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Be not immortal, since it is flame.
Be infinite, while it lasts.

— Sonnet of Fidelity, Vinicius de Moraes



Abstract

The real world is complex and specular: a leaf falling down from a tree
side byside, a coin moving underwater swaying left and right, and the falling
snowflakes dancing up and down in even still flow environments. Unfortu-
nately, the virtual worlds under the conventional animation techniques utilize
the ideal models with no consideration of the detailed effects of the flow envi-
ronments, which take account of the inertial, viscous, and turbulent features in
high Reynolds number flow. Although the physical simulations have dramatic
success in 3D films, games and virtual reality applications in recent decades,
the simulations of unsteady and turbulent dynamics frustrate researchers in
both computation cost and simulation fidelity.

To solve these issues, this dissertation proposes a new topic, immersed rigid
body dynamics, into the real-time computer graphics community. It is clearly
different from the other traditional topics in computer graphics that the re-
search aim of immersed rigid body dynamics is to simulate the motion of rigid
body fully immersed or submerged inside real flows, and strongly coupled with
the surrounding flows. This dissertation presents a family of algorithms for
real-time simulations of immersed rigid body dynamics in computer animation.
These algorithms are built on data-driven simulation methods to simulate the
rigid body dynamics with the flow effects in computer environment. These ap-
proaches make it feasible to achieve realistic simulation results in low computa-
tion cost. In addition, a promising prior reduced model of dynamical systems
is introduced for the parameter identification into computer animation.

The first contribution is a graph-based framework for synthesizing the mo-
tions of immersed rigid body, which are commonly lightweight. This framework
is a first try to combine the motion graph technique in character animation field
with the physics-based simulations. The typical motion patterns of immersed
rigid-body dynamics are extracted in a phase diagram and verified from thou-
sands of physical experiments to construct a precomputed trajectory database
and the transition probabilities in Markov-chain model of the motion graph.
Finally, an improved noise-based algorithm is proposed for integrating the wind
field with the simulation results.



The second contribution is a stochastic model of immersed rigid body dy-
namics. This model first utilizes energy transport model of the surrounding
turbulent flow to approximate the energy distributions due to the rigid body
motions. Then, the proposed turbulent model is successfully introduced into a
generalized Kirchhoff representation of the rigid body dynamics with Langevin
model in a stochastic Wiener process. The proposed model adopts a new ap-
proach combining the precomputed simulation data of turbulent energy and
the runtime simulations of rigid body solvers.

The third contribution focuses on a pattern-driven framework for immersed
rigid body dynamics. This simulation framework first classifies the influences
of parameter spaces of viscous force coefficients in a data training process, and
then proposes a curvature-based motion planning method to represent the un-
steady dynamics due to the vortex shedding. The proposed methods learns the
knowledge of parameter subspaces of the rigid body dynamics from numerical
experiments in a new dynamical model, which clarifies the viscous forces from
the surrounding flow into three components and reveals the relationships among
the force coefficients, the Reynolds number, and angle of attack of the body. In
addition, the proposed framework combines the motion graph technique from
the graph-based framework and the energy optimization in motion synthesis
from the stochastic model.

Finally, a novel reduced model of dynamical systems is constructed, which
can accelerate the parameter estimation of physical parameters in a dynamical
model with low computation cost. In contrast to the conventional reduced order
models, the proposed model is a prior meta-model of dynamical systems based
on the separated representation in large domains including initial conditions,
boundary conditions, and physical parameters. The proposed model does not
depend on the preprocessed snapshots of the solutions from dynamics solvers.
This model is successfully applied to the weakly coupled and nonlinear prob-
lems. The improvement of the proposed reduced model in strongly nonlinear
problem, such as immersed rigid body dynamics, is worth being anticipated.

v
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Chapter 1

Introduction

Since Dr. Ivan Sutherland invented the computer drawing system Sketchpad in 1962, com-

puter graphics has been improved profoundly into various topics, including computational

geometry and modelling, shading and rendering, animations and simulations. When time

comes to the year of 1999, there are two important events playing significant roles in physi-

cal simulations to twenty-first century: NVIDIA created the world first graphics processing

unit (GPU), and Jos Stam has published his famous paper ”stable fluids”, which has at-

tracted around 1,500 citations until now. The traditional physical simulation in computer

graphics includes the rigid body simulations, deformable simulations, and fluid simulations.

The developments of GPU and semi-Lagrangian algorithm has ignited the enthusiasm of

fluid simulations and the topics in other physical simulations. The researcher started to

try more challenging topics, such as two-way coupling among fluids and bodies, turbulent

flow, multiphase flow, and so on. The successful computer graphics techniques make the

3D films and games become popular to attract people worldwide. The applications of

virtual reality make users immersed in a virtual world that has never happened before.

Even with the help of GPU computations, the simulation work always pursues a better

trade-off between computation cost and simulation fidelity. The real-time simulations are

urged in various applications, such as online games, mobile games, surgical simulations,

and animation design systems, where an interactive system allows the computer to provide

instantaneous feedback to the user’s operations. Note that the physical simulations usually

refer the simulations of physics-based dynamical systems, such as the visual simulations of

natural phenomena and different bodies, e.g., rigid and soft bodies and particles [Par12].

There is another important field in computer animation, character animation, which covers

various topics as human motion, facial animation, hand animation, and so on. Although

it seems that the techniques of physical simulations and character animations are quite

different, this thesis has a successful try to introduce the character animation technique

into physical simulations with motion styles by a motion graph. The pursuit of both
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realistic and real-time simulations facilitates researchers to develop new algorithms, so

that the state-of-art physical simulations in computer graphics have two main categories:

physics-based methods and data-driven methods. All the proposed approaches in this

thesis belong to data-driven simulations to achieve realistic simulations in low computation

cost. The data-driven methods are specially useful to simulate complex dynamics in two

ways: capturing the complex behaviours using data model and precomputating the heavy

simulations in offline processes.

The physical simulations of the complex dynamical systems are greatly challenging

and promising to enhance the realness of computer animations that cannot be achieved

before. The complex systems arise from high degrees of freedom (DOFs) as particles and

articulated bodies, high Reynolds numbers as turbulent flows, and nonsmooth dynamics

as frictional contacts of cloths and rigid bodies in computer graphics. The main purpose

of this thesis is to simulate the complex systems due to unsteady dynamics with high

Reynolds numbers flow as turbulent flows, and to introduce a novel topic, immersed rigid

body dynamics, into computer graphics.

1.1 A novel topic

The natural phenomena of the immersed bodies around us are prevalent in daily-life.

The dynamics of an immersed body means that the motion of a body moving inside

the flows, immersed in air or submerged underwater, is very sensitive affected by the

surrounding flow. Precisely speaking, the immersed body undergoes the wake-induced

path-instability in a strongly coupled process of vortex-structure coupling within high

Reynolds number. As shown in Figure 1.1, these phenomena cover the motions of falling

card, falling leaf, rising bubble, falling object underwater, swaying cloth, flying paper-

airplane, snowflakes, dust, the swimming motions, and so on. In this thesis, we focuses on

the fundamental immersed rigid body dynamics, and the simulation techniques of immersed

rigid body can be extended to linked rigid bodies, spring-mass cloth, and particle systems

straightforwardly. In contrast to the previous work in computer animation, the simulation

of immersed rigid body dynamics is indicated as a novel topic in the following reasons:

• Rigid body simulations: The conventional rigid body solvers do not consider any

flow effect from the surrounding flow that we can notice that a falling leaf would

move downward vertically by current physics engines. The rigid body follows the

classic Newton’s law like in a vacuum environment, and it is obviously inconsistent

with our daily experiences,

• Two-way coupling: The coupling motions among body and fluids have been stud-

ied extensively in computer graphics, there are two essential differences hindering

2



Figure 1.1: Examples of natural phenomena of the immersed bodies. Sources: Google
image search.

the two-way coupling techniques to simulate the immersed rigid body successfully.

First, they have different physics principles, the coupling motions are usually in low

Reynolds number where the turbulent effect is out of account. Then, they have dif-

ferent research aims: the coupling simulations mainly focus on the fluid motions,

such as splashing; while the simulations of immersed rigid body focus on the dy-

namical states of the rigid body. Due to the immersed nature, we cannot perceive

the apparent movements of the surrounding air and water so that it is inadvisable

to simulate the particles’ motions for graphical applications, which are commonly in

high computational costs.

• Aerodynamics simulations. The aerodynamics/hydrodynamics simulations usu-

ally utilize the approximations of drag and lift forces based on a quasi-steady as-

sumption, such as the quadratic viscous forces from Kutta-Joukowski theory. In

such approximations, the forces’ coefficients play a significant role in the whole pro-

cess of the aerodynamics simulations, which are usually designated to be as constants,

functions of angle of attack or the Reynolds number. In the situation of an immersed

rigid body, it is known that the force coefficients are instantaneously changed as a

complex and unknown function of angle of attack, the Reynolds of number, the body

geometry and the vortex-shedding periods. In this sense, the approximations of vis-
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cous forces are not sufficient to achieve realistic simulation results for the proposed

topic.

• Multiphase flow: In computer animation, the multiphase flow simulations involve

the simulations of bubble flow, dust simulations, snowfall simulations, leaves simu-

lation, and so on. The participated bodies have different physical properties (e.g.,

density) from the surrounding flow particles. In these simulations, the immersed

bodies are considered as sphere particles with 3 DOFs, where the non-spherical par-

ticle motions is still an absent issue which presents the same motion patterns with

the proposed topic.

This novel topic is also related to the turbulent/fluid simulations and character animations.

More details about the related previous work are described in next chapter. Finally, the

techniques for simulating the immersed rigid body dynamics in computer graphics have

to overcome the following issues: (1) The computation of coupling motions with fluid in

small grids is too heavy for real-time graphical applications, (2) While simulating flow in

high resolutions, the turbulent motions and their numerical dissipations are difficult to be

analysed; (3) In order to achieve stable simulation results, the implementation involving

boundary conditions requires infinitesimal timesteps; (4) The coupling problem among the

translational and rotational velocities of the rigid body exists due to six DOFs states.

Therefore, the simulation of immersed rigid body dynamics is a challenging topic in both

fluid mechanics and computer graphics.

1.2 A challenging topic

This section explains why the proposed topic is considered to be challenging from the view

of fluid mechanics.

• Strongly coupling: Coupling between a rigid body and the surrounding flow is an

important subject in computer animation based on various disciplines of engineer-

ing and physical problems. Nevertheless, the community lacks of the computation

technique that can simulate a strongly coupling problem of the moving boundary

with unsteady flow due to its computationally challenging and expensive issues. In

contrast to the enormous literature of the rigid body dynamics, particle dynamics

and two-way coupling simulations, the strongly coupled fluid-body interactions in-

volve the vortex shedding and flow instability. To make it clear, Tf and Tr present

the characteristic timescales of fluid motion and rigid body motion, respectively. If

Tf ≫ Tr, then the rate of change of the surrounding flow can be neglected in com-

parison with the rate of change of the body, for example, a cup falling onto ground.

If Tf ≪ Tr, instead of solving a coupling dynamics, the quasi-steady approximations
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of drag and lift forces using force coefficients are adequate, which are the simplified

representation of aerodynamics widely adopted in wind simulations. For a strongly

coupled interaction, Tf ≈ Tr, the steady dynamics based on quasi-steady approxima-

tions becomes invalid anymore. The numerical difficulty arises from the nonlinearity

and unsteadiness of the coupled motions due to the generation and detachment of

vortices from body’s edge.

• Wake instability: The Reynolds number is a critical parameter to present the flow

patterns with different dynamical similarities, and is a measurement of the relative

importance of inertial and viscous effects from the surrounding flow. Re = UL/ν,

where U is the mean relative velocity of the body to the flow, L is the characteristic

dimension of the rigid body, and ν is the kinematic viscosity of the flow. For low

Reynolds number flow, the inertia of the flow is not important and the flow is smooth

and straight forward; For higher Reynolds number, inertia begins to play an impor-

tant role and vortices are generated behind the object. When the Reynolds number

increases, the flow becomes unsteady from the steady state and undergoes several

bifurcations. The first bifurcation leads the steady flow with low Reynolds number

lose its axisymmetry at a critical number Rec1 (Rec1 = 212 for sphere [ERFM12],

Rec1 = 105 for disk [ZLS+13]). The flow motion bifurcates into two branches in pla-

nar plane of the body center line. The second bifurcation occurs at Rec2 (Rec2 = 273

for sphere, Rec2 = 160 for disk) where the periodic hairpin-like vortices are shed from

the symmetry plane of the body. The wake structures have the alternating sign and

different magnitudes. And then, the third bifurcation occurs at Rec3 (Rec3 = 355

for sphere, Rec3 = 200 for disk) where the wake becomes irregular and chaotic, and

the vortex shedding makes the motion be fully in three dimensional state. As the

Reynolds number increases further, the secondary vortices and the counter-rotating

vortex pair are observed at the leading-edge of the rigid body.

• Path instability: The effects of wake instability are related to the oscillations of the

immersed body, which invoke the motion transitions among different motion patterns

of the immersed rigid body. Besides of the viscous effects with the Reynolds number,

the inertial effects due to the density ratio and the body geometry (aspect ratio)

also play a important role for the three dimensional motion trajectories. For low

Reynolds number flow, the body generates small horizontal oscillations due to the

vortex shedding as Karman vortex street. While the Reynolds number increases, large

amplitude oscillations were found [HW10]. The observed path could change largely

with the environment noise at higher Reynolds number. When the viscous effects

become predominant, the body moves side-by-side along a rectilinear path; when the

inertial effects become predominant, the body falls in a planar plane. As density-ratio
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increases, a zigzagging motion starts and then transfers to an autorotation motion.

There are also some three dimensional motion paths observed, such as spiral and

helical motions [ZCL11].

1.3 Global overview

This section describes the functional modules of this thesis in a global overview, which are

adopted in different combinations for the proposed methods to simulate immersed rigid

body dynamics. To clarify the functions of each module, we define the input and output

of each module to construct data-driven methods.

Figure 1.2: Functional modules defined in this thesis.

1.3.1 Functional modules

As illustrated in Figure 1.2, six functional modules are defined as follows.

Dynamical models provide the kinematic and dynamical equations of the states of the

immersed rigid body. The states include the information about position, orientation,

translational and angular velocities of the rigid body. The dynamical equations are
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commonly the ordinary differential equations which can be solved by traditional

Runge-Kutta (RK) method. In contrast to RK method, the variational geometric

integrator based on SE(3) [KCD09] is preferred for achieve stable numerical results.

The dynamical model is designed in a generalized Kirchhoff model considering both

viscous effect and inertial effect of the surrounding flow. For the purpose of motion

synthesis, a dynamical model could create various motion segments to be stored in

a trajectory database.

Physics experiments capture the motions of rigid bodies by high-speed cameras in the

experiments of falling objects with different geometries and densities in air or water.

In contrast to the motion capture of the body’s state at each frame, this thesis

proposes a high-level capturing system of motion patterns. In terms of the captured

motions, the transition matrix among motion patterns can be obtained as discrete

Markov-chain model for a motion graph in motion synthesis.

Numerical experiments obtain the precomputed simulation data by tuning control pa-

rameters. Although the control parameters are defined as drag and lift forces co-

efficients in this thesis, the other parameters can be added properly according to

the simulation purposes, such as aspect-ratio, density, and release angle of the rigid

body. All the motion trajectories are classified into different motion patterns as ob-

served in the physical experiments. Finally, the database of parameter subspaces are

constructed corresponding to each motion pattern.

Motion synthesis provides a motion planning process to connect the data of different

motion patterns by a motion graph. This process can be executed in runtime for

the purpose of online simulations or in precomputation for storing the instantaneous

force coefficients as codebook. In addition, an energy optimization is proposed to

reflect the turbulent features of energy dissipation in the surrounding flow.

Real flow defines the flow effects from the surrounding flow by considering both the po-

tential flow and the vortex flow. For potential flow, a panel method or boundary

element method can be utilized to obtain the added mass tensors. For vortex flow,

there are various turbulent models, such as energy transport model, Reynolds aver-

aged Navier-Stokes simulation, and large eddy simulation. In this thesis, the energy

transport model is used by combining with a Langevin model. The Langevin model is

a stochastic process with randomness sources including white noise or colored noises.

To reduce the runtime computation cost, the turbulent model can be simulated offline

with the turbulent energy database as output.

Reduced model represents the coherent features of a dynamical system. In this thesis,

a prior reduced model of separated representation is proposed that does not depend
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on the precomputed simulation data. The computation process of reduced model can

be executed in pre-computation steps.

1.3.2 Data-driven methods

All the proposed methods are data-driven simulation methods in this dissertation to achieve

real time simulations. As shown in Table 1.1, the distinctions among the proposed methods

are designed as follows:

Table 1.1: Combinations of different modules in all proposed methods.

Modules Graph-based Stochastic model Pattern Driven Reduced model

Dynamical models
√ √ √ √

Physics experiments
√ √

Numerical experiments
√

Motion synthesis
√ √

Real flow
√ √

Reduced model
√

Graph-based method utilizes a simplified dynamical model of immersed rigid dynamics

to model each motion pattern from physical experiments, and synthesize the rigid

body motions from the precomputed trajectory database in motion synthesis.

Stochastic model combines the dynamical model of immersed rigid body dynamics with

a Langevin model in real flow using the precomputed turbulent energy database.

Pattern Driven method adopts a motion graph with the data of motion patterns from

physical experiments, and an energy optimization in parameter subspaces from nu-

merical experiments of a proposed dynamical model, which is combined with the

turbulent energy from the turbulent model of real flow. A coefficients codebook is

obtained in motion synthesis for the runtime simulations.

Reduced model proposes a reduced model of dynamical systems with the dynamical

model in a formulation of ordinary or partial differential equations.

1.4 Contributions and outline

As illustrated in Figure 1.3, the contributions of this thesis stand in a family of novel

algorithms for realistic and real-time simulations of immersed rigid body dynamics: graph-

based method, stochastic model, and pattern-driven method. Note that a new reduced

model is also proposed for all dynamical systems. This model can solve the weakly nonlinear

and coupled systems currently, and can be improved in the simulations of strongly nonlinear
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dynamical systems in the proposed topic. The previous visual simulations in computer

graphics utilized simplified approaches to handle viscous forces in steady or quasi-steady

force approximations, such as the listed methods in the left-top of Figure 1.3. Also, two-way

coupling techniques can handle weakly fluid-body coupling motions, where the timescale

of the body dynamics is smaller than the timescale of the flow dynamics. It is difficult

to achieve a realistic simulation by these approaches. The strongly coupling dynamical

system involving unsteady aerodynamic forces can be resolved in high-Reynolds number

and nonlinear problem in fluid mechanics by the proposed approaches, such as immersed

boundary methods, vortex method, and spectral element method. All these approaches

can achieve realistic simulation results but lose the efficiency as shown in bottom-down of

Figure 1.3. This dissertation proposes new approaches with different ways to handle data

information which are suitable for real-time applications.

Figure 1.3: A family of algorithms proposed in this thesis for simulating immersed rigid
body dynamics (Green color: the proposed methods; orange color: examples of the related
methods). The abscissa denotes the simulation quality, and the ordinate represents the
computation cost. The details of the related work are described in the next chapter.

The subsequent chapters are organized as follows:

Chapter 2 overviews the research background of immersed rigid body dynamics. This

chapter first introduces the history of the proposed topic in physics research areas.

Then, the recent related work from both computer graphics and fluid mechanics is

summarized. Finally, the fundamental knowledge of the dynamical models and the

representation of viscous forces are discussed.
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Chapter 3 starts to present a motion synthesis method for simulating immersed rigid

body dynamics, which is a graph-based framework with a proposed motion graph

technique to capture the transitions among different motion patterns [XM11, XM12].

This work constructs a trajectory database for each motion segment from a dynamical

model. Finally, the wind effect is added into this framework to create the realistic

simulation results under different wind environments [XM14c].

Chapter 4 describes the second proposed method in the family of data-driven algorithms.

A stochastic model is proposed to account for the fluid effects from the turbulent

energy model [XM14a]. This work presents a Langevin approach to represent the

velocity increments from a turbulent model in Wiener process. This work proposes

a fractional-step algorithm to take both the inertial and viscous effects from the

surrounding flow in account [XM13].

Chapter 5 switches the third proposed method for immersed rigid body dynamics. A

pattern-driven method is proposed to estimate the force coefficients by considering

the inertial, viscous and turbulent effects from the surround flow. A data training

process is proposed to find out the parameter subspaces from numerical experiments.

Four motion patterns are observed from the three dimensional numerical experiments,

which are the utilized in a motion graph with the motion synthesis step to simulate

various motion transitions. This work proposes an energy optimization method based

on a turbulent model. Finally, the precomputed coefficient codebook is used in the

runtime simulations of the proposed dynamical model to achieve real-time simula-

tions.

Chapter 6 proposes a prior model reduction technique for dynamical systems [XM14b].

The reduced model utilizes separated representation of dynamical systems, which is

a meta-model based on different variable domains including temporal and spacial

domains, initial conditions, and physical parameters as extra-coordinates. In order

to represent the dynamical model of immersed rigid body dynamics, this chapter

offers a feasible approach to improve the algorithm for strong nonlinear dynamical

system in future.

Chapter 7 presents the conclusions and the suggestions for future work. Furthermore,

this chapter summarizes the contributions of the proposed topic to other research

topics in computer graphics and knowledge science. The limitations of each proposed

method are also analysed and evaluated in this chapter.
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Chapter 2

Background

In this chapter, a review of the research development of immersed rigid body dynamics in

physics is presented first. The freely falling motion is a foundational aspect of immersed

dynamics where the body moves from rest under gravity. The other dynamical aspects, such

as initial velocities, wind effects and body collisions, can be embedded into the dynamical

system straightforwardly. Also, this chapter surveys the related simulation works from

both computer graphics and fluid mechanics. Finally, the basic mathematical models of

immersed rigid dynamics are analysed briefly.

2.1 A historical review

Hundreds years ago, Newton declaimed about immersed rigid body dynamics in the leg-

endary book, Principia, as ”the bladders did not always fall straight down, but sometimes

flew about and oscillated to and fro while falling. And the times of falling were prolonged

and increased by these motions, sometimes by one-half of one second, sometimes by a

whole second.” ([New87], page 759, 1687). Maxwell described the dynamics as ”its mo-

tion, although undecided and wavering first, sometimes becomes regular”([Max90], page

115, 1853). Besides the qualitative descriptions of the phenomena, the quantitative scien-

tific researches starts from the last century after the development of aerodynamics and hy-

drodynamics. The issue of immersed rigid body dynamics is relevant to different scientific

and engineering problems, including meteorology, sedimentology, aerospace engineering,

biological sciences, and chemistry problems. There are two booms of this research: U.S.

military funded this study for military usage in 1960s and the research interest came back

inspired by chaos theory in 1990s [Wei98]. Currently it may be the third booms of the

research of the topic due to the growing computation power and the generation of data

science. We can also infer these trends from the published papers listed in Table 2.1 and

2.2.
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As shown in Table 2.1, scientist did numerous physical experiments of falling rigid body

in fluid, and found out the hidden rules as motion patterns inside the daily-life phenomena.

As explained previously, the unsteady dynamics in high Reynolds number flow make the

motions seem to be unpredictable. [WHH64] firstly provided a phase diagram based on

the Reynolds number Re and the dimensionless moment of inertia I∗. The stable and

unstable oscillations of the body are determined by these two parameters. The tumbling

motion happens at both larger Re and I∗. [SDG69] found the effects of the shape of various

bodies and Re to the dynamics, and declaimed that the motion patterns of a disk are more

unstable than the patterns of a three-dimensional sphere. [Smi71] measured the phase

diagram for rectangular plates which is similar to the work [WHH64]. [FKMN97] started

the further experiments on falling disks, and the apparent chaotic motion is proven to

exist. Then, [BEM98] also observed the fluttering and tumbling motions, they discovered

the fluttering dynamic of a falling object and the transition from fluttering to tumbling

motions occurs at a special dimensionless quantity: the Froude number. [MRS99] studied

the dependence of the angular velocity on the width of a tumbling card.

Recent experimental works attempts to uncover the motion patterns in three dimensions

and the motion transitions among motion patterns. The experiments in [ZCL11, ZLS+13]

have found an additional three typical trajectories in a three-dimensional environment:

zigzag, transitional helix, and spiral motions. The exhaust experimental work [Raz10] con-

cerned about the transitions among different motion pattens of leaves based on more than

six thousands three-dimensional experiments. In the recent work [VCW12] and [VCW13],

the similar patterns of helical motions are observed for different shapes of rigid bodies. All

the patterns and the experimental environments of previous work are listed in Table 2.1.

Table 2.1: Summary of previous investigations on immersed rigid body dynamics from
physical experiments in the order of published years.

References Rigid Body Fluid Re Motion Patterns
[Ria35] rectangular card air fluttering/tumbling
[WHH64] circular disk water/glycol 102 ∼ 103 fluttering/descent/chaotic
[SDG69] various bodies water/glycerol 102 ∼ 105 fluttering/ tumbling
[Smi71] rectangular plate air 102 ∼ 104 tumbling
[FKMN97] circular disk water/glycol 102 ∼ 104 fluttering/tumbling/chaotic
[BEM98] thin strip water/glycerol 103 ∼ 104 fluttering/ tumbling
[MRS99] rectangular card air tumbling
[APW05b] rectangular plate water 102 ∼ 103 fluttering/tumbling/chaotic
[ZCL11] circular disk water 102 ∼ 104 fluttering/helical/spiral
[VCW12] maple seeds air 103 helical
[WHXW13] rectangular card air 5× 103 tumbling
[VCW13] parallelograms card air 103 tumbling/helical
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2.2 Related work in physical simulations

In this section, the related works of physical simulations are presented from the research

field of both computer graphics and fluid mechanics related to immersed rigid body dynam-

ics. This thesis proposes a family of data-driven methods considering the real flow effects

which the previous computer graphics work. The numerical methods in fluid mechanics

are mainly in 2D case as shown in Table 2.2. Recent 3D physical simulations have the

limitations to account for turbulent flow and the high computational cost, which are not

feasible to satisfy the realistic and real-time requirements in this study.

2.2.1 Computer Graphics

Rigid body dynamics has a long history in computer graphics and is a significant start-

ing points of other character and deformable body simulations [Bar93]. A recent

work [BETC12] detailed the modern development of mechanics, complementarity

problems, numerical methods in interactive rigid body simulations. The traditional

rigid body solvers do not consider the influences from the surrounding flow, where

any rigid body always falls down vertically.

Two-way Coupling simulations between rigid body and incompressible fluid has been

studied extensively in computer graphics. Basically there are two types of schemes on

this research. The first scheme handles fluid in Euler formulation and rigid bodies in

Lagrangian formation [CMT04, GSLF05, BBB07, RMSG+08, CM10]. Guendelman

et al. [GSLF05] proposed a robust ray casting algorithm for the coupling between

fluid and cloths to avoid fluid leaking. Carlson et al. [CMT04] treated the rigid

body as fluid grid by using distributed Langrange multiplier. The second scheme is

the fully Langrangian meshless method [BTT09, CBP05, SSP07, HLW+12]. Becker

et al. [BTT09] proposed a direct forcing method in a predictor-corrector scheme

with SPH particles. Solenthaler et al. [SSP07] used a penalty method to analyze

the forces on the immersed boundary. These two-way coupling approaches provide

great simulation results for weakly coupling problems in low-Re conditions, where

the rigid body does not exhibit chaotic behaviours. For the research purposes of

immersed rigid-body dynamics in this thesis, it is trivial and infeasible to simulate

high-Re two-way coupling with turbulent flow in computer graphics as explained in

Chapter 1. It is too computationally heavy for immersed rigid body simulations

where the motions of fluids are not visible.

Aerodynamics simulations are widely proposed in computer animation. [WZF+04]

proposed Lattice-Boltzmann method for solving fluid simulation and Kutta-Joukowski

theorem for body’s dynamics, such as soap bubbles and feathers. This proposed
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method cannot produce a designated motion trajectory, and it has difficulty in sim-

ulating multiple objects, because this method requires a large computational cost

(a single bubble: CPU 2.8 fps and GPU 11.5 fps; a single feather: CPU 0.76 fps

and GPU 6.1 fps). The commercial CG tools, including LightWaveTM and Maya@

nClothTM , do not embody the functions of the animation for immersed rigid body,

instead, they provide particle systems to model an immersed body by adjusting the

drag and lift parameters in a wind field. In all of these works, the motion paths are

unpredictable, and it is infeasible to achieve realistic motion.

Unsteady dynamics The underwater simulation work [WP12] introduced a Kirchhoff

tensor to represent inertial effects for underwater rigid body simulations. This

approach is suitable for the inviscid and irrotational flow with low-Re number.

[OKRC10] presented a fractional derivatives method for representing historic force

of underwater cloth in low Reynolds number flow. This work proposes a Langevin

model related to the turbulent flow for solving the vortical loads. Langevin model has

been applied to enhance turbulent flow simulations [CZY11] and simulations of float-

ing lightweight rigid body [YCZ11] in previous work. In these work, the rotational

velocity and the coupling between translational and rotational velocities are not con-

cerned. We resolve these issues by combing generalized Kirchhoff equations with

Langevin model in this paper. There are also some interesting works about motions

of snowflakes and dusts, such as particle system [CFW99, TLP06], spectral-particle

method [LZK+04]. All these approaches do not take into account the unsteady dy-

namics of the body, both inertial and viscous effects from the surrounding flow and

the influences from the generated turbulences at the body’s boundary layer.

Turbulent Flow simulations are different with direct numerical simulation of Navier-

Stokes equations. First, from the view of fluid mechanics, there are some sophisti-

cate approaches in this fields, including turbulent-viscosity models (k-ε equations),

Reynolds-stress models, Probability Density Function methods (Langevin model)

and large-eddy simulation. It is not apparent to adopt these approaches directly

in computer animation, and there are some successful works [PTC+10, PTSG09] in

computer graphics community recently. Note that Langevin model is an empirical

model based on k-ε equations [Pop83, Pop11] but an effective Langragian-stochastic

approach to represent the dynamics of passive particles in turbulent flow [MD04]. Re-

cent work shows that non-spherical particles moving in turbulent flow [MR10] exhibit

the similar dynamics of immersed rigid bodies which has been discussed in previous

work [XM13]. Therefore, it is physically reasonable to adopt Langevin model for

simulating immersed rigid bodies in this work.

Data-driven methods have been proposed based on the Markov model [RP01], captured
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videos [AHN04], segments from fluid simulations [SYWC05], trajectories animated

by Maya [VB08], and sketches by a designer [HQHQ10] to simulate the motions of

falling leaves. All these simulations ignore the nature of motion of immersed rigid

bodies and consider it a completely complex and unpredictable dynamic motion,

which is modeled by stochastic processes or a simple particle representation.

Character animation method proposed motion synthesis combining the controllability

of procedural and physically-based animation with the realistic appearance of a pre-

recorded motion stream (e.g. motion capture). The motion graph [AF02] can au-

tomatically organize example motion clips into graphs for efficient motion synthesis.

Later, Kovar et al. built an extended motion graph using local search with a branch

and bound algorithm [KGP02]. Besides being used in human motion, motion graphs

are also used in other physical simulations, such as tree animation [HFR06, ZZJ+07].

This work includes the motion graph technique for synthesizing the motion of im-

mersed rigid body.

2.2.2 Fluid mechanics

The developments of numerical simulations of immersed rigid body dynamics are listed

in Table 2.2. The numerical work [TK94, APW05b, Umb05, PM11, ERFM12] corrected

unsteady approximations of drag and lift forces. Tanabe et al. [TK94] built a simple

phenomenological model of falling paper by solving ordinary differential equations (ODEs)

based on the Kutta-Joukowski theorem. Andersen et al. [PW04] provided a solution of

the 2D Navier-Stokes equations for the flow around the tumbling plate, which are solved

in the formulation of vorticity stream function within a body-fixed elliptical coordinate

system. This method utilized a conformal mapping to avoid singularities. [APW05b] con-

ducted various numerical simulation in air, and discussed the motion transition between

tumbling and fluttering motion patterns. This work observed the apparently chaotic mo-

tions are due to the high sensitivity of the dynamical system to experimental noise. [JX08]

attempted to overcome the various discrepancies between experimental and numerical so-

lutions encountered in [APW05b]. [KS10] developed a Fourier pseudo-spectral method to

solve the 2D Navier-Stokes equations coupled with equations which govern free fall mo-

tion of a object, and the simulation results varied depending on the Reynolds numbers.

[YS12] presented a direct forcing immersed boundary method for strongly coupling prob-

lems, including vortex-induced vibrations of a circular cylinder, transverse and rotational

galloping of rectangular bodies, and fluttering and tumbling of rectangular plates. Another

approach for solving strongly coupling motions is a point vortex method [MLS09]. This

method is based on Brown-Michael equation via Kutta conditions for 2D coupled motion

of a sharp-edged rigid body and the surrounding inviscid flow.
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Table 2.2: Summary of previous investigations on immersed rigid body dynamics from
numerical experiments in the order of published years.

References Dimensions Rigid Body Re Motion Patterns
[TK94] 2D rectangular paper fluttering/tumbling
[PW04] 2D paper 103 fluttering/tumbling
[APW05a] 2D Rectangular plate 400 ∼ 600 fluttering/tumbling
[JX08] 2D plates 838 ∼ 1100 fluttering/tumbling
[KS10] 2D leaves 103 ∼ 104 tumbling
[YS12] 2D rectangular plate 103 fluttering/tumbling
[AMF13] 3D circular disk 102 ∼ 104 fluttering/tumbling/chaotic/spiral
[CBD13] 3D circular disk 103 ∼ 104 fluttering/tumbling/spiral
[HW14] 2D rectangular plate 103 fluttering/tumbling/chaotic

Recent progress studied the effects of mass distribution [HLW+13], motion transition

of motion patterns [HW14]. These works are mainly discover the cases of quasi-two-

dimensional setups. The recent work about three-dimensional dynamical motion patterns

of immersed rigid body dynamics based on solid-fluid interaction simulations [AMF13,

CBD13]. This thesis combines the research results of both experimental and numerical

works to seek the motion patterns and their motion transition for an individual body

in three dimensions. [CBD13] investigated the motion transitions among motion patterns

based on the Galileo number and the non-dimensionalized mass. The numerical simulations

of solid-fluid interaction utilized spectral element method with domain decomposition.

[AMF13] studied the influence of the body density and the thickness of disk to the motion

transitions by simulating the coupled Navier-Stokes equations with generalized Kirchhoff

equations of rigid body dynamics [MM02].

2.3 Basic physics of immersed rigid body dynamics

2.3.1 Rigid body equations

Without the consideration of fluid effects, the dynamics of 3D rigid body follows the

Newton-Euler equations in body-fixed frame.

F = macm −mg (2.1)

τ = Iω̇ + ω × Iω (2.2)

where F and τ are the aerodynamics forces and torques, respectively. m and I is the mass

and moment of inertia of the rigid body. ω denotes angular velocity. acm is the translational
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acceleration at center of mass in body-fixed frame and the value becomes acm = v̇ + ω× v

by coordinate transformation from the world-frame, v is the translational velocity of the

body. Finally, the rigid body equations can be described as:(
F

τ

)
=

(
mE 0

0 I

)(
v̇

ω̇

)
+

(
ω ×mEv

ω × Iω

)
(2.3)

where E is identity matrix.

2.3.2 Coupling equations of fluid-body system

The Navier-Stoke Equations are transformed into the following formulations in the refer-

ence frame moving with the rigid body.

∂u

∂t
+ ω × u+∇ · (u(u− w)) =

1

ρf
∇p+ ν∇2u (2.4)

∇ · u = 0 (2.5)

where u and p are the velocity field in the flow. ρf and ν are the density and viscosity of

the flow. w = v + ω× r is the body velocity in world-frame, and r denotes the orthogonal

coordinate in body-fixed frame. On the body boundary S, the flow velocity satisfies the

no-slip boundary condition.

u(x) = w(x) ∀x ∈ S (2.6)

Then, the aerodynamic force and torque on the body are given as follows:

F =

∫
S

(σ · n)ds (2.7)

τ =

∫
S

x× (σ · n)ds (2.8)

where σ = −pE + ρfν(∇v +∇Tv) is the stress tensor of the flow, n is the local normal to

the solid boundary.

2.3.3 Motions in potential flow

In the case of the aforementioned coupling equation (Equation 2.5) in zero viscosity, the

coupling problem can be converted a flow potential ϕ that satisfies the following Laplace
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problem if the flow is irrotational from rest.

∇2ϕ(x) = 0 ∀x ∈ R3�B (2.9)

∂ϕ(x)

∂n
= w(x) · n ∀x ∈ S (2.10)

ϕ(x) = 0 ∀∥x∥ → ∞ (2.11)

Here B represents the domain of rigid body. Note that the non-slip boundary conditions

in Equation 2.6 should be replaced by Neumann conditions in the inviscid limit.

In terms of the inviscid theory [Lam75], the dynamics of rigid body inside potential

flow is given as Kirchhoff Equations:(
F

τ

)
=

(
mE +K11 K12

K21 I +K22

)(
v̇

ω̇

)
+

(
ω × (mE +K11)v

ω × (I +K22)ω + v × (K11v)

)
(2.12)

where K is a symmetric added-mass tensor, i.e., K21 = K12T .

K =

(
K11 K12

K21 K22

)
Kij = ρf

∫
S

ϕi
∂ϕj

∂n
ds (2.13)

More details about the added-mass tensor can be found in [New77].

2.3.4 Experimental force model in 2D real flow

The real flow is viscous and vorticity exists around the immersed rigid body. The existence

of vorticity in the flow makes the immersed rigid body dynamics complicated to analyse.

For 2D situations, an approximation of the aerodynamic forces and torques is proposed by

[APW05b, APW05a, Umb05]. The 2D dynamical model is given as follows:

(m+m11)v̇x = Fx − FL sinα− FD cosα−mbgsinθ (2.14)

(m+m22)v̇y = Fy + FL cosα− FD sinα−mbgcosθ (2.15)

(I + Ia)ω̇ = Ma −Ms (2.16)

θ̇ = ω (2.17)

where mb is the buoyancy-corrected gravitational force. m11,m22 and Ia are the diagonal

components in added-mass tensor. Fx = (m +m22)ωvy, Fy = −(m +m11)ωvx and Ma =

(m11−m22)vxvy are the forces and torque due to added mass. θ and α are the angle and
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the angle of attack of the rigid body. FD is the drag force in quadratic formulation.

FD = 0.5ρfL∥v∥v(CD(0) cos
2 α + CD(π/2) sin

2 α) (2.18)

where L is the width of the body while considering the cross-sectional area of the body in

2D model. CD(α) is the drag coefficient at α angle of attack. This coefficient relation is

proven to be valid at intermediate Reynolds number. FL is the lift force defined as:

FL = 0.5ρfLv
−1(∥v∥CT sin 2α + LCRω) (2.19)

where CT and CR are the lift coefficients for translational and rotational lift forces. In

contrast to classical Kutta-Joukowski model, this model is valid at high angle of attack for

stall motion. Finally, Ms is the dissipative torque from drag and lift forces, which can be

defined as follows:

Ms = ρfL
4π(Uµ1/L+ µ2|ω|)ω (2.20)

where U is the characteristic velocity scale of the rigid motion. µ1 and µ2 are constant

parameters.

2.3.5 Vortex effects on forces in real flow

Equation 2.7 described the aerodynamic force from the stress tensor of the flow. Sir James

Lighthill [Lig86] pointed out that, the force on the body may be divided into a potential-

flow force that depends linearly on the body velocity and can be accurately calculated as

described previously; and a vortex-flow force that varies nonlinearly and is related in a

definite way to the vortex shedding and the convection of shed vorticity. Equation 2.7 can

be redefined as follows:

F = ρf

∫
S

ϕnds− 1

2
ρf

∫
V

x× ωadV (2.21)

Here, the two terms on the right-hand-side of the equation are the contributions from

potential-flow force and vortex-flow force, respectively. ωa denotes the additional vorticity

in fluid domain. In real flow, there must be a thin boundary layer at the body surface

to meet the no-slip boundary conditions of velocity field, and also the extra field where a

turbulent is generated, both of these two effects are included in the additional vorticity.
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Chapter 3

Graph-based immersed rigid body

dynamics

This chapter first analyses the physical characteristics of free fall motions in quiescent flow,

and proposes a new procedural motion synthesis method for modelling immersed rigid

body dynamics like freely fall motions in interactive environments. Six motion patterns

of immersed rigid bodies are defined in phase diagram and analysed separately using a

trajectory search tree and a precomputed trajectory database. The global paths of the

immersed body motion are synthesized on the basis of these motion patterns, using a

specified motion graph whose edges are connected in the Markov chain model. Then,

the proposed approach integrates with external forces (e.g. wind field) by an improved

noise-based algorithm under different force magnitudes and object release heights. This

approach exhibits not only realistic simulation results in various environments but also fast

computation to satisfy real-time requirements.

3.1 Introduction

Rigid body simulations are widely used in applications ranging from films to engineering

and games. For lightweight objects, not all objects fall straight down, for examples, a

piece of paper and a leaf waver and flutter down in a seeming unpredictable motion in

the daily life. Unlike common rigid bodies, the immersed rigid bodies have special and

spectacular motions known as free fall motion, such as fluttering (oscillate from side to

side) and tumbling (rotate and drift sideways). However, in computer graphics, the real-

time simulation technique of simulating immersed rigid bodies in various environments

is challenging. The main challenge in the real-time simulation of immersed rigid bodies

comes from the need to handle the chaotic principles in an efficient way, which have not

been completely resolved in physics, even this research has a rich history beginning with
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James Maxwell as described in Chapter 2.

The complexity of the motions of immersed rigid bodies lies in the coupling of the

forward motion of the object with lateral oscillations due to surrounding fluid and the

production and influence of the vortices around object. The issue of the dynamics of

lightweight object body involves multiple hydrodynamic effects(e.g. lift force, drag force

and vortex shedding), which exhibit both regular and chaotic behaviors. This topic is

challenging and promising in visual simulation of many phenomena, and it related to the

researches of unsteady dynamics, such as flight aerodynamics, bubble rising and boiling,

meteorology and hydrodynamics.

The common way to produce the motions of immersed rigid body is using key-frame

control which requires the animator to exert much effort and expert ability. A reliable

motion may be created in a physically-based way by modelling the dynamics of the sur-

rounding flow. While this model involves inertial forces and vortex effects, the approach is

not suitable for real-time applications due to its heavy computation cost. In this chapter,

a procedural motion synthesis approach that includes the effects of lift and drag forces is

proposed to simulate realistic motions of immersed rigid bodies efficiently. The proposed

approach also provides proper simulation results under external forces(e.g. wind). The

major contributions of the graph-based method for computer graphics are described as

follows:

• This method proposes a data-driven approach of motion synthesis that uses a pre-

computed trajectory database and a motion graph of motion patterns.

• This method applies a separate synthesis method that uses six motion patterns (Fig-

ure 3.1) of freely falling behavior, which are defined in a phase diagram of the di-

mensionless moment of inertia and Reynolds number.

• In order to connect each motion patterns, the Markov chain model is adopted based

on motion groups of these motion patterns that allows an accurate estimation because

of the apparent features of each motion pattern, and the estimation is in the terms

of a hypothesis about global motion paths of immersed rigid bodies which is verified

by experiments.

The rest of this chapter is organized as follows. An overview of the graph-based method

is presented in Section 3.2. Section 3.3 describes modelling motion patterns on a phase

diagram. Section 3.4 discusses how to synthesize the global motion paths of free fall in a

still fluid. The implementation of the wind field in the noise-based method is discussed in

Section 3.5. The simulation results of free fall motions in real-time under both wind and

no wind conditions are presented in Section 3.6. The conclusion and possibilities for future

work of the graph-based method are described in the last section.
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Figure 3.1: Six motion patterns are abstracted from experimental works [APW05b, ZCL11],
from left to right: steady decent, tumbling, fluttering, chaotic, helix and spiral motions.

3.2 System overview

The graph-based method is illustrated in Figure 3.2. This method has two important

steps: motion modeling and motion synthesis of immersed body’s motion. In the motion

modeling phase, the input parameters are introduced, including the physical characteristics

of the object and the fluid in which it is released (release height, mass, etc.). This method

transforms these parameters into two key non-dimensional numbers: the Reynolds number

Re and the dimensionless moment of inertia I∗. Next, a phase diagram is utilized to obtain

the main motion patterns in which the motion of the object is most stable.

To synthesize the motion patterns of immersed rigid body dynamics, the proposed

method uses a trajectory search tree to represent chaotic, fluttering, and tumbling mo-

tions, and builds a precomputed trajectory database to provide featured motion segments.

The global trajectory is achieved in the motion synthesis phase with an assumed hypoth-

esis of motion classification verified by numerous experiments. In motion graph, motion

pattern sequences are treated as nodes, and edges are connected with probabilities from

the discrete-time Markov chain model. In addition, the wind field interactions with the

falling object are calculated efficiently. In the end, the final simulation of immersed rigid

body is achieved in real time.
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Figure 3.2: Overview of graph-based immersed rigid body dynamics.

3.3 Motion modeling

3.3.1 Input parameters

An immersed rigid body can be characterized by the following quantities:

• h: height of release

• L: length of the object

• a: length of the cross section of the object

• b: width of the cross section of the object

• ρs: density of the object

• ρf : density of the fluid

• ν: kinematic viscosity of the fluid

• g: gravity acceleration

From these parameters, three dimensionless quantities are derived: the Reynolds number

(Re), the aspect ratio of the object (ϵ = b/a), and the dimensionless moment of inertia

(I∗). Re and I∗ are the two key quantities for building a phase diagram of free fall motion

(Figure 3.3). Here,

Re =
UL

ν
(3.1)

where U is the velocity scale of flow. In addition,

I∗ =

∫
V

ρ(x, y, z)

ρfa5

 y2 + z2 −xy −xz
−xy z2 + x2 −yz
−xz −yz x2 + y2

 dxdydz (3.2)

24



where ρ(x, y, z) is the density function of the object. In special cases, I∗ = πρsb
64ρfa

(disk) and

I∗ = 8ρs(a2+b2)b
3πρfa3

(rectangle).Commonly, the velocity scale U is approximated by the average

descent velocity of the moving object:

U ∼
√

(
ρs
ρf
− 1)gb (3.3)

For an immersed rigid body, the object aspect ratio ϵ is usually so small that can be

Figure 3.3: The Re-I∗ phase diagram of immersed rigid body motions from [WHH64,
SDG69, FKMN97, ZCL11], including six regimes:(a) steady descent, (b) tumbling, (c)
chaotic, (d) fluttering, (e) helix, and (f) spiral motions. The symbols in the diagram
represent experimental results from previous works.

omitted the its effect on the motions(ϵ≪ 1).

ARe-I∗ phase diagram is illustrated as Figure 3.3. The regimes in the diagram represent

different motion patterns. The tumbling, fluttering, and spiral motions almost appear

periodic; the chaotic motion appears to be the transitional motion between the tumbling

and fluttering motions; and the helix appears to be the transitional motion between the

spiral and fluttering motions. The definitions of the motion patterns are as follows:

• (a) steady descent (SD): the object drops straight down in the vertical direction
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• (b) periodic tumbling (PT): the object turns continuously end-over-end and drifts in

one direction

• (c) transitional chaotic (TC): the object begins to oscillate with increasing amplitude,

and the fluttering motion finally turns into a tumbling motion, and chaotic motion

is observed

• (d) periodic fluttering (PF): the object oscillates from side to side with a well-defined

period

• (e) transitional helix (TH): the object moves in a helical path at a constant speed

• (f) periodic spiral (PS): the object falls downward circularly in three-dimensional

space.

The motion trajectories of these motion patterns are illustrated in Figure 3.1.

3.3.2 Precomputed trajectory database

It is not easy to build a trajectory database of immersed rigid body motions, because

capturing accurate trajectories of a falling small object in the real world seems to be

infeasible due to their chaotic motions and the short time interval. Using fluid simulations

to track vortex particles from frame to frame by following velocity vectors is also not

suitable for the following reasons: (1) they cannot detect all motion patterns; (2) they

have difficulty capturing realistic motion trajectories; (3) various parameters adjustments

make such simulations difficult to control.

Another approach is to use the Kutta-Joukowski theorem [TK94] accounting for drag

and lift forces, The dynamical model of the immersed body can defined in the following

ODEs: 

ẍ = −(A⊥sin
2θ + A∥cos

2θ)ẋ+ (A⊥ − A∥)sinθcosθẏ

−kLπρfV 2cosβcosα/m

ÿ = −(A⊥cos
2θ + A∥sin

2θ)ẏ + (A⊥ − A∥)sinθcosθẋ

+kLπρfV
2cosβsinα/m

θ̈ = −A⊥θ̇ − 3πρfV
2cosβsinβ

(3.4)

where (x, y) and θ denote the position and angle of the center of mass of the object,

respectively. In addition, (u, v) and ω are the linear and angular velocities of the object.

Note that u = ẋ, v = ẏ, ω = θ̇, and V 2 = ẋ2 + ẏ2. Moreover, m is the mass of the object,

which is calculated from the object’s density and aspect ratio parameters. The parameters

A⊥ and A∥ are the drag coefficients in the directions perpendicular and parallel to the

object, respectively. The angles α and β are defined as α = arctan(u/v), β = α + θ. The

26



parameter k is defined as follows,

k =

1 : sign(v)sinβ ≥ 0

−1 : sign(v)sinβ < 0
(3.5)

A standard fourth-order Runge-Kutta algorithm is utilized to solve this second-order

ODEs in Equation (3.4), as shown in Figure 3.4 (a). Similar to a fluid simulation approach,

it is difficult to control the ODEs model with the parameters A⊥ and A∥. For example,

the calculated motion trajectory in Figure 3.4 (b) is useless, because it is not natural for

an object to fall vertically after a fluttering motion. Nevertheless, because Equation(3.4)

accounted for the effects of drag an d lift forces, the results of object orientations by solving

Equation(3.4) are more accurate than other approaches.

(a) (b)

Figure 3.4: (a) Fluttering trajectory determined by solving the ODEs in Equation(3.4)
with A⊥ = 4.1, A∥ = 0.9 (b) Useless trajectory by solving the ODEs in Equation(3.4) with
A⊥ = 4.6, A∥ = 0.15.

There are two essential steps before building a trajectory database: motion segmenta-

tion of free fall trajectories and segment clustering. To obtain various motion segments,

we use a harmonic functions to describe general fluttering motions:xt = x0 − Ax

Ω
sin(Ωt)

yt = y0 − Ut− Ay

2Ω
cos(2Ωt)

(3.6)
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where Ax and Ay are the amplitudes of vertical and horizontal velocities of the falling object

generated by oscillations due to the surrounding viscous flow, Ω describes the angular fre-

quency of falling motion, and U is calculated from Equation (3.3). The segment breakpoints

are chosen as the turning points of the trajectory given at time steps ti =
2k+1
2Ω

π, k ∈ Z ≥ 0.

After the step of segmentation, there are numerous motion segments obtained by mod-

ifying the parameters in Equation (3.6) as shown in Figure 3.5. A motion segment set

(Si|i = 1, 2...N), where N is the number of segments, is classified based on the value of the

feature vector of each segment from the start point P 0
i to the end point P 1

i . Feature vector

sets V {Vi = P 1
i −P 0

i , i = 1, 2...N} are assigned into classes using the K-means algorithm.

Figure 3.5: Trajectory segments obtained from Equation (3.6).

The orientation of the object in each frame of Si is linearly interpolated by the angles

calculated from Equation (3.4) as shown in Figure 3.6. Finally, the position and orientation

data of segments are stored in a trajectory database.

Figure 3.6: Comparing synthesized trajectory (red) and measured data (black) of fluttering
motion, for no orientation (left) and interpolated orientations (right). Arrow lines represent
feature vectors.
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3.3.3 Trajectory search tree

This work compares the trajectories of chaotic motion, periodic fluttering and tumbling

motions from experimental data. Because the airflow behind a falling object reveals vortex

shedding and turbulence, the object comes to turning points, where the angular velocity

becomes zero, and the velocity in the oscillation direction is also zero, but the velocity

in the vertical direction is maximized. The object faces two alternatives of sliding left or

sliding right (fluttering or tumbling). Simple structures of fluttering, chaotic, and tumbling

motions are illustrated in Figure 3.7. In this tree structure, every child represents a motion

segment derived from the precomputed trajectory database using the feature vector as the

search key.

Figure 3.7: The first two levels of a small trajectory search tree (1) and the tree structures
of fluttering (2), chaotic (3), and tumbling motions(4) created by traversal of four levels of
the search tree. (gl: glide left; gr: glide right)

3.3.4 Unified trajectory functions

When projecting the motion paths of motion patterns onto XY plane, we notice that

the curves of six motion patterns have characteristic shapes: the steady descent motion

trajectory is one point; the fluttering, tumbling and chaotic motion trajectories are in a

straight line; the spiral motion trajectory is a circle; the helix motion trajectory is similar

to an eight-petal rose curve(Figure 3.8). These curves are all represented in the following

equations: 
xt = Aecos(Ωt)(1 + ϵesin(kΩt))

yt = Aesin(Ωt)(1 + ϵesin(kΩt))

zt = h− Ut

(3.7)
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Figure 3.8: Measured curves projected onto theXY plane: (1) steady descent motion; (2)
fluttering& chaotic& tumbling motions; (3) spiral motion; and (4) helix motion.

where Ae is the amplitude of the elliptical oscillation generated in the XY plane, ϵe is the

aspect ratio of the minor axis and the major axis of the oscillation ellipse, k is the ratio of

the period of elliptical oscillation to the period of rotation of the falling object, Ω is the

angular frequency of the falling motion. As deduced from Equation (3.7), the simple form

of trajectories is as follows: 
ϵe → 0, k = 1 : PS

Ae → 0, k → 0 : SD

ϵe ̸= 0, k = 4 : TH

(3.8)

3.3.5 Initialization of motion patterns

Because the nature of chaotic motion is more complex than that of periodic motions (PF,

PT), we synthesize chaotic motion with a feature vector V = rV0 and an amplitude of

oscillation Ae = rA0, where r is a random number between 0.1 and 10 calculated by the

Box-Muller algorithm, V0 is a feature vector whose orientation is the release angle of the

falling object, and A0 is the initial amplitude of object oscillation.

From experimental data [Raz10], we know that the deviations of motion patterns Di

from the release position are distributed in a normal distribution of Gaussian functions

Aie
−(

r−Bi
Ci

)2
and linearly related to the release height h.

Di =
kBiL

a
(3.9)

where k is the deviation coefficient. Because the frequency of tumbling motion is given as

Ω ∼
√
b/a [MRS99], the initial amplitude of oscillation A0 is given by:

A0 =
DiU

hΩ
(3.10)
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in which U is the average falling velocity from Equation (3.3). The final synthesized

trajectories of motion patterns are shown in Figure 3.1.

3.4 Motion synthesis

3.4.1 Motion classification

The motion patterns {Li|S1, S2, ...Sk} (Sk is the k-th segment in motion pattern Li) are

synthesized by motion segments Sn from a precomputed trajectory database. Because

motion patterns are the basic motions of immersed rigid bodies observed in various exper-

imental works, the motion groups {Gi|1 ≤ i ≤ 6} are used to represent this similar motion

sets of motion patterns.

For a free fall motion M , M{M = m1 ∥ m2 ∥ ...mi} is annotated by a label, which

is set to be Li, where Li is a motion pattern. We define Li as follows: L1: steady de-

scent motion(SD);L2: fluttering motion(PF); L3: chaotic motion(TC); L4: tumbling mo-

tion(PT); L5: helix motion(TH); and L6: spiral motion(PS), as shown in Figure 3.9 (a).

(a) (b)

Figure 3.9: (a) Motion classifications (blue: motion classes; green: motion groups; Brown:
motion segments). (b) Motion classes observed in experiments.

In terms of thousands of experiments[Raz10], the trajectories are classified into seven

motion classes (Figure 3.9 (b).) and we make the following hypothesis:

Hypothesis If M{M = m1 ∥ m2 ∥ ... ∥ mi} represents the motion of immersed rigid

body in three dimensions, then mi = Lji ∈ {Lj|1 ≤ j ≤ 6}, and the subscript sequence

{j1, j2, ..ji} should be an increasing sequence.
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This work analyzes this hypothesis qualitatively. When an object starts falling from a

release point, the vortexes are gradually generated behind the object because of the vortic-

ity of the surrounding flow. Then, the motion of immersed rigid body becomes increasingly

sensitive to internal forces, including drag and lift forces.

In terms of this hypothesis, the number of potential motion classes of all motion pat-

terns is determined by

N =

i≤k∑
i=1

Ci
k, k ∈ Z, k ∈ [1, 6] (3.11)

where k is the level of the main motion pattern by looking up phase diagram using calcu-

lated Re and I∗ in Section 3.3.1.

3.4.2 Markov chain model

The proposed model focuses on how to determine mi for motion M . A first-order discrete-

time Markov chain model is proposed for solving this issue. Let us consider a discrete-time

stochastic process {Xn} with N0 ∈ Z ≡ i ∈ [1, 6] as the state space, which corresponds

to motion groups {Gi|1 ≤ i ≤ 6} (Figure 3.9). The Markov property asserts that the

distribution of the random variable Xn+1 in the process {Xn} depends only on the current

state Xn = in, instead of depending on the whole history {X0 = i0, ...Xn = in}:

P [Xn+1 = j|Xn = in] = P [Xn+1 = j|X0 = i0, ...Xn = in] (3.12)

where j, i0, ..., in ∈ N0. The stochastic process {Xn} is a Markov chain.

Let the state space N0 be the motion group G and let process {Xn} on discrete time

set {Xt}, then the transition probability pij = P [Xt+1 = Lj|Xt = Li] is the conditional

probability to transition from motion pattern Li to motion pattern Lj. The transition

matrix is given as P = (pij) (Figure 3.10). Because the process {Xt} is stochastic, the

matrix requires

pij ≥ 0, and
∑

j pij = 1 i, j ∈ [1, 6]

According to the Hypothesis in Section 3.3.1, P has the following form

P =

(
Q R

0 T

)
i×j

(3.13)

Next, we discuss the realization of Markov chain {Xt} and the transition matrix P

calculation. To obtain the process {Xt}, the model starts with an initial state at time

t0 = 0. Then an iteration step is executed, for the state Li at time t to state Lj at time

t + 1, and the calculation depends on the probabilities at the i-th row of the transition
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Figure 3.10: Markov chain model states and transition probabilities.

matrix P (i.e. Pi = (pij|j = 1, 2..., 6)).

The state transition probabilities for the transition matrix P are found by counting the

state transitions that occurred in experimental data. Let us set Ni be the number of all

transitions from state Li in the experimental data, Nij be the number of transitions from

state Li to state Lj, then the probability is given as pij =
Nij

Ni
.

The advantages of using this first-order discrete-time Markov chain model are as follows:

• The next motion is only related to the current state in the case of motion patterns.

• The features of each motion pattern are so apparent that a valid transition matrix

can be obtained from experimental data successfully.

• The computational cost of the model is low.

3.4.3 Graph construction

A special motion graph of immersed rigid body (Figure 3.11) is based on motion graph

described in ref. [KGP02]. This graph is a complete directed graph: each node of the

graph is connected to other nodes in the same graph. We use G = (V,E) to represent a

graph, where V is the node set, and E is the edge set. Every frame in a motion sequence

of motion pattern appears as a node in the motion graph; a transition splice in the motion

sequence appears as an edge between nodess. We search this graph in one direction (from

top to down) in the order of mi in the hypothesis presented in Section 3.4.1. Therefore, it

is impossible for a motion to become tumbling motion after spiral motion.

Furthermore, the transition probability is attached to the edge between the nodes using

33



Figure 3.11: Free fall motion graph. A motion path represents a collection of splices
between sequences. Here, two example motions are shown.
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discrete-time Markov chain model (Section 3.4.2).

3.5 Motion in wind

3.5.1 Wind field

To obtain a wind field, a direct and straight method is to simulate the turbulent flow

under a boundary condition by solving differential equations using a Fourier filter [SF92,

SE93]. Another methods is to simulate the motion in a wind field using noise functions

(fractional Brownian motion) [OTF+04, KGC11]. Comparing the flow-based and noise-

based methods, the flow-based method provides physically accurate and realistic results

but requires a high computation cost. Whereas, the noise-based method is much simpler

and more suitable for real-time simulation but at the cost of physical accuracy. To overcome

the inaccuracy of the noise-based method, physically-based analysis of wind characteristics

is to be essential.

Figure 3.12: Two-dimensional wind field, HEIGHT represents the distance (m) above the
ground. The color represents the velocity length compared to the mean wind velocity
U(red: V > 2U ; pink: U < V ≤ 2U ; blue: U/2 < V ≤ U ; black: V ≤ U/2), the wind
direction is along the x-axis.

Let the velocity of wind be V = (Vu, Vv, Vw), where Vu, Vv, Vw describe wind velocity

components along the x-, y- and z-axes of the coordinate system in the simulation. In

addition, let U(h) be the mean wind velocity at height h. According to the logarithmic
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wind law [TL64], U(h) is given by

U(h) =
u∗

k
ln(

h

z0
) (3.14)

where u∗ is the friction velocity (m/s), k is the von Karman’s constant (k = 0.40), and z0

is the roughness parameter (conceptually it is the height where V goes to 0). The value

of z0 depends on the types of ground terrain (we choose z0 = 0.3). The fBm method can

suitably represent the wind [OLH84]. The spectral density function of the wind field is

given as follows based on Kolmogoroff’s law:

Su(n) = u2
∗(
U(h)ϕ

h
)2/3

C

n5/3
(3.15)

where ϕ = ϵkh/u3
∗, ϵ is the dissipation rate according to Kolmogoroff’s law, and C is a

constant, C = α(2πk)−2/3, where α is determined experimentally to be 0.5. Therefore,

C = 0.3 for the u wind direction and C = 0.4 for the v and w wind directions. To obtain

the representation of fBm in the form of S(f) = A/fβ, where A is the amplitude in wind

direction (u, v, w) ), we adopt the same approximations of Au, Av, Aw from ref.[KGC11] as

follows:

Au = u∗(
U(h)

h
)2/3, β = 5/3

Av = 0.88Au

Aw = 0.55Au

(3.16)

where u∗ is calculated from Equation (3.14). To obtain the wind velocities, we apply the

inverse Fourier transform to the following equation:

Sp(f1, ..., fn) =
Ap

(
√∑n

i=1 f
2
i )

β+n−1
(3.17)

where n is the dimension number, and p is the wind direction (u, v, w).

Considering the computation costs of 2D and 3D wind fields (2D grid 100× 100: 8 ms;

3D grid 100×100×100: 1,363 ms), we use a 2D wind field to approximate a 3D wind field

by using the release height of the falling object. The wind field u(p, t) is represented as:

u(p, t) ≡ u(p′, h, t) =
ln(h)− ln(z0)

ln(h0)− ln(z0)
u(p′, h0, t) (3.18)

where p′ is the 2D position, and h0 is the release height of the falling object. A 2D wind

field for two different heights is illustrated in Figure 3.12 (mean wind velocity: U = 4.0
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m/s; grid size: 100× 100).

Figure 3.13: Trajectory of freely falling behaviour in wind field

3.5.2 Wind-object interaction

Let u(p, h, t) be a 2D wind field at position p and height h, and let the wind velocity at

point p0 = (x0, y0, z0) be u(p0, z0, t0) = (ux, uy, uz) , where ux, uy, uz correspond to the

u,v,w components in Equation (3.16).

To represent the computed trajectory of a falling object in a still fluid, we set the

trajectory to be a function f(t), where f(t) is a set of points per frame in the time domain.

At time t0, f(t0) is a quaternion (p0, θ0), which includes the position and orientation of the

object.

After time step δt, f(t0 + δt) comes to point p′. The next point after p0 is set to be

p1, p̂0p1 = ̂u(p0, z0, t0) + p̂0p′ (Figure 3.13). If p1 does not coincide with any grid node

of the wind field, assuming the neighboring 2D grid nodes around p1 are Pi(0 ≤ i ≤ 3),

the wind velocity at p1 is calculated from the linear interpolation of ui at Pi. After the

iterations, the new trajectory f ′(t) of the falling object in a wind field is synthesized using

a Bezier curve to produce a smooth path with control points pi(i = 0, 1, ...) (Figure 3.14).

In contrast to other curve-fitting methods, Bezier curve has advantage accounting for all

control points.

Next, we consider the rotation of an object under the influence of wind. Note that

a falling object, such as a leaf or a piece of paper, can change its orientation in a wind

field. To achieve a realistic effect of wind, we apply a noise function into the orientation
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Figure 3.14: Motion paths for different values of the mean wind velocity U : (a) U = 1.0
m/s,(b) U = 3.0 m/s, (c) U = 5.0) m/s. The wind direction is from right to left.

calculation of the falling object:

θ(t) = WN(t) (3.19)

where N(t) =
√

u2
x + u2

y + u2
z/|U |, where U is the mean velocity of wind field, ux, uy, uz are

the velocity components of wind at time t, and W is the maximum motion angle, which is

designated by the animator.

3.6 Results

From the input parameters in Section 3.3.1, the main motion pattern Li is determined by

looking up the phase diagram using calculated I∗ and Re. According to the hypothesis in

Section 3.4.1 and the Markov chain model, the global path synthesis starts from a random

motion pattern Lj(i < j), and the next motion pattern is estimated by transition matrix

in Section 3.4.2. The motion pattern segments are determined from the precomputed

trajectory database in Section 3.3.2. To efficiently evaluate our simulations, we compare

them with experimental videos of falling immersed rigid bodies.

The simulation results presented in Figure 3.15-3.18 suggest that our simulations are

realistic and our approaches are applicable in various flows, such as water and air. Figure

3.15 shows an aluminium circular disk (radius: 1.0 cm; thickness: 0.15 cm) falls in still

water from a height of 50 cm. A regular fluttering motion is observed. We use Re − I∗

phase diagram to determine the main motion pattern is fluttering for I∗ = 10−2 and

Re = 3.55 × 103. Note that both the simulation and the video show fluttering motion as
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Figure 3.15: Comparison of the simulation with the ground truths of one-Japanese yen
coin falling motion in water.

the global falling path.

Figure 3.16 shows an elliptical piece of paper (major axis: 8.0 cm; minor axis: 2.0 cm;

thickness: 0.01 cm) falling in still air from a height of 3.1 m. Because I∗ = 2.2× 10−3 and

Re = 6.8 × 103, the Re − I∗ phase diagram indicates that the main motion pattern is a

spiral motion. Note that the falling motion consists of tumbling and spiral motions, which

is consistent with the hypothesis we presented in Sect. 3.4.1.

Figure 3.17 (a) shows a leaf (major axis: 7.3 cm; minor axis: 4.2 cm; thickness: 0.03

cm) falls in still air from a height of 2.0 m. Because I∗ = 6.3× 10−3 and Re = 1.2× 104,

the Re − I∗ phase diagram indicates that the main motion pattern is a transitional helix

motion. Note that the simulated result consists of steady descent, tumbling, and helix

motions. Figure 3.17 (b) and (c)show the final simulated motions in two strong wind fields

that corresponding to the condition in Figure 3.14 (b) and (c), respectively. We found that

under a strong wind field, tumbling motion disappears and the object travels far.

Figure 3.18 shows an integrated scene of multiple leaves falling motion from a tree.

Although the Re and I∗ are the same values for these leaves, they have different motion

trajectories under the Markov chain model. Note that the implementation of the simulation
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Figure 3.16: Comparison of the simulation with the ground truth of a paper falling motion
in air. The figure of the ground truth is blurry because of the dim background in each
frame of the captured video.

does not include collision detections among objects.

All simulations are implemented on an Intel Core i7 CPU 3.20 GHz and 12.0 GB RAM

in real time (less than 3 ms per frame for one body). Because most of the computation

was executed off-line, the runtime motion synthesis and optimization process were rarely

memory consuming, therefore, our simulation is not only realistic but also feasible for

interactive applications.

3.7 Discussion

This chapter presented a framework for simulating realistic motions of immersed rigid

bodies in both still fluids and wind fields. In addition, this study presented the frontier

research on the physical details of the dynamic of immersed rigid body. Furthermore,
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(a) (b) (c)

Figure 3.17: (a) Comparison of the simulation with the ground truth of a leaf falling motion
in air. The simulation of the motion in a wind field of mean wind velocity U = 3.0 m/s
(b) and U = 5.0 m/s (c). The wind direction is from right to left in a screen space.

this work proposed an efficient motion synthesis method to achieve realistic simulations in

real-time.

The limitation of this work is for rigid bodies with regular geometries (such as, rectan-

gular, circular, and elliptical objects with constant densities). For rigid body with irregular

geometry and uneven density distribution, it is difficult to determine the influences of the

geometry and density distribution modifications on the motion. When a paper or plastic

object falls freely, the deformation of shape would happen, which is not considered in this

work. Furthermore, the orientations of rigid body are obtained from the precomputed

trajectory database, but the rotational axis and angle of the rigid body are difficult to

determine in the cases of spiral and helix motions, because they are related to its geometry

and appear irregular observed in ref.[Raz10].

This chapter proposed the graph-based method mainly based on the observations from

physical experiment. To solve the issues for complex geometries, this thesis proposes a new

numerical method based on the dynamical model of the immersed dynamics in the next

chapter.
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Figure 3.18: Simulation of multiple leaves falling from a tree.
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Chapter 4

Stochastic model of immersed rigid

body dynamics

This chapter presents a stochastic model for animating the dynamics of immersed rigid

bodies in viscous incompressible fluid in real-time. This uses generalized Kirchhoff equa-

tions to ensure forces and torques from the surrounding fluid that create realistic motion of

immersed rigid bodies. The proposed method utilizes the generalized Langevin equations

to represent the effects of turbulent flow generated at the body surface. This approach

precomputes added-mass effects and the vortical loads from turbulent model, and executes

the rigid body solver in runtime, so that this method is straightforward and efficient to

the interactive simulations. Many types of rigid bodies with lightweight mass (e.g. leaf or

paper) can be simulated realistically in high-Reynolds-number flows.

4.1 Introduction

Rigid body simulations are the fundamental techniques in computer animation, which are

ubiquitously used in various applications. Although current rigid-body solvers can handle

the body dynamics and collisions sophisticatedly, it remains a challenging work to simulate

immersed rigid-body dynamics, which considers the motion of rigid bodies fully immersed

in air or submerged underwater. In our daily-life, we notice that a paper moving through

air follows a beautiful but chaotic-like trajectory rather than a straightforward vertical

path.

The motion of immersed rigid body can be characterized by a Reynolds number Re

and its mean falling velocity U0.

Re =
U0d

ν
; U0 =

√
(
ρb
ρs
− 1)gb (4.1)
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where ν is the kinematic viscosity of the surrounding fluid; d and b are the characteristic

length and thickness of the rigid body; ρb and ρf are the densities of rigid body and fluid,

respectively. For a common leaf moving in air, Re is greatly high at a magnitude of 104.

In the case of a high-Reynolds-number flow, the vortices born around the body and then

detach from body surface as vortex shedding. The immersed rigid-body dynamics is so

unsteady with path instabilities that the simulations of immersed rigid bodies become

notoriously difficult in the field of both fluid mechanics and computer graphics.

In contrast to the conventional two-way coupling simulations, high-Re two-way coupling

is far complicated where the strong-coupled motions between rigid bodies and flow cannot

be understood without fine details of fluid motion, i.e. vortex-body interaction. To the

best of authors’ knowledge, the technique for simulating high-Re two-way coupling of

immersed rigid bodies is absent in computer animation. Therefore, it is difficult to simulate

immersed rigid bodies by conventional coupling approaches. To resolve this issue, the

generalized Kirchhoff equations are utilized with detailed analysis of the flow effects from

the surrounding flow.

The research motivation of this work is to supply a plausible simulation approach of

immersed rigid-body dynamics in real-time on CPU. Because this is a great challenging

problem to account for turbulent flow for real-time simulations, this work assumes that

the body is thought as a passive particle in the fluid flow with the mean falling velocity of

the body whereas the real situation is a body moving through the still flows, so that the

implementation of turbulent energy need not handle body’s boundary conditions and can

be executed in pre-processes. Due to the absence of boundary conditions, the aerodynamic

drag and lift forces are resolved implicitly in this work. In contrast to the empirical

model of aerodynamic forces based on quasi-steady assumptions, this approach can achieve

visually plausible simulation results accounting for the viscous effects of unsteady forces

from generated turbulence but lose physical accuracy as trade-off with computation cost.

In terms of the assumption, this work propose a stochastic model as a tradeoff between

the computation costs and simulation accuracy to resolve the dynamics of immersed rigid

bodies [XM14a]. As illustrated in Figure 4.1, this approach separates flow effect from the

surrounding flow into inertial effect from potential flow and viscous effect from turbulent

flow:

• For the inertial effect, this model precomputes the added-mass tensors due to both

translational and rotational displacements of the surrounding flow.

• For the viscous effect, this model calculates the turbulent energy and its dissipation

rate for obtaining vortical loads on the body in a pre-process stage.

The vortical loads of viscous effect are represented in the Langevin model as a stochastic

process of the object velocity, and then substituted into Kirchhoff equations with added-
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Figure 4.1: Overview of the proposed stochastic model. The steps in grey color run in
precomputation steps. The runtime includes only two steps in blue color so that the
computation cost is significantly reduced.

mass tensors. The proposed model runs a rigid body solver to solve generalized Kirchhoff

equations in runtime process. Overall, the proposed approach makes it feasible to efficiently

simulate immersed rigid bodies with arbitrary shapes in low computation costs. The major

contributions of this work are summarized as follows:

• A new method based on generalized Langevin equations of both translational and

rotational velocities to represent the characteristics of the surrounding flow whereas

previous work [CZY11, YCZ11] did not account for the dynamics of rigid bodies and

the coupling between translational and rotational velocities.

• A new representation of rigid body dynamics as generalized Kirchhoff equation in

body-fixed frame to account for both inertial and viscous effects, which is different

from previous work [WP12] where only inertial effect was considered.

• A two-stage framework includes pre-processes stage of added-mass effects and the

k-ε turbulent model, and runtime stage of rigid body solver, which is shown to be

efficient to simulate immersed body dynamics in real-time.

The rest of this chapter is organized as follows: Section 4.2 details the equations of rigid

body by generalized Kirchhoff equations. Section 4.3 explains the Langevin model to

capture the motion in a stochastic process way, and Section 4.4 describes the approach on

how to obtain turbulent parameters from the k-ε turbulent model. Section 4.5 specifies

the algorithms used in the implementation of the proposed approach. Section 4.6 shows

the simulation results of different objects by the propose model. Finally, this chapter is

concluded with a discussion of limitation of the proposed method in Section 4.7.
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4.2 Equations of motion

Let us consider a rigid body of mass m, and center of mass O moving through a still

fluid flow. The motion of the rigid body is described by (R(t),x(t)). R(t) represents the

orientation of the body as a 3 × 3 orthogonal matrix rather than a quaternion form, and

x(t) is the position of O at time step t in inertial reference frame. This work represents

the dynamic equations of motion in body-fixed frame. All symbols used throughout this

chapter can be found in Table 4.1.

4.2.1 Kinematic equations

The translational and angular velocities of the object (v,ω) ∈ R6 are given in body-fixed

frame as follows:

Ṙ = Rω̂, ẋ = Rv (4.2)

where the operatorˆ: R3 → so(3) is defined as sω̂ = s×ω,∀s ∈ R3, where the space so(3)

is the Lie algebra of the Lie group SO(3). ω̂ is defined as 0 −ω(3) ω(2)

ω(3) 0 −ω(1)
−ω(2) ω(1) 0

 (4.3)

where ω(n) is the n-th element of angular velocity ω.

4.2.2 Dynamic equations

The dynamics of a rigid body immersed in a viscous fluid results from the coupling between

the body and the surrounding flow. The dynamical effects from the interaction of the fluid

to a body displacement, including both translational and rotational transformations, are

described as added-mass tensors Mf and Jf . Mf represents the force and torque due to

the fluid coupling to a translational acceleration of the body and Jf is to a rotational accel-

eration. Therefore, the body dynamics is governed by the generalized Kirchhoff equations

[FERM08]. The dynamic equation has the following form in body-fixed frame.

M · v̇ + v × (M · ω) = Ft + Fg

J · ω̇ + ω × (J · ω) + v × (Mf · v) = Γt + Γg

(4.4)

where M = mI +Mf , J = J0 + Jf , J0 is the moment of inertia of the body and I is the

3 × 3 identity matrix. Ft and Γt are the resulted force and torque due to the turbulence

generated at the body surface while the body moves in a viscous flow; Fg and Γg result
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Table 4.1: Notation used through this chapter (Bold letters denote vector variables.).

symbol description symbol description
R rotation matrix of the body Mf added mass tensor
x position of body M mass tensor
ω angular velocity Jf added inertia tensor
v translational velocity J inertia tensor
m mass of body J0 moment of inertia
r center of buoyancy U0 mean falling velocity of body
g gravitational acceleration k turbulent kinetic energy
V volume of body ϵ dissipation rate of turbulent energy
ρb body density χ turbulent frequency χ = ε/k
ρf fluid density u fluid velocity
ν kinematic viscosity of fluid ⟨u⟩ mean flow velocity
Re Reynolds number α relaxation rate coefficient
Ft force due to turbulence β diffusion coefficient
Fg force due to gravity W Wiener process in R3

Γt torque due to turbulence ξ normal Gaussian distributed variable
Γg torque due to gravity ∆t time step of simulation

from the buoyancy-corrected gravity.

Because the added-mass tensors are only determined by the body’s geometry and inde-

pendent of the generated turbulence at body surface [How95], Mf and Jf can be computed

in a precomputation step similar to the implementations of the mass tensor and rotational

inertia tensor in [WP12].

The gravity and buoyancy act on the immersed rigid body with inverse directions. This

work expresses them in body-fixed frame as follows:

Fg = RT (m− ρfV )g (4.5)

Γg = ρfV r ×RTg (4.6)

where V = m/ρb is the volume of the body and r is the vector from the center of mass to

the center of buoyancy in body-fixed frame.

The challenge of solving Equation (4.4) is how to determine the force ft and torque

τt due to viscous effect of surrounding turbulent flow, which includes the drag and lift

dynamics. Therefore, ft has the following formation depending on aerodynamics.

ft = fdrag + flift = −
1

2
ρfA|U |(CdU + ClU ×

N × U

|N × U |
) (4.7)
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where A is the surface area of the body, and U is an intermediate translational velocity in

Section 4.3.2. Cd and Cl are the drag and lift coefficients, which can be given from exper-

iments or advanced analysis. Here these coefficients are set to be user control parameters

so that different dynamics of immersed rigid-body can be simulated. The torque due to

drag and lift forces is τt = p⃗×ft where p⃗ is the vector from the center of mass to the center

of pressure of the body.

4.3 Stochastic model

The stochastic model for the motion of suspended fluid particles is proposed by Langevin

decades ago. The velocity increments of a particle in continuous time steps are in highly

correlated process, which is called the Ornstein-Unlebeck process [UO30]. The model can

be applied to describe the Brownian motion of lightweight objects undergoing the vortical

loads from the surrounding turbulent flow [MD04, YCZ11].

For a statistically isotopic turbulence, the Langevin equation can be defined as the

following stochastic differential equation:

du(t) = −αu(t)dt+ βdW (4.8)

where u(t) is the translational velocity of a fluid particle; α and β are the relaxation rate

and the diffusion coefficient, which reveal the properties of the turbulent flow; and W is

a Wiener process which represents a Brownian motion with a continuous-time stochastic

process. In this implementation, the process is calculated by a normal distribution with

mean of zero and variance of the time interval ∆t. Note that the numerical analysis of the

stochastic process is out of the scope of this work, such as Ito calculus.

For a fluid particle with arbitrary shape, the relaxation term in Equation (4.8) has no

effect to angular velocity increments of the body as a rotational Brownian motion [MD04].

The Langevin equation for angular velocity is given as:

dω(t) = βdW (4.9)

4.3.1 Generalized Langevin equation

Pope [Pop83] described the generalized Langevin equation for the suspended particle in a

turbulent flow. The equation gives the expressions of α and β having the following forms:

α = (
1

2
+

3

4
C0)

ε

k
, β = (C0ε)

1
2 (4.10)
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where k and ε are kinetic energy and its dissipation rate of the surrounding turbulent flow;

C0 is a Kolmogorov coefficient. According to the Kolmogorov hypothesis, C0 is related to

the Reynolds number Re of the flow [Pop11].

C0(Re) = 6.5(1 + 140Re−
4
3 )−

3
4 (4.11)

For high-Reynolds-number flow (Re > 103), this relation is empirically fitted.

Finally, the dynamic equations of immersed body are discretized through finite-difference

scheme by substituting Equations (4.8)(4.14)(4.10) into Equation (4.4).

v(t+∆t)− v(t) = M−1(−v(t)× (Mω(t))∆t

−χ(1
2
+ 3

4
C0)v(t)∆t

+(C0ε∆t)
1
2ξ1 + Fg(t)∆t)

(4.12)

ω(t+∆t)− ω(t) = J−1(−ω(t)× (Jω(t))∆t

−v(t)× (Mfv(t))∆t

+(C0ε∆t)
1
2ξ2 + Γg(t)∆t)

(4.13)

4.3.2 Time integration

This work proposes a fractional-step method for solving the velocity u = (ω, v) ∈ R6 from

Equation (4.4) which includes three steps as follows:

u
(fg ,τg)−−−−→ u̇

Langevin−−−−−→ ü
(ft,τt)−−−→ unew

The first step is to numerically solve for a guess velocity u̇ while not considering the

vortical loads in Equation (4.4). Then, this work utilizes the Langevin equations of both

translational and rotational velocities to obtain an intermediate velocity ü.

ü = u̇−
(

−
√
Ckε∆tξ⃗1

χ(1
2
+ 3

4
Ck)v̇∆t−

√
Ckε∆tξ⃗2

)
(4.14)

Where χ = ε/k, ξ⃗1 and ξ⃗2 are the vectors of normal Gaussian distributed variables

Norm(0, 1) with mean zero and unit deviation. The vectors are generated using the Box-

Muller algorithm [PTVF92].

After calculating the vortical loads (ft, τt) by Equation (4.7) using U = v̈ ∈ ü, the last

step is to solve Equation (4.4) to obtain unew for next time step. The parameters (χ, ε)

measure the characteristics of the surrounding turbulent flow. This work pre-generates

these parameters (χ(t), ε(t)) by two-equation k-ε turbulent model in the next section.
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4.4 Turbulence model

In a turbulent flow, the fluid velocity u can be represented by Reynolds decomposition

with the mean flow ⟨u⟩ and fluctuating velocity u′ (u = ⟨u⟩+u′). The common approach

for solving the fluid-rigid coupling problem based on the three dimensional Navier-Stokes

equations are extremely computationally expensive, because the fluctuations of turbulence

would be of small scale and high frequency. It is obvious not suitable for an interactive

application. The most widely used turbulence model is the k-ε turbulent model proposed

in [LS74], which requires low computational cost. The k-ε model is a semi-empirical model

based on the transport equations, which consist of two coupled equations of the turbulent

kinetic energy k and its dissipation rate ε. This energy transport equations are defined as

follows:
Dtk = ∇ · ((ν + vT

σk
)∇k) +G− ε

Dtε = ∇ · ((ν + vT
σε
)∇ε) + χ(C1G− C2ε)

(4.15)

where Dt denotes a Lagrangian derivative; σk and σε are the turbulent Prandtl numbers

for k and ε; C1 and C2 are empirical constants. The values of these parameters are given

empirically as: σk = 1.0, σε = 1.3, C1 = 1.44 and C2 = 1.92 [LS74].

The turbulent viscosity vT in Equation (4.15) describes the small scale turbulent motion

as a viscous diffusion scale in the turbulent model. Turbulent viscosity vT is defined as:

vT = Cµ
k2

ε
(4.16)

where Cµ = 0.09 is an empirical constant.

The term G in Equation (4.15) represents the generation of turbulent kinetic energy

due to the mean velocity gradients and can be defined in terms of the strain tensor of the

flow:

G = 2vT
∑
ij

S2
ij (4.17)

where Sij =
1
2
(∂⟨u⟩i

∂xj
+

∂⟨u⟩j
∂xi

).

In the implementation of this model, Equation (4.15) is simplified by avoiding the

calculations of the incorporated diffusion terms, which are proven to be visually unnec-

essary in previous work [PTC+10]. The transport equations have the following simplified

formulations:

Dtk = G− ε (4.18)

Dtε = χ(C1G− C2ε) (4.19)
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In cases of high turbulent flows with high Reynolds numbers, the initial state (k0, ε0) is

defined in terms of the mean falling velocity U0 as described in Equation (4.1) to estimate

the information about the history of the moving body. The initial conditions for energy

transport equations are given as follows:

k0 =
3

2
U2
0 ; ε0 = C

3
4
µ k

3
2
0 l

−1 (4.20)

where l is the length scale of the MAC grid cell in the mean flow simulation.

The turbulent parameters (χ, ε) are explicitly solved with finite difference scheme from

Equations (4.17)(4.18)(4.19) as shown in Figure 4.2, where a standard fluid solver is applied

to obtain the mean velocities ⟨u⟩ of the base flow. According to the Kolmogorov theory, for

high Reynolds number, the initial turbulence is unstable and the kinetic energy is divided

into smaller scales. After reaching a critical scale value, turbulent energy dissipates due

to viscosity, creating an energy cascade [PTSG09]. Figure 4.2 shows the varying dissipate

rate accompanying the kinetic energy in the calculated result.

Figure 4.2: Turbulent parameters (χ, ε) in time steps with Re = 3.8×103 and 32×32×16
MAC grids.

4.5 Implementation

The implementation of this model consists of two computation stages: pre-computations

of added-mass tensors and turbulent flow; and runtime simulation of a rigid body solver

as shown in Figure 4.1.

Turbulent flow The turbulent model is based on a standard fluid solver to resolve the

mean flow around the body. However, the complicated solver of Reynolds-averaged Navier-

Stokes equations is usually applied to the k-ε model for accurate solutions, the standard

solver can be more visually plausible and efficient in computer graphics [PTSG09].
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This work utilizes a typical MAC staggered grid with semi-Langragian advection to

obtain the base mean flow as described in Algorithm 1, which is similar to previous work

[CZY11, PTSG09]. The turbulent energy k and its dissipation rate ε are computed at

each grid node. This model considered the viscous effect from the surrounding flow by

Lagrangian tracking a passive particle with the same position of rigid body in the fluid

field, i.e. the implementation of boundary conditions of rigid body is not necessary, and

the inflow velocity is chosen as the mean falling velocity of Eq.(4.1) and defined as:

Uin = U0 (4.21)

Although the implementation of the mean flow and turbulent energy could be in real-

time by GPU for low-resolution, this computation should be executed offline because: 1)

it only need to be computed once; 2) the solver should guarantee the runtime computation

of rigid body solver in real-time; 3) Other turbulent solver or high-resolution simulations

are also acceptable in the framework.

Algorithm 1 Pseudo-code for pre-generated turbulent model.

1: Boundary conditions ←Equations (4.20)(4.21)
2: Timestep t = 0
3: while not stopped do
4: // Mean flow ⟨u⟩
5: Convection by semi-Lagrangian
6: Pressure projection by Poisson solver
7:

8: // Energy transport
9: Get turbulent viscosity vT ←Equation (4.16)
10: Get strain tensor term G←Equation (4.17)
11: Integrate turbulent energy k ←Equation (5.23)
12: Integrate dissipation rate ε←Equation (4.19)
13:

14: t = t+∆t
15: end while
16: Output: (χ, ε)

Rigid body solver The proposed stochastic model is relatively efficient for real-time

simulations, because the computation burdens involving turbulent flow effects are executed

in pre-computation steps. The most runtime computation is for the rigid body solver,

which is described in Algorithm 2. This work adopts a standard Runge-Kutta scheme for

resolving the coupling dynamic equations, Equation (4.12) and Equation (4.13). In the

work of [KCD09], a lie group integrator of Euclidean motions is shown to be more robust

than the Runge-Kutta scheme for large timesteps. Because this work focuses on the falling
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motion of immersed rigid bodies, a quite small scale of timestep is used for the rigid body

solver. The Runge-Kutta scheme is efficient enough for the simulations in the proposed

model.

Algorithm 2 Pseudo-code for the runtime computation.

1: Precomputation of added-mass tensors
2: Initialization of rigid body
3: Timestep t = 0
4: while not arrive ground do
5: Calculate gravity force←Equation (4.5)
6: Query χt and εt (Algorithm 1)
7: Update translational velocity v ←Equation (4.12)
8: Update angular velocity ω ←Equation (4.13)
9: Integrate (R, x)←Equation (4.2)
10: Render data
11: t = t+∆t
12: end while

4.6 Results

This section describes the simulation results using the proposed stochastic model.

A piece of paper released in air with different release angles is simulated by the proposed

model as shown in Figure 4.3. The cross section of the leaf model used in the simulation is

elliptical (semi-major axis and minor axis are 4.0 and 1.0 cm respectively). The thickness

is set to be 0.01 cm and the density number is 0.8. The Reynolds number (4.3 × 104) is

so large that the turbulence can be generated at the paper surface. The paper falls down

following a helical trajectory in Figure 4.3(a) and a side-to-side tumbling motion in Figure

4.3(b) which are in compliance with the analysis result in [XM14c]. The trajectories have

the secondary motions that the paper rotates around the major-axis while falling, which

usually happens in reality. Note that we can not understand the simulation results in prior

by the proposed approach while the initial conditions are modified, e.g. release angle.

Figure 4.4 shows a comparison between the simulation result and a

video of a flying paper airplane. The paper airplane is made by a 8.3×
8.3×0.01 (cm) piece of paper. The added-mass tensors and moment of

inertia of the body depend on the geometries with closed shape, where

the fold part of the paper airplane is constructed as volume as shown

in the right figure. The simulation begins with an initial velocity of

20 cm/s in the horizontal direction, and the simulated result shows two turning motions

(turning front and turning sideways) which are caused by the surrounding airflow. The
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Figure 4.3: Simulation results of a piece of paper falling in air. (a) initial release angle
= 75◦; (b) initial release angle = 30◦.

turning motions are similar to the observation from ground truth in Figure 4.4.

Figure 4.5 shows the discrete frames from the animation of a rubber ellipsoid falling

in water, and the time interval is 50 ms. The rubber ellipsoid with semi-principal axes

of length 1 cm, 2 cm and 4 cm falls down in a quiescent water flow. A small scale of

fluttering motion can be found in Figure 4.5(a) using the simulation method of previous

work [WP12]. In contrast to this previous work, the coupling between forces and torques

due to the surrounding turbulent flow can be indicated properly using the proposed model.

The oscillations of rigid body in differential directions from the video of falling experiment

(Figure 4.5(c)) are successfully captured by the proposed method.

The precomputation time of added-mass tensors depends on the amount of the body

meshes; and the precomputation time of turbulent model depends on the grid solutions of

the base flow. In the case of 1280 meshes and 32× 32× 8 MAC grid, the precomputation

times are 53 ms and 182 ms, respectively. All simulations were implemented on an Intel

Core i7 CPU with 3.20 GHz and 12.0 GB RAM. The simulation time for a single loop

of runtime computation is not more than 2.0 ms. As shown in Table 4.2, the runtime

computation time is independent of the body triangular meshes and time step, and it is

suitable for real-time simulations.

54



Figure 4.4: Comparison between the simulation and the ground truth of a flying paper
airplane.

4.7 Discussion

This chapter presented the stochastic model for realistic simulations of rigid bodies in vis-

cous, high-Reynolds-number flows. The main strength of the this stochastic method lies in

combining Kirchhoff equations and Langevin model to represent the chaotic motions of im-

mersed rigid bodies. The method allows a real-time simulation for interactive applications,

such as virtual reality, online or mobile graphical applications.

Limitations exist in the proposed approach. Because the simulation results are sensitive

to the initial conditions as discussed in Section 4.6, including release angle, velocities etc.,

the appropriate variables should be chosen to meet the ground truth in the simulation re-

sults. Some characteristic motions like fluttering and tumbling motions, are not apparently

captured by the approximated turbulent model.

To solve these issues, this thesis proposes a new approach combining the proposed

stochastic with motion synthesis of immersed rigid body dynamics in next chapter.
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Table 4.2: Computation cost of the simulation results on runtime.

bodies meshes timestep avg cost
ellipsoid 1 320 1 ms 1.59 ms
ellipsoid 1 320 5 ms 1.63 ms
ellipsoid 1 320 10 ms 1.65 ms
ellipsoid 2 1280 5 ms 1.71 ms
piece of paper 1024 5 ms 1.73 ms
paper airplane 288 5 ms 1.86 ms

(a) (b) (c)

Figure 4.5: Comparison among (a) ground truth,(b) previous work and (c) the proposed
approach. Ground truth shows oscillations generated in different directions (the shorter
silhouettes manifest the oscillation in three dimensions.), previous work takes account only
Kirchhoff tensor, whereas the proposed model has concerned the vortical loads.
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Chapter 5

Pattern-driven immersed rigid body
dynamics

This chapter introduces novel pattern-driven techniques for immersed rigid-body simula-

tions which concern the unsteady dynamics of rigid body fully immersed or submerged

in a still flow. For real flow situations, an integrated representation of immersed rigid

body dynamics that considers aerodynamic properties of inertial effects, viscous effects,

and the influence of turbulence from the surrounding flow is presented. Numerical exper-

iments in parameter space based on a parametric dynamical model are conducted. The

experimental system is more efficient and simpler than two-way coupling simulations. The

motion patterns and corresponding parameter subspaces are classified. A curvature-based

motion synthesis based on a motion graph and turbulent energy optimization is developed

to determine instantaneous force coefficients in unsteady dynamics of immersed rigid body

dynamics. The proposed approach achieves efficient and life-like immersed rigid body sim-

ulation results, and these results are relevant to the animation of strongly coupled objects

and flows.

Note that the coefficients of drag and lift forces play an important role in aerodynamics

and hydrodynamics simulations. In previous work, these coefficients have been considered

heuristic constants [HLYK08, SJ13], functions of a Reynold number [MMS09, NO13] and

functions of an angle of attack [WP03, OFM09, JWL+13]. In this work, such coefficients

are handled as functions of both angle of attack and Reynolds number to represent the

unsteady dynamics of an immersed rigid body. A similar idea is the parameter-fitting

method [UKSI14] to determine the relationship between coefficients and these two factors.

However, it is impossible for animators to determine proper coefficients for chaotic motions

with different motion patterns; therefore, parameter subspaces are classified and utilized

in a motion synthesis approach to construct a user-friendly framework in this work.
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5.1 Introduction

Plausible simulation of immersed rigid bodies moving through still fluid flows requires

a combination of quantitative experiments and numerical models that characterize the

state of the passive dynamics of the rigid bodies. This subject has attracted researchers’

attention for over one hundred years, because of the intricate interaction between the

motion of rigid bodies and the induced fluid reaction, and it remains an open issue in

computer graphics. Our goal is to develop pattern-driven simulation techniques that are

well suited for immersed rigid bodies. Examples of such bodies are abundant in everyday

phenomena and computer animations, e.g., the motions of leaves, snowflakes, confetti, and

petals.

This work introduces immersed rigid body dynamics to represent the motion of a rigid

body fully immersed or submerged under real flow of water or air, that is strongly cou-

pled with the surrounding flow. There appears to be a paradox for the simulation of the

immersed rigid body dynamics in computer graphics, i.e., fluid effects on the body cannot

be understood without solving the turbulent motions at a similar timescale with the body,

and fluid motion is trivial when rendering a simulation scene in a graphical application.

In order to solve this problem and efficiently simulate such dynamics, we propose a new

solution that avoids computation of fluid motion while considering the fluid effects. The

proposed simulation technique of immersed rigid body dynamics is significant and can

achieve realistic motions in animations, especially for thin, sharp-edged, or wing structure

bodies. In addition, it is a promising and fundamental topic for immersed body simulations

involving cloth and character simulations such as the locomotion of swaying cloth, flying

birds, and swimming fish.

This work presents a unique representation of immersed rigid body dynamics that

considers inertial and viscous flow effects. For inertial effects in an inviscid flow, we propose

a proxy geometry approximation method of thin and sharp-edged bodies to compute added-

mass tensors to alleviate the limitations of the previous numerical methods. For viscous

effects in a viscous flow, we decompose the total viscous forces into three components,

i.e., drag, translational lift, and rotational lift forces with instantaneous coefficients as

the function of angle of attack and Reynolds number, which make unsteady dynamics

possible in our simulation. Based on our dynamical model, we herein present an initial

analysis of the three-dimensional (3D) motion patterns and their parameter subspaces for

an individual body.

This work presents a motion synthesis technique that reflects the influences of turbu-

lent effects in high Reynolds number conditions. We propose a curvature-based motion

synthesis based on a specified motion graph to represent motion transitions among motion

patterns, which are found in our experiments of falling rigid bodies. We also constructed
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Figure 5.1: The proposed pattern-driven framework consists of a dynamical model, data
training of motion patterns, and motion synthesis of immersed rigid body dynamics.

an optimization of turbulent kinetic energy to determine the instantaneous coefficients

implicitly related to Reynolds numbers.

In summary, the contributions of this work include: (1) a dynamical model with instan-

taneous coefficients that describes the dynamics of an immersed rigid body in a real flow,

(2) a pattern-driven framework to reveal parameter subspaces of typical motion patterns,

and (3) a turbulent-energy optimization-based motion synthesis solver.

5.2 System overview

The proposed pattern-driven framework consists of three main components (Figure 5.1):

a dynamical model, data training of motion patterns, and motion synthesis. Note that

a force coefficients database that reflects motion transitions among different motion pat-

terns of immersed rigid body dynamics is also created by the proposed framework. This

database can be adopted in runtime simulations by our dynamical model to meet real-time

simulations in interactive computational environments.
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5.3 Dynamical model

The motion of an immersed rigid body is represented in Euclidean group SE(3) with

(R(t), x(t)), where R(t) and x(t) are the orientation matrix and position of the body’s

center of mass (COM) in the world frame, respectively. The generalized vector is defined

as X = (u, ω) ∈ R6, with translational velocity u and angular velocity ω in a body-fixed

frame. The kinematic equations of the immersed rigid body are given as:(
Ṙ

ẋ

)
=

(
Rω̂

Ru

)
(5.1)

where ω̂ is the skew matrix of ω. In order to obtain the dynamic equations of the immersed

rigid-body in real flow, this work expands the situation from inviscid flow to clarify the

fluid effects generated by the surrounding flow.

5.3.1 Inertial effect

Assuming a rigid body B with mass m moving in an inviscid flow domain Ω with fluid

density ρf at rest at infinity, the flow velocity field v has a potential field ϕ in flow domain

due to the irrotational flow condition, and ϕ satisfies the following Laplace equation with

no-slip boundary conditions:

∆ϕ(z) = 0 z ∈ Ω (5.2)

∇ϕ(z) · n = un(z) z ∈ ∂B (5.3)

ϕ(z) = 0 ∥z∥ → ∞ (5.4)

where n is the surface normal vector and un(z) is the normal velocity of the rigid body at

the surface point. The fundamental solution of the Laplace equation is given as

G(x, y) =
1

4πr
(5.5)

where r = ∥x− y∥ denotes the distance from a source point x to a collocation point y on

the body surface. Then, the solution of Laplace equation can be given in the following

formulation as boundary integral equation:

ϕ(x) = 2

∫
∂B

[G(x, y)
∂ϕ(y)

∂n
− ∂G(x, y)

∂ny

ϕ(y)]ds(y) (5.6)

for ∀x ∈ ∂B. This boundary integral equation can be computed by boundary element

method [HS67, WP12], which subdivides the body surface into various flat panels with a

uniform source strength distribution. Then, the kinetic energy of the surrounding flow is

expressed as follows:

E =
1

2
u · (Mu) +

1

2
ω · (Jω) (5.7)
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where M and J are the second-order tensors of the added mass and the added moment of

inertia of flow due to the translational and rotational motions of a body, respectively. The

value of these tensors are determined from the velocity potential value ϕi, 1 ≤ i ≤ 6 in the

following formulation:

Kij = ρf

∫
∂B

ϕi
∂ϕj

∂n
ds (5.8)

Note that K is symmetric in terms of Green’s theorem, i.e., Kij = Kji. M and J are

corresponding to the value of K when 1 ≤ i, j ≤ 3 and 4 ≤ i, j ≤ 6, respectively. According

to the expression of Equation (5.8), the added tensors do not depend on the velocities of

the body, and they are functions of body’s geometry. Therefore, the implementation of

added mass tensors can be executed in an offline process. For more details about the added

mass tensors, please refer to [New77].

In the computation of added tensors, there are two limitations of previous approaches

[WP12]: (1) lack of efficiency for dense meshes that the numerical solution requires O(N3)

operations where N is the number of boundary elements, i.e., the number of triangular

meshes; (2) lack of accuracy for thin structures that the integral equation (5.6) becomes

nearly singular when the distance r between the source point and the collocation point

are very small. In engineering literature, a fast multipole accelerated method [Nis02]

can reduce the computation operations to O(N) , and a sinh transformation [JJE13] can

weaken near singularity. In this work, we adopt an analytic solution of Laplace equation

using proxy geometry approximation for simplicity. As shown in Figure 5.2, the relative

error ∥K − Ka∥/∥Ka∥ (K: solution by the previous approach; Ka: analytic solution)

of traditional boundary element method becomes inaccurate when the body is very thin

(smaller than 0.6 cm in the figure). The thickness of a leaf is around 0.03 cm and the

relative computation error is close to 90% as shown in Figure 5.2 (b).

A rigid body exhibiting sensitive viscous effects from the surrounding flow has the

following features: low body-to-fluid density ratio and airfoil structure with a large frontal

area, such as leaves, pieces of paper, and so on. In terms of these features, a proxy geometry

as ellipsoid is efficient and sufficient for thin-structure rigid body in this work. For complex

models, this work suggests to adopt a sinh transformation.

Proxy geometry approximation. To obtain the axes of an input model, the algorithm

is similar to a bounding ellipsoid construction method. For N mesh vertices Pi , max
1≤i≤N

{Pi ·
rj} − min

1≤i≤N
{Pi · rj} denote three axes (a, b, c) of the proxy geometry where vectors rj are

the natural axes of the set of vertices Pi (j ∈ [1, 3], and their corresponding eigenvalues

are given as λ1 ≥ λ2 ≥ λ3). Considering that a model might not happen to be an ellipsoid,

the proxy geometry of the model is a mixture of the body and its surrounding flow, and

the average density ρ̄ is given by (ρr ∗ Vr + ρf ∗ Vf )/(Vr + Vf ), where Vr and Vf are the

volumes of the body and fluid in the proxy geometry, respectively. Here, ρr is the body
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(a) cylinder coin (thickness = 0.15 cm)
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(b) ellipsoid leaf (thickness = 0.03 cm)

Figure 5.2: Computation errors between previous approach and the analytic solution for
different bodies. For both cases , the relative error becomes larger with smaller thickness.
The previous approach fails (error > 1.0%) when the thickness is smaller than 1.3 cm for
ellipsoid and cylinder structures.

density. ρ̄ is used for calculating gravitational force.

Analytic added tensors. Only for few regular geometries, the analytic solutions of the

Laplace equation exist. In terms of the three axes of the approximated ellipsoid a, b and

c, the translational kinetic energy of the surrounding flow along a-axis is given as follows:

Ea =
1

2
mf

a0u
2

2− a0
(5.9)

where mf = 4
3
ρfπabc is the fluid mass occupied by an immersed body. a0 is defined by the

following formulation in elliptic integrals:

a0 ≡ abc

∫ ∞

0

dλ

(a2 + λ)σ
(5.10)

where σ =
√
(a2 + λ)(b2 + λ)(c2 + λ). Then, the rotational kinetic energy is given as

follows:

Er
a =

1

2
mf

(b2 − c2)2(c0 − b0)ω
2

10(b2 − c2)− 5(b2 + c2)2(c0 − b0)
(5.11)

where b0 and c0 are defined in the same form with a0. Because of the symmetrical expres-

sions for b− and c−axis, Eb, E
r
b , Ec and Er

c are calculated in the same procedure. From

the kinetic energy of the surrounding flow in different directions, M and J are obtained

directly, which are explicitly diagonal matrix for an ellipsoid. The analytic solutions of

added tensors are adaptive to the different structures, such as, cylinder, spheroid, sphere,

and the other structures related to the aforementioned geometries.
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Equations of motion. The fluid effect in an inviscid flow is inertial, and the equation of

motion is given as Kirchhoff equation from the Kirchhoff’s theory [Lam75] which describes

the linear and angular dynamics for a rigid-fluid system.

Ma
du

dt
= (Mau)× ω (5.12)

Ia
dω

dt
= (Iaω)× ω + (Mu)× u (5.13)

where Ma = mE +M and E is a unit tensor. Ia = J + I, and I is the moment of inertia

of the body. For an ellipsoid structure, I = diag(1
5
m(b2 + c2), 1

5
m(a2 + c2), 1

5
m(a2 + b2)).

5.3.2 Viscous effect

In a real situations the surrounding flow is commonly viscous, and the vortex shedding

happens around the body surface. The model for the motion in an inviscid flow lacks of

two significant ingredients in real situation: viscous forces and vorticity. The fluid effects

on a immersed rigid body have the following contributions: the inertial effect force Fi that

can be accurately calculated, the viscous effect force Fv due to the flow viscosity, and the

turbulence effect related to the vortex shedding [BH06], which we will consider in motion

synthesis steps. The added-mass contributions do not change by the rotational effects of

viscous flow [MM02, ERFM12], i.e., the contributions are the same as in an inviscid flow.

Therefore, the Kirchhoff equation is generalized as follows:

dX

dt
= Fi(X) + Fv(X) (5.14)

where X = (u, ω) generalized vector. Fi and Fv are the contributions in the inviscid and

viscous cases, respectively.

Viscous forces. The viscous fluid effect cannot be expressed in quasi-steady assump-

tions based on the Kutta-Joukowski lift theorem. From the recent numerical analysis

[Umb05, VBL09] and the experimental observations [VCW13, HLW+13], the viscous force

has following three components: drag FD, rotational lift FL1, and translational lift FL2

forces as illustrated in Figure 5.3. FD

FL1

FL2

 =
1

2
ρf∥u∥2A

 −Cde1

Cl1e2

Cl2e3

 (5.15)

where A is the frontal area of the body with an approximation of abπ. (e1, e2, e3) is a local

coordinate frame which is similar to a Frenet reference frame [ZGB+11] and defined by the

directions of linear velocity u⃗ and angular velocity ω⃗.

(e1, e2, e3) = (u⃗, ω⃗ × u⃗, (ω⃗ × u⃗)× u⃗) (5.16)
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Figure 5.3: The illustration of the drag, rotational lift, and translational lift forces in body-
fixed frame, which are corresponding with the translational velocity (blue) and angular
velocity (yellow) and their cross products in the left subfigure.

Instantaneous coefficients. The fore coefficients C = {Cd, Cl1, Cl2} are the unknown

coefficients of the forces and torques, which are instantaneously modified with the body

states. The complicated coefficients are significant to decide the sensitive motions of an

immersed rigid body. The coefficients are related to the body geometry, the angle of attack

of the body α, and the Reynolds number of flow Re [ZJW04, Umb05, Kel11, ZMZvW12],

i.e., C = C(α,Re). First, we consider the relationships between the drag and lift coefficients

and angle of attack. According to the experimental observations in previous work, a

generalized parameter model is proposed as follows:

(Cd, Cl1, Cl2) = (CD sin2 α,CL1 sin(2α), CL2 cos(2α)) (5.17)

where C̃ = {CD, CL1, CL2} are the control parameters of the force coefficients. α is the angle

of attack calculated in the formulation α = tan−1(∥un∥/∥ut∥), and un and ut are the nor-

mal and tangent components of the translation velocity u. The proposed parameter model

is in compliance with the physical observations that all force coefficients have the same os-

cillating frequencies [VCW13]. Note that the parameter CD has the same formulation with

[ZJW04, ZMZvW12], which concern the drag coefficient at α = π/2 [APW05b, HW14],

i.e., CD = Cd(π/2) where Cd(0) is omitted because of less effects on the force computation

in the implementation.

In contrast to the drag and lift coefficients adopted in [WP03, OFM09, JWL+13], the

proposed parameter model is generalized with the control parameters C̃ = {CD, CL1, CL2}
as shown in Figure 5.4. The control parameters are considered to be an implicit function

of the Reynolds number, i.e., C̃ = C̃(Re). The drag coefficients are fitted perfectly (solid

lines) and the lift coefficients are similar (dashed lines) by the proposed parameter model,

because the lift coefficients are separated into two components here, and the previous work
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did not consider this apparently.

Figure 5.4: Drag and lift coefficients related to the angle of attack. The dashed
lines represent the lift coefficients and the solid lines for drag coefficients by the pro-
posed parameter model. The circle-marked data [JWL+13] is fitted by Data 1 (CD =
0.26, CL1 = 2.98, CL2 = 0.59); the square-marked data [WP03] by Data 2 (CD = 2.0, CL1 =
1.02, CL2 = 0.70); the triangle-marked data [OFM09] by Data 3 (CD = 2.70, CL1 =
1.31, CL2 = 0) in the proposed model.

Then, the torque induced by the vortex-flow force is given as follows:

ΓM = p⃗× (FD + FL1 + FL2) (5.18)

where the vector p⃗ is from COM to the center of pressure of the proxy geometry. In

Kutta condition, p⃗ is a quarter of the major axis for an ideal flow. In this work, ∥p⃗∥ =

(1− sin3 α)a/4 is used to account for the viscous effect [ZMZvW12].

For the sake of completeness, the buoyancy-corrected gravity FG and its torque ΓG are

added into the dynamics equations. Finally, Fv(X) can be expressed as follows:

Fv(X) =

(
FD + FL1 + FL2 + FG

ΓM + ΓG

)
=

(
FD + FL1 + FL2

ΓM

)
(X) +mf

(
(ρ̄/ρf − 1)RTg

r⃗ ×RTg

) (5.19)

where g is the gravitational acceleration, and r⃗ represents the vector from the position of

COM to the center of buoyancy, and R is the orientation matrix of the immersed rigid

body.
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Figure 5.5: Comparison between the simulation result of the proposed dynamical model
(rectangle area in the left subfigure) and the captured trajectory from [VCW13] in right-top
subfigure.

Validation of dynamical model

In contrast to the dynamical model of previous work [VCW13], the proposed model takes

account of the inertial effect from the surrounding flow and the relationships between the

force coefficients and angle of attack. As shown in Figure 5.5, the simulation result shows

the trajectory of falling card with ρr = 1.2g/cm3, a = 2.5cm, b = 1.5cm, c = 0.01cm,

and the release angle of 45◦. The calculated trajectory exhibits a helical motion with the

autorotation motion as reported in previous work.
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Table 5.1: Summary of control parameters in previous experimental work.

References Re CD CL1 CL2

[APW05b] 102 ∼ 103 1.72 ∼ 1.92 1.0 1.1 ∼ 1.4
[PM11] 103 0.4 1.2 π
[VCW13] 103 1.06 0.92 0.32
[HLW+13] 1.5× 103 0.3 4.5 1.8
[HW14] 103 1.4 ∼ 2.4 π 0 ∼ π

5.4 Training motion patterns

The simulation function of an immersed rigid body is defined as S(t, q, c̃) based on the

the proposed dynamical model, where t is the time series, and q = (x,R, u, w) is the state

of the body including the body’s position and orientation, translational and rotational

velocities. c̃ ∈ C̃ represents the control parameters in the simulation of immersed rigid

body dynamics.

5.4.1 Parameter spaces

In a phase diagram [FKMN97, ZCL11, AMF13], there are two key parameters: the dimen-

sionless moment of inertia I∗ and the Reynolds number Re, which reveal the inertial and

viscous effects from the surrounding flow, respectively.

Re =
a

ν

√
(
ρr
ρf
− 1)gb, I∗ =

8ρr(a
2 + b2)

3πρfa3
(5.20)

where ν is the kinematic viscosity of the surrounding flow. (Re, I∗) cannot directly used as

the control parameters in the simulation because they are invariants for the given model

of an individual body. Although the function of drag coefficient with Re is analysed elab-

orately in [Kel11], the relationship with the control parameters and Re with instantaneous

body states remains unsolved. As shown in Table 5.1, the different values of control pa-

rameters are adopted in the literature (Note that CD = Cd(π/2) − Cd(0)). In terms of

Equation 5.20, the Reynolds number of immersed rigid body motions is so high that the

unsteady dynamics becomes predominant. For a leaf motion in air, Re = 1.2 × 104 with

a = 8cm, b = 2.0cm and c = 0.01cm.

The analysis of the effects of control parameters c̃ is similar to the previous work

[TK94, HW14] to find out the motion patterns by sampling parameter space. The key

difference between this work and previous works is that this work is the first work on the

motion patterns of an immersed rigid body in fully three dimensions. This analysis is also

different with the previous work [AMF13], which investigates the three dimensional motion

patterns with various aspect ratios by two-way coupling simulations. This work considers
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the motion patterns of an individual body with various control parameters and the same

initial conditions, such as, released angle, velocities (set to be 0 from rest), aspect ratio

and body’s density. From Table 5.1, we set c̃ ∈ (0, π)× (0, π)× (0, π), and we will explain

that the upper limitation of π is sufficient later.

5.4.2 Motion classification

From the numerical simulations in the parameter space C̃, we observed four typical motion

patterns in three dimensional space as shown in Figure 5.6: (1) SD (steady descent), a

body falls down vertically; (2) ZZ (zigzag), a fluttering motion that the body turns left

and right; (3) AR (autorotation), a tumbling motion that the body falls broadside to

one side; (4) AZ (autorotation and zigzag), a chaotic motion with the transition between

autorotation and zigzag motions. These patterns agree with previous two-dimensional and

quasi-two-dimensional experiments ([TK94, FKMN97, APW05b, ZCL11]). Furthermore,

the similar patterns are also reported in the numerical experiments by the fluid-structure

simulations [AMF13].

(a) SD (b) AZ (c) ZZ (d) AR

Figure 5.6: Four motion patterns of a falling card from rest observed in this work, where
the release angle is 10◦, a = 3.5cm, and b = 2cm: (a) SD (c̃ = (1.81, 0.31, 0.31)); (b) AZ
(c̃ = (0.61, 1.81, 1.21)); (c) ZZ (c̃ = (0.31, 0.91, 0.61)); (d) AR (c̃ = (0.61, 2.71, 0.91)). The
unit of the spacial coordinates is cm.

To give the details of the effects from the surrounding flow, the inertial effect of added-

mass tensors causes the planar oscillation in the horizontal plane as shown in Figure 5.6(c).
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The amplitude of the oscillation increases with the increased inertial effect. The motion of

a coin underwater has a larger fluttering amplitude of ZZ motion as reported in [ZCL11,

XM14c]. The viscous effect of drag and lift forces makes the immersed rigid body move

far away from the vertical direction to an autorotate motion with increased viscous effect

as shown in Figure 5.6(d). As a trade-off among these two effects, the body exhibits

chaotic motions with both AR and ZZ motions. AR becomes ZZ at the end of the example

in Figure 5.6(c). However, the motions of immersed rigid body in real situations are

more complicated due to the turbulence structures of the counter-rotating vortex pair, the

leading-edge, and the trailing-edge vortices [ZLS+13], which we will consider in the next

section.

To classify the motion patterns from numerical experiments of the proposed dynam-

ical model, the three dimensional trajectories are projected on the horizontal XY plane.

Although the orientation information of the body is absent in this process, the motion

patterns can be discriminated correctly as reported in previous work [ZCL11, XM14c].

Based on the scattered 2D points, the principal components analysis (PCA) is utilized to

obtain the characteristic features of the motions. Here, the eigenvalues and eigenvectors

of the data are represented as the axes of an eclipse shape. The center of the eclipse is

calculated by the mean value of the data. Then, we adopt a pair value (d, e) to label each

motion, where d ≥ 0 is the distance from the eclipse center to the original release point

and e ∈ (0, 1) is the eccentricity of the eclipse as shown in Figure 5.7.

After defining four motion patterns by the numerical experiments and previous ex-

perimental work, the values (d, e) of all sampling data are clustered by k-means method

with four clusters as input parameter. As shown in Figure 5.8, the trajectories of el-

liptical card and leaf are clustered into each patterns in different parameter space, C̃ =

(0, π) × (0, π) × (0, π) in Figure 5.8(a), and (0, 2π) × (0, 2π) × (0, 2π) in Figure 5.8(b),

respectively. The classification results are similar in the both case based on (d, e), so that

the parameter space (0, π)× (0, π)× (0, π) is sufficient in this work. When d is small, the

trajectory is close to the original location that the motion pattern is SD. When d increases,

we observed that e decreases where ZZ and AZ motions are found. When d becomes large,

e→ 1. The motion becomes planar and moves far away, which is shown to be AR. There

are more data in ZZ zone than the others that the classification results are compliance to

the observation in previous work [FKMN97]. According to the initial parameters of the

numerical experiments, we obtain Re = 6 × 103 and I∗ = 2 × 10−3 (Equation 5.20) that

the motion of the body is categorized into a periodic motion as ZZ in the phase diagram.

Note that the spiral and helical motions observed in [ZCL11, AMF13] are also periodic

motions, which are included in ZZ motion pattern.
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Figure 5.7: The distinction among four motion patterns. SD (red points, left-top subfigure):
(d = 1.25, e = 0.72); ZZ (green points): (d = 5.69, e = 0.79); AZ (blue points): (d =
13.72, e = 0.93); AR (magenta points): (d = 22.43, e = 0.92). The projected points are
corresponding to the trajectories in Figure 5.6 with the same colors. For better appearance,
the points of AZ and ZZ are rotated in π/2 and π, respectively.

5.4.3 Subspaces construction

According to the clustering results of the numerical experiments by unified sampling in

the parameter space, the whole parameter space can be divided into different parameter

subspaces corresponding to each motion patterns. This process is finished by indexing data

(d, e) with C̃.

To reduce the computational cost of numerical experiments in the parameter space,

a resampling process is necessary to obtain the smooth boundaries among the parameter

subspaces. In this work, a simple sampling method is proposed as illustrated in Figure

5.9. First, the low resolution sampling grids are subdivided into a high resolution grids,

and the motion patterns of the sampling points are decided by their nearest neighbours

(6 neighbours in three dimensions). If all the neighbours are in the same motion patterns,

the point belongs to this pattern. Here, the process does not account for the points

without motion pattern info for simplicity. If the patterns are different, the points should

be resimulated again to obtain the pattern info, such as black-triangle marked points in

Figure 5.9. Finally, the parameter subspaces are constructed based on the whole parameter

space C̃. The computation complexity of the sampling process is reduced from O(N3) to

O(N2) simulations by the proposed method. As shown in Figure 5.10, the parameter
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(a) Card simulations from 729 samples in parame-
ter space.
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(b) Leaf simulation from 1,331 samples in parame-
ter space.

Figure 5.8: Clustering results of falling card and falling leaf motions. The different colors
represent different motion patterns. red: SD; green: ZZ; blue: AZ; magenta: AR.

space is divided into five regions: SD pattern occupies two regions, and the others have

one regions. Note that a very smooth boundary can be achieved by resampling iteratively

as shown in Figure 5.9(b), but we found that the subspaces sampling after few steps are

sufficient for motion synthesis.

5.5 Motion synthesis

For an immersed rigid body moving in real flow environments, there is a significant effect

which is different with both the inertial and viscous effects as discussed before, i.e., the

effect due to the coupling of the body with the generated turbulence [APW05b, ZLS+13].

This effect is apparent at the turning points of the motion trajectory. In this work, the

motion synthesis of the realistic motions of immersed rigid body is proposed based on

a curvature-based motion planning method using a motion graph with turbulent kinetic

energy (TKE) optimization.

5.5.1 Turbulent kinetic energy

We model TKE by a stochastic approach based on the synthetic turbulence method to ap-

proximate the energy transfer among the body and the surrounding flow, which accounts

for the viscous effects due to turbulence. The assumption of the proposed method is to

treat the objects as suspended particles inside fluid domain as [YCZ11, XM13, SJ13].

Stochastic model. For a statistically isotopic turbulence, a first-order stochastic dif-
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(a)

(b)

Figure 5.9: Sampling process from low resolution to high resolution sampling. (a) 2D
illustration. The red and green colors denote different patterns. In the middle figure, the
data (+) represent the new sampled data, and the black triangles represent the data on
the boundary to be resimulated. (b) The boundaries among parameter subspaces after
resampling.

ferential equation can be adopted to represent the velocity increments:

du∗(t) = D1u
∗(t)dt+

√
D2dW (t) (5.21)

This equation is also known as Langevin model [Pop83], where u∗(t) is the translational

velocity of the immersed rigid body due to flow viscosity and vorticity; D1 and D2 are the

drift and diffusion functions, respectively, which reveal the properties of the turbulent flow.

W (t) is a continuous-time stochastic process of Brownian motion called Wiener process. In

the implementation, the Wiener process is calculated as a normal distribution with mean

of zero and variance of the time interval ∆t. D1 and D2 are the functions of the turbulent

kinetic energy k and its dissipation rate ε in a turbulent flow. They are defined as follows:

D1 = −(0.5 + 0.75Ck)λ, D2 = Ckε (5.22)

where λ = ε/k is the turbulent frequency. Ck is a Kolmogorov coefficient, which is a func-

tion of Re according to the Kolmogorov hypothesis for high-Re flow [Pop11], Ck(Re) =

6.5× (1 + 140×Re−1.33)−0.75.

Turbulent model. Considering the turbulent flow generated around the moving rigid
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Figure 5.10: Parameter subspaces of different motion patterns of falling card motions. Red:
SD; green: ZZ; blue: AZ; magenta: AR.

body, the fluid velocity U of the turbulent flow is decomposed into a mean flow ⟨U⟩ and
a fluctuating velocity U ′ (U = ⟨U⟩ + U ′) by Reynolds decomposition. A k-ε turbulent

model is adopted in this work. This model is a semi-empirical model based on the energy

transport equations [PTC+10], which consists of two coupled equations k and ε as follows:

Dtk = G− ε (5.23)

Dtε = λ(C1G− C2ε) (5.24)

where C1 and C2 are the empirical constants with values C1 = 1.44 and C2 = 1.92 [LS74].

G represents the generation of turbulent kinetic energy due to the mean velocity gradients,

and is defined in terms of the strain tensor Sij = 1
2
(∂⟨U⟩i

∂xj
+

∂⟨U⟩j
∂xi

) of the flow: G =

2vT
∑

ij S
2
ij, where vT = Cµk

2/ε is the turbulent viscosity which describes the small-scale

turbulent motion as a viscous diffusion scale in the turbulent model, and Cµ = 0.09 is an

empirical constant. In this work, the mean flow simulation of ⟨U⟩ is defined on a MAC

grid with the mean falling velocity of the body U0 =
√
(ρs/ρf − 1)gb as the inflow velocity.

Note that the implementation of the turbulent model needs to be computed only once
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in offline processes due to λ and ε do not depend on the body’s state. Finally, we ob-

tain velocity increment du∗(t) for the energy optimization in the motion planning with

du∗(t)/dt ∼ FD(t) + FL1(t) + FL2(t) in the proposed dynamical model.

5.5.2 Motion graph

Motion transition. Physical experiments of falling immersed rigid bodies are executed to

find out the motion patterns, which are recorded by a high-speed camera. The experiments

include piece of papers and leaves with different shapes moving in air, coins and plastic

materials moving in water. According to our experiment results, the motions of the body

transfer in the turn of SD→AR→AZ→ZZ as shown in Figure 5.11. These observations also

meets the results by thousands of experiments in the work [Raz10, XM14c]. The analysis

of the experimental results is based on the phase diagram found in [FKMN97]. When the

object falls down in real flow by the gravity, the instantaneous Reynolds number increases

due to the increasing body’s velocity. Then, the surrounding flow becomes unsteady to

generate turbulences, and the body’s motion becomes sensitive to the flow. In this sense,

the motion cannot transfer from ZZ to SD motion.

Figure 5.11: Motion transitions among motion patterns.

Graph structure. We model the unsteady dynamics of immersed rigid body using motion

graph [KGP02], which is a finite directed graph of the motion patterns: G = (V,E). A

node i ∈ V in this graph corresponds to a motion pattern with a function qi = S(t, qi−1, c̃i)

and a prior distribution function p(Xi). An arc (i, j) ∈ E represents the transition from

node i to j with a transition probability p(qj|qi) in the given state qi at node i. Based on

the three dimensional experimental results by labelling motion patterns in each video of

falling experiments, the transition matrix P of transition probabilities is given as follows:

{Pij} = {
Nij

Ni

} =


0.154 0.385 0.038 0.423

0 0.383 0.086 0.531

0 0 0.652 0.348

0 0 0 1.0

 (5.25)

where Nij and Ni denote the amount of patterns transferred from state qi to state qj and

the total amount of states transferred from state qi, respectively. The prior distribution
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function is given as a normal distribution of motion patterns {SD,AR,AZ,ZZ}. From

the measured P , the transitions among motion patterns are unidirectional, which make

the motion planning step effective.

5.5.3 Motion planning

For an immersed rigid body moving in a time interval [t0, tf ] with initial state q0, the

motion q(t) is defined by n functions:

q(t) =


S(t, q0, c̃1) t ∈ [t0, t1]

· · ·
S(t, qn−1, c̃n) t ∈ [tn−1, tn]

(5.26)

where tn = tf . To guarantee the continuity of the motion q(t), the initial state qi is set to

be qi = S(t, qi−1, c̃i), i ∈ (0, n). The parameter estimation of control parameters {c̃1, ..., c̃n}
at time series {t0, t1, ..., tn−1} is the key issue for the motion planning in this work, which

exhibits the feature of force coefficients as implicit functions of the Reynolds number, i.e.,

C̃ = C̃(Re). An efficient curvature-based motion planning solver is proposed to realize the

motion graph and the turbulent energy transition of immersed rigid body dynamics.

Energy optimization Because the force coefficients of the dynamical system are instan-

taneous coefficients related to the angle of attack and Reynolds number, we assume the

control parameters are time-varying at each time step. Therefore, the energy transition

among the body and the surround flow is calculated by the minimum of time derivatives

of the drag and lift forces energy consume of the body E1, and the approximated TKE

of the flow E2. The following object function of energy optimization is defined from the

Equations 5.15 and 5.21:

min
c̃

Ei, Ei =
n∑

i=1

∥dE1(ti)− dE2(ti)∥2 (5.27)

E1(t) = (FD + FL1 + FL2)(X
∗, c̃) (5.28)

E2(t) =
√
Ckε(t)ξ⃗ −

2 + 3Ck

4
λ(t)u∗ (5.29)

where X∗ and u∗ are intermediate general velocity and translational velocity of the body,

which are calculated from the proposed dynamical model with the absent viscous forces. ξ⃗

is a random vector defined by Norm(0, 1) as the Wiener process using Box-Muller method.

In contrast to the path planning techniques of rigid body simulations [PSE03], the pro-

posed method is a high-level planning approach to estimate the control parameters of force

coefficients in dynamical model, and reflects the statistical description of turbulent flow

[Pop83].
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Curvature-based motion planning The state qi of each function S(t, qi−1, c̃i), i = 1, ..., n

is determined by the control parameters c̃i for the initial state qi−1. From the data train-

ing step (Section 5.4), the motion pattern database of parameter subspaces is constructed

for all motion patterns {C̃i, i ∈ [1, 4]|(SD,AR,AZ,ZZ)} in the whole parameter space

C̃. The parameter subspaces {Pi} are disjointed, and
∪
C̃i = C̃. We set a motion graph

G = (V,E), V ∈ C̃ and determine the motion pattern of each state qi from the prior dis-

tribution function and the transition probability. In a special case, a heavy brick falling in

air has only one motion pattern (SD) which belongs to the parameter subspace C̃1.
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Figure 5.12: Curvature curves corresponding to the motion patterns in Figure 5.6 (Red:
SD; green: ZZ; blue: AZ; magenta: AR). The square points on the motion curves denote
the maximum values detected on the curvature curves with a tolerance 0.1. For better
appearance, the curvature values of ZZ, AZ, and AR are added by 0.2, 0.4, and 0.6,
respectively.

Planning algorithm. The motion of an immersed rigid body becomes most sensitive

when the body arrives the turning point of the motion trajectory [APW05b]. In this sense,

the motion transitions happen at the maximum curvature points as shown in Figure 5.12.

The realization algorithm of the motion transition and the motion graph is outlined as

follows:

• Start with a random chosen motion pattern p0 ∈ C̃i in the motion graph at time t0

and the initial state q0.

• For each iteration step at time step ti:

If the previous motion pattern is pi−1 and the curvature of trajectory form t0

to ti−1 arrives the maximum value, the next pattern pi is determined by the

transition probabilities P in the motion graph. Otherwise, pi = pi−1.

Estimating the control parameters c̃i in the parameter subspace of motion pat-
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tern pi. After calculating the intermediate velocities, a global simulated an-

nealing optimization [KGV83] is performed that the minimal cost of energy

optimization (Equation 5.27) in the parameter subspace is found.

Based on c̃i and the previous state qi−1, qi is implemented by the proposed

dynamical model.

• The series of control parameters {c̃1, ..., c̃n} of all time steps are obtained by concate-

nating c̃i.

Note that various control parameter series can be achieved after repeating the planning

algorithm due to the stochastic features of the proposed method. It is also observed ex-

perimentally that a body exhibits different motions even with the same initial conditions.

Although the optimization steps are time consuming, the motion planning is executed in

precomputation steps, and the control parameter series are saved for the runtime simula-

tions, where real-time simulations become possible.

Table 5.2: The configurations of all the simulations in our implementations.

rigid body release angle a(cm) b(cm) c(cm) motion patterns
Falling card, Figure 5.5 45◦ 2.5 1.5 0.01 AZ
Falling card, Figure 5.13 30◦ 4.0 2.0 0.04 ZZ
Falling leaf, Figure 5.14 10◦ 7.3 4.2 0.03 SD,AR
Falling leaves, Figure 5.16 6◦ 7.3 4.2 0.03 SD,AR,AZ,ZZ

5.6 Results

We implemented the proposed methods using MATLAB R2012a on a standard PC with a

Core i7 CPU (3.20 GHz) and 12 GB RAM as listed in Table 5.2. The rigid body simulator

utilizes a geometric Lie group integrator [KCD09], which enables stable numerical results

for various time steps. The average computation time is approximately 20 ms per time

step. The turbulent model utilized a typical 32× 8 staggered grid, and a semi-Lagrangian

method was used to obtain the mean flow. The training data was obtained by the rigid

body simulator with different sampling in parameter spaces (approximately 5.7 h for 729

uniform sampling points and 9.3 h for 1311 samples (Figure 5.8)). With the proposed

resampling process, 4913 sampling points were obtained in 4.0 h of resimulations.

A comparison of simulation results with different flow effects is presented in Figure

5.13. The experimental object is an elliptical and planar card (4.0 cm major axis, 2.0

cm minor axis, 0.04 cm thickness, and 30◦ initial release angle). The standard rigid body

solver handles the body in a vacuum environment without influence from the surrounding

flow such that the body moves straight down. To address the nearly singular problem
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Figure 5.13: Simulation results with different flow effects: (a) rigid body solver without
flow effects; (b) rigid body solver with inertial effect (previous method); (c) rigid body
solver with inertial effect (proposed method); (d) rigid body solver with inertial effect
(proposed method) and viscous effect (previous method); (e) proposed dynamical model
with both effects; and (f) proposed immersed rigid body solver with inertial, viscous, and
turbulent effects.

in the previous method [WP12], the proposed analytic added tensors capture vertical

oscillations in potential flow, as shown in Figures 5.13(b) and 5.13(c). In contrast to the

drag and lift forces, for which there is a relationship between their coefficients and angle of

attack [WP03, JWL+13], our dynamical model proposes a generalized model of parametric

coefficients and distinguishes the translation lift force with rotational lift. Consequently,

elevation of the body’s COM occurs at the turning points of the motion trajectory (red

dashed lines, Figure 5.13). This phenomenon has been observed for unsteady dynamics of

plates and insect wings [Umb05]. Figure 5.13(f) shows the simulation results considering

inertial, viscous, and turbulent effects from the surrounding flow. Evidently, the motion

becomes sensitive to the flow environment and maintains its inertial property.

Figure 5.14 shows a comparison between the simulation results and the captured video

of the falling motion of a planar leaf without deformation. The major axis, minor axis, and

thickness are 7.3 cm, 4.2 cm, and 0.03 cm, respectively. The captured video suggests that

the leaf initially falls straight down and then tumbles from side to side, i.e., SD → AR. In
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Figure 5.14: Comparison of simulation results and ground truth of a leaf falling in air:
(a) ground truth from captured video; (b) optimized control parameters in parameter
subspaces (SD, red; AR, magenta). All grid surfaces denote boundary surfaces among
parameter subspaces.
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Figure 5.15: Force coefficients Cd, Cl1 and Cl2 of drag, rotational lift, and translational lift
forces, respectively.

the motion synthesis process, the motion transition is determined by the proposed motion

graph. The proposed method executes energy optimizations in the parameter subspaces

of both SD and AR motion patterns as shown in Figure 5.14(b). The tumbling motions

are simulated correctly by the proposed approach, where double tumbling motions (red

rectangle, Figure 5.14) are found by considering the turbulent effects, which is clear from

the analysis of the periodic oscillations of force coefficients as shown in Figure 5.15. In

contrast to the harmonic oscillations, there are period-two structures, which are considered

to correspond to the vortex-shedding period.

The falling motions of falling leave in air are shown in Figure 5.16. All force coefficients

from the motion synthesis process have the same initial conditions. Owing to the stochastic

features of the proposed methods, the different paths exhibit varied motion transitions

among the motion patterns. Because of the influences of turbulence, more complex motions

are generated as compared with the basic motion patterns shown in Figure 5.6. In contrast

to the ground truth of captured motions from high-speed camera (source: YouTube1),

the tumbling, fluttering motions and the motion transitions among motion patterns are

realistically simulated.

1www.youtube.com/watch?v=kLp8Q1OU_w4
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Figure 5.16: Comparison between different simulation results of leaves falling from a tree
in air under the same initial conditions and the ground truth (top-left subfigure).

5.7 Discussion

This chapter proposed a pattern-driven framework for simulating immersed rigid body

dynamics by taking into considerations of inertial, viscous and turbulent effects of the sur-

rounding flow. Four motion patterns of 3D motions are identified in numerical experiments.

The relationships among these motion patterns and the control parameter subspaces are

clarified. For the parameter estimation of the force coefficients in simulations, we proposed

a curvature-based motion-planning method based on a motion graph to represent the ef-

fect due to generated turbulence. The proposed method defines the control parameters

and parameter spaces for realistic and real-time simulations in graphical applications.

It is very challenging to simulate strong coupling motions between a body and its

surrounding flow. To the best of authors’ knowledge, a 3D solution for this problem

has not been addressed in both physics and graphics research areas. This work employs

a methodology to avoid time-consuming and inefficient simulations of vortex-structure
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interaction. Observations from physical experiments suggest that parameter estimation

of force coefficients with the transitions of motion patterns is feasible. By combining

experimental and theoretical work, the proposed framework offers a fresh approach to this

topic.

In the proposed motion synthesis, we consider only the influences of control parameters

of force coefficients with equal initial conditions. Other relevant parameters may include

aspect ratio [WHXW13], mass distribution [HLW+13], initial body orientation, initial ve-

locities, and external forces. Our numerical experiments demonstrate similar motions with

different aspect ratio (Figure 5.8). The proposed framework can be extended to simulations

under these conditions because equal motion patterns are evident in the motion graph. Ex-

ternal forces, such as wind forces, and collision detection among bodies can be considered

directly in the proposed dynamical model. This work has only considered sharp-edged thin

bodies because viscous effects may not be apparent for some complex geometry bodies such

as the dragons and Stanford bunny. The proposed framework can be easily embedded into

graphical development tools and game engines to enhance simulation realness.

Like other data-driven methods, the proposed pattern-driven framework strongly de-

pends on the precomputed data, the initial conditions in numerical experiments. To resolve

this issue, the next chapter provides a novel model reduction technique that does not rely

on the simulated data.
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Chapter 6

Reduced model of dynamics systems

This chapter describes a reduced model technique for simulating dynamical systems in

computer graphics. Most procedural models of physics-based simulations consist of con-

trol parameters in a highly dimensional domain in which the real-time controllability of

simulations is an ongoing issue. Therefore, this model adopts a separated representation

of the model solutions that can be preprocessed offline without relying on the knowledge

of the complete solutions. To achieve the functional products in this representation, this

work utilizes an iterative method involving enrichment and projection steps in a tensor

formulation. The proposed approaches are successfully applied to different parametric and

coupled models.

6.1 Introduction

The simulation of dynamical systems in computer graphics (CG) can be divided into two

main categories, i.e., physics-based and data-driven methods. Physics-based methods fol-

low physical principles and have seen remarkable progress recently. The main disadvan-

tages of these methods include high computational cost, low simulation controllability due

to numerous control parameters, and the reliance on the development of related knowledge.

Alternatively, data-driven methods are more efficient and adaptable to complex dynamical

systems, where prerecorded data are largely consumed. One of the limitations of these

methods is that the simulation results are highly restricted in the prior database or the

training data.

A reduced model is a spectacular strategy in data-driven methods, which has been

applied successfully to the simulations of deformable bodies [JK03] and fluids [TLP06].

Most reduced models are based on proper orthogonal decomposition, also known as prin-

cipal component analysis, which is a posterior method built on a precomputed data field

to determine coherent features and reduced basis. Our goal is to introduce a prior re-

duced model that does not rely on the preprocessed solutions of the problems. The prior

reduced model [CKL14] is a developing technique based on separated representations. It
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has recently been used in different engineering research, including fluids [DAA11, DAA13]

and soft tissue [NO13]. In contrast to the previous studies [DAA11, DAA13, CKL14], this

study describes separated representation in discrete and tensor formulations with high-

dimensional dynamical systems and proposes a decoupling approach for coupled problems.

In other words, the contribution of this study is the first reported attempt to construct a

practical framework for separated representations that can be used in CG applications to

achieve realistic simulations at low computational cost.

6.2 Reduced model

6.2.1 Problem description

Given a dynamical system D(U) = G(U, P ) with unknown state field U(x1, x2, ..., xd)

where U = U(t) ∈ RN , t ∈ [0, T ], N denotes the degree of freedom (DOF) of the system,

G is a source term related to the state U and parameter set P (p1.p2, ...) and D is repre-

sented as a differential operator from the time or parameter dependent ordinary or partial

differential equations. The solution of the dynamical systems can be approximated in a

high-dimensional domain (x1, x2, ..., xd) ∈ Ω1 × Ω2 × ...× Ωd as follows:

U(x1, x2, ..., xd) =
N∑
i=1

αi

d∏
j=1

U j
i (xj) (6.1)

This is also known as a separated representation of the solution [BM05, CM10]. The rep-

resentation is a sum of N functional products of prior unknown functions U j
i (xj) and the

normalization coefficients αi (j = 1, 2, ..., d in the following sections), which are constructed

by enrichment steps in an iterative manner. As soon as this representation becomes avail-

able, the approximated solution with different domains is obtained, i.e., temporal and

spatial domains, physical parameters, and initial and boundary conditions as extra coor-

dinates as shown in Figure 6.1. Assuming to discretize each domain in M nodes, then the

representation involves N × d ×M rather than Md DOFs in the original problem. For

example, if d = 6,M = 300, and N = 15 (usually, N ≪ M), the separated representation

reduces the DOFs of the dynamical model at a magnitude of 1010 . In this sense, the

separated representation is a model reduction technique, also known as proper generalized

decomposition. In contrast to other reduced models, such as proper orthogonal decompo-

sition, it is a priori model that does not depend on fully precomputed snapshots of the

solution. In a two-dimensional problem, the separated representation is similar to singu-

lar value decomposition; however, this approach is efficient in high-dimensional dynamical

system problems.
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Figure 6.1: Illustration of the separated representation.

6.2.2 Reduction solver

To determine the functions U j
i (xj) and coefficient αi in the representation Equation (6.1),

the first n−1 separated representation has been obtained at step n. It is straightforward to

utilize an iterative process to calculate each U j
n(xj). First, the algorithm starts from αn = 1,

which is then recalculated from a projection process. The solution of the representation at

step n is defined as follows:

U =
n−1∑
i=1

αi

d∏
j=1

U j
i (xj) +

d∏
j=1

U j
n(xj) (6.2)

where Un = {U1
n(x1), U

2
n(x2), ..., U

d
n(xd)} are the test functions that need to be solved next.

Then, each term of Un is projected on the weak form of the dynamical model D(U) = G.

⟨D(U), U j
n⟩Ωj

= ⟨G,U j
n⟩Ωj

(6.3)

where ⟨, ⟩Ωj
represents the scalar product in L2 norm on the domain Ωj. Note that the

following residual term Rn is omitted in the weak form which can be used to check the

process convergence.

Rn = D(
n−1∑
i=1

αi

d∏
j=1

U j
i (xj) +

d∏
j=1

U j
n(xj))−G (6.4)

To solve each Un, 1 ≤ n ≤ N , a simple choice to obtain the enrich term Un is an iter-

ative method as an alternating directions fixed-point algorithm to solve Equation (6.3)

simultaneously. The idea at p-th iteration for Un is described as follows. First, u1
p is

computed with the previously obtained values (u2
p−1, u

3
p−1, ..., u

d
p−1) (Small letter u is dis-

tinguished from capital letter U for Un in a fixed-point iterative process.). Then, for the

term uk
p, k ∈ (1, d], the updated values and previous values (u1

p, ..., u
k−1
p , uk+1

p−1, ..., u
d
p−1) are

utilized. After reaching convergence, the Un values are updated from u.

As per the obtained n functional products
∏d

j=1 U
j
i (xj), 1 ≤ i ≤ n, the coefficients αi
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is computed by projection of D(U) to each functional product.

⟨D(U),
d∏

j=1

U j
i (xj)⟩ = ⟨G,

d∏
j=1

U j
i (xj)⟩ (6.5)

Finally, if the residual term Rn < ϵ, ϵ is a designated threshold value, the entire process is

in convergence; otherwise, the computation process returns to the enrichment step in the

fixed-point algorithm.

6.2.3 Discrete formulation

Here, the scalar products in L2 are clarified using a discrete formulation. For simplicity, a

linear differential operator is considered as follows:

du

dt
+ ku = 0 (6.6)

where u(t, k) =
∑N

i=1 Ti(t)Ki(k) on the domain Ωt×Ωk where the normalization coefficients

αi are omitted for simplicity. From Equation (6.3), the formulation is substituted as follows:

⟨dTn

dt
, Tn⟩⟨Kn, Kn⟩+⟨Tn, Tn⟩⟨kKn, Kn⟩ = −

n−1∑
i=1

(⟨dTi

dt
, Tn⟩⟨Ki, Kn⟩+⟨Ti(t), Tn⟩⟨kKi(k), Kn⟩)

(6.7)

By adopting finite element discretization techniques in each domain mesh, the equation

has the following matrix form (for simplicity, the subscript n is omitted):

T TPT ·KTMkK + T TMtT ·KTNK = −
n−1∑
i=1

(T T
i PT ·KT

i MkK + TiMtT ·KT
i NK) (6.8)

The definitions of P,N,Mt,and Mk are as follows:
Pij =

∫
Ωt

dNi

dt
Njdt

Nij =
∫
Ωk

NikNjdk

Mt =
∫
Ωt
NiNjdt

Mk =
∫
Ωk

NiNjdk

(6.9)

where Ni and Nj are shape functions associated with meshes on Ωt and Ωk. Note that the

discrete formulation is commonly available for other differential operators, such as gradient

and Laplacian etc..
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Algorithm 3 Pseudo-code for the prior reduced model of the separated representation.

1: Initialize D,G,and U from Equations (6.8)(6.10)
2: for E = 1 to Emax do // number of coupled equations
3: for N = 1 to Nmax do // number of enrichments
4: for p = 1 to pmax do // fixed-point iteration
5: Compute Rp

j from Equation (6.12) // enrichment step
6: Check convergence from Equation (6.13)
7: end for
8: Normalize Un

j from Equation (6.14)
9: Compute coefficients αi from Equation (6.15) // projection step
10: Update Un

11: Check convergence from Equation (6.16)
12: end for
13: Update G
14: end for

6.2.4 Tensor formulation

From the discrete form of a dynamical model, the separated representation can be described

in algebraic form with tensor products. For D(U) = G:

D =

ND∑
i=1

Di
1 ⊗Di

2...⊗Di
d, G =

NG∑
i=1

Gi
1 ⊗Gi

2...⊗Gi
d, U =

N∑
i=1

αiU
i
1 ⊗ U i

2...⊗ U i
d (6.10)

where Di
j, j = 1, 2, ..., d is an Nj × Nj matrix, and Nj is the number of nodes in domain

mesh Ωj. The sizes of G
i
j and U i

j are Nj, and they can be obtained directly from the discrete

formulation of the dynamical system. The implementation details of the algorithm (Section

6.2.2) is described by utilizing a tensor formulation in the next section.

6.3 Implementation

In this section, the proposed algorithm is discussed comprehensively. The pseudo code is

shown in Algorithm 3.

6.3.1 Enrichment step

As mentioned in Section 6.2.2, the fixed-point algorithm is adopted to search for an en-

richment Un = αnR1 ⊗ R2... ⊗ Rd using iterative processes. In the dynamical model, the

following formulation of Un from Equation (6.2) is achieved.

ND∑
i=1

Di
1R1 ⊗Di

2R2...⊗Di
dRd = G−

ND∑
i=1

n−1∑
k=1

αiD
i
1U

k
1 ⊗Di

2U
k
2 ...⊗Di

dU
k
d (6.11)
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Note that αn = 1. At the p-th step of the fixed-point iteration, Rp
j , 1 ≤ j ≤ d is obtained

from (Rp
1, .., R

p
j−1R

p−1
j+1 , ...R

p−1
d ). Thus, the following formulation is obtained:

ERj =

NG∑
i=1

(
d∏

k=1,k ̸=j

RT
kG

i
k)G

i
j −

ND∑
i=1

n−1∑
k=1

(
d∏

m=1,m̸=j

RT
mD

i
mU

i
m)α

kDi
jU

k
j (6.12)

Here, the matrix E =
∑ND

i=1(
∏d

k=1,k ̸=j R
T
kD

i
kRk)D

i
j. After all (R1, R2, ..., Rd) are obtained

at the p-th step. The convergence condition is defined as follows:

∥Rp
1 ⊗Rp

2...⊗Rp
d −Rp−1

1 ⊗Rp−1
2 ...⊗Rp−1

d ∥ < ϵ (6.13)

Here, ϵ is set by the user and ∥·∥ represents L2-norm. Finally, Un
j in the formulation of U

(Equation 6.10) is obtained by the normalization of each Rj.

Un
j =

Rj

∥Rj∥
, j = 1, 2, ..., d (6.14)

6.3.2 Projection step

From the Equation 6.5, the formulation is modified as follows by using the value of G.

BA = H, Bij =

ND∑
k=1

[
d∏

e=1

(U i
e)

TDk
eU

j
e ] Hi =

NG∑
m=1

[
d∏

k=1

(U i
k)

TGm
k ] (6.15)

where A = [α1α2...αn]
T and 1 ≤ i, j ≤ n. Finally, Un is updated and the residual term Rn

is given as follows:

Rn =

ND∑
i=1

n∑
k=1

αiD
i
1U

k
1 ⊗Di

2U
k
2 ...⊗Di

dU
k
d −G (6.16)

6.3.3 Coupled terms

For simultaneous differential equations, their solutions benefit from utilizing a decoupling

strategy to reduce computational complexity. If another variableW =
∑N

i=1 βiW
i
1⊗W i

2...⊗
W i

d + S1 ⊗ S2...⊗ Sd exists, then the coupled equations can be decoupled as follows:DU(U,W,R, S = 0) = GU

DW (U,W,R = 0, S) = GW

(6.17)

where DU and DW are different operators for U and W , respectively. Therefore, there is

(n − 1) × (n − 1) terms when a multiple term U ·W is computed using their previously

known values Un−1 ·Wn−1. The value of the coupled term is known; therefore, all the terms

in G are treated as source terms, as shown in Line 13 of Algorithm 3.
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6.4 Numerical results

This section provides numerical examples to verify the efficiency and the accuracy of the

proposed prior reduced model of dynamical systems. The examples include a parametric

model and two coupled models with unknown initial values. All examples were imple-

mented on a standard PC (Intel Core i7 CPU 2.10 GHz and 8.0 GB RAM), and their

reference solutions were obtained from MATLAB ODE solvers.

(a) (b)

Figure 6.2: (a) Numerical result of the separated representation. (b) Computation error
compared with the reference solution.

6.4.1 Parametric linear model

In a separated representation, the control parameters can be introduced into the represen-

tation as extra coordinates. The following differential equation is considered as an example:

k(
du

dt
+ 1) = 10 (6.18)

with initial condition u(t = 0) = 0. The separated representation of this parametric model

is given in the following formulation:

u(t, k) =
n∑

i=1

αiTi(t)Ki(k) (6.19)

where t ∈ [0, 10] and k ∈ [1, 10]. Figure 6.2 (a) shows the simulation results obtained using

the proposed approach, which is sufficiently accurate with an error level of 10−11 (Figure

6.2 (b)). The reference solutions in the examples are calculated by an ODE solver, e.g.,
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Figure 6.3: First six functions of Ti(t) and Ki(k). (Note that the values of functions have
been curve fitted by the polynomial curves)

the Runge-Kutta method. Figure 6.3 shows the first six functions in the representation,

which are obtained by the enrichment steps in Algorithm 3.

6.4.2 Parametric nonlinear model

This example illustrates the proposed approach to a nonliear model of one-dimensional

free fall problem. Considering one body with mass m and cross-section area A falling from

rest, the dynamical equation has the following form.

du

dt
=

1

2m
ρfCDAu

2 − g (6.20)

where ρf denotes the density of the surrounding fluid; CD is the drag coefficient and g

is the gravitational acceleration. The falling velocity is set to related to time and drag

coefficient with the following representation.

u(t, CD) =
n∑

j=1

αjTj(t)Dj(CD) (6.21)

The exact solution of the equation is given as u(t, CD) = −uT tanh( gt
uT
), where uT repre-

sents the terminal velocity ( 2mg
ρfCDA

)
1
2 . The nonlinear term is evaluated by Newton iteration.

The proposed reduced model achieved the accurate approximation results as shown in Fig-

ure 6.4. The approach is converged after only 5 iterations as illustrated in Figure 6.5. Note

that the error level here is calculated by ∥u− uexact∥/∥uexact∥.
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Figure 6.4: Simulation result and its error compared with exact solution. The parameters
are ρf = 1.23, g = 9.81, A = 0.5,m = 0.1.
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Figure 6.5: Convergence of our approach toward the exact solution as iteration increased.
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6.4.3 Coupled model

This example evaluates the proposed method for dynamical systems with coupled terms

using the following differential equations:
du1

dt
+ u2u3 = 1

du2

dt
+ u1u3 = 2

du3

dt
+ u1u2 = 3

(6.22)

The initial conditions ui(t = 0) = u0
i , i = 1, 2, 3 are considered unknown in this example.

To solve these equations, new variables ûi = ui−u0
i are introduced. Then, Equation (6.22)

becomes a system of the variables ûi, where the initial conditions are considered as new

model coordinates in the separated representation of ûi.

ûi(t, u
0
i ) =

n∑
j=1

αjTj(t)U
1
j (u

0
1)U

2
j (u

0
2)U

3
j (u

0
3) (6.23)

where the domains are Ωt(t)×Ω1(u
0
1)×Ω2(u

0
2)×Ω3(u

0
3) = [0, 1]× [0, 1]× [0, 1]× [0, 1]. From

Figure 6.6, our simulation results have good compliance with the reference solutions in this

coupled model. The coupled terms in this example are solved by the proposed approach,

and the convergence of the solutions can be achieved after eight iterations, as shown in

Figure 6.7 (a).

As per Figure 6.7 (b), the computation speed of the proposed reduced model is stable

and fast compared to a simple iterative procedure for parameter identification. The com-

putation cost of the reference ODE solver increases exponentially, which is known as curse

of dimensionality [GMP+12]. For example, the computation cost of the proposed method

is only 17 ms, i.e., 50 times faster than the reference approach when the node numbers

of u0
i , i = 1, 2, 3 are set to 20, as shown in Figure 6.7 (b). The computation cost can be

reduced remarkably with high DOFs of the dynamical system.

6.4.4 Complex model

This example considers six DOFs rigid body dynamics in potential flow [MM02, XM13],

where the non-linear viscous forces are omitted. The dynamical equations are as follows:(mE +M)du
dt

= (mE +M)u× ω + fg

(J + I)dω
dt

= (J + I)ω × ω + (Mu)× u+ τg
(6.24)

where E is a unit tensor, I is the moment of inertia of the body, M and J are added

mass and added moment of inertia due to the accelerations from the surrounding flow,

respectively, and fg and τg are the force and its torque from the buoyancy-corrected gravity
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Figure 6.6: Comparison with reference results for different values of initial conditions
(lines represent reference results; empty squares represent the computation results of our
separated representation (red: u1; blue: u2; green: u3))
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Figure 6.7: (a) Convergence of simulation results after iterations in the coupled model
with initial conditions corresponding to the case of Figure 3 (d). (b) Computation times
compared with a simple iterative procedure.

in terms of initial velocity state, respectively. This example does not consider the strongly

coupled terms due to translational and angular velocities (u, ω). However, it is helpful

to evaluate the strongly coupled terms due to initial conditions, where six initial values

of U0 = (u0, ω0) ∈ R6 are introduced in the following separated representation as new

coordinates.

Uk(t, u
0
k) =

n∑
i=1

αiTi(t)
6∏

j=1

U j
i (u

0
j) (6.25)

where 1 ≤ k ≤ 6. The simulation results of the separated representation match the

reference solution as shown in Figure 6.8.

(a) (b)

Figure 6.8: (a) Simulation result with initial velocities [1.0, 1.0, 1.0, 1.0, 1.0, 1.0] and (b) its
computation error (red: translational velocity; green: angular velocity)
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6.5 Towards immersed rigid body dynamics

The main issue in solving separated representation concerns the strong non-linearity of

coupled dynamics in immersed rigid-body dynamics. The treatment of nonlinear term in

f(X, c1, ..., cd) is significant to obtain accuracy and convergence in the proposed model. The

linearization strategies in previous work perform good in linear or weakly-nonlinear model

reduction system. First, the limitations of previous work [PCA10, CLB+13a, CLB+13b]

accounting for a nonlinear and non-parameterized term f(x) (for simplicity) are analyzed

as follows.

• Incremental linearization (IL). In numerical simulation, the incremental lin-

earization utilizes the solution of the representation in previous step.

f(x) ≈ f(
n−1∑
i=1

Ti(t) ◦
d∏

j=1

P j
i (cj)) (6.26)

• Polynomial linearization (PL). Based on a polynomial expansion of the nonlin-

earity about some initial or equilibrium state x0, f(x) can be expanded as

f(x) ≈ f(x0) + J0(x− x0) +
1

2
H0(x− x0)⊗ (x− x0) (6.27)

where J0 and H0 are the Jacobian and Hessian of f(x) at point x0, respectively. The

symbol ⊗ stands for the Kronecker product.

• Asymptotic Numerical Method (ANM). The unknown field x has an asymp-

totic expansion with a expansion parameter λ.

x = x0 + λx1 + λ2x2 + ... (6.28)

Then, the nonlinear term can be approximated as

f(x) ≈ f0 + λf1 + λ2f2 (6.29)

• Discrete Empirical Interpolation Method (DEIM). From a training input, Nk

interpolation points of (tki , c
k
1i, ..., c

k
di), i = 1, 2, ..., Nk,Nk is the number of function

products at iteration k. Then, we have

f(xk) ≈
Nk∑
j=1

µkT k
i (t) ◦

d∏
j=1

P kj
i (cj) (6.30)

where µk is solved from a linear system at interpolation points. In DEIM method,

the procedure of nonlinear approximation depending on training input is repeated

until reaching convergence.

95



The standard IL method can handle limited types of non-linear term, such as p-order

term xp. Because it is necessary to evaluate non-linear term in a separated form, i.e.

xp = (
∑n−1

i=1 Ti(t) ◦
∏d

j=1 P
j
i (cj))

p, the approximation will introduce (n − 1)p terms which

increase exponentially, and becomes inefficient. Although ANM method can resolve the

computation to approximate high-order terms, the computation complexity increase greatly

in multi-parametric case. In contrast to IL and ANM method, DEIM approach can

handle any types of nonlinearity in principle but also suffer much complexity that it is not

straightforward to handle strong nonlinearities. PL method is valid around the neighbor

of the expansion point x0, an equilibrium point. It becomes very inaccurate when the

current point varies largely from x0, so that it is limited to weakly nonlinear systems.

Therefore, the nonlinear model reduction of the immersed dynamical system requires a

nonlinear approximation method that can handle any type of nonlinearity efficiently.

To resolve this problem, a parameterized piecewise-linear approximation (PPWL) for

the separated representation of immersed rigid-body dynamics is anticipated. In contrast

to PL approximation, the PPWL method adopts a form of a weighted combination of

linearized models at different expansion points. Furthermore, different with previous tra-

jectory piecewise-linear approach (TPWL) for POD model reduction [RW06, DR08], this

technique is proposed for parameterized PGD nonlinear model reduction. In the approach,

the nonlinear function f in the dynamical model has the following piecewise-linear approx-

imation.

f(x, c1, ..., cd) =
d∑

j=0

cjfj(x)

≈
d∑

j=0

cj(
s−1∑
i=0

wij(x)(fj(xi) + Jij(x− xi)))

(6.31)

where x denotes X(t). Considering the function fj individually, xi are s linearization

points along a training input as shown in Figure 6.9. wi(x) are state-dependent weights

(wi(x) ≥ 0,
∑s−1

i=0 wi(x) = 1) . Ji are the Jacobians of f evaluated at linearization points

xi.

Applying the model reduction of separated representation, the above approximation

becomes a reduced form of individual fj(x):

f(x) =
s−1∑
i=0

wi(X)(fj(Xi) + Ji(X −Xi)) (6.32)

where Xi = X(ti, ci1, .., c
i
d), the definition of X is given in Equation 6.1. For a reduced state

X, the linearization points Xi are specified by the points (ti, ci1, .., c
i
d), i = 0, 1, ..., s. In

Equation 6.31, wi(X) are weights depending on the reduced order state X (
∑s−1

i=0 wi(X) =
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Figure 6.9: Weighted combination of linearized model at expansion points x1, x2, x3 and x4

in a 2D state space. The range of the blue circles present the valid ranges around expansion
points. Line A denote the sampling points from a training input. Note that line B and C
can be approximated well because they locate inside the weighted regions. In the contrary,
red line D is badly represented.

1). There are three main issues to be resolved in the above reduced model: (1) Generation of

the separated representation of X; (2) Selecting the linearization points Xi; (3) Computing

the corresponding weights wi(X).

6.6 Discussion

This chapter introduced a new prior reduced model based on separated representations that

do not require snapshots of complete solutions for dynamical systems. This method can

reduce high dimensional problems and tackle different domains, i.e., temporal and spatial

domains, physical parameters, and initial and boundary conditions as extra coordinates.

This work has proposed a framework for separated representation on discrete and tensor

formulations and a method to account for coupled terms in the proposed framework. The

proposed method utilizes a fixed-point algorithm in an iterative process to control the

desired accuracy of the problems under convergence.

The limitation of the proposed method is the difficulty in accounting for nonlinear and

coupled terms. For complex models, especially strongly coupled problems, the proposed

approach may fail because of the large amount of terms generated in the iterative pro-

cess, i.e., O(N2). Other approaches, such as an asymptotic numerical method and discrete

empirical interpolation method [CLB+13a, CLB+13b, PCA10] also suffer the same limita-
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tions. A promising solution for this issue is discussed in this chapter for nonlinear model

reduction of immersed rigid body dynamics.

The proposed approach is efficient because the computation of the reduced model is

only executed in a precomputed process. The preprocessed data can be saved as a codebook

to search solutions for different control parameters and initial and boundary conditions,

and the computation cost is only a few milliseconds. The proposed approaches can be

applied to motion control, inverse identification, and parameter estimations for various

physical simulations in real-time CG applications. The challenge of the physical simulations

and their control problem for complex dynamics in CG is related to the physical control

parameters, such as the coefficients of restitution and surface normals for rigid bodies

[PSE03], stiffness and friction coefficients for deformable bodies [MTB+13], drag and lift

coefficients for aerodynamics simulations [JWL+13], and the Reynolds number for flow

simulations, which are usually designated by measured data in constant or curve forms. In

the proposed method, all these parameters would be embedded in separated representations

as extra coordinates to achieve realistic simulation results at low computational cost.
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Chapter 7

Conclusion and future work

This chapter presents the conclusion and contributions of all the proposed methods in

this dissertation. Then, the limitations of this study are analysed by comparing the pro-

posed methods and evaluated quantitatively. Finally, the suggestion of the future work of

immersed rigid body dynamics is discussed.

7.1 Conclusion

The main purpose of this study was to simulate immersed rigid body dynamics realistically

and interactively. To achieve this purpose, this study proposed four different approaches

and six functional modules. The graph-based method proposed a motion synthesis ap-

proach based on motion graph, which combines the motion patterns in physical experiments

by a Markov chain model. The stochastic model considered the inertial and viscous effects

of the surrounding flow numerically, where a Langevin model was successfully adopted in

the dynamical model to represent the turbulent characteristic. The pattern-driven method

combined the motion graph technique in graph-based method and the turbulent energy

computation in stochastic model. This method proposed an inverse parameter estimation

of force coefficients from the motion synthesis in parameter subspaces. Finally, a reduced

model was proposed to represent the dynamical systems, which did not depend on the

precomputed simulation data. This reduction algorithm is anticipated to solve strongly

nonlinear problems.

This thesis has the following contributions to computer graphics and knowledge science.

Computer Graphics This study introduces a new and challenging topic into computer

graphics community. To solve the trade-off issue for the simulations of immersed

rigid-body dynamics in computer graphics: fluid effects on the body cannot be un-

derstood without solving the turbulent motions at the similar timescale with body;

the task of simulating fluid motion is trivial while rendering the simulation scene in

graphical application. This work proposes novel approaches to avoid the computation
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of fluid motion while accounting for the fluid effects.

For efficiently simulating and controlling the simulations of the proposed topics, the

brand-new and different data-driven simulation approaches are proposed in this work

as follows: graph-based method based on the phase change of the complex physical

system; stochastic method based on turbulent model; pattern-driven method based

on the properties of different parameter subspaces; a prior reduced order model of

the body dynamics based on separated representation;.

The simulation techniques of immersed rigid-body dynamics are significant to achieve

realistic physical simulations in computer animation, especially for the thin, sharp-

edged or wing structure bodies, such as the falling motions of leaves, papers, petals,

snowflakes, paper airplanes, and so on. Furthermore, it is a promising and funda-

mental topic for immersed body simulations of cloth and character simulations, such

as the locomotion of moving cloth, flying birds and swimming fishes.

Knowledge Science As shown in Figure 7.1, the contributions of this study to knowledge

science are summarized as follows:

Knowledge presentation combining physics and simulations Since the intricate com-

plexity of immersed rigid dynamics, the implicit knowledge of the chaotic system

includes the explicit knowledge of concrete dynamical models and the fuzzy knowl-

edge of uncertain stochastic models. The simulation work in thesis combines both of

them to account for fluid effects.

Knowledge discover from experiments and simulations This study discovers the knowl-

edge of motion patterns from the domain knowledge of dynamical model in parameter

spaces. By combining both experimental and numerical works, this study extracts

a new problem-solving methodology for the traditionally unsolvable problems. The

proposed methodology is helpful in the real-time simulation of complex dynamics

using the computations from both online and offline processes.

Knowledge creation combining data and simulations This study aims at resolving the

problems that arise from a nonlinear dynamical system, where different data types

are preprocessed for pattern recognition and fast simulations, such as physical rules,

motion patterns, and the reduced states. The new knowledge of the body dynamics

is created from motion synthesis based on existed motion patterns.

Knowledge representation of dynamical systems A meta-model of dynamical systems

is proposed to represent the existing knowledge of dynamical models. From a dy-

namical system in the formulations of ordinary or partial differential equations, the

new model utilizes a separated representation to represent the solutions in temporal,

spatial and parametric domains.
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Figure 7.1: Global review from the view of knowledge science. The functional modules are
corresponding to the explanations in Section 1.3.1.

7.2 Evaluation and limitation

As listed in Table 7.1, seven criteria are defined to evaluate all the proposed methods in

this thesis: (1) Adaptive Geometries to evaluate whether the method can simulate com-

plex objects; (2) Data-independence denotes the dependence on precomputed simulation

data;(3) Computation Cost denotes whether a real-time simulation is feasible by the pro-

posed method; (4) Simulation Fidelity for whether a realistic simulation is feasible by

the proposed method;(5) Controllability indicates the proposed method can be adopted

in controllable simulations; (6) Simulation Stability for the stable simulation outputs; (7)

Extensibility declaims whether the proposed method can be adopted to the simulations of

other bodies, such as cloth and articulated bodies. These criteria are given based on three

aspects of one simulation approach: input (1)(2), output (3)(4), and algorithm (5)(6)(7).

Table 7.1: Comparisons of proposed methods in different criteria.

Functions Graph-based Stochastic model Pattern Driven Reduced model

Adaptive Geometries
√ √ √

Data-independence
√

Computation Cost
√ √ √ √

Simulation Fidelity
√ √

–
Controllability

√ √
–

Simulation Stability
√ √ √

Extensibility
√ √ √

The main limitation of graph-based method is the high dependence on the physical ex-

perimental results, so that it is difficult to adopt this method to simulate complex objects
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and other bodies that do not exist in the captured database. The stochastic method is a

numerical method based on the precomputed turbulent energy. Due to the assumption in

the turbulent model and its stochastic feature, the simulation results are not stable enough

to capture different motion patterns observed in physical experiments. To overcome the

limitations of these two methods, a pattern-driven method was proposed. This method

also has a high dependence on the data from numerical experiments. To solve the data-

dependence problems, a prior reduced model is proposed in a formulation of separated

representation that does not rely on the results of numerical simulations.

To evaluate the simulation results by the proposed methods in this thesis, a question-

naire is executed to analyse the difficulty, similarity, and regularity of the proposed im-

mersed rigid body simulations quantitatively. The participants include graduate students

with computer science background and the experts in computer animations. We collected

N = 19 valid samples from totally 21 samples where two samples are discarded due to

their singularities among all the samples. All questions in the questionnaire are designed

into two parts: fundamental questions and evaluation questions.

Fundamental questions are designed to discriminate the participants’ knowledge back-

ground and their perceptual knowledge of the motion patterns of immersed rigid

body dynamics. The knowledge background is assessed by five-stage strategy with a

question ”Are you familiar with graphical programming of game development (ani-

mation, physics engines, etc.), fluid mechanics (aerodynamics, etc.), or graphics tools

(Maya, Autodesk, Blender, etc.)” where 1 for not familiar and 5 for very sophisti-

cated. The value of this assessment is calculated as the weighting coefficient wi for

each participant pi in our evaluation. To obtain the perceptual knowledge of the

immersed rigid body dynamics of falling leaves, the other question is designed by

multiple checkboxes of six motion patterns corresponding to Figure 3.1 as shown in

Figure 7.2. Among all valid samples, 31.6% samples recognize the motion transitions

among motion patterns where their values are calculated by fractions for each motion

patterns. The proportions for steady, tumbling, chaotic, fluttering, helix, and spiral

motions are 7.7%, 23.1%, 15.4%, 30.8%, 7.7%, and 15.3%, respectively.

According the phase diagram of immersed rigid body dynamics (Figure 3.3), the

most stable motion of a falling leaf is fluttering by calculated Reynolds number and

dimensionless moment of inertia as described in Section 5.4.2, which is corresponding

the largest proportion of fluttering in Figure 7.2. From the explanations in Section

3.3.1, we know that the chaotic and helix motions are transitional motions which

are difficult to be observable. For this reason, the proportions of chaotic and helix

motions are less than their neighbours, i.e., tumbling, fluttering and spiral motions.

The steady descent motion occupies the least proportion which is compliance with

102



Figure 7.2: Perceptual knowledge of immersed rigid body dynamics.

the phase diagram.

Furthermore, the discovery of the perceptual knowledge of immersed rigid body dy-

namics from participants is compliance with the transition probability from our phys-

ical experiments (Section 3.4.2 and Section 5.5.2) and the sampling results from our

numerical experiments (Section 5.4.3). In other words, the participants have the abil-

ity to distinguish different motion patterns in evaluation questions, and the common

user can notice the artefacts of the simulation of an immersed rigid body that the

proposed approaches in this thesis are significant to improve the simulation quality

for graphical applications.

Evaluation questions are designed for evaluating the simulation results by the proposed

approaches in this thesis. The evaluations are assessed by comparing the capture

videos and simulation results in five-stage strategy. As shown in Figure 7.3, three

criteria are evaluated for the proposed graph-based, stochastic model and pattern-

driven approaches: difficulty, similarity, and regularity. Difficulty is evaluated by the

question ”do you think it is easy to simulate the motion of lightweight objects (leaf,

paper, etc.)?” for participants with knowledge background, similarity by the question

”is the simulation result similar to captured video?”, and regularity by the question

”are the motion patterns in the simulation result apparent?”. All the evaluated value

E is calculated in the following equation with weighting coefficients.

E =

∑N
i wiEi∑N
i wi

(7.1)

The value of difficulty is 4.49 (5 for very difficult) in this assessment that means the
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immersed rigid dynamics simulation is not easy to be simulated in common sense

for the reasons analysed in Section 1.2. For similarity and regularity, the simulation

results of stochastic model are assessed in lower scores (mean similarity 3.64 and mean

regularity 3.4) than other approaches in Figure 7.3 because no motion patterns is

considered in this method, meanwhile, the pattern-driven approach (mean similarity

4.11 and mean regularity 3.9) has the similar score of graph-based approach (mean

similarity 4.24 and mean regularity 4.0) due to the usage of motion graph technique.

Note that G1 has the highest scores (similarity 4.53 and regularity 4.67, and 5 for

very similar and very apparent) because there is only one motion pattern (fluttering)

for coin moving underwater in our simulation result. The evaluation results are

compliance with the analysis in Table 7.1.

Figure 7.3: Evaluations of the simulations results by the proposed approaches. G1, G2,
G3, S4, S5, S6, P7, and P8 are corresponding to the simulation results in Figures 3.15,
3.16, 3.17, 4.4, 4.5, 5.5, 5.14, and 5.16, respectively.

7.3 Future work

The proposed methods of immersed rigid body dynamics could be improved in following

aspects as future work.

Model-driven simulation A model-driven simulation is to combine the proposed re-

duced model with the dynamical models in the other proposed methods. In contrast
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to the complete data-driven methods, this simulation method depends on the accu-

rate model definition rather that the simulated data.

Controllable simulation A designer-friendly controllable simulation that the motions of

the body follow a sketch of designed trajectory is an interesting application. The con-

trol of immersed rigid body simulations could be realized by combining the proposed

high-level energy optimization with multiple-shooting optimization on the dynami-

cal states of the body. In contrast to the discontinuities due to collisions in motion

sketching method [PSE03], the motion transitions at high curvature points initiate

the motion discontinuity similarly.

Multibody simulation The collision detection problem was omitted in all the proposed

methods. It is promising to combining the proposed algorithms with particle systems

to improve the simulation levels of suspension flows, such as dust, snowfall, confetti,

and so on.

Besides of rigid body dynamics, it is challenging and exciting to resolve the topic of im-

mersed body dynamics of different objects following the methodology in this thesis.
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