
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Well-Structured Pushdown System: Case of Dense

Timed Pushdown Automata

Author(s) Cai, Xiaojuan; Ogawa, Mizuhito

Citation Lecture Notes in Computer Science, 8475: 336-352

Issue Date 2014-06

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/12784

Rights

This is the author-created version of Springer,

Xiaojuan Cai and Mizuhito Ogawa, Lecture Notes in

Computer Science, 8475, 2014, 336-352. The

original publication is available at

www.springerlink.com,

http://dx.doi.org/10.1007/978-3-319-07151-0_21

Description
12th International Symposium, FLOPS 2014,

Kanazawa, Japan, June 4-6, 2014.

Well-structured pushdown system:
Case of Dense Timed Pushdown Automata

Xiaojuan Cai1 and Mizuhito Ogawa2

1 Shanghai Jiao Tong University, China
cxj@sjtu.edu.cn

2 Japan Advanced Institute of Science and Technology
mizuhito@jaist.ac.jp

Abstract. This paper investigates a general framework of a pushdown
system with well-quasi-ordered states and stack alphabet to show decid-
ability of reachability, which is an extension of our earlier work (Well-
structured Pushdown Systems, CONCUR 2013). As an instance, an alter-
native proof of the decidability of the reachability for dense-timed push-
down system (in P.A. Abdulla, M.F. Atig, F. Stenman, Dense-Timed
Pushdown Automata, IEEE LICS 2012) is presented. Our proof would
be more robust for extensions, e.g., regular valuations with time.

1 Introduction

Infinite state transition systems appear in many places still keeping certain de-
cidable properties, e.g., pushdown systems (PDS), timed automata [5], and vec-
tor addition systems (VAS, or Petri nets). Well-structured transition systems
(WSTSs) [3, 14] are one of successful general frameworks to reason about decid-
ability. The coverability of VASs, the reachability of communicating finite state
machines with lossy channels [14], and the inclusion problem between timed
automata with single clocks [18] are beginning of a long list.

A natural extension of WSTS is to associate a stack. It is tempting to apply
Higman’s lemma on stacks. However this fails immediately, since the monotonic-
ity of transitions with respect to the embedding on stacks hardly holds.

This paper investigates a general framework for PDSs with well-quasi-ordered
states and stack alphabet, well-structured pushdown systems. Well-quasi-orderings
(WQOs) over stack alphabet are extended to stacks by the element-wise com-
parison. Note that this extension will not preserve WQO (nor well founded). By
combining classical Pre∗-automaton technique [7, 15, 12], we reduce the argu-
ment on stacks to that on stack symbols, and similar to WSTS, finite convergence
of antichains during Pre∗-automata saturation is shown by a WQO.

When the set P of states is finite, we have decidability of coverability [8].
When P is infinite (but equipped with WQO), we can state decidability of quasi-
coverability only. To compensate, we introduce a well-formed projection ⇓Υ ,
which extracts a core shape from the stack related to pushdown transitions. If
we find ⇓Υ such that, for configurations c, c′ with c ↪→ c′ and Υ = {c | c =⇓Υ (c)},

– compatibility: ⇓Υ (c) ↪→⇓Υ (c′), and
– stability: c ∈ Υ if, and only if, c′ ∈ Υ .

the quasi-coverability leads the configuration reachability. The compatibility
strengthens the quasi-coverability to the coverability, and the stability boosts
the coverability to the configuration reachability.

As an instance, we encode a dense-timed pushdown automaton (DTPDA) [2]
into a snapshot PDS, inspired by the digitization techniques in [18]. A snapshot
PDS has the set of snapshot words as stack alphabet. A snapshot word is essen-
tially a region construction of the dimension equal to its size. Since a snapshot
PDS contains non-standard pop rules (i.e., (p, γγ′) → (q, γ′′)), by associating a
top stack symbol to a state, it is encoded as a PDS with WQO states and stack
alphabet. Our general framework shows an alternative decidability proof of the
reachability of a DTPDA [2].3

Our contribution is not on logically difficult proofs, but clarifying the proof
structure behind theorems. Different from [2], our encoding is inspired by [18],
and would be more robust for extensions, e.g., regular valuations [13] with time.

Related Work

There are lots of works with context-sensitive infinite state systems. A pro-
cess rewrite systems combines a PDS and a Petri net, in which vector addi-
tions/subtractions between adjacent stack frames during push/pop operations
are prohibited [17]. With this restrictions, its reachability becomes decidable. A
WQO automaton [9], is a WSTS with auxiliary storage (e.g., stacks and queues).
It proves that the coverability is decidable under compatibility of rank functions
with a WQO, of which an Multiset PDS is an instance. A timed pushdown
automaton is a timed extension of a pushdown automaton. It has only global
clocks, and the region construction [5] encodes it to a standard PDS [6, 10, 11].
DTPDA [2] firstly introduces local ages, which are stored with stack symbols
when pushed, and never reset. DTPDA utilizes them to check whether an age
in a stack frame satisfies constraints when pop occurs.

A WSPDS is firstly introduced in [8]. It focuses on WSPDSs with finite con-
trol states (and well-quasi-ordered stack alphabet), whereas the paper explores
WSPDSs with well-quasi-ordered control states at the cost of weakening the
target property from the coverability to the quasi-coverability. The well-formed
projection (Section 5), if exists, strengthens it again to the reachability.

2 Dense-Timed Pushdown Automata

Dense-timed pushdown automaton (DTPDA) extends timed pushdown automa-
ton (TPDA) with local ages [2]. A local age in each context is set when a push
transition occurs, and restricts a pop transition only when the value of a local

3 In [2], only the state reachability is mentioned, but the proof is applied also for the
configuration reachability.

age meets the condition. The values of local ages proceed synchronously to global
clocks, and they are never reset. Following [2], we omit input alphabet, since our
focus is on reachability (regardless of an input word).

As notational convention, Section 2 and 7.2 use I for an interval (obeying to
[2]), whereas Section 4 used I for an ideal.

Definition 1. A DTPDA is a tuple 〈S, sinit, Γ, C, ∆〉, where

– S is a finite set of states with the initial state sinit ∈ S,
– Γ is a finite stack alphabet,
– C is a finite set of clocks, and
– ∆ is a finite set of transitions.

A transition t ∈ ∆ is a triplet (s, op, s′) in which s, s′ ∈ S and op is either of

– Local. nop, a state transition in S,
– Assignment. x← I, assign an arbitrary value in I to a clock x ∈ C,
– Test. x ∈ I?, test whether the value of a clock x ∈ C is in I,
– Push. push(γ, I), push γ on a stack associated with a local age of an arbi-

trary value in I, and
– Pop. pop(γ, I), pop γ off a stack if the associated age a is in I.

where I is an interval bounded by natural numbers (i.e., [l, h], (l, h], [l, h), (l, h)
for l, h ∈ N ∪ {ω} with l ≤ h).

If each I in Push and Pop rules is [0,∞) (i.e., no conditions on local ages),
we say simply a Timed Pushdown Automaton.

Definition 2. For a DTPDA 〈S, sinit, Γ, C, ∆〉, a configuration is a triplet (s, ν, w)
with s ∈ S, a clock valuation ν : C → R≥0, and w ∈ (Γ × R≥0)∗. We refer s in
a configuration c = (s, ν, w) by state(c). For t ∈ R≥0, we denote

– ν0(x) = 0 for x ∈ C,
– νx←t(x) = t and νx←t(y) = ν(y) if y 6= x,
– (ν + t)(x) = ν(x) + t for x ∈ C, and
– w + t = (γ1, t1 + t). · · · .(γk, tk + t) for w = (γ1, t1). · · · .(γk, tk).

There are two types of transitions, timed
t−→Time and discrete transitions

op−→Disc.

Semantics of a timed transition is (s, ν, w)
t−→Time (s, ν+t, w+t), and a discrete

transitions (s, op, s′) is either

– Local. (s, ν, w)
nop−−→Disc (s′, ν, w),

– Assignment. (s, ν, w)
x←I−−−→Disc (s′, νx←t, w) for t ∈ I,

– Test. (s, ν, w)
x∈I?−−−→Disc (s′, ν, w) if ν(x) ∈ I,

– Push. (s, ν, w)
push(γ,I)−−−−−−→Disc (s′, ν, (γ, t).w) for t ∈ I, and

– Pop. (s, ν, (γ, t).w)
pop(γ,I)−−−−−→Disc (s′, ν, w) if t ∈ I.

We assume that the initial configuration is (sinit, ν0, ε).

Example 1. The figure shows transitions between configurations in which S =
{•} (omitted), C = {x1, x2, x3}, and Γ = {a, b, d}. From c1 to c2, a discrete
transition push(d, [1, 3]) pushes (d, 2.6) into the stack. At the timed transition
from c2 to c3, 2.6 time units have elapsed, and each value grows older by 2.6.
From c3 to c4, the value of x2 is assigned to 3.8, which lies in the interval (2, 5],
and the last transition pops (d, 5.2) after testing that its local age lies in [4, 6].

(a, 1.9)
(b, 6.7)
(a, 3.1)
(d, 4.2)

x1 ← 0.5
x2 ← 3.9
x3 ← 2.3

(d,2.6)
(a, 1.9)
(b, 6.7)
(a, 3.1)
(d, 4.2)

x1 ← 0.5
x2 ← 3.9
x3 ← 2.3

(d,5.2)
(a,4.5)
(b,9.3)
(a,5.7)
(d,6.8)

x1 ← 3.1
x2 ← 6.5
x3 ← 4.9

(d, 5.2)
(a, 4.5)
(b, 9.3)
(a, 5.7)
(d, 6.8)

x1 ← 3.1
x2 ← 3.8
x3 ← 4.9

(a, 4.5)
(b, 9.3)
(a, 5.7)
(d, 6.8)

x1 ← 3.1
x2 ← 3.8
x3 ← 4.9

c1
push(d,[1,3])−−−−−−−−→Disc c2

2.6−−−−−→Time c3
x2←(2,5]−−−−−−−→Disc c4

pop(d,[4,6])−−−−−−−→Disc c5

3 P-automaton

A textbook standard technique to decide the emptiness of a pushdown au-
tomaton is, first converting it to context free grammar (with cubic explosion),
and then applying CYK algorithm, which is a well-known dynamic program-
ming technique. A practical alternative (with the same complexity) is a P-
automaton [15, 12]. Starting from a regular set C of initial configurations (resp.
target configurations) Post∗ (resp. Pre∗) saturation procedure is applied on
an initial P-automaton (which accepts C) until convergence. The resulting P-
automaton accepts the set of all successors (resp. predecessors) of C. In litera-
ture, it is applied only for PDSs with finite control states and stack alphabet. We
confirm that it works for PDSs without finite assumptions (at the cost of infinite
convergence), and extend it to the coverability and the quasi-coverability.

3.1 P-automaton for reachability of pushdown system

In the standard definition, a pushdown system (PDS) has a finite set of states
and finite stack alphabet. We will consider a PDS with an infinite set of states
and infinite stack alphabet. For (possibly infinitely many) individual transition
rules, we introduce a partial function ψ to describe a pattern of transitions. We
denote the set of partial functions from X to Y by PFun(X,Y).

Definition 3. A pushdown system (PDS) M = 〈P, Γ,∆〉 consists of a finite
set ∆ ⊆ PFun(P × Γ, P × Γ 2) ∪ PFun(P × Γ, P × Γ) ∪ PFun(P × Γ, P)
of transition rules. We say that ψ ∈ ∆ is a push, internal, and pop rule if
ψ ∈ PFun(P ×Γ, P ×Γ 2), ψ ∈ PFun(P ×Γ, P ×Γ), and ψ ∈ PFun(P ×Γ, P),
respectively.

A configuration 〈p, w〉 consists of p ∈ P and w ∈ Γ ∗. For a transition rule
ψ ∈ ∆, a transition is 〈p, γw〉 ↪→ 〈p′, vw〉 for (p′, v) = ψ(p, γ)

Remark 1. Often in multi-thread program modelings and in snapshot PDSs (Sec-
tion 7.2) for discretizing DTPDAs, PDSs are defined with finite control states,
but with non-standard pop rules, like 〈p, γ1γ2〉 ↪→ 〈q, γ〉 ∈ PFun(P ×Γ 2, P ×Γ)
with |P | < ∞. This can be encoded into PDSs in Definition 3 by associating a
top stack symbol to a state, like 〈(p, γ1), γ2〉 ↪→ 〈(q, γ), ε〉 ∈ PFun(P ′ × Γ, P ′)
with P ′ = P × Γ , at the cost that the set P ′ of control states becomes infinite.

We use c1, c2, · · · to range over configurations. ↪→∗ is the reflexive transitive
closure of ↪→. There are two kinds of reachability problems.

– Configuration reachability : Given configurations 〈p, w〉, 〈q, v〉 with p, q ∈
P and w, v ∈ Γ ∗, decide whether 〈p, w〉 ↪→∗ 〈q, v〉.

– State reachability : Given a configuration 〈p, w〉 and a state q with p, q ∈ P
and w ∈ Γ ∗, decide whether there exists v ∈ Γ ∗ with 〈p, w〉 ↪→∗ 〈q, v〉.

Given a set of configurations C, we write pre∗(C) (resp. post∗(C)) for the set
{c′ | c′ ↪→∗ c ∧ c ∈ C} (resp. {c′ | c ↪→∗ c′ ∧ c ∈ C}). The reachability problem
from 〈p, w〉 to 〈q, v〉 is reduced to whether c ∈ pre∗({c′}) (or c′ ∈ post∗({c})).

Definition 4. A Pre∗-automaton A is a quadruplet (S, Γ,∇, F) with F ⊆ S
and ∇ ⊆ S × Γ × S. A Pre∗-automaton is initial if each state in S ∩ P has no
incoming transitions and S is finite. A accepts a configuration 〈p, w〉 with p ∈ P
and w ∈ Γ ∗, if w is accepted starting from p (as an initial state).

The set of configurations accepted by A is denoted by L(A). When (p, γ, q) ∈
∇, we denote p

γ7→ q. For w = γ1 . . . γk ∈ Γ ∗, p
γ17→ · . . . γk7→ q is denoted by

p
w7→∗ q ∈ ∇∗. If k = 0 (i.e., p

ε7→ q), we assume p = q.

Starting from an initial Pre∗-automatonA0 that accepts C (i.e., C = L(A0)),
the repeated (possibly infinite) applications of saturation rules

(S, Γ,∇, F)

(S ∪ {p′}, Γ,∇∪ {p′ γ7→ q}, F)
if p

w7→∗ q ∈ ∇∗ and ψ(p′, γ) = (p, w) for ψ ∈ ∆

converge to Pre∗(A0). Note that saturation rules never eliminate transitions,
but monotonically enlarge.

Theorem 1. [15, 7, 12] (Theorem 1 in [8]) For a PDS, pre∗(C) = L(Pre∗(A0)).
where C = L(A0).

Example 2. Let 〈{pi}, {γi}, ∆〉 be a pushdown system with i = 0, 1, 2 and ∆
given below. The saturation A of Pre∗-automata started from A0 accepting
C = {〈p0, γ0γ0〉}. L(A) coincides pre∗(C).

Example 2. Let �{pi}, {γi},∆� be a pushdown system with i = 0, 1, 2 and ∆
given below. The saturation A of pre∗-automata started from A0 accepting C =
{�p0, γ0γ0�}. L(A) coincides pre∗(C).

(1). �p0, γ0� → �p1, γ1γ0�
(2). �p1, γ1� → �p2, γ2γ0�
(3). �p2, γ2� → �p0, γ1�
(4). �p0, γ1� �→ �p0, ��

A0 : p0
γ0 �� s1

γ0 �� s2

A : p0
γ0 ��

γ0

(1)

��
γ1

(4)
��

s1
γ0 �� s2

p1

(2)
γ1

��

(2) γ1

��

p2
(3)

γ2

��

{Mizuhito: Add a figure of A0}

Remark 1. Since the saturation procedure monotonically extends a pre∗-automaton,
even if a PDS has an infinite set of states and infinite stack alphabet, it will con-
verge (after infinite steps of the saturation), and still pre∗(C) = L(pre∗(A0))
holds.

3.2 P-automata minimization and coverability of PDS

We will consier a PDS with (possibly infinite) ordered stack alphabet, and its
coverability. For (possibly infinitely many) individual transition rules, we intro-
duce a partial function ψ to describe a pattern of transitions.

Let (Γ,≤) be a quasi-order (i.e., a reflexive transitive binary relation on Γ).
For X ⊆ Γ , we denote a upward closure of X by X↑, i.e., X↑ = {d ∈ Γ | ∃x ∈
X.x ≤ d}. An ideal I is an upward closed subset of (Γ,≤) (i.e., I = I↑). The set
of all ideals is denoted by I(Γ). The set of all subsets of (Γ,≤) is denoted by
P(Γ).

Definition 6. Let (D,≤) be a QO, and let w1 = α1α2 · · ·αn and w2 = β1β2 · · ·βm

be words in D∗.

– Element-wise comparison w1 � w2 if m = n and ∀i ∈ {1 · · · n}.αi ≤ βi.
– Embedding w1 � w2 if there is an order-preserving injection f from [0..n]

to [0..m] with ai ≤ bf(i) for each i ∈ [0..n].

A partial function ψ is monotonic if γ ≤ γ� and γdom(ψ) imply ψ(γ)� ψ(γ)
and γ�dom(ψ) for each γ, γ� ∈ (Γ,≤). We denote the set of partial functions from
X to Y by PFun(X, Y)

Definition 7. A PDS with ordered stack alphabet (OPDS) M = �P, (Γ,≤),∆�
is obtained by extending a PDS in Definition 4 with

– (Γ,≤) is quasi-ordered stack alphabet, and
– ∆ ⊆ P × P × PFun(Γ,Γ≤2) is a finite set of transition rules.

We denote a transition (p, p�,ψ) ∈ ∆ by �p, γ� → �p�,ψ(γ)�. M is monotonic if,
in each transition rule (p, p�,ψ), the partial function ψ is monotonic.

Remark 2. Since the saturation procedure monotonically extends Pre∗-automaton,
even if a PDS has an infinite set of states / stack alphabet and the initial Pre∗-
automaton A0 has infinite states, it converges (after infinite many saturation
steps), and pre∗(C) = L(Pre∗(A0)) holds.

3.2 P-automata for coverability of OPDS

A quasi-ordering (QO) is a reflexive transitive binary relation. We denote the
upward (resp. downward) closure of X by X↑ (resp. X↓), i.e., X↑ = {y | ∃x ∈
X.x ≤ y} (resp. X↓ = {y | ∃x ∈ X.y ≤ x}).

For a PDSM = 〈P, Γ,∆〉, we introduce QOs (P,�) and (Γ,≤) on P and Γ ,
respectively. We call M = 〈(P,�), (Γ,≤), ∆〉 an ordered PDS (OPDS).

Definition 5. For w1 = α1α2 · · ·αn, w2 = β1β2 · · ·βm ∈ Γ ∗, let

– Element-wise comparison w1 � w2 if m = n and ∀i ∈ [1..n].αi ≤ βi.
– Embedding w1 4 w2 if there is an order-preserving injection f from [0..n]

to [0..m] with αi ≤ βf(i) for each i ∈ [0..n].

We extend � on configurations such that (p, w)� (q, v) if p � q and w � v.
A partial function ψ ∈ PFun(X,Y) is monotonic if γ ≤ γ′ and γ ∈ dom(ψ)

imply ψ(γ)� ψ(γ′) and γ′ ∈ dom(ψ) for each γ, γ′ ∈ X. We say that an OPDS
M = 〈(P,�), (Γ,≤), ∆〉 is monotonic if ψ is monotonic for each ψ ∈ ∆.

– Coverability : Given configurations (p, w), (q, v) with p, q ∈ P and w, v ∈
Γ ∗, decide whether there exist q′ ∈ P and v′ ∈ Γ ∗ with q � q′, v � v′, and
(p, w) ↪→∗ (q′, v′).

Coverability is reduced to whether (p, w) ∈ pre∗({(q, v)}↑). For coverability, we
restrict saturation rules of Pre∗-automata.

(S, Γ,∇, F)

(S ⊕ {p′}, Γ,∇⊕ {p′ γ7→ q}, F)

if p
w7−→∗ q ∈ ∇∗ and

ψ(p′, γ) ∈ {(p, w)}↑ for ψ ∈ ∆

where (S ⊕ {p′},∇⊕ {p′ γ7→ q}) is{
(S,∇) if there exists {p′′ γ

′
7→ q} ∈ ∇ with p′′ � p′ and γ′ ≤ γ

(S ∪ {p′},∇∪ {p′ γ7→ q}) otherwise.

Theorem 2. (Theorem 3 in [8]) For a monotonic OPDS, pre∗(C↑) = L(Pre∗(A0)).
where C↑ = L(A0).

3.3 P-automata for quasi-coverability of OPDS

– Quasi-coverability. Given configurations 〈p, w〉, 〈q, v〉, decide whether there
exist 〈p′, w′〉 and 〈q′, v′〉 such that 〈p, w〉 � 〈p′, w′〉, 〈q, v〉 � 〈q′, v′〉, and
〈p′, w′〉 ↪→∗ 〈q′, v′〉.
Quasi-coverability is reduced to whether 〈p, w〉 ∈ pre∗({(q, v)}↑)↓. For quasi-

coverability, we further restrict saturation rules of Pre∗-automata.

(S, Γ,∇, F)

(S ⊕ {p′}, Γ,∇⊕ {p′ γ7→ q}, F)

if p
w7→∗ q ∈ ∇∗ and

ψ(p′, γ) ∈ {(p, w)}↑ for ψ ∈ ∆

where (S ⊕ {p′},∇⊕ {p′ γ7→ q}) is
(S,∇) if there exists {p′′ γ

′
7→ q} ∈ ∇ with p′′ � p′ and γ′ ≤ γ

(S,∇∪ {p′′ γ7→ q}) if there exists p′′ ∈ S ∩ P with p′′ � p′
(S ∪ {p′},∇∪ {p′ γ7→ q}) otherwise.

The second condition suppresses adding new states in Pre∗-automata, and
the first condition gives a termination condition for adding new edges.

p q
w

p’

p”
≺

pq’ q

Proof ideaSaturation rule
(second case)

γ

γ

Pre*-automaton

w

p”q’

p’q”

γ

γ
∃

Not added

I.H.

≺ ≺growing.

Definition 6. An OPDSM = 〈(P,�), (Γ,≤), ∆〉 is growing if, for each ψ(p, γ) =
(q, w) with ψ ∈ ∆ and (q′, w′)� (q, w), there exists (p′, γ′) with (p′, γ′)� (p, γ)
such that ψ(p′, γ′)� (q′, w′).

Lemma 1 is obtained by induction on steps of Pre∗-automata saturation.

Lemma 1. For a monotonic and growing OPDS, assume p
w7−→∗ s in Pre∗(A0).

For each (p′, w′)� (p, w),

– If s ∈ P , there exist (p′′, w′′)� (p′, w′) and q′ � s with 〈p′′, w′′〉 ↪→∗ 〈q′, ε〉.
– If s ∈ S \ P , there exist (p′′, w′′)� (p′, w′), q

v7−→∗ s in A0 with q ∈ P , and
〈q′, v′〉 � 〈q, v〉 such that 〈p′′, w′′〉 ↪→∗ 〈q′, v′〉.
For simplicity, we say “c0 covers c1” to mean that there exists c′1 � c1 with

c0 ↪→∗ c′1. The next Claim is easily proved by induction on the steps of ↪→.

Claim For a monotonic and growing OPDS, if 〈p, w〉 ↪→∗ 〈q, v〉, then for any
(q′, v′)� (q, v), there exists (p′, w′)� (p, w) such that 〈p′, w′〉 covers 〈q′, v′〉.

Proof. By induction on steps of the Pre∗ saturation procedure A0,A1,A2, · · · .
For A0, the statements hold immediately. Assume the statements hold for Ai,
and Ai+1 is constructed by adding new transition p0

γ07→ q0.

(S, Γ,∇, F)

(S ∪ {p0}, Γ,∇⊕ {p0 γ07→ q0}, F)

if p1
w17→∗ q0 ∈ ∇∗ and

ψ(p0, γ0) ∈ {(p1, w1)}↑ for ψ ∈ ∆

We give a proof only for the first statement. The second statement is similarly
proved. According to the definition of ⊕, there are three cases:

– There exists {p′0
γ′
07→ q0} ∈ ∇ with p′0 � p0 and γ′0 ≤ γ0. Nothing added.

– There exists p′0 in S ∩ P and p′0 � p0. Then, p′0
γ07→ q0 is added.

– Otherwise. p0
γ07→ q0 is added.

The second case is the most complex, and we focus on it. Assume that a path

p
w7−→∗ q contains p′0

γ07→ q0 k-times. We apply (nested) induction on k, and we

focus on its leftmost occurrence. Let w = wlγ0wr and p
wl7−→∗ p′0

γ07→ q0
wr7−→∗ q.

For each p′ � p, w′l � wl, w
′
r � wr and γ′0 ≥ γ0:

1. By induction hypothesis on p
wl7−→∗ p′0, there exists (p′′, w′′l) � (p′, w′l) such

that 〈p′′, w′′l 〉 covers 〈p′0, ε〉.
2. By the definition of saturation rules, there exist p′1 � p1 and w′1 � w1 such

that 〈p0, γ0〉 ↪→ 〈p′1, w′1〉.
3. By induction hypothesis on p1

w1wr7−→ ∗ q, there exist p′′1 � p′1 and w′′1w
′′
r �

w′1w
′
r such that 〈p′′1 , w′′1w′′r 〉 covers 〈q, ε〉.

4. By the growing property, there exist p′′0 � p0 � p′0 and γ′′0 ≥ γ′0 such that
〈p′′0 , γ′′0 〉 covers 〈p′′1 , w′′1 〉.

By Claim and 1., there exists (p′′′, w′′′l) � (p′′, w′′l) � (p′, w′l) such that
〈p′′′, w′′′l 〉 covers 〈p′′0 , ε〉. Put all these together, for each (p′, w′lγ

′
0w
′
r)� (p, wlγ0wr),

there exists (p′′′, w′′′l γ
′′
0w
′′
r) � (p′, w′lγ

′
0w
′
r). Therefore, each of 〈p′′′, w′′′l γ′′0w′′r 〉,

〈p′′0 , γ′′0w′′r 〉, 〈p′′1 , w′′1w′′r 〉, and 〈q, ε〉 covers the next. �

Theorem 3. For a monotonic and growing OPDS, pre∗(C↑)↓ = L(Pre∗(A0))↓.
where C↑ = L(A0).

4 Finite convergence of Pre∗-automata

Definition 7. A QO ≤ is a well-quasi-ordering (WQO) if, for each infinite
sequence a1, a2, · · · , there exist i, j with i < j and ai ≤ aj.

A QO ≤ is a WQO, if, and only if each upward closed set X↑ has finite
basis (i.e., minimal elements). Note that � may be no longer a WQO (nor well
founded), while the embedding (Γ ∗,4) stays a WQO by Higman’s lemma.

Lemma 2. Let (D,≤) and (D′,≤′) be WQOs.

– (Dickson’s lemma) (D ×D′,≤ × ≤′) is a WQO.
– (Higman’s lemma) (D∗,4) is a WQO, where 4 is the embedding.

For a monotonic OPDS, if (P,�), (Γ,≤) are WQOs, we call it a Well-Structured
PDS (WSPDS). For a WSPDS ((P,�), (Γ,≤), ∆), ψ−1({(p, w)}↑) is upward-
closed and has finite basis (i.e., finitely many minimal elements). In the Pre∗

saturation rule of Section 3.3, its side condition contains ψ(p′, γ) ∈ {(p, w)}↑ for
ψ ∈ ∆, which allows arbitrary choices of (p′, γ). For a WSPDS, we focus only
on finite basis of upward-closed sets (p′, γ) ∈Min(ψ−1({(p, w)}↑)).

We assume that such finite basis are computable for each ψ ∈ ∆, and the
initial Pre∗-automaton A0 with L(A0) = (p, w)↑ has finitely many states S0.

Theorem 4. For a WSPDS ((P,�), (Γ,≤), ∆), if (i) (P,�), (Γ,≤) are com-
putable WQOs, and (ii) a finite basis of ψ−1({(p, w)}↑) is computable for each
ψ ∈ ∆ and 〈p, w〉 ∈ P × Γ≤2, Pre∗(A0) (in Section 3.3) finitely converges.

Proof. (Sketch) Starting from a WQO over S such that � over S0 ∩ P and
= on S0 \ P , the set S of states of the Pre∗-automaton make a bad sequence,
since saturation rules in Section 3.3 do not add larger states. For each pair (p, q)
of states, they do not add larger stack symbols as labels of Pre∗ automaton

transitions p
γ7→ q. Thus, during the saturation, a sequence of added edges p1

γ17→
q1, p2

γ27→ q2, · · · is bad. Thus, it finitely terminates. Since ∆ has finitely many
transition rules, dependency during generation of Pre∗ automaton transitions is
finitely branching. Thus, by König’s lemma, Pre∗(A0) finitely converges. �

Example 3. Let M = 〈{pi},N2, ∆〉 be a WSPDS with vectors in N2 as a stack
alphabet and ∆ consists of four rules given in the figure. The figure illus-
trates a Pre∗-automaton construction starting from initial A0 that accepts
C = 〈p2, (0, 0)↑〉. For v ∈ N2, we abbreviate {v}↑ by v↑. Note that N2 is WQO
by the element-wise comparison. A is the saturation of the Pre∗-automaton.

Example 3. Let M = �{pi}, N2,∆� be a monotonic OPDS with vectors in N2

as a stack alphabet and ∆ consists of four rules given in the figure. The figure
illustrates a pre∗-automaton construction starting from initial A0 that accepts
C = p2 × Γ ∗. We abbreviate {v}↑ for v ∈ N2 by ≥ v. Note that N2 is WQO by
the element-wise comparison. A1 is a pre∗-automaton applied each rule exactly

once. For instance, p0
≥(1,2)�→ p2 in A1 is generated from p1

≥(1,0)�→ p2 by ψ3 (since

ψ−1
3 ({(1, 0)}↑) = {(1, 2)}↑). p0

≥(0,0)�→ p1 in A is obtained by applying ψ1 twice
on A1, e.g.,

1. p0
≥(0,2)�→ p1

≥(0,0)�→ p1 leads p0
≥(0,1)�→ p1 (since ψ−1

1 ({(0, 2)(0, 0)}↑) = {≥ (0, 1)}↑).
2. p0

≥(0,1)�→ p1
≥(0,0)�→ p1 leads p0

≥(0,0)�→ p1 (since ψ−1
1 ({(0, 1)(0, 0)}↑) = {≥ (0, 0)}↑).

By Lemma ??, we obtain

pre∗(C) = L(A) = {�p2, {(0, 0)∗}↑�, �p1, {(0, 0)∗(1, 0)(0, 0)∗}↑�, �p0, {(0, 0)+}↑�}.

A0 : p2

(0,0)↑

��
f

ψ1 : �p0, v� → �p0, (v + (1, 1))v�
ψ2 : �p1, v� → �p1, �� if v ≥ (m, 0)
ψ3 : �p0, v� → �p1, v − (0, 2)� if v ≥ (0, 2)
ψ4 : �p1, v� → �p2, �� if v ≥ (1, 0)

A :
(m = 2)

p1
(1,0)↑ψ4 ��

(2,0)↑

ψ2

��
p2

(0,0)↑

��
p0

(0,0)↑ψ1

��

(1,1)↑
ψ1,3

��

(2,0)↑

ψ1,3

��

f

A� :
(m = 3)

p1
(1,0)↑ψ4 ��

(3,0)↑

ψ2

��
p2

(0,0)↑

��
p0

(2,1)↑ ∪ (1,2)↑

ψ1,3

��

(3,0)↑

ψ1,3

��

(1,0)↑ ∪ (0,1)↑ψ1

�� f

4.2 Compatible constraint

When encoding a computational model into a monotonic PDS with WQO stack
alphabet, transitions are sometimes conditional. For instance, a pop rule �p, γ� →
�q, �� can lead a transition �p, γw� �→ �q, w� only when γ holds certain relation
with (the top stack symbol of) w. We formalize this situation with a compatible
constraint Υ on stack contents, which is preserved during transitions.

Definition 11. A constraint Υ on stack contents is compatible if, for each tran-
sition �p, w� �→ �q, v� in a PDS, w ∈ Υ implies v ∈ Υ .

Theorem 4. For a monotonic OPDS and a compatible constraint Υ , assume
that w ∈ Υ (⊆ Γ ∗) implies {w}↑ ∩ Υ = {w}. If �p, w� ∈ pre∗({(q, v)}↑) (i.e.,
�p, w� covers �q, v�), �p, w� �→∗ �q, v� (i.e., �p, w� is reachable to �q, v�)).
Example 4. In Example ??, let Υ = {(n, mn)(n − 1, mn−1) · · · (1, m1)(0, m0) |
∀n ≥ 0, ∀i.mi ≥ 0}, i.e. in each word we restrict the first coordinate to be de-
creased by 1 until reaching 0. Therefore (2, 0)(1, 0)(0, 3) is in Υ , but (1, 0)(1, 0)(0, 0)
is not. It is easy to check that Υ is compatible. Thus, {Mizuhito: to be filled.}

For instance, when m = 2, p0
(2,2)↑7−→ p1 in A is generated from p1

(2,0)↑7−→ p1

by ψ3. By repeating application of ψ1 twice to p0
(2,2)↑7−→ p1

(2,0)↑7→ p1, we obtain

p0
(2,0)↑7−→ p1. Then, applying ψ1 to p0

(2,0)↑7−→ p1
(1,0)↑7−→ p2, we obtain p0

(1,0)↑7−→ p2.

p0
(1,2)↑7−→ p2 is also generated from p1

(1,0)↑7−→ p2 by ψ3, but it will not affect.
By Theorem 2, we obtain

pre∗(C) = {〈p2, (0, 0)↑〉, 〈p1, ((2, 0)↑)∗(1, 0)↑(0, 0)↑〉,
〈p0, (0, 0)↑〉, 〈p0, (1, 1)↑(0, 0)↑〉, 〈p0, ((2, 0)↑)+(1, 0)↑(0, 0)↑〉}

Thus, 〈p0, (0, 0)〉 covers 〈p2, (0, 0)〉. Actually,

〈p0, (0, 0))〉↪→ 〈p0, (1, 1)(0, 0)〉 ↪→ 〈p0, (2, 2)(1, 1)(0, 0)〉 ↪→ 〈p1, (2, 0)(1, 1)(0, 0)〉
↪→ 〈p1, (1, 1)(0, 0)〉 ↪→ 〈p2, (0, 0)〉

Note that if we change the condition of ψ2 from v ≥ (2, 0) to v ≥ (3, 0), the sat-
urated Pre∗-automaton becomes A′, and 〈p0, (0, 0)〉 no more covers 〈p2, (0, 0)〉,
though 〈p0, (0, 0)〉 is reachable to p2. Actually,

〈p0, (0, 0))〉↪→ 〈p0, (1, 1)(0, 0)〉 ↪→ 〈p0, (2, 2)(1, 1)(0, 0)〉 ↪→ 〈p0, (3, 3)(2, 2)(1, 1)(0, 0)〉
↪→ 〈p1, (3, 1)(2, 2)(1, 1)(0, 0)〉 ↪→ 〈p1, (2, 2)(1, 1)(0, 0)〉 ↪→ 〈p2, (1, 1)(0, 0)〉

To detect the state reachability, instead of A0, we can start with an initial
automaton A′0 that accepts p2 × Γ ∗ = {〈p2, ((0, 0)↑)∗}.

5 Well-formed constraint

Definition 8. For an OPDS M , a pair (Υ,⇓Υ) of a set Υ ⊆ P × Γ ∗ and a
projection function ⇓Υ : P × Γ ∗ → (P × Γ ∗) ∪ {#} is a well-formed constraint
if, for configurations c, c′,

– c ↪→ c′ implies that c ∈ Υ if, and only if c′ ∈ Υ ,
– c ↪→ c′ implies ⇓Υ (c) ↪→⇓Υ (c′),
– ⇓Υ (c)� c, and
– c� c′ implies either ⇓Υ (c) =⇓Υ (c′) or ⇓Υ (c) = #,

where # is added to P ×Γ ∗ as the least element (wrt �) and Υ = {c ∈ P ×Γ ∗ |
c =⇓Υ (c)}. (# represents failures of ⇓Υ .)

Lemma 3. For a monotonic OPDS M with a well-formed projection ⇓Υ , as-
sume C ⊆ Υ . Then, pre∗(C) = pre∗(C↑) ∩ Υ = pre∗(C↑)↓ ∩ Υ .

Proof. We will show pre∗(C) = pre∗(C↑)↓∩Υ only. Similarly, pre∗(C) = pre∗(C↑)∩
Υ is shown.

From C ⊆ Υ , pre∗(C) ⊆ pre∗(C↑)↓∩Υ is obvious, For the opposite direction,
we first show ⇓Υ (pre∗(C↑)) ⊆ pre∗(C). Since c ∈ pre∗(C↑) is equivalent to
∃c′ ∈ C↑.c ↪→∗ c′, we have ⇓Υ (c) ↪→∗⇓Υ (c′) ∈ C. Since C ⊆ Υ implies
⇓Υ (c′) ∈ C, ⇓Υ (c) ∈ pre∗(C) is obtained. For pre∗(C) ⊇ pre∗(C↑)↓ ∩ Υ ,

pre∗(C↑)↓ ∩ Υ =⇓Υ (pre∗(C↑)↓ ∩ Υ) ⊆⇓Υ (pre∗(C↑)↓) =⇓Υ (pre∗(C↑)) ∪ {#}.

From ⇓Υ (pre∗(C↑)) ⊆ pre∗(C), ⇓Υ (pre∗(C↑)) ∪ {#} ⊆ pre∗(C) ∪ {#}. Thus,
pre∗(C↑)↓ ∩ Υ ⊆ (pre∗(C) ∪ {#}) ∩ Υ = pre∗(C). ut

From Theorem 3 and Lemma 3, Theorem 5 is immediate, which strengthens
the quasi-coverability to the configuration reachability, and the decidability is
reduced to finite convergence of L(Pre∗(A0)).

Theorem 5. Let C be a regular set of configurations with C↑ = L(A0) for a P-
automaton A0. For a monotonic and growing OPDS and a well-formed constraint
(Υ,⇓Υ), if C ⊆ Υ , then pre∗(C) = L(Pre∗(A0))↓ ∩ Υ .

Example 4. In Example 3, let Υ be{
〈p0, (n, n) · · · (0, 0)〉, 〈p2, (n, n) · · · (0, 0)〉
〈p1, (n, n− 2)(n− 1, n− 1) · · · (0, 0)〉, | n ≥ m ≥ 0

}
Then, Υ is well-formed. Since both 〈p0, (0, 0)〉 and 〈p2, (0, 0)〉 are in Υ and
{〈pi, (0, 0)〉}↑∩Υ = {〈pi, (0, 0)〉}, 〈p0, (0, 0)〉 ↪→∗ 〈p2, (0, 0)〉 holds by Theorem 5.

6 Snapshot Word

In a DTPDA, local ages in the stack proceed when a timed transition occurs.
When a DTPDA is encoded into a discrete WSPDS, named snapshot PDS (Sec-
tion 7.2), it can operate only the top stack symbol. A snapshot word summarizes
the ordering of fractions among values of all local ages and global clocks in the
stack, after applying the digitization technique in [18, 1, 4]. When a pop occurs,
time progress recorded at the top stack symbol is propagated to the next stack
symbol after finding a permutation by matching via markings ρ1 and ρ2.

6.1 Snapshot word

As notational convention, let MP(D) be the set of finite multisets over D. We
regard a finite set as a multiset in which the multiplicity of each element is 1.
For a finite word w = a1a2 · · · ak, we denote w(j) = aj

Let 〈S, sinit, Γ, C, ∆〉 be a DTPDA, and let n be the largest integer (except
for ∞) that appears in ∆. For v ∈ R≥0, proj(v) = ri if v ∈ ri ∈ Intv(n), where

Intv(n) =

r2i = [i, i] if 0 ≤ i ≤ n
r2i+1 = (i, i+ 1) if 0 ≤ i < n
r2n+1 = (n,∞)

Definition 9. Let frac(x, t) = t− floor(t) for (x, t) ∈ (C ∪Γ)×R≥0. A digiti-
zation digi :MP((C∪Γ)×R≥0)→ (MP((C∪Γ)×Intv(n)))∗ is as follows. For
X ∈ MP((C ∪ Γ)× R≥0), let X1, · · · , Xk be multisets that collect (x, proj(t))’s
in X having the same frac(x, t). We assume that Xi’s are sorted by the increas-
ing order of frac(x, t) (i.e., , frac(x, t) < frac(x′, t′) for (x, proj(t)) ∈ Xi and
(x′, proj(t′)) ∈ Xi+1). Then, digi(X) is a word X1 · · ·Xk.

Example 5. In Example 1, n = 6 and we have 13 intervals illustrated below.

0 r1 1 r3 2 r5 3 r7 4 r9 5 r11 6 r13

r0 r2 r4 r6 r8 r10 r12

From the configuration c1 in Example 1, the clock information is extracted from
the stack content of c1 as a multiset

X = {(a, 1.9), (b, 6.7), (a, 3.1), (d, 4.2), (x1, 0.5), (x2, 3.9), (x3, 2.3)}
and digi(X) = {(a, r7)}{(d, r9)}{(x3, r5)}{(x1, r1)}{(b, r13)}{(x2, r7), (a, r3)}.
For instance, The value of the clock x2 and the age of the top stack frame
(a, 1.9) have the same fraction 0.9, thus they are packed into the same multiset
{(x2, r7), (a, r3)}, and placed at the last since their fraction is the largest.

Definition 10. A word γ̄ ∈ (MP((C ∪ Γ) × Intv(n)))∗ is a snapshot word if
it has two pointers ρ1, ρ2 such that ρ1(γ̄), ρ2(γ̄) point to different elements of
Γ × Intv(n) appearing in γ̄. We denote the set of snapshot word by sw(C, Γ, n),
and γ̄|Γ is obtained by removing all elements in C × Intv(n) from γ̄.

Example 6. From digi(X) in Example 5, by adding ρ1 and ρ2 (marked with
overline and underline), which point to (a, r3) and (b, r13), respectively, we have

{(a, r7)}{(d, r9)}{(x3, r5)}{(x1, r1)}{(b, r13)}{(x2, r7), (a, r3)}

and digi(X)|Γ = {(a, r7)}{(d, r9)}{(b, r13)}{(a, r3)}.
Definition 11. For snapshot words γ̄ = X1 · · ·Xm and γ̄′ = Y1 · · ·Yn with
Xi, Yj ∈MP((C ∪Γ)× Intv(n)), we define the embedding γ̄ v γ̄′, if there exists
a monotonic injection f : [1..m]→ [1..n] such that

– Xk ⊆ Yf(k) for each k ∈ [1..m], and
– ρi(γ̄) = ρi(γ̄

′) for i = 1, 2.

Since Γ and C are finite, v is a WQO over sw(C, Γ, n) by Higman’s lemma.

Definition 12. Let c = (s, ν, w) be a configuration of a DTPDA with s ∈ S,
w ∈ (Γ ×R≥0)∗, and ν : C → R≥0, and let mp(w, ν) = w∪{(x, ν(x)) | x ∈ C} by
regarding w as a multiset (i.e., ignore the ordering). snap(c) is a snapshot word
obtained by adding ρ1, ρ2 to digi(mp(w, ν)) as:ρ1, ρ2 are left undefined if w = ε
ρ1(snap(c)) = (γ, proj(t)), ρ2 is left undefined if w = (γ, t)
ρ1(snap(c)) = (γ, proj(t)), ρ2(snap(c)) = ρ1(snap((s, ν, w′))) if w = (γ, t)w′

Example 7. For c2 in Example 1, snap(c1) is digi(X) (with ρ1 and ρ2) in Ex-
ample 6. ρ1 and ρ2 point to the top and second stack frames (a, 1.9), (b, 6.7).

Definition 13. For a configuration c = (s, ν, w) of a DTPDA, a snapshot con-
figuration Snap(c) = (s, w̃) with stack alphabet sw(C, Γ, n)∗ is with

w̃ = snap(s, ν, w[m]) snap(s, ν, w[m− 1]) · · · snap(s, ν, w[1]) snap(s, ν, ε)

where w = (am, tm) · · · (a1, t1) ∈ (Γ × R≥0)∗ and w[i] = (ai, ti) · · · (a1, t1).

Example 8. For c1 in Example 1 (with ν(x1) = 0.5, ν(x2) = 3.9, ν(x3) = 2.3),
Snap(c1) is shown below. The top snapshot word summarizes a time sequence.

(a, 1.9)

(b, 6.7)

(a, 3.1)

(d, 4.2)

⊥

⇒

{(a, r7)}{(d, r9)}{(x3, r5)}{(x1, r1)}{(b, r13)}{(x2, r7), (a, r3)}
{(a, r7)}{(d, r9)}{(x3, r5)}{(x1, r1)}{(b, r13)}{(x2, r7)}

{(a, r7)}{(d, r9)}{(x3, r5)}{(x1, r1)}{(x2, r7)}
{(d, r9)}{(x3, r5)}{(x1, r1)}{(x2, r7)}
{(x3, r5)}{(x1, r1)}{(x2, r7)}

Stack of c1 Stack of Snap(c1)

6.2 Operations on snapshot words

Definition 14. Let γ̄ = X1 · · ·Xm ∈ (MP((C ∪ Γ)× Intv(n)))∗ be a snapshot
word and let γ ∈ Γ ∪ C. We define operations as follows.

– Insert. γ̄′ = insert(γ̄, (δ, rk)) is obtained from γ̄ by inserting (δ, rk){
either into Xj for j ∈ [1..m], or between Xj and Xj+1 for j ∈ [1..m− 1] if k is odd
into X1, if each ri in X1 has an even index; before X1, o.w. if k is even

and setting ρ1(γ̄′) = (δ, rk) and ρ2(γ̄′) = ρ1(γ̄).
– DeleteΓ . γ̄′ = deleteΓ (γ̄) is obtained from γ̄ by deleting ρ1(γ̄) and setting
ρ1(γ̄′) = ρ2(γ̄) and ρ2(γ̄′) left undefined.

– DeleteC. For x ∈ C, deleteC(γ̄, x) is obtained from γ̄ by deleting (x, r) (and
ρ1, ρ2 are kept unchanged).

– Assignment. For x ∈ C, r ∈ Intv(n), assign(γ̄, x, r) = insert(deleteC(γ̄, x), (x, r)).
– Permutation. Let i ∈ [1..m] and 0 ≤ k ≤ n. Basic permutations are⇒̇(γ̄) = Ẋ1X2 · · ·Xm

⇒̈(γ̄) = (Ẍ+
m)X1X2 · · ·Xm−1

addk(γ̄) = (X1 + k)(X2 + k) · · · (Xm + k)

where
• Ẋ updates each (y, rl) ∈ X with (y, rl+1) if l is even; otherwise as is,
• Ẍ+ updates each (y, rl) ∈ X with (y, rl+1) if l 6= 2n + 1 and keeps if
l = 2n+ 1 (We assume that l is odd), and

• X + k updates each (y, rl) ∈ X with (y, rmin(l+k,2n+1)).
Then, a permutation is either σ̇i,k(γ̄) or σ̈i,k(γ̄), where

σ̇i,k(γ̄) = ⇒̇ · ⇒̈ · . . . · ⇒̈︸ ︷︷ ︸
m−i+1

·addk(γ̄) σ̈i,k(γ̄) = ⇒̈ · . . . · ⇒̈︸ ︷︷ ︸
m−i+1

·addk(γ̄)

– Propagate. propagate(γ̄, γ̄′) is obtained from deleteΓ (γ̄) by assigning σ(ρ2(γ̄′))
to ρ2(deleteΓ (γ̄)) for a permutation σ with γ̄|Γ = σ(γ̄′)|Γ .

Example 9. Consider snap(ci) in Example 7 for c1 in Example 1.

{(a, r7)}{(d, r9)}{(x3, r5)}{(x1, r1)}{(b, r13)}{(x2, r7), (a, r3)}
– insert(snap(c1), (d, r5)) has lots of choices, e.g.,
{(a, r7)}{(d, r9)}{(x3, r5)}{(x1, r1), (d, r5)}{(b, r13)}{(x2, r7), (a, r3)},
{(a, r7)}{(d, r9)}{(x3, r5)}{(x1, r1)}, {(d, r5)}, {(b, r13)}{(x2, r7), (a, r3)}, · · ·
The transition from c1 to c2 in Example 1 is simulated by pushing the second
one (say, γ̄2) to Snap(c1) in Example 8.

– For c2
2.6→Time c3, the permutation σ̇4,2(γ̄2) results in γ̄3 below.

{(x1, r7)}, {(d, r11)}, {(b, r19)}{(x2, r13), (a, r9)}{(a, r11)}{(d, r13)}{(x3, r9)}.
If a timed transition is c2

2.5→Time c3 (in time elapses 2.5 such that the fraction
of ν(x1) becomes 0), σ̈4,2(γ̄2) simulates it as

{(x1, r6)}, {(d, r11)}, {(b, r19)}{(x2, r13), (a, r9)}{(a, r11)}{(d, r13)}{(x3, r9)}.
Propagate is used with deleteΓ to simulate a pop transition. Since time

progress is recorded only at the top stack frame (including updates on clock
values), after deleteΓ is applied to the top stack frame, the second stack frame
is replaced with the top. Lacking information is a pointer ρ2, which is recovered
from the second stack frame. This will be illustrated in Example 11.

7 Decidability of reachability of DTPDA

7.1 Well-formed projection on snapshot configurations

Let 〈s, γ̄k · · · γ̄2γ̄1〉 be a snapshot configuration for s ∈ S and γ̄i ∈ (MP((C ∪
Γ) × Intv(n)))∗ (regarding γ̄k as a top stack symbol). A marking completion
marks elements in Γ × Intv(n) that relate to pushdown transitions.

Definition 15. For γ̄k · · · γ̄2γ̄1 with γ̄i ∈ (MP((C∪Γ)×Intv(n)))∗, the marking
completion comp inductively marks elements in γ̄i|Γ for each i.{

comp(γ̄1) = add marking on ρ1(γ̄1)
comp(γ̄k · · · γ̄2γ̄1) = γ̄′k · · · γ̄′2γ̄′1

where γ̄′k−1 · · · γ̄′2γ̄′1 = comp(γ̄k−1 · · · γ̄2γ̄1) and γ̄′k is obtained from γ̄k by marking

– ρ1(γ̄k), and
– each element in deleteΓ (γ̄k)|Γ corresponding to a marked element in γ̄′k−1|Γ

by a permutation σ satisfying σ(γ̄k−1)|Γ = deleteΓ (γ̄k)|Γ .

If such σ does not exist, comp(γ̄k · · · γ̄2γ̄1) = #.

We define a well-formed projection ⇓Υ (s, γ̄k · · · γ̄2γ̄1) by removing all un-
marked elements of Γ × Intv(n) in each γ̄i in (s, comp(γ̄k · · · γ̄2γ̄1)). A snapshot
configuration (s, γ̄k · · · γ̄2γ̄1) is well-formed if ⇓Υ (s, γ̄k · · · γ̄2γ̄1) = (s, γ̄k · · · γ̄2γ̄1)
(ignoring markings), and Υ is the set of well-formed snapshot configurations.

Example 10. In Example 8, γ̄5 is well-formed (i.e., (a, r7), (d, r9), (b, r13), (a, r3)
are all marked). For instance, a marking on (a, r7) succeeds the pointer ρ1 of γ̄3.

7.2 Snapshot PDS

Definition 16. Let 〈S, sinit, Γ, C, ∆〉 be a DTPDA and let n be the largest in-
teger in ∆. A snapshot PDS is a PDS S = 〈S, sw(C, Γ, n), ∆〉. We assume that
its initial configuration is 〈sinit, {(x, r0) | x ∈ C}〉.

Transition rule to simulate timed transitions 〈s, γ̄〉 t−→S 〈s, σ(γ̄)〉,
where σ is either σ̇i,m or σ̈i,m with m = floor(t) and 1 ≤ i ≤ length(γ̄)

Transition rules to simulate discrete transitions (s, op, s′)

– Local 〈s, ε〉 nop−−→S 〈s′, ε〉,
– Assignment 〈s, γ̄〉 x←I−−−→S 〈s′, assign(γ̄, x, r)〉 for r ⊆ I,

– Test 〈s, γ̄〉 x∈I?−−−→S 〈s′, γ̄〉 if r ⊆ I for (x, r) in γ̄.

– Push 〈s, γ̄〉 push(γ′,I)−−−−−−−→S 〈s′, insert(γ̄, (γ′, r)) γ̄〉 for r ⊆ I, and

– Pop 〈s, γ̄ γ̄′〉 pop(γ′,I)−−−−−−→S 〈s′, propagate(γ̄, γ̄′)〉.
By induction on the number of steps of transitions, complete and sound

simulation between a DTPDA and a snapshot PDS is observed. Note that the
initial clock valuation of a DTPDA to be set ν0 is essential.

Lemma 4. Let us denote c0 and c (resp. 〈sinit, γ̄0〉 and 〈s, w̃〉) for the initial
configuration and a configuration of a DTPDA T (resp. its snapshot PDS S).

1. If c0 ↪→∗ c then there exists 〈s, w̃〉 such that 〈sinit, γ̄0〉 ↪→∗S 〈s, w̃〉, s =
state(c), and w̃ is well-formed.

2. If 〈sinit, γ̄0〉 ↪→∗S 〈s, w̃〉 and w̃ is well-formed. there exists c such that c0 ↪→∗ c
with Snap(c) = 〈s, w̃〉.

Example 11. We show how a snapshot PDS simulates a DTPDA in Example 1,
as continuation to Example 9 (which shows transitions from c1 to c3).

– c3
x2←(2,5]−−−−−−→Disc c4 is simulated by assign(deleteC(snap(c3), x2), x2, r7) at

the top stack frame, since ν(x2) = 3.8 ∈ r7. There are several choices of
assign(deleteC(snap(c3), x2), x2, r7). Among them,
{(x1, r7)}, {(d, r11)}, {(b, r19)}{(a, r9)}{(a, r11)}{(x2, r7), (d, r13)}{(x3, r9)}.
corresponds to 3.8. A different value, e.g., ν(x2) = 3.3, corresponds to
{(x1, r7)}, {(d, r11)}, {(x2, r7), (b, r19)}{(a, r9)}{(a, r11)}{(d, r13)}{(x3, r9)}.

– c4
pop(d,[4,6])−−−−−−−→Disc c5 is simulated by propagate(deleteΓ (snap(c4)), snap(c1)).

Note that a snapshot PDS does not change anything except for the top stack
frame. Thus, the second stack frame is kept unchanged from snap(c1). First,
deleteΓ removes the element pointed by ρ1, which results in
{(x1, r7)}, {(b, r19)}{(a, r9)}{(a, r11)}{(x2, r7), (d, r13)}{(x3, r9)}.

snap(c1) = {(a, r7)}{(d, r9)}{(x3, r5)}{(x1, r1)}{(b, r13)}{(x2, r7), (a, r3)}
and, by pattern matching between ρ2 in the former and ρ1 in the latter,
σ̇4,2 (which is used in the timed transition from c2 to c3 in Example 9) is
found. Then ρ1 is updated with the current ρ2 and ρ2 is recovered by σ as

{(x1, r7)}, {(b, r19)}{(a, r9)}{(a, r11)}{(x2, r7), (d, r13)}{(x3, r9)}.

We observe that ⇓Υ (defined in Section 7.1) satisfies Definition 8. A snapshot
PDS has finite states and WQO stack alphabet. By applying the encoding in
Remark 1, we obtain our main result from Theorem 3, 4, 5, Lemma 3, and 4.

Corollary 1. The (configuration) reachability of a DTPDA is decidable.

7.3 Comparison with the original encoding

In [16], we apply slight extensions of a DTPDA to make it able to set the value
of an age to that of a clock when a push occurs, and set the value of a clock
to that of an age when a pop occurs. Both the original encoding in [2] and our
snapshot word correctly handle them.

– Push-set push(γ, x), push γ on a stack associated with a local age of the
value of a clock x ∈ C, and

– Pop-set pop(γ, x), pop γ on a stack and set the value of a clock x ∈ C to
the value of the associated age a.

A snapshot word summarizes the ordering of fractions of all local ages and
global clocks in the stack, whereas the encoding in [2] summarizes boundedly
many information, i.e., values of global clocks and local ages in the top and
next stack frames (those in the next stack frame as shadow items). When a pop
occurs, it recovers the relation among global clocks and local ages in the next
stack frame. The difference would appear if we consider regular valuations [13]
with time, e.g., ∀a.a < x for a stack symbol a and a clock x, which means all
ages associated with a in the stack are smaller than the value of the clock x.

8 Conclusion

This paper investigated a general framework of pushdown systems with well-
quasi-ordered control states and stack alphabet, well-structured pushdown sys-
tems, to show decidability of the reachability. This extends the decidability re-
sults on a pushdown system with finite control states and well-quasi-ordered
stack alphabet [8]. The ideas behind are,

– combining WSTS [3, 14] and classical Pre∗-automaton technique [7, 15, 12],
which enables us to reduce arguments on stacks to on stack symbols, and

– introduction of a well-formed projection ⇓Υ , which extracts the shape of
reachable configurations.

As an instance, an alternative decidability proof of the reachability for dense-
timed pushdown system [2] was shown. The encoding is inspired by the digitiza-
tion techniques in [18]. We expect our snapshot word encoding would be more
robust for extensions, e.g., regular valuations [13] with time.

Acknowledgements

The authors would like to thank Shoji Yuen, Yasuhiko Minamide, Tachio Ter-
auchi, and Guoqiang Li for valuable comments and discussions. This work is sup-
ported by the NSFC-JSPS bilateral joint research project (61011140074), NSFC
projects (61003013,61100052,61033002), NSFC-ANR joint project (61261130589),
and JSPS KAKENHI Grant-in-Aid for Scientific Research(B) (23300008).

References

1. P.A. Abdulla, B. Jonsson, Verifying networks of timed processes, TACAS 1998,
LNCS 1384, 298–312, 1998.

2. P.A. Abdulla, M.F. Atig, F. Stenman. Dense-Timed Pushdown Automata. IEEE
LICS 2012, 35–44, 2012.

3. P.A. Abdulla, K. Cerans, C. Jonsson, T. Yih-Kuen. Algorithmic analysis of pro-
grams with well quasi-ordered domains. Information and Computation, 160(1–
2):109–127, 2000.

4. P.A. Abdulla, B. Jonsson, Model checking of systems with many identical time
processes, Theoretical Computer Science, 290(1), 241–264, 2003.

5. R. Alur, D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

6. A. Bouajjani, R. Echahed, R. Robbana On the Automatic Verification of Sys-
tems with Continuous Variables and Unbounded Discrete Data Structures. Hybrid
Systems II, LNCS 999, 64–85, 1995.

7. A. Bouajjani, J. Esparza, O. Maler. Reachability analysis of pushdown automata:
Application to model-checking. CONCUR 1997, LNCS 1243, 135–150, 1997.

8. X. Cai, M. Ogawa. Well-Structured Pushdown Systems. CONCUR 2013, LNCS
8052, 121–136, 2013. Long version: JAIST Research Report IS-RR-2013-001.

9. R. Chadha, M. Viswanathan. Decidability results for well-structured transition
systems with auxiliary storage. CONCUR 2007, LNCS 4703, 136–150, 2007.

10. Z. Dang. Pushdown timed automata:a binary reachability characterization and
safety verification. Theoretical Computer Science, 302:93–121, 2003.

11. M. Emmi, R. Majumdar. Decision Problems for the Verification of Real-Time
Software. HSCC’06, LNCS 3927, 200–211, 2006.

12. J. Esparza, D. Hansel, P. Rossmanith, S. Schwoon. Efficient algorithms for model
checking pushdown systems. CAV 2000, LNCS 1855, 232–247, 2000.

13. J. Esparza, A. Kucera, S. Schwoon. Model checking LTL with regular valuations
for pushdown systems. Information and Computation, 186(2): 355–376, 2003.

14. A. Finkel, Ph. Schnoebelen. Well-structured transition systems everywhere! The-
oretical Computer Science, 256(1–2):63–92, 2001.

15. A. Finkel, B. Willems, P. Wolper. A direct symbolic approach to model checking
pushdown systems (extended abstract). INFINITY’97, ENTCS 9. 1997.

16. G. Li, X. Cai, M. Ogawa, S. Yuen. Nested Timed Automata. FORMATS 2013,
LNCS 8503, 168–182, 2013.

17. R. Mayr. Process rewrite systems. Information and Computation, 156:264–286,
1999.

18. J. Ouaknine, J. Worrell. On the language inclusion problem for timed automata:
Closing a decidability gap. IEEE LICS 2004, 54–63, 2004.

