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Control of complex systems is one of the fundamental problems in control theory. In this paper, a control method for complex
systems modeled by a probabilistic Boolean network (PBN) is studied. A PBN is widely used as a model of complex systems
such as gene regulatory networks. For a PBN, the structural control problem is newly formulated. In this problem, a discrete
probability distribution appeared in a PBN is controlled by the continuous-valued input. For this problem, an approximate solution
method using a matrix-based representation for a PBN is proposed. Then, the problem is approximated by a linear programming
problem. Furthermore, the proposedmethod is applied to design of real-time pricing systems of electricity. Electricity conservation
is achieved by appropriately determining the electricity price over time. The effectiveness of the proposed method is presented by
a numerical example on real-time pricing systems.

1. Introduction

Analysis and control of complex systems such as power
systems and gene regulatory networks are one of the fun-
damental problems in control theory of large-scale systems.
In order to deal with such complex systems, it is one of the
appropriate methods to approximate a complex system by a
discrete abstract model (see, e.g., [1]). On the other hand,
human decision making is also complex and is modeled by
a discrete model (see, e.g., [2]). Thus, in analysis and control
of complex systems and those with human decision making,
a discrete model plays an important role.

Several discrete models such as Petri nets, Bayesian net-
works, automata-based models, and Boolean networks have
been proposed so far (see, e.g., [3]). In this paper, we focus
on a Boolean network (BN) [4]. In a BN, the state is given
by a binary value (0 or 1), and the dynamics are expressed
by a set of Boolean functions. Since Boolean functions are
used, it is easy to understand the interaction between states.
In the field of theoretical biology, there is a criticism that
a BN is too simple as a model of gene regulatory networks
(see, e.g., [5]), but a BN can be relatively applied to large-
scale systems. In addition, since the behavior of complex
systems is frequently stochastic by the effects of noise, it

is appropriate that a Boolean function is randomly decided
at each time among the candidates of Boolean functions.
Thus, a probabilistic BN (PBN) has been proposed in [6].
Furthermore, a context-sensitive PBN (CS-PBN) inwhich the
deciding time is randomly selected has been proposed as a
general form of PBNs [7, 8]. In this paper, we adopt a prob-
abilistic Boolean network (PBN) as a mathematical model
of complex systems.

For a given PBN, we consider the structural control prob-
lem (see, e.g., [9–11]). In this problem, a discrete probability
distribution is controlled. For example, in [9], a discrete
probability distribution at each time is selected among a given
set. In this paper, we consider fine control of a discrete proba-
bility distribution by using the continuous-valued input. For
a newly formulated problem, we propose an approximate
solution method. First, a matrix-based representation of BNs
proposed in [12] is extended to that of PBNs. Next, using
the obtained representation, the original problem is approxi-
mated by a linear programming (LP) problem.

Furthermore, as one of the applications, we consider a
design method of real-time pricing systems (see, e.g., [13–
16]). A real-time pricing system of electricity is a system
that charges different electricity prices for different hours of
the day and for different days, and is effective for reducing
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the peak and flattening the load curve. In general, a real-time
pricing system consists of one controller deciding the price at
each time andmultiple electric customers such as commercial
facilities and homes. If electricity conservation is needed,
then the price is set to a high value. Since the economic
load becomes high, customers conserve electricity. Thus,
electricity conservation is achieved. In the existing methods,
the price at each time is given by a simple function with
respect to power consumptions and voltage deviations and
so on (see, e.g., [16]). To the best of our knowledge, decision
making of customers has not been explicitly considered so
far. In order to realize more precisely pricing, it is necessary
to use a mathematical model of customers. Thus, decision
making of customers is modeled by a PBN, and the problem
of finding the price at each time is formulated as a structural
control problem. The price corresponds to the continuous-
valued input. By a numerical example, the effectiveness of the
proposed method is presented.

The proposed framework provides us a basic method for
control of complex systems using PBNs.

Notation. For the 𝑛-dimensional vector𝑥 = [𝑥1 𝑥2 ⋅ ⋅ ⋅ 𝑥𝑛]
⊤

and the index set I = {𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑚
} ⊆ {1, 2, . . . , 𝑛}, define

[𝑥
𝑖
]
𝑖∈I := [𝑥𝑖

1

𝑥
𝑖
2

⋅ ⋅ ⋅ 𝑥
𝑖
𝑚
]
⊤. For two matrices 𝐴 and 𝐵,

let 𝐴 ⊗ 𝐵 denote the Kronecker product of 𝐴 and 𝐵. In
addition, for 𝑞 vectors 𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑞
and the index set J =

{𝑗
1
, 𝑗
2
, . . . , 𝑗

𝑝
} ⊆ {1, 2, . . . , 𝑞}, define⨂

𝑗∈J𝑦𝑗 := 𝑦𝑗1
⊗𝑦
𝑗
2

⊗⋅ ⋅ ⋅⊗

𝑦
𝑗
𝑝

. For example, for 𝑞 two-dimensional vectors 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑞

andJ = {1, 5}, we can obtain

⨂

𝑗∈J

𝑧
𝑗
= 𝑧
1
⊗ 𝑧
5

= [

[

𝑧
(1)

1

𝑧
(2)

1

]

]

⊗ [

[

𝑧
(1)

5

𝑧
(2)

5

]

]

=

[
[
[
[
[
[
[
[
[

[

𝑧
(1)

1
𝑧
(1)

5

𝑧
(1)

1
𝑧
(2)

5

𝑧
(2)

1
𝑧
(1)

5

𝑧
(2)

1
𝑧
(2)

5

]
]
]
]
]
]
]
]
]

]

,

(1)

where 𝑧(𝑖)
𝑗
is the 𝑖th element of 𝑧

𝑗
. Finally, let 1

𝑚×𝑛
denote the

𝑚 × 𝑛matrix whose elements are all one.

2. Probabilistic Boolean Network

First, we explain a (deterministic) Boolean network (BN). A
BN is defined by

𝑥
1
(𝑘 + 1) = 𝑓

(1)
([𝑥
𝑗
(𝑘)]
𝑗∈N(1)

) ,

𝑥
2
(𝑘 + 1) = 𝑓

(2)
([𝑥
𝑗
(𝑘)]
𝑗∈N(2)

) ,

.

.

.

𝑥
𝑛
(𝑘 + 1) = 𝑓

(𝑛)
([𝑥
𝑗
(𝑘)]
𝑗∈N(𝑛)

) ,

(2)

where 𝑥 := [𝑥1 𝑥2 ⋅ ⋅ ⋅ 𝑥𝑛]
⊤

∈ {0, 1}
𝑛 is the state, and 𝑘 =

0, 1, 2, . . . is the discrete time. The set N(𝑖) ⊆ {1, 2, . . . , 𝑛} is a
given index set, and the function 𝑓

𝑖
: {0, 1}

|N(𝑖)|
→ {0, 1}

1 is
a given Boolean function consisting of logical operators such
as AND (∧), OR (∨), and NOT (¬). If N(𝑖) = 0 holds, then
𝑥
𝑖
(𝑘 + 1) is uniquely determined as 0 or 1.
Next, we explain a probabilistic Boolean network (PBN)

(see [6] for further details). In a PBN, the candidates of 𝑓(𝑖)
are given, and for each 𝑥

𝑖
, selecting one Boolean function is

probabilistically independent at each time. Let

𝑓
(𝑖)

𝑙
([𝑥
𝑗
(𝑘)]
𝑗∈N
(𝑖)

𝑙

) , 𝑙 = 1, 2, . . . , 𝑞 (𝑖) (3)

denote the candidates of 𝑓(𝑖). The probability that 𝑓(𝑖)
𝑙

is
selected is defined by

𝑐
(𝑖)

𝑙
:= Prob (𝑓(𝑖) = 𝑓(𝑖)

𝑙
) . (4)

Then, the following relation

𝑞(𝑖)

∑

𝑙=1

𝑐
(𝑖)

𝑙
= 1 (5)

must be satisfied. Probabilistic distributions are derived from
experimental results. Finally, N

𝑖
, 𝑖 = 1, 2, . . . , 𝑛 are defined

by

N
𝑖
:=

𝑞(𝑖)

⋃

𝑙=1

N
(𝑖)

𝑙
. (6)

We present a simple example.

Example 1. Consider the PBN in which Boolean functions
and probabilities are given by

𝑓
(1)
= {
𝑓
(1)

1
= 𝑥
3
(𝑘) , 𝑐

(1)

1
= 0.8,

𝑓
(1)

2
= ¬𝑥
3
(𝑘) , 𝑐

(1)

2
= 0.2,

𝑓
(2)
= 𝑓
(2)

1
= 𝑥
1
(𝑘) ∧ ¬𝑥

3
(𝑘) , 𝑐

(2)

1
= 1.0,

𝑓
(3)
= {
𝑓
(3)

1
= 𝑥
1
(𝑘) ∧ ¬𝑥

2
(𝑘) , 𝑐

(3)

1
= 0.7,

𝑓
(3)

2
= 𝑥
2
(𝑘) , 𝑐

(3)

2
= 0.3,

(7)

where 𝑞(1) = 2, 𝑞(2) = 1, and 𝑞(3) = 2 hold, N
1
= {3},

N
2
= {1, 3}, andN

3
= {1, 2} hold, andwe see that the relation

(5) is satisfied. Next, consider the state trajectory. Then, for
𝑥(0) = [0 0 0]

⊤, we obtain

Prob (𝑥 (1) = [0 0 0]⊤ | 𝑥 (0) = [0 0 0]⊤) = 0.8,

Prob (𝑥 (1) = [1 0 0]⊤ | 𝑥 (0) = [0 0 0]⊤) = 0.2.
(8)
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Figure 1: State transition diagram.

In this example, the cardinality of the finite state set {0, 1}3 is
given by 23 = 8, and we obtain the state transition diagram
of Figure 1 by computing the transition from each state. In
Figure 1, the number assigned to each node denotes 𝑥

1
, 𝑥
2
,

𝑥
3
(elements of the state), and the number assigned to each

arc denotes the transition probability from some state to other
state. Note here that, for simplicity, the state transition from
only 𝑥(𝑘) = [0 0 0]⊤, [0 0 1]⊤, [0 1 0]⊤, [1 1 0]⊤ is
illustrated in Figure 1.

3. Problem Formulation

In this section, we formulate the control problem studied in
this paper. In the conventional control problem, the control
input is added to a given Boolean function. For example,
the control input is added as follows: 𝑓(𝑖)([𝑥

𝑗
(𝑘)]
𝑗∈N(𝑖) , 𝑢(𝑘)),

𝑢(𝑘) ∈ {0, 1}
1. In general, we assume that the value of the

control input can be arbitrarily given. However, there is a
possibility that there exists no control input satisfying this
assumption. In control of gene regulatory networks, a struc-
tural control (or structural intervention) method for PBNs
has been proposed so far (see, e.g., [9, 10]). For example, in
[9], the discrete probabilistic distribution is switched at each
time. In other words, the discrete probabilistic distribution
is selected from the set of candidates. On the other hand,
in complex systems such as gene regulatory networks, power
systems, and social systems, it will be desirable to consider a
weaker control method. Thus, in this paper, we consider fine
control of probabilities in a discrete probabilistic distribution.
This control method can be regarded as a kind of structural
control methods.

In the structural control problem formulated here, we
assume that the probability 𝑐(𝑖)

𝑙
in (4) is given by

𝑐
(𝑖)

𝑙
(𝑘) = 𝑎

(𝑖)

𝑙
+ 𝑏
(𝑖)

𝑙
𝑢
𝑖
(𝑘) , (9)

where 𝑢 := [𝑢1 𝑢2 ⋅ ⋅ ⋅ 𝑢𝑛]
⊤

∈ [𝑢
1
, 𝑢
1
] × [𝑢

2
, 𝑢
2
] × ⋅ ⋅ ⋅ ×

[𝑢
𝑛
, 𝑢
𝑛
] ⊆ R𝑛 is the control input. The set [𝑢

𝑖
, 𝑢
𝑖
] expresses

the input constraint, and 𝑢
𝑖
, 𝑢
𝑖
∈ R1 are given in advance.

The parameter 𝑏(𝑖)
𝑙

expresses elasticity of the probability to

the control input. Finding 𝑎(𝑖)
𝑙

and 𝑏(𝑖)
𝑙

is the important prob-
lem, and will be focused on in future efforts. Of course, we
must find 𝑢

𝑖
(𝑘) such that 𝑐(𝑖)

𝑙
(𝑘) satisfies (5) and

0 ≤ 𝑎
(𝑖)

𝑙
+ 𝑏
(𝑖)

𝑙
𝑢
𝑖
(𝑘) ≤ 1, 𝑙 = 1, 2, . . . , 𝑞 (𝑖) . (10)

In addition, the dimension of the control input may be less
than the dimension 𝑛 of the state.

Under the above preparation, we consider the following
problem.

Problem 2. Suppose that for the PBN with (9), the lower and
upper bounds of input constraints 𝑢

𝑖
, 𝑢
𝑖
, and the initial state

𝑥(0) = 𝑥
0
are given. Then, find a control input sequence

𝑢(0), 𝑢(1), . . . , 𝑢(𝑁 − 1) ∈ [𝑢
1
, 𝑢
1
] × [𝑢

2
, 𝑢
2
] × ⋅ ⋅ ⋅ × [𝑢

𝑛
, 𝑢
𝑛
]

minimizing the cost function

𝐽 = 𝐸[

𝑁−1

∑

𝑘=0

{𝑄𝑥 (𝑘) + 𝑅𝑢 (𝑘)}

+ 𝑄
𝑓
𝑥 (𝑁) | 𝑥 (0) = 𝑥

0
]

(11)

under the constraints (5) and (10), where 𝑄,𝑄
𝑓
∈ R1×𝑛, 𝑅 ∈

R1×𝑚 are weighting vectors whose element is a nonnegative
real number, and𝐸[⋅ | ⋅]denotes a conditional expected value.

The linear cost function (11) is appropriate from the
following reason. For a binary variable 𝛿 ∈ {0, 1}, the relation
𝛿
2
= 𝛿 holds. That is, in the cost function, the quadratic term

such as 𝑥2
𝑖
(𝑘) is not necessary.

According to the result in [17], Problem 2 can be rewritten
as a polynomial optimization problem. However, in the case
of large-scale PBNs, it will be difficult to solve a polynomial
optimization problem. In this paper, an approximate solution
method for Problem 2 is proposed.

Hereafter, the condition 𝑥(0) = 𝑥
0
in the conditional

expected value is omitted.

4. Solution Method

In this section, we derive an approximate solution method
for Problem 2. First, a matrix-based representation for PBNs
is derived. The obtained representation is an extension of
a matrix-based representation for BNs proposed in [12].
Next, using the matrix-based representation, an approximate
solution method for Problem 2 is derived.

4.1. Matrix-Based Representation for PBNs. As a preparation,
the notation is defined. Binary variables 𝑥0

𝑖
(𝑘) and 𝑥1

𝑖
(𝑘) are

introduced. If 𝑥
𝑖
(𝑘) = 0 holds, then 𝑥0

𝑖
(𝑘) = 1 holds;

otherwise 𝑥0
𝑖
(𝑘) = 0 holds. If 𝑥

𝑖
(𝑘) = 1 holds, then 𝑥1

𝑖
(𝑘) =

1 holds; otherwise 𝑥1
𝑖
(𝑘) = 0 holds. Then, the equality

𝑥
0

𝑖
(𝑘) + 𝑥

1

𝑖
(𝑘) = 1 is satisfied. Using 𝑥0

𝑖
(𝑘) and 𝑥1

𝑖
(𝑘), consider

transforming the BN (2) into a matrix-based representation.
First, we explain the outline of a matrix-based represen-

tation by using a simple example.
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Table 1: Truth tables for 𝑥
𝑖
(𝑘 + 1), 𝑖 = 1, 2.

(a)

𝑥
2
(𝑘) 𝑥

1
(𝑘 + 1)

0 1
1 0

(b)

𝑥
1
(𝑘) 𝑥

2
(𝑘 + 1)

0 0
1 1

Example 3. Consider the following BN:

𝑥
1
(𝑘 + 1) = ¬𝑥

2
(𝑘) ,

𝑥
2
(𝑘 + 1) = 𝑥

1
(𝑘) ,

𝑥
3
(𝑘 + 1) = 𝑥

1
(𝑘) ∧ ¬𝑥

2
(𝑘) ,

(12)

whereN(1) = {2},N(2) = {1}, andN(3) = {1, 2}.Then, we can
obtain the truth table for each 𝑥

𝑖
(𝑘 + 1). See Tables 1 and 2.

From these truth tables, we can obtain the following matrix-
based representation:

[

[

𝑥
0

1
(𝑘 + 1)

𝑥
1

1
(𝑘 + 1)

]

]

= [
0 1

1 0
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴
(1)

[

[

𝑥
0

2
(𝑘)

𝑥
1

2
(𝑘)

]

]

,

[

[

𝑥
0

2
(𝑘 + 1)

𝑥
1

2
(𝑘 + 1)

]

]

= [
1 0

0 1
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴
(2)

[

[

𝑥
0

1
(𝑘)

𝑥
1

1
(𝑘)

]

]

,

[

[

𝑥
0

3
(𝑘 + 1)

𝑥
1

3
(𝑘 + 1)

]

]

= [
1 1 0 1

0 0 1 0
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴
(3)

[
[
[
[
[
[
[
[

[

𝑥
0

1
(𝑘) 𝑥
0

2
(𝑘)

𝑥
0

1
(𝑘) 𝑥
1

2
(𝑘)

𝑥
1

1
(𝑘) 𝑥
0

2
(𝑘)

𝑥
1

1
(𝑘) 𝑥
1

2
(𝑘)

]
]
]
]
]
]
]
]

]

,

(13)

where each element of 𝐴(𝑖), 𝑖 = 1, 2, 3 is given by a binary
value (0 or 1), and a sum of all elements in each column of
𝐴
(𝑖) is equal to 1.

Such a matrix-based representation has been proposed
in also [18, 19]. However, in the representation proposed
in [18, 19], matrices with the size of 2𝑛 × 2𝑛 must be
manipulated (𝑛 is the dimension of the state). In the matrix-
based representation proposed in [12], matrices with the size
of 2 × 2|N𝑖| are manipulated for each 𝑥

𝑖
. Thus, the proposed

representation enables us to model a BN using matrices with
the smaller size.

Table 2: Truth table for 𝑥
3
(𝑘 + 1).

𝑥
1
(𝑘) 𝑥

2
(𝑘) 𝑥

3
(𝑘 + 1)

0 0 0
0 1 0
1 0 1
1 1 0

Consider a general case. Define

𝑥
𝑖
(𝑘) := [

[

𝑥
0

𝑖
(𝑘)

𝑥
1

𝑖
(𝑘)

]

]

(= [

[

1 − 𝑥
𝑖
(𝑘)

𝑥
𝑖
(𝑘)

]

]

) . (14)

Then, the matrix-based representation for 𝑥
𝑖
(𝑘 + 1) is given

by

𝑥
𝑖
(𝑘 + 1) = 𝐴

(𝑖)
⨂

𝑗∈N
𝑖

𝑥
𝑗
(𝑘) , (15)

where 𝐴(𝑖) ∈ {0, 1}2×2
|N𝑖 | and⨂

𝑗∈N
𝑖

𝑥
𝑗
(𝑘) ∈ {0, 1}

2
|N𝑖 | . The

matrix 𝐴(𝑖) can be derived from the following procedure.

Procedure for Deriving 𝐴(𝑖) in (15)

Step 1. Derive a truth table for 𝑥
𝑖
(𝑘 + 1).

Step 2. Based on the obtained truth table, assign 𝑥
𝑖
(𝑘+1) = 0

or 𝑥
𝑖
(𝑘 + 1) = 1 for each element of⨂

𝑗∈N
𝑖

𝑥
𝑗
(𝑘).

Step 3. Express the assignment obtained in Step 2 by a row
vector. Denote the obtained row vector by 𝐴(𝑖) ∈ {0, 1}1×2

|N𝑖 | .

Step 4. Derive 𝐴(𝑖) as

𝐴
(𝑖)
= [
1
1×2
|N𝑖 | − 𝐴

(𝑖)

𝐴
(𝑖)

] . (16)

Next, consider extending the matrix-based representation of
BNs to that of PBNs. First, using a simple example, we explain
the outline.

Example 4. Consider the PBN in Example 1. Using the
matrix-based representation, the expected value of 𝑥

𝑖
(𝑘 + 1)

can be obtained as

𝐸 [𝑥
1
(𝑘 + 1)] = (0.8[

1 0

0 1
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴
(1)

1

+ 0.2[
0 1

1 0
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴
(1)

2

)

×[

[

𝐸 [𝑥
0

2
(𝑘)]

𝐸 [𝑥
1

2
(𝑘)]

]

]

,
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𝐸 [𝑥
2
(𝑘 + 1)] = [

1 1 0 1

0 0 1 0
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴
(2)

1

[
[
[
[
[
[
[
[
[

[

𝐸 [𝑥
0

1
(𝑘) 𝑥
0

3
(𝑘)]

𝐸 [𝑥
0

1
(𝑘) 𝑥
1

3
(𝑘)]

𝐸 [𝑥
1

1
(𝑘) 𝑥
0

3
(𝑘)]

𝐸 [𝑥
1

1
(𝑘) 𝑥
1

3
(𝑘)]

]
]
]
]
]
]
]
]
]

]

,

𝐸 [𝑥
3
(𝑘 + 1)] = (0.7[

1 1 0 1

0 0 1 0
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴
(3)

1

+ 0.3[
1 0 1 0

0 1 0 1
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴
(3)

2

)

×

[
[
[
[
[
[
[
[
[
[
[

[

𝐸 [𝑥
0

1
(𝑘) 𝑥
0

2
(𝑘)]

𝐸 [𝑥
0

1
(𝑘) 𝑥
1

2
(𝑘)]

𝐸 [𝑥
1

1
(𝑘) 𝑥
0

2
(𝑘)]

𝐸 [𝑥
1

1
(𝑘) 𝑥
1

2
(𝑘)]

]
]
]
]
]
]
]
]
]
]
]

]

,

(17)

where the condition 𝑥(0) = 𝑥
0
is omitted. In this represen-

tation, the matrices 𝐴(1)
1

and 𝐴(1)
2

correspond to the Boolean
functions 𝑓(1)

1
and 𝑓(1)

2
, respectively. In a similar way, 𝐴(2)

1
,

𝐴
(3)

1
, and 𝐴(3)

2
correspond to the Boolean functions 𝑓(2)

1
, 𝑓(3)
1

,
and 𝑓(3)

2
, respectively.

In general, using the matrix-based representation, the
expected value of 𝑥

𝑖
(𝑘 + 1) can be obtained as

𝐸 [𝑥
𝑖
(𝑘 + 1)] = (

𝑞(𝑖)

∑

𝑙=1

𝑐
(𝑖)

𝑙
(𝑘) 𝐴
(𝑖)

𝑙
)⨂

𝑗∈N
𝑖

𝐸 [𝑥
𝑗
(𝑘)] , (18)

where 𝐴(𝑖)
𝑙
∈ {0, 1}

2×2
|N𝑖 | and⨂

𝑗∈N
𝑖

𝑥
𝑗
(𝑘) ∈ {0, 1}

2
|N𝑖 | . The

matrix 𝐴(𝑖)
𝑙
can be derived from the above procedure.

4.2. Reduction to a Linear Programming Problem. Using
the matrix-based representation (18), consider transforming
Problem 2. First, Problem 2 can be rewritten as the following
problem.

Problem 5. Find 𝑢(0), 𝑢(1), . . . , 𝑢(𝑁−1)minimizing the cost
function (11) subject to (5), (10), (18), and the input constraint.

In a similar way to Problem 2, Problem 5 is rewritten as
a polynomial optimization problem. In this paper, we focus
on the structure of ⨂

𝑗∈N
𝑖

𝐸[𝑥
𝑗
(𝑘)] and derive the relaxed

problem for Problem 5. The relaxed problem is reduced to a
linear programming (LP) problem, which can be solved faster
than a polynomial optimization problem.

First, we present an example.

Example 6. Consider the matrix-based representation
obtained in Example 4. We remark that the discrete

probabilistic distribution for each 𝑥
𝑖
is independent. Then,

in (17), we can obtain

𝐸 [𝑥
0

1
(𝑘) 𝑥
0

2
(𝑘)] + 𝐸 [𝑥

0

1
(𝑘) 𝑥
1

2
(𝑘)]

= 𝐸 [𝑥
0

1
(𝑘)] (𝐸 [𝑥

0

2
(𝑘)] + 𝐸 [𝑥

1

2
(𝑘)])

= 𝐸 [𝑥
0

1
(𝑘)] .

(19)

In a similar way, we can obtain

𝐸 [𝑥
1

1
(𝑘) 𝑥
0

2
(𝑘)] + 𝐸 [𝑥

1

1
(𝑘) 𝑥
1

2
(𝑘)] = 𝐸 [𝑥

1

1
(𝑘)] ,

𝐸 [𝑥
0

1
(𝑘) 𝑥
0

2
(𝑘)] + 𝐸 [𝑥

1

1
(𝑘) 𝑥
0

2
(𝑘)] = 𝐸 [𝑥

0

2
(𝑘)] ,

𝐸 [𝑥
0

1
(𝑘) 𝑥
1

2
(𝑘)] + 𝐸 [𝑥

1

1
(𝑘) 𝑥
1

2
(𝑘)] = 𝐸 [𝑥

1

2
(𝑘)] .

(20)

In addition,

𝐸 [𝑥
0

1
(𝑘) 𝑥
0

3
(𝑘)] + 𝐸 [𝑥

0

1
(𝑘) 𝑥
1

3
(𝑘)] + 𝐸 [𝑥

1

1
(𝑘) 𝑥
0

3
(𝑘)]

+ 𝐸 [𝑥
1

1
(𝑘) 𝑥
1

3
(𝑘)] = 1

(21)

holds. The obtained equalities are linear with respect
to 𝐸[𝑥

0

1
(𝑘)𝑥
0

2
(𝑘)], 𝐸[𝑥0

1
(𝑘)𝑥
1

2
(𝑘)], 𝐸[𝑥1

1
(𝑘)𝑥
0

2
(𝑘)], and

𝐸[𝑥
1

1
(𝑘)𝑥
1

2
(𝑘)], and 𝐸[𝑥

0

1
(𝑘)], 𝐸[𝑥1

1
(𝑘)], 𝐸[𝑥0

2
(𝑘)], and

𝐸[𝑥
1

2
(𝑘)]. Hence, these can be used as constraints in the

relaxed problem.

Next, consider a general case. Define

𝑧
𝑖
(𝑘) := ⨂

𝑗∈N
𝑖

𝐸 [𝑥
𝑗
(𝑘)] ∈ [0, 1]

2
|N𝑖 |

. (22)

Then, (18) can be rewritten as

𝐸 [𝑥
𝑖
(𝑘 + 1)] = (

𝑞(𝑖)

∑

𝑙=1

𝑎
(𝑖)

𝑙
𝐴
(𝑖)

𝑙
)𝑧
𝑖
(𝑘)

+ (

𝑞(𝑖)

∑

𝑙=1

𝑏
(𝑖)

𝑙
𝐴
(𝑖)

𝑙
)𝑤
𝑖
(𝑘) ,

(23)

where 𝑤
𝑖
(𝑘) := 𝑢

𝑖
(𝑘)𝑧
𝑖
(𝑘) ∈ [0, 1]

2
|N𝑖 | . The relation between

𝐸[𝑥
𝑖
(𝑘)] and 𝑧

𝑖
(𝑘) is given by

𝐸 [𝑥
𝑗
(𝑘)] = 𝐶

𝑗
𝑧
𝑖
(𝑘) , 𝑗 ∈N

𝑖
. (24)

ForN
𝑖
= {𝑗
1
, 𝑗
2
, . . . , 𝑗

|N
𝑖
|
}, 𝑗
1
< 𝑗
2
< ⋅ ⋅ ⋅ < 𝑗

|N
𝑖
|
, matrices 𝐶

𝑗
,

𝑗 ∈N
𝑖
can be derived as

𝐶
𝑗
1

= [
1
1×2
|N𝑖 |−1 01×2|N𝑖 |−1

0
1×2
|N𝑖 |−1 11×2|N𝑖 |−1

] ,

𝐶
𝑗
2

= [
1
1×2
|N𝑖 |−2 01×2|N𝑖 |−2 11×2|N𝑖 |−2 01×2|N𝑖 |−2

0
1×2
|N𝑖 |−2 11×2|N𝑖 |−2 01×2|N𝑖 |−2 11×2|N𝑖 |−2

] ,

.

.

.

𝐶
𝑗
|N𝑖 |
= [
1 0 1 0 ⋅ ⋅ ⋅ 1 0

0 1 0 1 ⋅ ⋅ ⋅ 0 1
] .

(25)
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Let 𝑧(𝑗)
𝑖
(𝑘) and 𝑤(𝑗)

𝑖
(𝑘) denote the 𝑗th element of 𝑧

𝑖
(𝑘) and

𝑤
𝑖
(𝑘), respectively. Then, we can obtain

2
|N𝑖 |

∑

𝑗=1

𝑧
(𝑗)

𝑖
(𝑘) = 1. (26)

From 𝑤
𝑖
(𝑘) := 𝑢

𝑖
(𝑘)𝑧
𝑖
(𝑘), we can obtain

2
|N𝑖 |

∑

𝑗=1

𝑤
(𝑗)

𝑖
(𝑘) = 𝑢

𝑖
(𝑘) . (27)

In addition, we introduce the following constraints:

𝑢
𝑖
≤ 𝑢
𝑖
(𝑘) ≤ 𝑢

𝑖
,

𝑢
𝑖
𝑧
𝑖
(𝑘) ≤ 𝑤

𝑖
(𝑘) ≤ 𝑢

𝑖
𝑧
𝑖
(𝑘) ,

0 ≤ 𝑧
𝑖
(𝑘) ≤ 1,

0 ≤ 𝑤
𝑖
(𝑘) ≤ 1.

(28)

Thus, we can obtain the following problem as a relaxed
problem of Problem 5.

Problem 7. Find 𝑢(0), 𝑢(1), . . . , 𝑢(𝑁 − 1)minimizing the cost
function (11) subject to (5), (10), and (23)–(28).

By a simple calculation, Problem 7 can be equivalently
rewritten as the LP problem with 𝑢

𝑖
(𝑘), 𝑧
𝑖
(𝑘), and 𝑤

𝑖
(𝑘) as

decision variables. By solving Problem 7, we can evaluate the
lower bound of the optimal value of the cost function in Prob-
lem 7. In this paper, only an approximate solution method is
provided. However, since the control input can be obtained
by solving an LP problem, Problem 7 can be solved fast.

Finally, according to the receding horizon policy (see, e.g.,
[20]), we present the procedure of model predictive control
(MPC).

Procedure of MPC

Step 1. Set 𝑡 = 0.

Step 2. Measure the state 𝑥(𝑡).

Step 3. Derive𝑢(𝑡), 𝑢(𝑡+1), . . . , 𝑢(𝑡+𝑁−1)by solvingProblem
7.

Step 4. Apply only 𝑢(𝑡) to the system.

Step 5. Set 𝑡 + 1 → 𝑡, and return to Step 2.

5. Application to Design of
Real-Time Pricing Systems

In this section, we consider a design method of real-time
pricing systems as an application of structural control of
PBNs. First, the outline of real-time pricing systems of
electricity is explained. Next, the PBN-based model of real-
time pricing systems is derived. Finally, a numerical example
is presented.

Controller
Price Monitoring

Power consumption

Customers
(e.g., commercial facilities)

Figure 2: Illustration of real-time pricing systems.

5.1. Outline. Figure 2 shows an illustration of real-time
pricing systems studied in this paper. This system consists
of one controller and multiple electric customers such as
commercial facilities and homes. For an electric customer,
we suppose that each customer can monitor the status of
electricity conservation of other customers. In other words,
the status of some customer affects that of other customers.
For example, in commercial facilities, we suppose that the sta-
tus of rival commercial facilities can be checked by lighting,
Blog, Twitter, and so on. Depending on power consumption,
that is, the status of electricity conservation, the controller
determines the price. If electricity conservation is needed,
then the price is set to a high value. Since the economic
load becomes high, customers conserve electricity. Thus,
electricity conservation is achieved. The price does not
depend on each customer and is uniquely determined.

5.2.Model. Considermodeling the set of customers as a PBN.
The number of customers is given by 𝑛. We assume that the
state of customer 𝑖 ∈ {1, 2, . . . , 𝑛} is binary and is denoted by
𝑥
𝑖
. The state implies

𝑥
𝑖
= {
0 customer 𝑖 conserves electricity,
1 customer 𝑖 normally uses electricity.

(29)

The binary value of 𝑥
𝑖
is determined by power consumption

of customer 𝑖. Let D
𝑖
⊆ {1, 2, . . . , 𝑛}, 𝑖 = 1, 2, . . . , 𝑛 denote

the set of customers, which affect customer 𝑖. In addition, we
assume that there exists one leader in the local area.The state
of a leader is given by 𝑥

1
. Then, for customer 𝑖, we consider

the following PBN as one of the situations:

𝑥
𝑖
(𝑘 + 1)

=

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

𝑓
(𝑖)

1
= 1, 𝑐

(𝑖)

1
= 𝑎
(𝑖)

1
+ 𝑏
(𝑖)

1
𝑢 (𝑘) ,

𝑓
(𝑖)

2
= 0, 𝑐

(𝑖)

2
= 𝑎
(𝑖)

2
+ 𝑏
(𝑖)

2
𝑢 (𝑘) ,

𝑓
(𝑖)

3
= 𝑥
𝑖
(𝑘) , 𝑐

(𝑖)

3
= 𝑎
(𝑖)

3
+ 𝑏
(𝑖)

3
𝑢 (𝑘) ,

𝑓
(𝑖)

4
= 𝑔
(𝑖)
([𝑥
𝑗
(𝑘)]
𝑗∈D
𝑖

) , 𝑐
(𝑖)

4
= 𝑎
(𝑖)

4
+ 𝑏
(𝑖)

4
𝑢 (𝑘) ,

𝑓
(𝑖)

5
= 𝑥
1
(𝑘) , 𝑐

(𝑖)

5
= 𝑎
(𝑖)

5
+ 𝑏
(𝑖)

5
𝑢 (𝑘) ,

(30)
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where 𝑢(𝑘) ∈ [𝑢, 𝑢] ⊆ R1 is the control input corresponding
to the price. The Boolean functions 𝑓(𝑖)

1
and 𝑓(𝑖)

2
imply that

customer 𝑖 forcibly conserves (or does not conserve) electric-
ity. In these cases, time evolution of the state does not depend
on the past state. The Boolean function 𝑓(𝑖)

3
implies that the

state is not changed. The Boolean function 𝑓(𝑖)
4

implies that
the state of customer 𝑖 is changed depending on the other
customers. The Boolean function 𝑓(𝑖)

5
implies that the state

of customer 𝑖 is changed depending on the leader. Thus,
decision making of customers can be modeled by a PBN.
The above Boolean functions are an example of models for
decision making. Depending on real situations, we may use
other Boolean functions.

For the PBN-based model obtained, we consider the
following problem:

find a time sequence of the price such that customers
conserve electricity as much as possible. However, it
is not desirable that the price is too high.

The condition that customers conserve electricity as much as
possible can be characterized by 𝐸[𝑥

𝑖
]. In other words, power

consumption is expressed by 𝐸[𝑥
𝑖
]. Hence, this problem can

be formulated as Problem 2 by appropriately setting the
weights 𝑄 and 𝑅.

5.3. Numerical Example. We present a numerical example.
Parameters in the system are given as follows: 𝑛 = 8, D

1
=

{2, 8},D
𝑖
= {𝑖 − 1, 𝑖 + 1}, 𝑖 = 2, 3, . . . , 7,D

8
= {1, 7}, 𝑎(𝑖)

1
= 0.1,

𝑏
(𝑖)

1
= 0, 𝑎(𝑖)

2
= 0, 𝑏(𝑖)

2
= 0.25, 𝑎(𝑖)

3
= 0.9, 𝑏(𝑖)

3
= −1, 𝑎(𝑖)

4
= 0,

𝑏
(𝑖)

4
= 0.5, 𝑎(𝑖)

5
= 0, 𝑏(𝑖)
4
= 0.25,𝑢 = 0.3, and𝑢 = 0.7.We remark

that under the input constraint 𝑢(𝑘) ∈ [𝑢, 𝑢], (5), and (10)
hold. The Boolean function 𝑔(𝑖) is given by

𝑔
(𝑖)
([𝑥
𝑗
(𝑘)]
𝑗∈D
𝑖

) = 𝑥
𝑗
1
(𝑘) ∧ 𝑥

𝑗
2
(𝑘) ∧ ⋅ ⋅ ⋅ ∧ 𝑥

𝑗
|D𝑖 |
(𝑘) ,

{𝑗
1
, 𝑗
2
, . . . , 𝑗

|D
𝑖
|
} = D

𝑖
.

(31)

Parameters in Problem 2 are given as follows: 𝑥(0) =
[0 1 ⋅ ⋅ ⋅ 1]

⊤,𝑁 = 15, 𝑄 = 𝑄
𝑓
= [1 ⋅ ⋅ ⋅ 1], and 𝑅 = 5.

Next, we present the computation result. Here, Problem 7
was solved once. Figure 3 shows trajectories of 𝐸[𝑥

𝑖
(𝑘)].

Figure 4 shows trajectories of the control input (the price).
From these figures, we see that 𝐸[𝑥

𝑖
] becomes small by fine

adjustment of the control input. In this example, the expected
value of each state converges to 0.32.

In addition, when the obtained control input is applied to
the system, the value of the cost function in Problem 2 was
79.4311. In the case of 𝑢(𝑘) = 0.3 (i.e., the constant input),
the value of the cost function in Problem 2was 85.3581. In the
case of 𝑢(𝑘) = 0.7, the value of the cost function in Problem
2 was 87.0247. From these values, we see that the obtained
control input is more effective than trivial control inputs.
Furthermore, in order to verify the optimality, consider the
case of 𝑁 = 2. The optimal control input was derived as
𝑢(0) = 0.7 and 𝑢(1) = 0.3 by solving the polynomial pro-
gramming problem, which is equivalent to Problem 2. On the
other hand, the control input obtained by solving Problem 7
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Figure 3: The expected value of the state. Some states are indistin-
guishable.
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Figure 4: The obtained control input (price).

was 𝑢(0) = 0.7 and 𝑢(1) = 0.52. Thus, there is a possibility
that the control input obtained by solving Problem 7 is not
optimal for Problem 2.

Finally, we discuss the computation time for solving
Problem 7. The computation time was 0.6 sec for 𝑁 = 15
and 0.03 sec for 𝑁 = 2, where we used IBM ILOG CPLEX
11.0 as the LP solver. The computation time for solving the
polynomial optimization problem for 𝑁 = 2 was 232.2 sec,
where we used SparsePOP [21] and MATLAB 32-bit version.
In the case of𝑁 ≥ 3, owing to memory warning, the polyno-
mial optimization problem cannot be solved. Thus, although
Problem 7 is an approximation of the original problem,
Problem 7 can be solved fast.

6. Conclusion

In this paper, we studied control of complex systemsmodeled
by a probabilistic Boolean network (PBN). First, the struc-
tural control problem for a PBN was newly formulated. Next,
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an approximate solution method was proposed based on a
matrix-based representation of Boolean functions. Finally,
as an application, we considered design of real-time pricing
systems of electricity. The proposed method provides us a
new control method for complex systems.

There are several open problems. It is significant to
consider a method for evaluating the accuracy of an approxi-
mation from the theoretical viewpoint. It is also significant to
develop an identification method of Boolean functions and
parameters 𝑎(𝑖)

𝑙
, 𝑏(𝑖)
𝑙

in (9). Finally, it will be one of the inter-
esting topics to apply the proposed method to several classes
of PBNs, for example, a large-scale PBN with scale-free
structure.
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