v2[~1—i,—1 —i,—1—
i 4i =1 =i 1401 =i 14+4T, b2 = 1/V2[14i,—1+i 1 —i, =1 +i,—14+i,—1 —i, =1 +i,— 1 +]T.
Initialization Proposed 0.1 1 10 100

SC-FDMA 2/14/1.44 infeasible 3/15/1.44 3/20/1.44 3/36/1.44
SCACOV

SC-FDMA 2/16/1.44 infeasible 2/15/1.44 3/19/1.44 3/19/1.44
SCAGP

OFDMA 2/12/5.46 2/7/5.46 2/8/5.46 2/9/5.46 2/12/5.46
SCACOV

OFDMA 2/12/5.44 2/7/5.44 2/7/5.44 2/9/5.44 2/12/5.44
SCAGP

SC-FDMA result is obtained via SCAGP approximation. Clipping denotes the case
where the signal is clipped when the power exceeds the peak value calculated from the
PAPR threshold. As seen in Chapter 3, the minimum gap between the EXIT curves of
the equalizer and the decoder of user u can be controlled by changing the parameter
&,. It can be seen from Fig. 16, that with SC-FDMA, the minimum gap between the
EXIT curves can be suppressed down to g, according to the CC. For OFDMA, the gap
is larger than g,, which results in significantly larger SNR requirements compared to
SC-FDMA. This can be seen in Table 4, where the corresponding SNR and PAPR is
listed together with the summation of SNR and PAPR for each algorithm used. The
larger SNR requirement of OFDMA compared to SC-FDMA is due to the difference
in CCs. In the case of OFDMA, the SINR requirement is the same for all subcarriers,
unlike in SC-FDMA where the average of SINRs over the subcarriers is used. On the
other hand, there is no intra-user interference in OFDMA, unlike in SC-FDMA for
which the starting point in the EXIT chart is interference-limited. Hence, the target
point in the case of OFDMA can be achieved even with linear RX by simply increasing
the power in all the subcarriers. Clipping reduces the SNR but convergence to the
desired MI point is not guaranteed. In the case of SC-FDMA with clipping, the EXIT
curves intersect at MI point (I, /F) = (0.1936,0.2254), which corresponds to BEP
value 0.2053. It can be seen from Table 4 that the PAPR threshold is not exceeded
with the PAPR constraint. The sum of SNR and PAPR describes the actual power gain
achieved by the proposed algorithms, which helps to improving the QoS for cell edge
users. It can be seen that in the case of OFDMA the improvement when using the PAPR
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Fig. 16. EXIT chart for 8, = 3 dB. U = 2, Ng = 2, Np = 2, [-"9® = 0.7892, u = 1,2, [5'*9 —
0.9998, u=1,2, £ =0.02, u=1,2, b' = 1/V2[-1—i,—1 —i, =1 —i,1+i,—1 —i, 1 +i,1 —i,1+i]T,
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constraint is 9.31dB — 8.44dB = 0.87dB. In the case of SC-FDMA, the improvement
is 3.16 dB and 3.17 dB for SCAGP and SCACOV, respectively.

In Fig. 17, the required SNR versus BEP is presented, where the results are ob-
tained by averaging over 200 channel realizations. Four different BEP target values
are considered for u = 1,2, namely 1073, 1074, 10~ and 107°, corresponding to
the MI targets (1" fi-"2') = (0.99,0.6185), (I5"™"€ [y = (0.9987,0.673),
([ et jRareety — (0.9998,0.7892) and (158 f9"8t) — (0.9998,0.9819), respec-
tively. It can be seen that for SC-FDMA, the required SNR is roughly the same with
and without the PAPR constraint, i.e. the PAPR can be suppressed to 3 dB without a
significant increase in transmit power. For OFDMA, the required SNR is increased by
1.19-1.83 dB depending on BEP target and algorithm used.

CCDFs Prob(PAPR > §) for SC-FDMA and OFDMA without PAPR constraints
and with a BEP target of 107 are plotted in Fig. 18. CCDFs are calculated such that
10° randomly generated symbol sequences of length N for each user are sent over 200
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Table 4. SNR and PAPR comparison in a static channel. SC-FDMA with clipping did not
achieve the Ml target.

Algorithm SKR (dB) PAPR (dB) SKR + PAPR (dB)
OFDMA 4.97 4.34 9.31
OFDMA with clipping  4.37 3.00 7.37
OFDMA SCAGP 5.44 3.00 8.44
OFDMA SCACOV 5.46 2.98 8.44
SC-FDMA 1.38 6.22 7.60
SC-FDMA with clipping 0.49 3.00 3.49
SC-FDMA SCAGP 1.44 3.00 4.44
SC-FDMA SCACOV  1.44 2.99 4.43

channel realizations. Obviously, for the algorithms with PAPR constraint, the CCDF is
0 when the PAPR is larger than the PAPR threshold. For a CCDF value of 107>, the
corresponding PAPRs are 7.66 dB and 8.52 dB for SC-FDMA and OFDMA, respec-
tively. From Figs. 17 and 18, the SNR+PAPR gains can be calculated for SC-FDMA to
be 4.63 dB and 4.29 dB for SCAGP and SCACOV, respectively. Similarly for OFDMA,
the gains are 4.29 dB and 4.00 dB, respectively.

CCDFs for the OFDMA scheme when precoding with a variance constraint is shown
in Fig. 19. It can be seen that the PAPR can be significantly reduced by decreasing the
variance. In fact, the PAPR approaches the theoretical limit, i.e. 2.55 dB for 16-QAM,
when the variance target approaches zero. However, because the per-subcarrier SINR
constraint is used as a QoS constraint, the SNR increase is high compared to the PAPR
reduction.

CCDFs for the SC-FDMA scheme when precoding with a variance constraint are
shown in Fig. 20. It can be seen that the PAPR can be significantly reduced with a minor
increase in SNR by decreasing the power variance. Similarly to the OFDMA case, the

PAPR approaches the theoretical limit when the variance target approaches zero.

4.4 Summary and discussion

In this chapter, the PAPR-constrained power allocation problem for multi-carrier trans-
mission with an iterative MMSE MU multi-antenna RX has been formulated. An ana-
lytical expression of PAPR was derived as a function of transmit power allocation for
SC-FDMA and OFDMA. The derived PAPR constraints are applicable to any normal-

97



T T
—E— OFDMA without PAPR constr
—}— OFDMA SCAGP 3 dB
—— OFDMA SCACOV 3 dB
SC-FDMA without PAPR constr.
SC-FDMA SCAGP 3 dB
—<}— SC-FDMA SCACOV 3 dB

10"

BEP

100

100

14

8
SNR (dB)

Fig. 17. BEP comparison with §, =3 dB. U =2, Ny =2, Ng =2, &, =0.1,u = 1,2, Nr = 8.

ized data modulation format. In addition, a statistical approach considering the trans-
mission power variance-constrained power allocation was derived. It was obtained that,
in the case of SC-FDMA, the implementation of PAPR and power variance constraints
becomes highly complex with a large Nr. However, in the case of OFDMA, the expan-
sion of the constraints is quadratic, and hence, the number of summation terms in the
constraints is feasible.

Two different successive convex approximations were derived for all the proposed
constraints. Numerical results indicate that instead of amplitude clipping, the PAPR
constraint is of crucial importance to guarantee the convergence of the iterative equal-
izer. It was also observed that the proposed techniques can significantly improve the
power efficiency of the transmission of power-limited users. Hence, the constraints de-
rived in this thesis are especially beneficial for users on the cell edge and, therefore, the
physical size of a cell can be increased.

In SC-FDMA, the PAPR and power variance constraint affect such that the power is

reduced in the constructive subcarriers and increased in the destructive. ’Constructive
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Fig. 18. CCDFs for SC-FDMA and OFDMA without PAPR constraint with BEP target 107>,
U =2, Ng =2, Ny =2, [E%9% = 0.7892, u = 1,2, IF'3"9% = 0.9998, u = 1,2, 8, = 0.1, u=1,2.
subcarriers’ means the subcarriers that increase the peak power after the IFFT in the TX
(’destructive subcarriers’ are the converse).

In OFDMA, since the same SINR is required for all subcarriers, the power can only
be increased. Thus, the PAPR and power variance constraints results in an increase in
power in destructive subcarriers.

In the PAPR constraint, the constructiveness and destructiveness can be identified
based on the transmitted symbol sequence. In the power variance constraint, the con-
structiveness and destructiveness are based on the statistics: the intuition is that the
subcarriers are inherently either constructive or destructive. This can be obtained also
from [82], where the spectrum window function is plotted for SC-FDMA after minimiz-
ing the power variance.
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Fig. 19. CCDFs for OFDMA with variance constraint. BEP target=10"3, U = 4, Ny = 4, Ng =4,

jERarget _ 7892, v, 512198t — 0.9998, Vu, £, = 0.1, Vu.
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Fig. 20. CCDFs for SC-FDMA with variance constraint. BEP target=10", U =4, Ny = 4, No =4,
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5 Conclusion and future work

Power allocation strategies in multi-carrier MU SIMO UL communications were stud-
ied in this thesis. In particular, a power allocation method taking into account the char-
acteristics of an iterative MU detector was derived. Furthermore, two different power
allocation methods taking into account the PAPR of the transmitted signal were derived.
The first method explicitly restricts the instantaneous PAPR to below the desired thresh-
old with minimum power consumption while guaranteeing the desired QoS. The second
method implicitly reduces the PAPR by restricting the power variance of the transmitted
signal below the desired value with minimum power consumption while guaranteeing
the desired QoS. The first method depends on the transmitted symbol sequence, unlike
the second method, for which the variance is taken over all possible symbol sequences.
All the power allocation strategies introduced in this thesis were derived for both SC-
FDMA and OFDMA.

Chapter 3 studied the CCPA in MU communications. A general formulation for
the CC was derived. A novel diagonal sampling approach was proposed for sampling
the multidimensional EXIT function to guarantee convergence without performing ex-
haustive searches. The CC was applied to the system model assumed in the thesis, and
it was shown that the CC reduces to a set of SINR constraints, where the value of a
constraint depends on the sample point and the channel code used. The CC was de-
rived for BPSK and QPSK modulations. Moreover, a heuristic approach for 16-QAM
was proposed showing that the CC serves as an upper bound for 16-QAM, and there-
fore, convergence is guaranteed. This result provides a way to generalize the CCPA for
higher-order modulations.

The joint optimization of the transmit power and the receive beamformers was per-
formed via alternating optimization, i.e. the joint optimization problem was split into
separate TX and RX optimization problems. A sum power-minimizing solution is found
iteratively, alternating between the TX and the RX optimizations. It was shown that the
MMSE RX is a power minimizing RX, and hence each step in the iterative algorithm
improves the objective. Therefore, the objective value in alternating optimization is
guaranteed to converge to a local minimum. The numerical results provided in Chapter
3 indicate that significant improvement in terms of power consumption is achieved with
CC compared to the case without CC (i.e., linear RX). The CCPA algorithm derived
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in Chapter 3 is one of the few QoS-constrained power allocation methods taking into
account the convergence properties of an iterative RX also on the TX side.

Most of the power allocation methods proposed in Chapter 3 require centralized
processing, i.e. the base station gathers the required information, performs the calculus
and sends the information about the power allocation to each user. In practice, the
adjacent subcarriers correlate heavily with each other. Thus, the frequency-selective
channel can be divided into resource blocks, where each resource block consists of
several subcarriers. Hence, the number of power values that needs to be reported is
decreased from the number of subcarriers to the number of resource blocks. If the users
are not transmitting simultaneously in the same subcarriers, i.e. orthogonal allocation is
used, each of the users is able to calculate its own power allocation based on its own CSI.
This can be seen in (103), where the CC is derived for orthogonal allocation. Based on
the results presented in Fig. 12, it can be concluded that if the number of users is low,
orthogonal allocation becomes an attractive alternative.

In Chapter 4, two PAPR reduction methods were proposed by designing a precoder
that takes into account the PAPR characteristics of the HPA while guaranteeing the
desired QoS. The first approach restricts the PAPR to below the desired value. For that
purpose, the PAPR was derived as a function of the power allocation and the transmitted
symbol sequence. A beneficial point in this approach is that the PAPR can be limited to
be at most equal to the backoff of the HPA. Hence, the algorithm achieves the minimum
power solution while guaranteeing distortion free amplification.

The second approach for PAPR reduction proposed in Chapter 4 was the power
variance-constrained power allocation. Hence, the variance of the power of the time
domain signal was calculated and the resulting function was restricted to be at most the
desired value. The numerical results illustrate that the PAPR can be reduced by reduc-
ing the power variance. It was shown that the PAPR approaches the theoretical limit
when the variance approaches zero. The beneficial point in the variance-constrained
algorithm is that it does not depend on the transmitted symbol sequence. Hence, less
information is needed to calculate the power allocation matrix.

Two alternative SCAs were derived for all the non-convex constraints presented in
the thesis. SCA is an iterative algorithm where the solution in each iteration satisfies the
constraints of the original problem. The beneficial point here is that if there is a latency
constraint, the iterative algorithm can be stopped at any iteration and the resulting power
allocation and receive filter satisfies the constraints of the original problem.

The PAPR and the variance constraints presented in Chapter 4 depend only on the
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local information, i.e. the power allocation and the transmitted symbol sequence in
the case of instantaneous PAPR constraint, and the power allocation only in the case
of the power variance constraint. If the QoS constraint requires centralized processing,
the intuition is that the power variance constraint is a better alternative because it does
not require information about the transmitted symbol sequence. However, if the QoS
constraint can be handled by using the local information, instantaneous PAPR constraint
can be used because the information about the symbol sequence is available.

On the cell edge, the average transmission power is already high. While the average
power of the signal is large, the peak values of the signal exceed the power limit set by
the local authority with increasing probability. These peaks have to be clipped, causing
distortion to the transmitted signal. On the other hand, the operating voltage of HPA
has to be as high as the peak values of the output signal. Hence, the power consumption
of HPA can be effectively reduced by reducing the peak values of the transmitted signal.
In conclusion, the algorithms presented in this thesis are especially beneficial for power-
limited cell edge users.

The research presented in this thesis can be further developed in many directions.
On one hand, practical implementations of the algorithms should be developed. In
Chapter 4, it was demonstrated that, in the case of SC-FDMA, practical implementa-
tion requires the reduction of complexity of the constraints. In the case of OFDMA,
the expansion of the constraints as a function of N is not as in SC-FDMA. Further-
more, because the PAPR is known to be a bigger problem in OFDMA, it may be the
transmission scheme for which the proposed PAPR constraints should be considered.

The PAPR constraint can be adopted in various power allocation schemes, and there-
fore it is an attractive approach for mitigating the impact of nonlinearities of the radio
frequency (RF) components. On the other hand, due to the substantial improvement in
terms of the average power consumption, CCPA deserves further development. First
of all, multi-antenna transmission should be considered. Another problem is transmis-
sion in a multi-cell scenario. Probably the most interesting scenario to be investigated
is comparison of SC-FDMA and OFDMA with the PAPR constraint in a practical UL
scenario. Detection in OFDMA is simple and, therefore, if the PAPR problem can be

mitigated, it is also an attractive alternative for UL transmission.
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Appendix 1 The average power of the transmitted
signal in SC-FDMA

Let 1
G'=F 'P2F. (211)

The entry (m,n) of G is obtained as
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Thus, the m™ output of the transmitted waveform for the u" user is
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lated as
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The last step is justified by

N Nr J2r(m—n)(ny—ny)
Z Z v Pu,nZPu,nle Np =0, Vn=1,2,...,Np. (216)
m=1ny,np=1
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Appendix 2 The instantaneous power of the
transmitted signal in SC-FDMA

The power of the transmitted waveform of user « at time instant m is calculated as
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ny,ny=1 nynp=1 n b=
n n: n n /! /
1712 1712 n #nly

(217)

The order of the summations in the second term of (217) can be changed as

Z ‘bu|2 Z VPunIPunzannlnz mnyny Z \/PM”]P“”Z Z ‘b | Annyny 4, mn1n2

ny,ny= 1 ni,ny= 1
m#n "175'12
Z Brwniny \/ Py Py (218)
ny,ny=1
ny#n
where
Nf
Blwm =Y \bmz(%[annm]%[amnm] +J[amnl,,2]ﬂ[a,mm}). (219)
n=1

Operators #Z and .# in (219) take the real and imaginary part of a complex argument,

respectively.
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The order of the summations in the third term of (217) can be changed as

Nf NF

1
LY ZPuzaznm N LB X b, (220
F nynpy=1 npnp=l1
ny#ny ny#ny
which can be further developed to
1 & 1 &
u u* u
7 ZPM, Z by by, = N Y P24y, (221)
np,np=1 F I=1
ny#n
where
Nf
Y (Blawnns) (210, 1Rl +
nz,nlzl
ny>ny
I (b3 )T i)+ 7 s ) (R 103 L5 [o3) = 7 B3 J200,))) . 222)
Denoting
N
n:lnzm = Z ((‘%[blb%]‘%[ n4] + f[bz3]f[bzﬂ)(%[“nlnzmazmm] +%[anln4ma22n3m])_
nﬁ;n;njl
(I (b, |Z1bn, ) = 2By, ]I (b, (I lammsmtlpygm] — 7 [anmmaﬁzn}m])),

(223)

the last term of (217) can be expressed as

Np
Z by by Z v/ Pt Pty @l myom Byt =2 Y 0 Pum Puny- (224)

F"hnz 1 nl,nz—l n,np=1
ny#ny I’ll#nz np>ny

Substituting (218), (221) and (224) to (217), the signal power is expressed as

2
|S::1|2 72 Z (K +2d1) ul+ N Z ( rl:m]nz +nr’;|n2m) Vv Puﬂ]Puﬂz? (225)
F =1

F nl,n2=1
ny>nj
where
Nr
K=Y |byf*. (226)
n=1

It is worth noting that k" + 2d}' can be rewritten as
Np Np *
K 424" = ( y bza,m) ( y b;;a,,,l) > 0. 227)
n=1 n=1
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The number of summation terms in Zﬁlv; n—1 i NF (Np—1) — Zﬁ:’i , n. Therefore,

ny>ny
the total number of summation terms in (225) increases in the order of N} — N2(1 +

1 _
ZZnNi1 n)+Nr + ():i,vg : n)2~
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Appendix 3 The instantaneous power of the
transmitted signal in OFDMA

The power of the transmitted waveform of user « at time instant m is calculated as

N,
u|2 . u u|2
b
Isinl® =1 Y &bl

n=1
Np Np
=( Z Emnbn) (Y &nnbi)
n=1

Nr
= Z gm ngu* bzbz* + Z g%,nlgfinzbzlbz

ny ,n2:]

nls#ny
1 Nr 2 l Nr
Ny L PPt e N b b P P 228)
=1
nrlliyinz
Denoting
drunnznl _amnznlbnlbu* + amnznlbuTbZZ

=2 (ﬂ[amnznl] (%’[biiz]%’[bﬁll +.7[b,)7 [y, ]) -

I amnyny | (%’ b, (b, | — I b7, | % [bifl])> , (229)
(228) can be written as
Nr
[sin|* = Z PP+ - Z o A/ Py Pany (230)
nyp,ny= 1
np>ng
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