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Detection of Unusual Human Activities
Based on Behavior Modeling

Kunihiko Hiraishi ∗ Koichi Kobayashi ∗

∗ School of Information Science, Japan Advanced Institute of Science
and Technology, Nomi, Ishikawa, 923-1292 Japan

({hira,k-kobaya}@jaist.ac.jp)

Abstract: A type of services that require human physical actions and intelligent decision
making exists in various real fields, such as nursing in hospitals and caregiving in nursing homes.
In this paper, we propose new formalism for modeling human behavior in such services. Behavior
models are estimated from event-logs, and can be used for analysis of human activities. We show
two analysis methods: one is to detect unusual human activities that appear in event-logs, and
the other is to find staffs that behave differently from others.
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1. INTRODUCTION

A type of services that require human physical actions and
intelligent decision making exists in various real fields, such
as nursing in hospitals and caregiving in nursing homes.
The project group including authors calls such services
“physical and adaptive intelligent services (PAI-services),”
and is developing an IT-based system that aims to assist
cooperation and knowledge sharing among staffs, and to
reduce various kinds of stresses associated with their work
(Uchihira (2013)).

One of the research questions that arise in the project is
how to evaluate the effectiveness of such a newly intro-
duced system. In other words, we want to know how the
system contributes to improving human activities in the
services. Traditional approaches are qualitative evaluation
based on questionnaires and interviews, and quantitative
evaluation based on statistics on the entire activities, such
as the length of traffic line and efficiency in handling
tasks. However, questionnaires and interviews cannot be
done so frequently, and statistics on the entire activities
is not suitable for finding unusual human activities that
occasionally happen. In this paper, we propose a model-
based approach to analysis of human activities in PAI-
services.

Theoretical contribution of this paper is to propose new
formalism for modeling adaptive and cooperative behavior
among concurrently acting people. The formalism is based
on discrete-event systems, and has sufficient expressiveness
for analyzing human activities in PAI services. Technically,
the proposed formalism is a collection of N -gram models
with information sharing. We call it communicating N -
gram models. In the formalism, multiple instances of N -
gram models runs concurrently, and event occurrence in
each instance of N -gram models may affect other instances
of N -gram models.

The obtained behavior models are used for analysis of
human activities, especially for detecting unusual human

activities. However, the proposed formalism does not have
sufficient information for executing discrete-event simu-
lation. Such simpleness of formalism contributes to esti-
mating models by easy calculation on statistics of event
occurrence.

The paper is organized as follows. In Section 2, relater
work is described. In Section 3, mathematical definitions
and notations are presented. In Section 4, definition of
communicating N -gram models is given. We also show
an estimation method of the models from event-logs. In
Section 5, two methods for detecting unusual activities are
presented. In Section 6, the proposed detection methods
are applied to analysis of event-logs in field experiments.
Section 7 is the conclusion.

2. RELATED WORK

As a method for building behavior models from event-logs,
process mining is well-known (van der Aalst (2011)). Pro-
cess mining is a technique for extracting process models
from large amount of event-logs output from IT systems.
The obtained process models are used for improving pro-
cesses in organizations. However, the processes we consider
here is more complicated and unstructured. For example,
tasks may be interrupted by nurse calls.

Behavior of staffs in nursing homes tends to be nonde-
terministic. The next action is determined by the current
situation such as patient’s response and availability of var-
ious facilities, where the patients’ choices are not control-
lable by the staffs. As formalism that can deal with such
nondeterministic behavior, Markov models is well known.
In particular, factorial hidden Markov models (Gharra-
mani (1997)) can represent concurrent processes, and in-
terleaved mixture of hidden Markov models (Landwehr
(2008)) can handle interruption of processes, both of which
often appears in the field experiments. Moreover, there
are several results on learning of Markov models (Angluin
(1997); Sen (2004)). However, Markov models are not nec-
essarily suitable for modeling unstructured and adaptive



behavior, because it is hard to identify global states of
Markov models. For modeling adaptive and concurrent
behavior, rule-based description gives more simple and
flexible way for the modeling. By this reason, we propose
to use formalism based on conditional probabilities.

There are various researches on modeling of medical and
nursing processes. In (Avrunin (2010)), medical processes
are modeled by a process description language and an-
alyzed by formal verification techniques. By observing
actual nursing processes, process models of tasks, such as
blood transfusion and dripping, are identified.

Application of discrete-event simulation in health care has
significantly increased. Comprehensive survey is found in
(Thorwarth (2009)). In many cases on the application
of discrete-event simulation, performance issues such as
analysis on patient queues and waiting time is the main
concern, and the results are used for nurse scheduling,
resource allocation, and also for change in admission policy
and hospital extension.

In (Sundramoorthi (2007)), a stochastic simulation model
for nursing activities is derived from real data in a hospital.
Behavior models are obtained in the form of classification
and regression trees. This approach is similar to that of
this paper. Comparing with this modeling technique, the
proposed modeling is not designed for the discrete-event
simulation of human behavior, but for analysis of human
behavior including collaboration of staffs. Behavior models
proposed in this paper are microscopic models for limited
situation such as activities on the dining time. Moreover,
the models are obtained by simple calculation on event
occurrence. This enable us to deal with large amount of
data.

3. PRELIMINARIES

Let Σ be a finite set of symbols and let Σ∗ denote the
set of all finite sequences over Σ. For a positive integer
N , a sequence of length N is called an N -gram. Let
ΣN = {s ∈ ΣN | |s| = N} be the set of all N -grams over Σ,
where |s| denotes the length of sequence s. The i-th symbol
of sequence s is denoted by s[i] and the subsequence from
the i-th position to the j-th position of s is denoted by
s[i,j]. In addition, we write s[i,∗] to indicate s[i,|s|]. Let s and
v be sequences over Σ, where |s| < |v|. Then the number
of occurrences of s as a subsequence of v is denoted by
Os(v).

An N -gram model is a collection of conditional probabil-
ities Pr(σ|y), the probability that symbol σ occurs after
(N − 1)-gram y. N -gram models were originally proposed
by Shannon (Shannon (1948)). Currently, N -gram models
are widely used in text processing. Given a sequence v over
Σ and a positive integer N , the maximum likelihood esti-
mation of probabilities in the N -gram model is computed
by

Pr(σ|y) = Oyσ(v)∑
σ′∈Σ Oyσ′(v)

(1)

When the length of v is not so large, we use smoothing
techniques to estimate the probability for σ with low
frequency (Chen (1996)).

A probabilistic automaton is a 6-tuple G = (X,Σ, δ, P, x0,
F ), whereX = {x1, · · · , xn} is the set of states, Σ is the set
of symbols, δ ⊆ X×Σ → X is the state transition function,
P : X × Σ → [0, 1] is the function defining probability of
each state transition, where

∑
σ∈Σ P (xi, σ) = 1 holds for

all xi ∈ X, x0 ∈ X is the initial state, and F ⊆ X is
the set of final states. The underlying Markov chain of G
consists of the set of states X and transition probabilities
Pij = P (xi, σ) for the σ ∈ Σ such that δ(xi, σ) = xj .

Given an N -gram model, we can obtain a probabilistic
automaton M = (X,Σ, δ, P, x0, F ), where X is the set of
all (N − 1)-grams over Σ, δ is defined by δ(y, σ) := y[2,∗]σ,
P (y, σ) := Pr(σ|y), and x0 and F are arbitrary speci-
fied. In addition, we can define the probability qy(v) :=
Oy(v)/

∑
y′∈ΣN−1 Oy′(v) that each (N − 1)-gram y occurs

in v, where v is the event sequence used for estimating
the N -gram model. The probability qy(v) indicates signif-
icance of sequence y in v.

On the other hand, there exists an N -gram model that
approximates behavior of a given probabilistic automaton
in the steady state. Suppose that a probabilistic automa-
ton G has the steady state and the stationary probability
is π = (π1, · · · , πn), where πi is the probability that the
system is in state xi, then there exists the following N -
gram model that approximates the behavior of G: for each
y ∈ ΣN−1 and σ ∈ Σ,

Pr(σ|y) =
∑

xi∈Xy

(πi/
∑

xj∈Xy

πj) · P (xi, σ) (2)

where Xy = {xj | ∃xi ∈ X : δ(xi, y) = xj}. If the
underlying Markov chain is ergodic, then estimation by
(1) converges to this probability. Moreover, the value of
qy(w) approaches to

∑
xi∈Xy

πi.

Fig. 1 is a probabilistic automaton whose underlying
Markov chain is ergodic. This automaton has the unique
stationary distribution π = (35/107, 30/107, 42/107) as
the solution of equations π = πP,

∑
i πi = 1, where

P = [Pij ] is the transition probability matrix. After an
occurrence of ab, possible states are 1 or 2. Therefore, the
conditional probability Pr(b|ab) is obtained by

Pr(b|ab) = π1

π1 + π2
· 0.4 + π2

π1 + π2
· 0.3 = 23/65.

1 2

3

a/0.6
b/0.4

a/0.5

b/0.3

c/0.7

b/0.5

Fig. 1. A probabilistic automaton.

4. FORMALISM FOR BEHAVIOR MODELING

In this section, we describe formalism for modeling adap-
tive and cooperative human behavior.



4.1 Communicating N -gram Models

We first define an extended N -gram model such that
each conditional probability is defined for given attribute
values together with past history of events. We call it an
attributed N -gram model (Hiraishi (2013)). From now on,
we call each symbol σ ∈ Σ an event.

Conditional probabilities in attributed N -gram models are
defined in the form Pr(σ |a :y), where a = [a1, · · · , ak] is a
collection of attribute values and y is an (N−1)-gram. We
require the domain of each ai is a discrete finite set. We call
such a pair a : y of attribute values a and k-gram y ∈ Σk

an attributed k-gram, and the set of all such attributed k-
grams is denoted by Σk

attr. An attributed N -gram model
can be seen as a collection of N -gram models each of which
is identified by attribute values a.

Let V be the set of all attribute values. A communicating
N -gram model is a triple C = (A,Θ(0),∆), where A is an

attributed N -gram model, Θ(0) = {θ(0)1 , · · · , θ(0)n } is the
set of initial process instances, and ∆ : V × Σ → 2V is
the attribute update function. Each process instance at

discrete time t is a pair θ
(t)
i = (a

(t)
i , y

(t)
i ), where a

(t)
i ∈ V

and y
(t)
i ∈ ΣN−1 1 .

The dynamics of C are given as follows. The set Σ is
partitioned into the set of activity events Σact and the
set of input events Σin.

Let Θ(t) = {θ(t)1 , · · · , θ(t)n } be the set of process instances

at time t. Then a process instance θ
(t)
k ∈ Θ(t) is nondeter-

ministically selected, and an activity event σ ∈ Σact occurs

with probability Pr(σ | a(t)k :y
(t)
k ). After the occurrence of

σ, the discrete time is incremented by one, and process in-

stances at time t+1 are determined by a
(t+1)
i ∈ ∆(a

(t)
i , σ)

for all i, and y
(t+1)
k := y

(t)
k[2,∗]

σ; y
(t+1)
i := y

(t)
i (i ̸= k).

In addition to the autonomous behavior, attribute values
may be changed by input events from outside. If an input
event γ ∈ Σin occurs at time t, then process instances at

time t + 1 are given by a
(t+1)
i ∈ ∆(a

(t)
i , γ) and y

(t+1)
i :=

y
(t)
i .

A sample path of a communication N -gram model C is a
finite sequence of events that can occur according to the
above rule.

Communicating N -gram models are used for modeling the
following situation in PAI services:

• There are multiple staffs working in a field. Each
staff has a role, and staffs having different roles
behave differently. Each staff is modeled by a process
instance, and the role is represented by an attribute.

• Communication between staffs exists. This is imple-
mented by events for communication. Receiving mes-
sages from other staffs may affect the future behavior
of the receiver.

• Change of tasks and roles may be instructed by
the person in charge. Emergency calls may suddenly

1 Process instances at time less than N−1 cannot have (N−1)-gram
as the event history. We may introduce a “null” event to represent
such initial fragment of the event history.

happen and some of the staffs must respond to them.
Such calls are modeled by input events.

The idea behind proposing the attributed N -gram models
id as follows. We do not have complete knowledge on
the state of the target system. The known part of states
is represented by attributes and the unknown part is
approximated by (N − 1)-grams, i.e., history of event
occurrence.

4.2 Estimating Models from Event Logs

Given event logs, we show how to estimate models in the
form of communicating N -gram models.

A pair of attribute values a and an event σ is called an
attributed event, and is denoted by a :σ. We assume that an
event-log is a finite sequence L = l1l2 · · · l|L| of attributed
events such that each lj has the following form:

lj = (idj , aj :σj) (3)

where idj ∈ {1, · · · , n} corresponds to the index number
of a process instance, aj :σj is an attributed event. In
addition to an event-log, we assume that the set of initial

process instance Θ(0) = {θ(0)1 , · · · , θ(0)n } is given.

From an event-log L, we extract the event sequence wi

for process instance i as follows. Let aik : σi
k denote the

k-th attributed event issued by the i-th process instance.
Then we define wi := ai1 :σ

i
1,a

i
2 :σ

i
2, · · · ,ai|wi| :σ

i
|wi|. For the

indices i and k in aik : σ
i
k, let j(i,k) denote the index j of

the corresponding lj in L, i.e., lj(i,k) = (i, aik :σ
i
k). where

ai0 be the attribute values of θ
(0)
i .

Estimation of models consists of two parts: estimation
of the conditional probabilities in the attributed N -gram
model A, and estimation of the attribute update function
∆.

Let w = a1 :σ1, · · · ,a|w| :σ|w| be a sequence of attributed
events. The number of times that an attributed k-gram
a : y appears in w, denoted by Oa:y(w), is defined as the
number of elements in the following index set

{1 ≤ j ≤ |w| − k + 1 |
aj+k−1 = a, σjσj+1 · · ·σj+k−1 = y} (4)

Then the maximal likelihood estimation of the conditional
probabilities is given as follows:

Pr(σ|a :y) =
∑

i=1,n Oa:yσ(w
i)∑

σ′∈Σ

(∑
i=1,n Oa:yσ′(wi)

) (5)

Next we show how the attribute update function ∆ is
estimated. In fact, the event-log does not give sufficient
information on the estimation of function ∆, because
attribute values of a process instance is observed only when
an event of the instance occurs. Therefore, it is necessary
to use a priori knowledge on the attributes updation to
identify ∆. For example, some of the attribute values
may not change in the log, and some are given only from
outside.

The domain of ∆ is extended to V × Σ∗ by ∆(a, sσ) :=
∆(a′, σ) and a′ ∈ ∆(a, s) for s ∈ Σ∗ and σ ∈ Σ. We aim



to estimate ∆ in the following senses: for any pair aik and
aik+1 of attribute values that appear in the event-log, find

Σai
k
,ai

k+1
⊆ Σ∗ such that aik+1 ∈ ∆(aik, s) if s ∈ Σai

k
,ai

k+1
,

where ai0 is the attribute values of θ
(0)
i .

For a sequence of events s, let sub(s) denotes the set of all
sequences other than the empty sequence ε obtained by
removing any number of symbols from s, e.g., sub(abc) =
{a, b, c, ab, ac, b, abc}. We define the following:

• sik := σj(i,k)
σj(i,k)+1 · · ·σj(i,k+1)−1 is the sequence of

events between lj(i,k)
and lj(i,k+1)−1 in the event-log

L,
• Σa,a′ :=

∪
i=1,n

∪
k:ai

k
=a,ai

k+1
=a′{sik},

• Σa,a′ :=
∪

i=1,n

∪
k:ai

k
=a,ai

k+1
=a′ sub(sik).

Then the set Σa,a′ satisfies

Σa,a′ ⊆ Σa,a′ ⊆ Σa,a′ (6)

Given an event-log L and a set of initial process instance
Θ(0), let AL be the attributed N -gram model obtained by
the method described above, and let ∆L be any attribute
update function that is consistent with Σa,a′ ’s satisfying
(6). By the construction of AL and ∆L, we have the
following theorem.

Theorem 1. The event sequence σ1σ2 · · ·σ|L| extracted
from L is a sample path of the communicating N -gram
models CL = (AL,Θ

(0),∆L).

5. DETECTION OF UNUSUAL ACTIVITIES

In this section, two analysis methods for event-logs are
presented. The first method focuses on the entire behavior
of each process instance, the second method focuses on
fragments of activities.

5.1 Analysis of Entire Behavior

Let w = a1 :σ1, · · · ,a|w| :σ|w| be a sequence of attributed
symbols. The symbol part of w is denoted by s⟨w⟩ :=
σ1σ2 · σ|w|, and the last attribute value is denoted by
a⟨w⟩ := a|w|. We can evaluate the difference between w
and a given attributed N -gram model by the cross entropy
defined by

H(w) := −
∑

j=1,|w|

1

|w|
log2Pr

(
s⟨w[j]⟩ |

a⟨w[j−N+1,j−1]⟩ :s⟨w[j−N+1,j−1]⟩
) (7)

H(w) becomes smaller if the probability distribution of w
is closer to that of the attributed N -gram model.

By comparing H(wi) for event-logs wi, i = 1, · · · , n, we
can identify processes that behave differently from other
processes.

5.2 Detection of Unusual Activity Patterns

The second method is for detecting unusual activity pat-
terns in event-logs. This problem is classified as anomaly
detection on time series (Chandola (2009)).

Let s be a short event sequence of a fixed length. If s
corresponds to unusual activities and occurs in an event-
log, then the number of times s occurs in the event-log is
different from its expected value computed by the behavior
model. This is the main idea of the proposed method.

Based on the attributed N -gram model, the conditional
probability Pr(s|a :y) that r-gram s appears after a : y is
given by

Pr(s|a :y) := Pr(s|a :y[j,|y|]) (8)

where j = max{|y| −N + 2, 1}, i.e., we take only the last
(N − 1)-gram into account. Moreover, the right hand side
is recursively computed by

Pr(s|a :y) := Pr(s[1]|a :y) · Pr(s[2,∗]|a :ys[1]) (9)

Let w = a1 :σ1,a2 :σ2, · · · ,a|w| : σ|w| be a sequence of
attributed symbols. The expected number of times r-gram
s occurs in w is approximated by:

Es(w) :=
∑

a:y∈ΣN−1
attr

Oa:y(w) · Pr(s|a :y) (10)

Now we define the specificity of r-gram s in w by the
following log ratio:

ds(w) := log
Os(s⟨w⟩)
Es(w)

(11)

When Es(w) = 0, Os(s⟨w⟩) is also 0 and ds(w) is defined
to be 0. This quantity was originally introduced by the
authors for diagnosis of discrete-event systems (Hiraishi
(2013a)), but its usage was different. If ds(w) is larger
than 0 (smaller than 0), then s may correspond to some
unusual activities. We note that ds(w) is a dimensionless
quantity and is independent of the length of w.

6. APPLICATIONS TO REAL DATA

6.1 The SVM System and Field Experiments

The system developed in the project is called the smart
voice messaging system (SVM system). The SVM sys-
tem consists of smartphones with an application software
(SVM terminals), server PC’s on cloud, and Bluetooth
markers located in fields. Once each staff speaks a short
sentence to the terminal, then the message is sent to the
server as a voice message, and is distributed to other staffs.
Simultaneously, the voice message is recognized and trans-
formed into text data. Important keywords representing
the situation are also extracted (Fig. 2). The messages
should be sent to only staffs who need the information. In
order to realize such smart message distribution, various
kinds of information are used, such as location data mea-
sured by Bluetooth markers, acceleration sensor data that
is used for estimating activity, and the keywords extracted
from the voice messages.

The SVM system is tested in a nursing home several times.
The situation in the experiments is described as follows:

• Field: In a nursing home with three floors, there are
patients’ rooms, living salons and other rooms such
as a staff station and treatment rooms.



• Roles of staffs: In each period of a day, there are
around 8 staffs in the field. Each staff has his/her
own role, e.g., the in-charge nurse (commander), staffs
responsible for 1F/2F/3F, staffs capable of nursing,
etc. In the experiments, all staffs carry SVM terminals
together with standard equipment.

• Workflow: The experiments was done at lunch time
and dinner time. At first each staff takes a patient
from his/her room to a salon, assists the patient to
have a meal, cares for several things after the meal
(brushing teeth, toilet, give medicine, entertainment
events, etc), and finally takes the patient back.

Staffs behave independently, but on some occasions one
staff may help other staffs. In such collaboration, aware-
ness of other staffs is important and we expect the SVM
system contributes to knowing other staffs’ situation.
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Fig. 2. The smart voice messaging system.

6.2 Situation Mode

N -gram models is used for representing behavior of in-
dividual staff. Since there are multiple staffs in the field,
behavior of each staff may be influenced by other staffs.
To represent the current status of staffs, we introduce
an attribute, called the situation mode, that represents
arrangement of staffs in the field.

Assume that the working time is partitioned into several
periods, and let pi denote the i-th period. For the j-th staff

and the k-th location lock, let g
(i)
j,k denote the accumulated

length of time that the j-th staff spent in location lock
during period pi, and let G

(i)
k :=

∑
j g

(i)
j,k. If there exists a

location loch such that G
(i)
h /

∑
k G

(i)
k > θ, where θ ≥ 0.5 is

a threshold value, then the situation mode a
(i)
sm in period

pi is defined as a
(i)
sm := loch, and a

(i)
sm := ∅ otherwise.

The motivation to introduce the situation mode is as
follows. In the lunch/dinner time, most of the staffs are in
salons and the situation mode is ‘1F salon’ or ‘2F salon’. In
these situations, if some staff is in a patient’s room, then
the staff may do some unusual tasks. However, working in
a patient room is a normal task before/after the meal.

6.3 Event-logs

Each SVM terminal receives signals from the Bluetooth
markers and sends raw data to the server. After processing
the data, the result is recorded in the following form:

(date,Staff-ID, type, in-time, out-time, duration) (12)

where type is either the location or ”moving”. Events with
type ”moving” means that no location data is obtained
during the period and its duration is calculated.

To estimate models in the form of communicating N -
gram models, we first replace each event by a symbol. We
call this step event abstraction. On one hand, the same
symbol may be assigned to different events if we do not
have to distinguish them. For example, if we focus on
movement between floors, the same symbol is assigned to
movement on the same floor. On the other hand, in order
to distinguish duration of tasks, we may assign different
symbols to the same task according to its duration.

Field experiments were done at a nursing home on May
20-24, 2013. The total number of recorded events is 5,420.
Event-logs are analyzed by the proposed approach under
the following conditions:

• Event symbols are a (1F patients’ rooms), b (2F
patients’ rooms), c (3F patients’ rooms), x (1F salon),
s (2F staff-station), y (2F salon), z (3F care-station),
and e (stairs/ landing/elevator). Capital letters are
used for long stays, e.g., we use ‘A’ instead of ‘a’.
In addition, M is assigned to long movements. The
threshold for determining long stays/movements is set
to 120 seconds.

• We use three attributes: the situation mode, the role
(mainly work on 1F or 2F), and whether the staff is
the in-charge nurse or not. Roles and the in-charge
nurse do not change during each experiment. The
working time is partitioned into periods of 10 minutes,
and the situation mode is determined for each period.
The threshold for computing the situation mode is
0.5. Change of the situation mode is realized by an
input event from outside.

• We choose N = r = 4.

6.4 Analysis Results

We first describe separation of working time by the sit-
uation mode. Fig. 3 is the situation mode for event-logs
at dinner time on May 25. It is observed that caring at
the dinner time is roughly separated into three periods:
dining time (most of the staffs are in salons), caring after
dinner (staffs take patients to treatment rooms sequen-
tially), caring in the patient’s room (staffs take patients
back to rooms).

Next, we show how cross entropy is used for finding staffs
whose behavior is different from the average one. Fig. 4 is
the resulting histogram for the cross entropy of each staff.
We can identify two staffs with higher values than others.
These staffs spent most of time in 1F salon. Such behavior
is different form the average one.

Finally, we try to identify unusual activities in event-
logs. Fig. 5 indicates specificity of the 4-gram that begins
at each point in time. There are several points in time
at which the specificity is high. We pick up four points
indicated in the graph. The actual behavior at those points
is as follows:

A. Frequent movements between different floors: 1F sa-
lon, 2F salon, 3F room, and 2F room.



B. Long movement and long task at the same location.
C. The following voice message was sent just before the

point: ”Ms. XXX has returned to her room by herself.
I will go to see her now.” (Usually Ms. XXX needs
assistance on her movement.)

D. Long stay at the elevator hall.

We do not expect automatic detection of unusual behavior.
Such points in time with high specificity values should be
looked back in conferences by the staffs.
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Fig. 5. Detection of unusual activities.

7. CONCLUSION

We have proposed formalism, called communicating N -
gram models, for modeling human activities in physical
and adaptive intelligent services. We have applies the
proposing formalism to building behavior models of staffs
in a nursing home. The proposed formalism represents
both independent actions of each staff and mutual com-
munication between staffs.

Communicating N -gram models cannot be used for
discrete-event simulation, since timing information on
event occurrence, such as probabilistic distribution of
inter-event time, is not included. However, event-logs in
(12) has such timing information. Incorporating such tim-
ing information with the models, we will have models for
simulation. This remains as future work.
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