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Abstract

We present the Langevin rigid approach, a technique for animating the dynamics of immersed rigid bodies in
viscous incompressible fluid in real-time. We use generalized Kirchhoff equations to ensure forces and torques
from the surrounding fluid that create realistic motion of immersed rigid bodies. We call our method the
Langevin rigid approach because the generalized Langevin equations are applied to represent the effects of
turbulent flow generated at the body surface. The Langevin rigid approach precomputes added-mass effects
and the vortical loads from turbulent model, and executes the rigid body solver in runtime, so that this method
is straightforward and efficient to the interactive simulations. Many types of rigid bodies with lightweight mass
(e.g. leaf or paper) can be simulated realistically in high-Reynolds-number flows.
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1 Introduction

Rigid body simulations are the fundamental tech-
niques in computer animation, which are ubiqui-
tously used in various applications. Although current
rigid-body solvers can handle the body dynamics
and collisions sophisticatedly, it remains a challeng-
ing work to simulate immersed rigid-body dynam-
ics, which considers the motion of rigid bodies fully
immersed in air or submerged underwater. In our
daily-life, we notice that a paper moving through air
follows a beautiful but chaotic-like trajectory rather
than a straightforward vertical path.

The motion of immersed rigid body can be char-
acterized by a Reynolds number Re and its mean
falling velocity Up.
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where v is the kinematic viscosity of the surrounding
fluid; d and b are the characteristic length and thick-
ness of the rigid body; p» and py are the densities
of rigid body and fluid separately. For a common
leaf moving in air, Re is greatly high at a magnitude
of 10%. In the case of a high-Reynolds-number flow,
the vortices born around the body and then detach
from body surface as vortex shedding. The immersed
rigid-body dynamics is so unsteady with path insta-
bilities that the simulations of immersed rigid bodies
become notoriously difficult in the field of both fluid
mechanics and computer graphics.

In contrast to the conventional two-way coupling
simulations, high-Re two-way coupling is far com-
plicated where the strong-coupled motions between
rigid bodies and flow cannot be understood without
fine details of fluid motion, i.e. vortex-body interac-
tion. To the best of authors’ knowledge, the tech-
nique for simulating high-Re two-way coupling of
immersed rigid bodies is absent in computer anima-
tion with the following reasons: 1) The computation
of coupling motions with fluid in small grids is too
heavy for graphical applications; 2) While simulating
flow in high resolutions, the turbulent motions and
numerical dissipation are hard to be analyzed; 3) In
order to achieve stable simulation results, the im-
plementation involving boundary conditions requires
infinitesimal time steps. Therefore, it is impossible
to simulate immersed rigid bodies by conventional
coupling approaches. To resolve this issue, we utilize
generalized Kirchhoff equations with detailed analy-
sis of the flow effects from the surrounding flow.

The research motivation of this work is to supply
a plausible simulation approach of immersed rigid-
body dynamics in real-time on CPU. Because this is
a great challenging problem to account for turbulent
flow for real-time simulations, we assume that the
body is thought as a passive particle in the fluid flow
with the mean falling velocity of the body whereas

the real situation is a body moving through the still
flows, so that the implementation of turbulent en-
ergy need not handle body’s boundary conditions
and can be executed in pre-processes. Due to the ab-
sence of boundary conditions, the aerodynamic drag
and lift forces are resolved implicitly in this work.
In contrast to the empirical model of aerodynamic
forces based on quasi-steady assumptions, this ap-
proach can achieve visually plausible simulation re-
sults accounting for the viscous effects of unsteady
forces from generated turbulence but lose physical
accuracy as trade-off with computation cost.

Flow,
Effect

Pre-process Runtime

Viscous
Effect:

| Turbulent Energy I I Langevin Model |
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Effect:
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Figure 1: An illustration of our approach.

In term of our assumption, we propose a Langevin
rigid approach as a tradeoff between the computation
costs and simulation accuracy to resolve the dynam-
ics of immersed rigid bodies [22]. As illustrated in
Figure 1, our approach separates flow effect from the
surrounding flow into 1) inertial effect from potential
flow and 2) viscous effect from turbulent flow:

e For the inertial effect, we precompute the
added-mass tensors due to both translational
and rotational displacements of the surround-
ing flow.

For the viscous effect, we calculate the turbu-
lent energy and its dissipation rate for obtain-
ing vortical loads on the body in a pre-process
stage.

The vortical loads of viscous effect are represented
in the Langevin model as a stochastic process of the
object velocity, and then substituted into Kirchhoff
equations with added-mass tensors. Our approach
runs a rigid body solver to solve generalized Kirch-
hoff equations in runtime process. Overall, the pro-
posed approach makes it feasible to efficiently simu-
late immersed rigid bodies with arbitrary shapes in
low computation costs. The major contributions of
this work are summarized as follows:

e A new method based on generalized Langevin
equations of both translational and rotational
velocities to represent the characteristics of the
surrounding flow whereas previous work [5, 24]
did not account for the dynamics of rigid bod-
ies and the coupling between translational and
rotational velocities.
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e A new representation of rigid body dynamics
as generalized Kirchhoff equation in body-fixed
frame to account for both inertial and viscous ef-
fects, which is different from previous work [21]
where only inertial effect was considered.

o A two-stage framework includes pre-processes
stage of added-mass effects and the k-¢ turbu-
lent model, and runtime stage of rigid body
solver, which is shown to be efficient to simu-
late immersed body dynamics in real-time.

The rest of this paper is organized as follows: Section
2 highlights some research topics related to immersed
rigid-body dynamics. Section 3 details the equations
of rigid body by generalized Kirchhoff equations.
Section 4 explains the Langevin model to capture
the motion in a stochastic process way, and Section
5 describes the approach on how to obtain turbulent
parameters from the k-¢ turbulent model. Section 6
specifies the algorithms used in the implementation
of the proposed approach. Section 7 shows the sim-
ulation results of different objects by our Langevin
rigid approach. Finally, we conclude this paper with
a discussion of possible future work in Section 8.

2 Related Work

Two-way Coupling between rigid body and in-
compressible fluid has been studied extensively in
computer graphics. Basically there are two types
of schemes on this research. The first scheme han-
dles fluid in Euler formulation and rigid bodies in
Lagrangian formation [1, 4, 6, 9]. Guendelman et
al. [9] proposed a robust ray casting algorithm for
the coupling between fluid and cloths to avoid fluid
leaking. Carlson et al. [4] treated the rigid body as
fluid grid by using distributed Langrange multiplier.
The second scheme is the fully Langrangian meshless
method [2, 7, 18]. Becker et al. [2] proposed a di-
rect forcing method in a predictor-corrector scheme
with SPH particles. Solenthaler et al. [18] used
a penalty method to analyze the forces on the im-
mersed boundary. All these methods handle two-way
coupling simulations in low-Re conditions. For our
research purpose of immersed rigid-body dynamics,
it is trivial and impossible to simulate high-Re two-
way coupling with turbulent flow in computer graph-
ics as explained in previous section.

Turbulent Flow The simulation of turbulent flows
is different with direct numerical simulation of
Navier-Stokes equations. First, from the view of fluid
mechanics, there are some sophisticate approaches
in this fields, including turbulent-viscosity models
(k- equations), Reynolds-stress models, Probabil-
ity Density Function methods (Langevin model) and
large-eddy simulation. It is not apparent to adopt
these approaches directly in computer animation,

and there are some successful works [14, 15] in
computer graphics community recently. Note that
Langevin model is an empirical model based on k-
€ equations [16, 17] but an effective Langragian-
stochastic approach to represent the dynamics of pas-
sive particles in turbulent flow [13]. Recent work
shows that non-spherical particles moving in turbu-
lent flow [25] exhibit the similar dynamics of im-
mersed rigid bodies which has been discussed in pre-
vious work [23]. Therefore, it is physically reasonable
to adopt Langevin model for simulating immersed
rigid bodies while following our assumption in this
work.

Unsteady Dynamics A similar work [21] intro-
duced a Kirchhoff tensor to represent inertial ef-
fects for underwater rigid body simulations. This
approach is only suitable for the inviscid and irro-
tational flow with low-Re number. In this paper,
we propose a Langevin model related to the turbu-
lent flow for solving the vortical loads. Langevin
model has been applied to enhance turbulent flow
simulations [5] and simulations of floating lightweight
rigid body [24] in previous work. In these work,
the rotational velocity and the coupling between
translational and rotational velocities are not con-
cerned. We resolve these issues by combing general-
ized Kirchhoff equations with Langevin model in this

paper.

3 Equations of Motion

Let us consider a rigid body of mass m, and cen-
ter of mass O moving through a still fluid low. The
motion of the rigid body is described by (R(t),z(t)).
R(t) represents the orientation of the body as a 3 x 3
orthogonal matrix rather than a quaternion form,
and x(t) is the position of O at time step ¢ in in-
ertial reference frame. We represent the dynamic
equations of motion in body-fixed frame. All symbols
used throughout this paper can be found in Table 1.

3.1 Kinematic Equation

The translational and angular velocities of the ob-
ject (v,w) € R® are given in body-fixed frame as
follows:

R = R, & = Rv (2)
where the operator ": R®* — s0(3) is defined as s& =
s X w,Vs € R3, where the space so(3) is the Lie
algebra of the Lie group SO(3). & is defined as

0 —w@B w®)
( w(3) 0o - (1)> (3)
—w(2)  w(1) 0

where w(n) is the n-th element of angular velocity w.

- 33—
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Table 1: Notation used through this paper(Bold

letters denote vector variables.).

symbol | description

R rotation matrix of body

T position of body

w angular velocity

v translational velocity

m mass of body

T center of buoyancy

g gravitational acceleration

V volume of body

Pb body density

Pf fluid density

v kinematic viscosity of fluid
Re Reynolds number

F; force due to turbulence

F, force due to gravity

I torque due to turbulence

ry, torque due to gravity
My added mass tensor

M mass tensor

Jr added inertia tensor

J inertia tensor

Jo moment of inertia

Uop mean falling velocity of body
k turbulent kinetic energy

€ dissipation rate of turbulent energy
X turbulent frequency x = e¢/k
u fluid velocity

(u) mean flow velocity

a relaxation rate coefficient

B8 diffusion coefficient

w Wiener process in R?

3 normal Gaussian distributed variable
At time step of simulation

3.2 Dynamic Equation

The dynamics of a rigid body immersed in a vis-
cous fluid results from the coupling between the body
and the surrounding flow. The dynamical effects
from the interaction of the fluid to a body displace-
ment, including both translational and rotational
transformations, are described as added-mass ten-
sors My and Jy. My represents the force and torque
due to the fluid coupling to a translational accelera-
tion of the body and J; is to a rotational accelera-
tion. Therefore, the body dynamics is governed by
the generalized Kirchhoff equations [8]. The dynamic
equation has the following form in body-fixed frame.

M-9+vx (M- -w)=F,+F, (4)
Jwtwx (J w)+vx(My;-v)=T+T,

where M = mI + My, J = Jo + Jy, Jo is the mo-
ment of inertia of the body and I is the 3 x 3 identity

matrix. F} and I'; are the resulted force and torque
due to the turbulence generated at the body surface
while the body moves in a viscous flow; F, and I'y
result from the buoyancy-corrected gravity.

Because the added-mass tensors are only deter-
mined by the body’s geometry and independent of
the generated turbulence at body surface [10], My
and Jy can be computed in a precomputation step
similar to the implementations of the mass tensor
and rotational inertia tensor in [21].

The gravity and buoyancy act on the immersed
rigid body with inverse directions. We express them
in body-fixed frame as follows:

F, =
r, =

R (m —p;V)g (5)
piVr x R'g (6)

where V = m/py is the volume of the body and 7 is
the vector from the center of mass to the center of
buoyancy in body-fixed frame.

The difficulty of solving Eq.(4) is to how to deter-
mine the force F; and torque I'y due to surrounding
turbulent flow, which causes path instability of the
body in a chaotic way. We will describe the approach
to specify vortical loads (force and torque) in the next
section.

4 Langevin Model

The stochastic model for the motion of suspended
fluid particles is proposed by Langevin decades ago.
The velocity increments of a particle in continuous
time steps are in highly correlated process, which
is called the Ornstein-Unlebeck process [19]. The
model can be applied to describe the Brownian mo-
tion of lightweight objects undergoing the vortical
loads from the surrounding turbulent flow [13, 24].

For a statistically isotopic turbulence, the
Langevin equation can be defined as the following
stochastic differential equation:

du(t) = —au(t)dt + BAW (7)

where u(t) is the translational velocity of a fluid par-
ticle; a and 3 are the relaxation rate and the diffusion
coefficient, which reveal the properties of the turbu-
lent flow; and W is a Wiener process which rep-
resents a Brownian motion with a continuous-time
stochastic process. In this implementation, the pro-
cess is calculated by a normal distribution with mean
of zero and variance of the time interval At.

For a fluid particle with arbitrary shape, the relax-
ation term in Eq.(7) has no effect to angular velocity
increments of the body as a rotational Brownian mo-
tion [13]. The Langevin equation for angular velocity
is given as:

dw(t) = BdW (8)

_4-
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4.1 Generalized Langevin Equa-

tion

Pope [16] described the generalized Langevin equa-
tion for the suspended particle in a turbulent flow.
The equation gives the expressions of & and $ having
the following forms:

1

; B = (Coe)?

3 €
a=(5+ 700, (9)
where k and ¢ are kinetic energy and its dissipation
rate of the surrounding turbulent flow; Cy is a Kol-
mogorov coefficient. According to the Kolmogorov
hypothesis, Cy is related to the Reynolds number Re
of the flow [17].

Co(Re) = 6.5(1 + 140Re™3)" 4 (10)

For high-Reynolds-number flow (Re > 10?), this re-
lation is empirically fitted.

Finally, the dynamic equations of immersed body

are discretized through finite-difference scheme by

substituting Eqs.(7)(8)(9) into Eq.(4).

v(t + At) —v(t) = M (—v(t) x (Mw(t))At
—x(: + 2Co)v(t)At
+(CocAt)2 €, + Fy(t)At)

(11)
J N —w(t) x (Jw(t))At
—v(t) x (Mypo(t))At
+(CosAt)Z&; + Ty (t)At)

(12)
where x = £/k is the turbulent frequency; & and
&> are the vectors of normal Gaussian distributed
variables with mean zero and unit deviation as
Norm(0,1). These two vectors are generated using
the Box-Muller algorithm in our work.

The parameters (x, ) measure the characteristics
of the surrounding turbulent flow. We pre-generate
these parameters (x(t),e(t)) by two-equation k- tur-
bulent model in the next section.

w(t+ At) — w(t)

5 Turbulence Model

In a turbulent flow, the fluid velocity w can be rep-
resented by Reynolds decomposition with the mean
flow (u) and fluctuating velocity u' (u = (u) + u').
The common approach for solving the fluid-rigid cou-
pling problem based on the three dimensional Navier-
Stokes equations are extremely computationally ex-
pensive, because the fluctuations of turbulence would
be of small scale and high frequency. It is obvious
not suitable for an interactive application. The most
widely used turbulence model is the k-¢ turbulent
model proposed in [12], which requires low computa-
tional cost. The k-¢ model is a semi-empirical model
based on the transport equations, which consist of

two coupled equations of the turbulent kinetic energy
k and its dissipation rate ¢. This energy transport
equations are defined as follows:

Dik=V-((v+2)Vk)+G—¢
Tk
(13)
Die =V - ((v+ F5)Ve) + x(C1G — Cse)

where D; denotes a Lagrangian derivative; o, and
o are the turbulent Prandtl numbers for k and ¢;
C:1 and C3 are empirical constants. The values of
these parameters are given empirically as: o = 1.0,
0. =13, Cy =144 and C, =1.92 [12].

The turbulent viscosity vz in Eq.(13) describes the
small scale turbulent motion as a viscous diffusion
scale in the turbulent model. Turbulent viscosity vr
is defined as:

k2

vr = C#? (14)

where C), = 0.09 is an empirical constant.

The term G in Eq.(13) represents the generation
of turbulent kinetic energy due to the mean velocity
gradients and can be defined in terms of the strain
tensor of the flow:

G=2vr)» S} (15)
2]

1 a(u);

2(% + Ow; )

In our implementation, we simplify Eq.(13) by
avoiding the calculations of the incorporated diffu-
sion terms, which are proven to be visually unneces-
sary in previous work [14]. The transport equations
have the following simplified formulations:

where S;; =

Dik=G—¢ (16)

Die = x(C1G — Cse) (17)

In cases of high turbulent flows with high Reynolds

numbers, the initial state (ko, o) is defined in terms

of the mean falling velocity Uy as described in Eq.(1)

to estimate the information about the history of the

moving body. The initial conditions for energy trans-
port equations are given as follows:

3
k0=§

3 3
Us; eo=Clkgl™! (18)
where [ is the length scale of the MAC grid cell in
the mean flow simulation.

The turbulent parameters (x,e) are explic-
itly solved with finite difference scheme from
Egs.(15)(16)(17) as shown in Figure 2, where a stan-
dard fluid solver is applied to obtain the mean ve-
locities (u) of the base flow. According to the Kol-
mogorov theory, for high Reynolds number, the ini-
tial turbulence is unstable and the kinetic energy is
divided into smaller scales. After reaching a critical
scale value, turbulent energy dissipates due to viscos-
ity, creating an energy cascade [15]. Figure 2 shows
the varying dissipate rate accompanying the kinetic
energy in the calculated result.
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— — Timestep|

0 50 100 150 200

Figure 2: Turbulent parameters (x,e) in time
steps with Re = 3.8 x 103 and 32 x 32 x 16 MAC
grids.

6 Implementation

The implementation of our approach consists of
two computation stages: pre-computations of added-
mass tensors and turbulent flow; and runtime simu-
lation of a rigid body solver as shown in Figure 1.

Turbulent flow The turbulent model is based on
a standard fluid solver to resolve the mean flow
around the body. However, the complicated solver
of Reynolds-averaged Navier-Stokes equations is usu-
ally applied to the k- model for accurate solutions,
the standard solver can be more visually plausible
and efficient in computer graphics [15].

We utilize a typical MAC staggered grid with semi-
Langragian advection to obtain the base mean flow
as described in Algorithm 1, which is similar to pre-
vious work [5, 15]. The turbulent energy k and its
dissipation rate € are computed at each grid node. In
this work, we consider the viscous effect from the sur-
rounding flow by Lagrangian tracking a passive par-
ticle with the same position of rigid body in the fluid
field, i.e. the implementation of boundary conditions
of rigid body is not necessary, and the inflow velocity
is chosen as the mean falling velocity of Eq.(1) and
defined as:

Uin = Uy (19)

Although the implementation of the mean flow and
turbulent energy could be in real-time by GPU for
low-resolution, this computation should be executed
offline because: 1) We only compute it once; 2) We
need to guarantee the runtime computation of rigid
body solver in real-time; 3) Other turbulent solver
or high-resolution simulations are also acceptable in
our framework.

Rigid body solver Our Langevin rigid approach
is relatively efficient for real-time simulations, be-
cause the computation burdens involving turbulent

Algorithm 1 Pseudo-code for pre-generated
turbulent model.
1: Boundary conditions < Eqs.(18)(19)
2: Timestep t =0
3: while not stopped do
/] Mean flow (u)
Convection by semi-Lagrangian
Pressure projection by Poisson solver

// Energy transport

Get turbulent viscosity vr +Eq.(14)
10 Get strain tensor term G <—Eq.(15)

11: Integrate turbulent energy k +Eq.(16)
12: Integrate dissipation rate € «<Eq.(17)
13:

14: t=t+ At

15: end while

16: Output: (x,¢)

flow effects are executed in pre-computation steps.
The most runtime computation is for the rigid body
solver, which is described in Algorithm 2. We apply a
standard Runge-Kutta scheme for resolving the cou-
pling dynamic equations, Eq.(11) and Eq.(12). In
the work of [11], a lie group integrator of Euclidean
motions is shown to be more robust than the Runge-
Kutta scheme for large timesteps. Because our work
focuses on the falling motion of immersed rigid bod-
ies, we utilize a quite small scale of timestep for the
rigid body solver. The Runge-Kutta scheme is effi-
cient enough for our simulation.

Algorithm 2 Pseudo-code for the runtime com-
putation.

—

Precomputation of added-mass tensors

Initialization of rigid body

Timestep t =0

while not arrive ground do
Calculate gravity force<Eq.(5)
Query x; and &; (Algorithm 1)
Update translational velocity v <Eq.(11)
Update angular velocity w +Eq.(12)
Integrate (R, ) < Eq.(2)
Render data
t=t+ At

: end while

== =
N = O

7 Results

In this section, we describe the simulation results
using the proposed Langevin rigid approach.

A piece of paper released in air with different re-
lease angles is simulated by our approach as shown
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in Figure 3. The cross section of the leaf model used
in our simulation is elliptical (semi-major axis and
minor axis are 4.0 and 1.0 cm respectively). The
thickness is set to be 0.01 cm and the density num-
ber is 0.8. The Reynolds number (4.3 x 10*) is so
large that the turbulence can be generated at the
paper surface. The paper falls down following a heli-
cal trajectory in Figure 3(a) and a side-to-side tum-
bling motion in Figure 3(b) which are in compliance
with the analysis result in [23]. The trajectories have
the secondary motions that the paper rotates around
the major-axis while falling, which usually happens
in reality. Note that we can not understand the sim-
ulation results in prior by our approach while the
initial conditions are modified, e.g. release angle.

| )
m\\\\\\“‘ /
|

»

(b)

Figure 3: Simulation results of a piece of paper
falling in air. (a) initial release angle = 75°; (b)
initial release angle = 30°.

Figure 4 shows a comparison between our sim-
ulation and a video of a flying paper airplane.

The paper airplane is

made by a 8.3 x 83 x

0.01 (cm) print paper.

The added-mass tensors

and moment of inertia of

the body depend on the

geometries with closed

shape, where the fold part

of the paper airplane is constructed as volume as
shown in the right figure. The simulation begins with
an initial velocity of 20 cm/s in the horizontal di-
rection, and the simulated result shows two turning
motions (turning front and turning sideways) which
are caused by the surrounding airflow. The turning
motions are similar to the observation from ground
truth in Figure 4.

Figure 4: Comparison between the simulation
and the ground truth of a flying paper airplane.

Figure 5 shows the discrete frames from the an-
imation of a rubber ellipsoid falling in water, and
the time interval is 50 ms. The rubber ellipsoid with
semi-principal axes of length 1 cm, 2 cm and 4 cm
falls down in a quiescent water flow. A small scale of
fluttering motion can be found in Figure 5(a) using
the simulation method of the previous work [21]. In
contrast to this previous work, the coupling between
forces and torques due to the surrounding turbulent
flow can be indicated properly using our Langevin
rigid approach. The oscillations of rigid body in
differential directions from falling experiments (Fig-
ure 5(c)) are captured in our simulation, so that our
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simulation result is more realistic than the previous
work.

3

(b)

(a) (c)

Figure 5: Comparison between (b) our simula-
tion and (a) the previous work. In (a) only the
added-mass tensors are embedded into the Kirch-
hoff equations, whereas our approach has con-
cerned the force and torque from the surrounding
turbulence (b). (c¢) Ground truth shows oscilla-
tions generated in different directions.

The precomputation time of added-mass tensors
depends on the amount of the body meshes; and the
precomputation time of turbulent model depends on
the grid solutions of the base flow. In the case of
1280 meshes and 32 x 32 x 8 MAC grid, the precom-
putation times are 53 ms and 182 ms, respectively.
All simulations were implemented on an Intel Core i7
CPU with 3.20 GHz and 12.0 GB RAM. The simula-
tion time for a single loop of runtime computation is
not more than 2.0 ms. As shown in Table 2, the run-
time computation time is independent of the body
triangular meshes and time step, and it is suitable
for real-time simulations.

Table 2: Computation cost of our simulation re-
sults on runtime.

bodies meshes timestep avg cost
ellipsoid 1 320 Tms 1.59 ms
ellipsoid 1 320 oms 1.63 ms
ellipsoid 1 320 10 ms 1.65 ms
ellipsoid 2 1280 5ms 1.71 ms
piece of paper 1024 S5ms 1.73 ms
paper airplane 288 5ms 1.86 ms

8 Conclusion

We presented the Langevin rigid approach for re-
alistic simulations of rigid bodies in viscous, high-
Reynolds-number flows. The main strength of the
Langevin rigid method lies in combining Kirch-
hoff equations and Langevin model to represent the
chaotic motions of immersed rigid bodies. The
method allows a real-time simulation for interactive
applications like game. Note that the method de-
scribed in this paper is physics-based one, a cartoon-
style animation is not considered here.

Limitations exist in the Langevin rigid approach.
Because the simulation results are sensitive to the
initial conditions as discussed in Section t, includ-
ing release angle, velocities etc., the appropriate vari-
ables should be chosen to meet the ground truth in
our simulation results. Some characteristic motions
like fluttering and tumbling motions, are not appar-
ently captured by the approximated turbulent model.
These limitations can be improved by animation con-
trol strategies in future work.

Some fruitful avenues for future work remain. It
is possible to extend this Langevin rigid approach
to deformable rigid bodies and bubble dynamics. In
this paper, the collisions among rigid bodies are not
considered, which can be treated as external force
and torque in this approach. In addition, the exper-
imental results of falling rigid bodies indicate that
six primitive trajectories exist, which can be applied
to a motion synthesis approach for simulating the
dynamics of immersed bodies [23]. It is promising
to combine the Langevin rigid approach with motion
synthesis method to achieve realistic and controllable
simulations.
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