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Abstract

Depth perception is a visual ability that allows humans and animals to be able to
perceive the world and environments in three dimensions and distance of objects.
It is one of the most fundamental task that artificial vision systems must solve.
There are three different kind of depth perception which are stereo vision, motion
parallax, and optic flow.

Estimating depth of an object by using vision system has been continuously
researched for a long time. There are a lot of works that can estimate depth of
objects by using binocular cue. However, there is little work on depth estimation
by using monocular depth cue. Most of the researches focus on estimating depth
from a single monocular image. Some of them require specific condition such as
environment, some requires calibration. So, if there are some changes or interfer-
ences in environment or configuration of vision system, the solution seems to fail
later. So, to contribute in monocular depth estimation, our goal is to propose an
autonomous learning and self-calibrating motion parallax depth estimation system
which is robust and able to adapt to environments.

In this thesis, we propose a model that combines knowledges of joint development
of visual encoding and reinforcement learning together to find a depth of a single
object with motion parallax. We use reinforcement learning to learn how to use
encoded sensory data to explicitly control the movement of the eye. Perception and
behavior will be developed simultaneously by minimizing the same cost function.
We consider a real world experiment and a simulation. Experiment demonstrates
that the framework can find estimate depths while it is an autonomous system
and self-calibrating. Also, the experiment shows that an extension of active depth
perception with another form of depth cue is possible.
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Chapter 1

Introduction

In daily life, we use our eyes to perceive environments around us. We can grab
a cup of coffee with our hands which are cooperating with our eyes. However, to
robots, grabbing a cup of coffee is a very difficult task. It requires not only vision,
but it also needs depth perception.

Depth perception is a visual ability to perceive the world in three dimensions
and the distance of an object. Depth perception is the most fundamental artificial
vision problem that must be solved. It is an active process that can involve different
kinds of movement such as eyes movement, head movement, and body movement.
Although currently, there are many solutions that have been developed, they seem
to be unstable. In contrast, biological vision systems are robust. Because, they
have abilities to learn, adapt, and self-calibrate.

The data that are collected by human or animals organs are very noisy messy
data. It is not self-explanatory meaningful information [1, 2]. So, how can us
make sense of these non-obvious data? In [3], they discussed that our brain did
not programed to know how to use those data, but instead the brain is trained
autonomously to learn how to translate those noisy unordered information into
depth perception. In the same way, the robots which are not programmed with
depth perception ability faced the same problem that they do not know how to
utilize the data.

By adapting the biological vision systems with the current artificial vision sys-
tems, we can get rid of the dearth of robustness. In neural science, to use in-
formation from sensory system, the system should efficiently encode the sensory
information by taking advantages of redundancies [4, 5, 6] So, we may use the na-
ture of the sensory systems in humans to adapt with our artificial vision system.
Neurons are the cells that are in our body. They have an ability to propagate
signals rapidly over large distances. Sensory neurons fire sequences of action po-
tentials in various temporal patterns to change their activities. To resemble the
neurons in our body, sparse coding is used to represent sensory inputs [7].
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(a) Vergence (b) Motion parallax (c) Optic flow

Figure 1.1: Three different depth perception

Recently, [8] proposed to apply the efficient coding principle to active vision.
The proposed framework is the promising one. They use the concept of sparse
coding and reinforcement learning together to create such a system that can learn
and optimize the efficiency of coding and vergence eye movements [9, 10]. They
proved that the concept of efficient coding in active perception has the potential
to explain the simultaneous development of disparity representations and vergence
behavior.

However, there is an interesting question left. The question is whether the
framework could be extended to other form of active depth perception. Active
depth perception is depth perception with action of agent, such as movement of
the eyes, body, or manipulating the object. There are three approaches for active
depth perception (Figure 1.1). The first one is depth estimation based on the
vergence angle between two eyes (Stereo vision) which is used in [8] (Figure 1.1a).
The following one is estimation based on motion parallax. A controlled lateral
movement produces a change of the angle under which the object is perceived
(Figure 1.1b). The depth can be estimated by this change. The final one is
estimation based on optic flow. The pattern of optic flow or the visual size of the
targeted object could be used to estimate the depth (Figure 1.1c).

Developed organisms have several method for detecting depth and integrating
sensory information together. However, depth estimation strategies are not all
available from birth. There is an evidence that human infants develop motion-
based depth perception, motion parallax, before developing the binocular depth
cue [11]. Motion parallax plays important role in development of depth perception
system in our brain. So it is interesting to use motion parallax for active depth
perception. This research will adapt motion parallax for the extension of the active
depth perception model.
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1.1 Problem Statement

To estimate the distance between a robot and an object, the robot must have
depth perception mechanism in order to perceive the depth. There are many ways
to estimate the depth such as, stereo vision which is widely used, and there are
a lot of researches about stereo vision. It gives an depth perception ability to a
robot.

However, most of monocular and binocular depth estimation researches does not
only require calibrations before operating, it also requires that the configurations
of the system must not be altered. So, if there is any situation or accident that
interfere the configurations of the vision system a little bit, the system would begin
to fail. Thus, some kind of autonomous and self calibrating mechanism would be
needed in those kinds of situation.

In order to make a robot or a vision system that suitable for all environment
and robust to interferences, the problems are very crucial and must be solved. A
representation of vision system in developed organism, such as human, could be
useful to overcome the problems, because humans vision system can adapt to many
environment and can recover from interferences. A simple concept of perceiving
vision or depth in our human brain is described in Figure 1.2, the action cycle. The
eyes send sensory information to the brain to create vision and depth perception,
while the brain learn to control the eyes movement in order to make eye perceive
the environment effectively.

To create such a system that is robust and fit to all environment, a framework
that is autonomous learning and self-calibrating is required. Autonomous learning
will let the system learns how to improve and adapt itself to environments. Self-
calibrating would make the system more resistive to changes of configuration and
interference. There is one remarkable work that could create such a model that
we described for binocular vision system [8]. In this thesis, we will introduce an
extension of active depth perception with motion parallax of the system.

The proposed model will have two important abilities, autonomous learning and
self-calibrating. The system will be able to learn how to generate an appropriate
eye movement during lateral movement for estimating depth of an object. Finally,
this thesis will show that extending the stereo active depth perception to another
kind of active depth perception is possible. This work will be an another step to
create a full representation of biological vision system for artificial vision system.

1.2 Related Work

In [12], they investigated how a humanoid robot could learn to improve binocular
vision system to judge distances by using some movement. They proved that
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Figure 1.2: Action cycle in most of developed organism

action that does not alter the depth to the target can be a powerful method to
improve depth perception ability. It is very interesting idea that some action
or manipulation of an object, i.e. active depth perception, could improve depth
estimation.

As discussed in [8], there is a lot of related work in artificial vision system
field. Most of the works only concerns the two problem of learning perception
learning behavior in isolation which is opposite to vision system in humans and
animals which has the processes coupled. Some work combines the perception
and behavior together, but still treated the two processes independently. Y Zhao
et al. [8] has proposed a way to use reinforcement learning couple with efficient
sensory coding to create a vergence eye movement for artificial vision system.
Their framework integrates the joint development of perception and behavior in
the context of eye movements. So, the two processes of learning and behavior
are unified in this framework which creates an action cycle (Figure 1.2) like in
developed organism. The framework utilized manipulation of target object to
train the system to autonomously improve vergence eye movement.

However, framework in [8] has one limitation that input disparities are encoded
with in a small range. In [9], they proposed a way to improve the range of input
disparities. They use multi-scale images to overcome the limitation. In [13], they
adapt the framework with the multi-scale improvement to create a new model that
can generate smooth pursuit eye movements, i.e. tracking a moving object.

To our knowledge, there is little work on depth estimation by using monocular
depth cue. Most of the researches focus on estimating depth from a single monoc-
ular image [14, 15, 16]. Nevertheless, there is some intriguing works. In [17], their
approach is very interesting. They use monocular depth cue to estimate relative
depth. Linear regression model is used as perception learning part. Reinforcement

4



learning is also used in their model as behavior learning. However, the learning
and behavior learning are processed in isolation. So, behavior and perception
would not be able to jointly learn together. In [18], they created a model that
uses sequence of images and camera motion to estimate depth. However, it is not
autonomous learning and self-calibrating system.

1.3 Research Objective

To mimic the biological vision of human, this research focuses on implementing
and developing active depth perception system by using motion parallax. In [8],
they prove the concept that their approach for efficient coding in active perception
has potential to explain the simultaneous development of disparity representations
and vergence behavior. However, they only use vergence depth perception. In this
research, we will try to extend the depth perception with the other approaches
which is motion parallax. For the motion parallax, the system will discover and
autonomously learn to represent the latent depth information by using the lateral
movements of head or upper body and the resulting retinal movement of the tar-
get object. The system will be able to obtain and learn to represent the latent
depth information. The ultimate goal of this research is to create a system that
is autonomous learning and self calibrating motion parallax based active depth
perception system.

1.4 Structure of this Thesis

• Chapter 1 is about the research background, problem statement, research
objective, and some related works.

• Chapter 2 is a study of autonomous learning of active binocular vision frame-
work.

• Chapter 3 explains the method of extending the framework’s active depth
perception with motion parallax with experimental and simulation results.

• Chapter 4 contains concluding remarks, contributions and future direction.
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Chapter 2

Autonomous Learning of Active
Binocular Vision Framework

In this chapter, we will discuss about the research, and the fundamental of each
module in the framework proposed in [8] and developed of Zhao et al.’s model
proposed in [9]. First, to understand and extend the framework, we have studied
the framework and created the framework simulation. The setup is that there is
one object that we want to find the distance between the camera and the object
placed in an environment. Then as shown in Figure 2.1, two images are input to
the sensory coding model which is the perception learning part from camera A and
camera B. After that, the sensory coding model sends out sparse coefficient to the
natural actor critic reinforcement learning algorithm which is the behavior learning
part. Finally, vergence command (command that tells how much camera need to
adjust) is sent to the cameras. The framework will repeat this procedure until it
can achieve the vergence angle that gives zero disparity of the object. In the next
section, we will discuss about the fundamental of each step in this framework.

2.1 Vergence Eye Movement

Vergence eye movement is simply the function that control both eyes to point
their fovea on an interested object. Left and right eye rotates in opposite direction
to obtain or maintain single binocular vision (Figure 2.2). When we looks at an
object, the eyes must rotate around the a vertical axis so that the projection of
the image is in the center of the retina of both eyes. In this framework, we try to
make both of the cameras point to the same object.

6



Figure 2.1: Zhao et al.’s framework

2.2 Sensory Coding Model

As we have discussed in Chapter 1, sensory systems should encode sensory infor-
mation in an efficient manner by exploiting redundancies in their inputs. In this
framework, to encode the sensory information, we use sparse coding to learn an
efficient representation of the sensory input (or the images from camera A and B).
The key idea of this efficient encoding is that the reinforcement learner receives
the reward signal on how well the sensory model can represent the input. The flow
of the sensory coding model is shown in Figure 2.3 The inputs to the model are
stereo images from the cameras. The horizontal shift of image of the object that
is measured from left to right is referred as input disparity. At different depth, the
binocular images provide different input disparity. For the experiment, we artifi-
cially generated stereo image pairs from 6 images (Figure 2.4). The left camera
is represented by the original image, while the right camera sees the horizontal
shifted version of the original image.

Stereo image sequences are created by randomly choosing the an image from
the database. For each 10 iterations, one image will be randomly selected again.
To virtually represent images taken from cameras, for each pair of stereo images,
the images are cropped with windows size of 128 by 128 pixel in the center of the
images. The window location of left eye is fixed, while the window location of right
eye can be shifted horizontally to virtually represent the vergence of the eyes. The
actual retinal disparity is the difference between input disparity and the vergence.

So, the goal of this framework is to generate vergence equal to the input disparity
which will create zero retinal disparity. After we cropped the images, we converted

7



Figure 2.2: Vergence eye movement

Figure 2.3: Inside of sensory coding model

the images to gray scale first. Then, we extract the gray scales images into 8 by
8 pixel patches whose locations are generated by 1 pixel shifts horizontally and
vertically. The patches is sub-sampled by using Gaussian pyramid algorithm by a
factor of 8. Then the patches are shifted and normalized to have zero mean and
unit norm. The processed patch is then converted to a vector. Corresponding
vector xi(t), where i is indexes of the patches, from the left and right images are
then combined into a single vector, x(t). The first 64 elements of the vector are
from left eye and the remaining are from the right eye. This results in vector x(t)
has P = 128 elements

To represent the neural vision system in developed organism, the idea of sparse
coding is used. The concept of sparse coding is that the neuron encode the images
in linear fashion. We use combination of basis function drawn from an over-
complete dictionary φ(t) = {φn(t)}Nn=1[7]. The number of basis function used in

8



Figure 2.4: Images that are used in binocular vision framework simulation

this experiment is N = 288. The dictionary is initially randomly generated and
normalized. We use matching pursuit algorithm provided in MATLAB tools to
estimate and find the sparse representation of the input vector by the weighted
sum

xi(t) ≈
N∑
n=1

ai,n(t)φn(t) (2.1)

We use the matching pursuit algorithm to estimate xi(t) because it can limit the
number of coefficients used which reduce complexity. We set the maximum number
of non-zero scalar coefficients ai,n(t) to be 10 elements. This is to create sparseness
for efficient encoding. The coefficients generated by the matching pursuit algorithm
will then be used in reinforcement learning, behavior learning part, later as pooled
activity. Pooled activity represent the activity of each neuron cell, the coefficients
ai,n(t), from every patches. The model that we use for pooled activity is

fn(t) =
P∑
i=1

ai,n(t)2 (2.2)

By estimating vector x(t), there will be some errors. To reduce the errors that
will generate by matching pursuit algorithm in the next iteration, we use gradient
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descent method to update the dictionary by using reconstruction error as a cost
function. The reconstruction error is defined as below

e(t) =
1

P

P∑
i=1

‖xi(t)−
∑N

n=1 ai,n(t)φn(t)‖2

‖xi(t)2‖
(2.3)

After each update, the dictionary is normalized again. The update of dictionary
part is the perception learning part which improves cognitive of the system over
time.

2.3 Reinforcement Learning

In machine learning, the environment is often treated as Markov decision process
(MDP) 1 which can get very complicate for an environment that has many variables
and dimensions. In some cases, MDP can be solved analytically, and in many cases
can be solved by dynamic programming. However, reinforcement learning does not
require any prior knowledge about the Markov decision process model. Also, it is
not supervised system.

We use reinforcement learning algorithms to train the behavior of the system
which is defined by policy. Policy maps the state of the actor in its environment
to a specific action. The agent, or the system, is trained by giving a reward with
respect to its action as described in Figure 2.5. There are many reinforcement
learning algorithms. But the basic of reinforcement learning model is very simple
as described in 2.5. It has a set of environment states S, a set of actions A, and
policy. The basic flow of all reinforcement learning algorithm would be

1. Observe state, st

2. Decide on an action, at

3. Perform action

4. Observe new state, st+1

5. Observe reward, rt+1

6. Learn from experience

7. Repeat step 1

1Markov Decision Process is a discrete time stochastic control process. At each time step,
the process is in some state s, and the decision maker may choose any action a that is available
in state s. The process responds at the next time step by randomly moving into a new state s′,
and giving the decision maker a corresponding reward. - wikipedia
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Figure 2.5: Basic diagram of reinforcement learning

The goal of the agent is to find a policy that would maximize the observed re-
wards over the lifetime of the agent. There are two important value function in
reinforcement learning. First one is value function. It tells how much is the best
reward the agent could get from that state.

V π(st) = R(st, π(s), st+1) + V π(st+1) (2.4)

Where, R(st, π(st), st+1) is a reward that the agent would get, if the agent perform
action at state st with respect to the policy π to the state st+1. The another value
function is state-action value function Q(st, at). It is a little bit different from
value function V π(st). It shows the best reward that the agent could get if take
the action at from state st.

Q(st, at) = R(st, at, st+1) + max
a′

Q(st+1, a
′) (2.5)

Before explaining the Natural Actor-Critic Reinforcement Learning, a simple
reinforcement learning algorithm will be explained first in the following subsection.

2.3.1 Q-Learning

Q-learning is one of reinforcement learning algorithm. It keeps track the state,
action, and state-action value Q(s, a) in a Q-table (Figure 2.6). The flow of the
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Q-learning can be described in Figure 2.7. An action that will be performed is
selected form the actions list. The selection is based on the policy that is used.
The main idea is that it will most likely choose an action that can get good reward.
For updating Q-Value, we can use

Q(st, at) = (1− l)Q(st, at) + l(R(st, at, st+1) + γmax
a′

Q(st+1, a
′)) (2.6)

Where, l is learning rate, which tells how much information the agent would use
from the new experiences. γ is discounted factor. It determines the importance of
the future rewards for the agent. If γ approaches to 1, the agent will make agent
strive for long term high reward. But if γ is close to 0, the agent will consider
only most of current reward and will decide to quit quickly. Generally, we use
0 < l < 1, 0 < γ < 1. To select an action, there are many method to select. In

Figure 2.6: Q-Table

general, we use Gibbs distribution for selecting the action.

π(st, at) =
eQ(st,at)∑
a′∈A e

Q(st,a′)
(2.7)

It gives probability of an action being selected for each action based on the value
in Q-table, Q(st, at).

2.3.2 Actor-Critic

Actor-Critic is a reinforcement learning algorithm that is similar to Q-learning.
But the difference is there is separate actor and critic. The actor corresponds
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Figure 2.7: Q-Learning flow chart

to an action-selection policy, mapping states to actions based on probabilistic.
The critic corresponds to a conventional state-value function, mapping states to
expected cumulative future reward. So, the critic handle a problem of prediction,
while the actor is concerned with control of the action. The information that is
shared by actor and critic is TD (Temporal Difference) error as shown in Figure
2.8. TD error is used to estimate the average reward for a state-action pair. TD
error, δt, is defined by

δt = rt+1 + γV (st+1)− V (st) (2.8)

The TD error can be used to evaluate the selected action. If the TD error is
positive, it means that the selected action, at, generate better reward. So, the
action at should be strengthened in the future. While, for the negative TD error,
it suggests the action at should be weakened. This part is considered to be critic
part. For the actor part, we used the information from critic to update the policy
parameter of the actor, θ(st, at). The update is performed by

θ(st, at) = θ(st, at) + βδt (2.9)

To select an action, we may use Gibbs distribution, equation 2.7. The only differ-
ence is changing Q(st, at) to θ(st, at)

2.3.3 Natural Actor Critic

Unfortunately, both Q-learning and Actor-critic algorithm is only for discrete state
space system. So, this algorithm is used for the reinforcement learning part. The
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Figure 2.8: Actor-Critic model

algorithm has been proposed in [19]. They presented four reinforcement learning
algorithm based on actor-critic, and natural gradient ideas. Two linear neural
networks are used to implement actor and critic (Figure 2.9).

Figure 2.9: Two neural network implementing actor and critic

We use the actor-critic algorithm number 3 proposed in [19]. The algorithm is
explained in Table 2.1 below.

• t is the iteration number.

• Ĵ is average reward.

• fst is a feature vector for state st.

• v is neural network weights for feature vector fst .
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Table 2.1: Natural Actor Critic Algorithm 3 in [19]

1: Input:
• Randomized parameterized policy π
• Value function feature vector fs

2: Initialization:
• Policy parameters θ = θ0
• Value function weight vector v = v0
• Step sizes α = α0, β = β0, ξ = cα0

• Initial state s0
3: for t = 0, 1, 2, ... do
4: Execution:

• Draw action at ∼ π(st, at)

5: Average Reward Update: Ĵt+1 = (1− ξt)Ĵt + ξtrt+1

6: TD Error: δt = rt+1 − Ĵt+1 + vᵀfst+1 − v
ᵀ
t fst

7: Critic Update: vt+1 = vt + αtδtfst
wt+1 = [I − αtψstatψᵀ

stat ]wt + αtδtψstat
8: Actor Update: θt+1 = θt + βtwt+1

9: endfor
10: return Policy and value

function parameters θ, v

• w is neural network weights for policy parameter vector θ.

• θ is policy parameter vector.

• α, β, ξ are step sizes for updating weight vector w, θ, and average reward Ĵ
respectively.

• φstat is a feature vector for state-action pair.

for softmax activation policy, Gibbs distribution, which we use in this project

π(st, at) =
eθ

ᵀφstat∑
a′∈A e

θᵀφsta′
(2.10)

ψstat = φstat −
∑
a′t∈A

π(st, a
′
t)φsta′t (2.11)

2.4 Multi-Scale Extension

Binocular cells tuned to different disparity ranges in visual cortex areas. These
cells adjust and adapt the controlling mechanism to generate fast or slow vergence
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response depending to the range of disparity [20]. As discussed in [9], there is one
limitation of the framework which is the maximum input disparities is quite low.
In order to increase the range of detectable disparities, they has extend the model
to multi-scale approach. The developed framework uses two scale of images which
are coarse and fine scale, in order to have both characteristic of the two scales of
image. The model is very similar to the previous model. The changed is only that
the model now consider two scale of images, as shown in Figure 2.10. The only
difference is only in the sensory coding model part. For the reinforcement learning
part, the only difference is input state and reward. In the following subsection, we
will explain the change of the sensory coding model part.

Figure 2.10: Multi-scale binocular vision model

2.4.1 Sensory Coding Model for Multi-Scale Extension

Input images and method for virtual left and right camera are still the same. For
this extension, we cut more one 80 by 80 pixels image for left and right camera.
The addition cropped image represent a fine scale image, while the original one
represent coarse scale image. This is to mimic the human vision system, i.e. we
can get more detail in the center of our vision. The images will be processed in the
same way as explained in section 2.2. The settings for coarse scale image are the
same. But for the fine scale image, the image is sub-sampled by factor of 2. We
shift the image by 4 pixels horizontally and vertically to generate image patches.

For the coding part, we use two over-completed dictionary, each for coarse scale
and fine scale. The process for encoding is the same, except for that we encode
coarse scale and fine scale image separately.
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2.5 Simulation

2.5.1 Simulation Setup

Original Framework

Policy which maps the state of the system to an action define behavior. In this
framework, the state is represented by feature vector, the pooled activity

fst = f(t) =


f1(t)
f2(t)

...
fP (t)

 (2.12)

Actions are vergence commands, which tells the cameras how much they have to
rotate. Negative of the reconstruction error from the sensory coding model is used
as a reward for the reinforcement learning.

rt = −e(t) (2.13)

The goal of the reinforcement learning is to select actions that maximize the dis-
counted cumulative future reward, namely minimizing the total reconstruction
error.

We chose a set of 5 actions as follow, A = {−2,−1, 0, 1, 2}. The actions are
the number of pixels that the image for right eye will be shifted. The probabil-
ity of choosing an action is computed according to a softmax operation (Gibbs
distribution). The step sizes for reinforcement learning algorithm is set as below.

• α = 0.1

• β = 0.01

• ξ = 0.01

The neural network weights v, w, and policy parameter θ are initially randomized.

Original Framework With Multi-Scale Extension

The input state for reinforcement learning part is combined pooled activity of
coarse and fine scale image. For the state and reward given to the reinforcement
learning algorithm, we use

fst = f(t) =


fC1 (t)
fC2 (t)

...
fCP (t)

+


fF1 (t)
fF2 (t)

...
fFP (t)

 (2.14)
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rt = −(eC(t) + eF (t)) (2.15)

Where, superscript F states for fine scale, while superscript C means coarse scale.
We use the set of actions, step sizes, and softmax operation as the same in original
framework simulation setup.

2.5.2 Simulation Results

To evaluate the performance of the model, we use absolute mean error (AME)
in vergence over 100 trials from [9]. This method will track vergence errors only
in the iteration before changing the image, i.e. every 9th iteration. The AME is
defined as

AME(t) =
1

100

99∑
k=0

|α(t+ 9 + 10k)− α∗(t+ 9 + 10k)| (2.16)

where α∗ is the target vergence at the current iteration. Figure 2.11 shows AME
of a one run through simulation.
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Figure 2.11: AME of the simulation

We can see that the error is reduced over time and stays around 2 pixels. This
tells that the framework has nothing to learn anymore from the input images.
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After the training is satisfied, i.e. the framework can generate overlapped images
from left and right camera (Figure 2.12), we test the framework by changing the
input disparity. The result is shown in Figure 2.13. The vergence error is shown
in Figure 2.14.

Figure 2.12: Example of some of results of the simulation

Figure 2.13: Vergence tracking after training is finished

We can see that the system can response to the input disparity changes quickly.
Vergence stays stable after reaches zero retinal disparity. By neglecting the error
between transition to a new disparity, the maximum error we get is only 1 pixels.
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Figure 2.14: Vergence error

From the simulation results, we can say that the framework can generate vergence
eye movement.

2.6 Chapter Conclusion

In this chapter, a novel framework proposed by Zhao et al. and multi-scale ex-
tension of the framework have been explained and discussed. We showed that the
system can autonomously learn how to control left and right camera to generate
vergence eye movement.

20



Chapter 3

The Extended Framework

After we have studied and understand the previous framework in chapter 2, in this
chapter we will explain the framework that active depth perception is extended
with motion parallax.

3.1 Motion Parallax

Parallax is a difference in apparent position of an object viewed along two different
viewpoint. The term is derived from Greek word ”parallaxis” meaning alteration.
Parallax has many application such as for astronomers, they use the concept of
parallax to measure distances to the closer stars.

Thus, motion parallax is a method that gives the parallax effect when the subject
or object is moved. Motion parallax is one of the depth perception that we use
everyday in our daily life. It is a monocular depth cue which means that it uses
only one vision organ. The fundamental of the motion parallax is that as we move
the object that are closer to us move faster than the object that is farther as shown
in Figure 3.1. In Figure 3.1a, as we start moving from the initial position we can
see red box and yellow box. But after we moved to the right, as in Figure 3.1b,
we still see the yellow box, but now we can not see the red box. So, from these
two images we can immediately conclude that the yellow box is farther than the
red box.

To see the depth of the object from motion parallax, the subject maintains
fixation on the object. In order to fixate the vision of the object, the subject must
counter-rotate the eye during translation (Figure 3.2). If the subject move to the
left, the eye must rotate to the right, and vice versa.
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(a) Start position (b) End position

Figure 3.1: Images created by lateral movement from left to right

Figure 3.2: Depth perception from motion parallax

3.2 The Extended Framework

To extend the framework with motion parallax, we use different method for image
input and camera control as shown in Figure 3.3. In this case, we use only one
camera for image input. We generate lateral movement for the camera. The
camera then capture images from different viewpoints. Two successive images is
input to the framework. The output of the framework is movement of the eye
(rotating left or right). The framework will try to fixate the object at the same
position for two successive image, i.e. make the object in the images overlapped.
A simple two layer neural network is used to estimate the depth by using motion
parallax information, the movement of the eye. The neural network will be trained
by using the provided ground truth depth information at first. After finished the
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training the framework will be able to estimate the depth of an object by moving
only once. For sensory coding model and reinforcement learning part, we use the
same setting as the previous framework with multi-scale extension.

Figure 3.3: Motion parallax framework

3.3 Simulation

To test the extended framework, we test it on a simulation first. For motion paral-
lax simulation, we use virtual experiment platform called V-REP to generate input
images for motion parallax framework in MATLAB. The simulation environment
is shown in Figure 3.4. The scene composes of a HOAP3 robot, a bookshelf, and
background.

3.3.1 Simulation Setup

In this simulation, the lateral movement of the robot is generated by simply chang-
ing the position of the robot in the environment. The initial distance between the
bookshelf and the robot is 1 meter. The robot moves from left to right by 50
centimeters for 5 steps. Each step, the robot moves for 10 centimeters. Thus we
get 5 images for one lateral movement from left to right. We use only left eye of
the robot to capture the images for motion parallax. The example of the images
are shown in Figure 3.5. As mentioned above, two successive images will be input
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Figure 3.4: Motion parallax framework simulation by using V-REP

to the sensory coding model. The sensory coding model randomly selects two suc-
cessive images for the input. After the two successive images are processed, we get
the movement command for the eye rotation. However, to reduce the movement
required for the robot, we use image shifting to virtually rotate the eye of the
robot. Because, if we use the real rotation of the eye, the robot needs to perform
lateral movement every time when eye rotates.

After the processes of the two successive images are finished for 15 iteration,
the sensory coding model will randomly choose new two successive images from
the same set of 5 images. After finish processing 5 sets of two successive images,
the bookshelf in the V-REP simulation will be moved farther by 10 centimeters.
The process is repeated. When the depth between the robot and the bookshelf
reaches to 2 meters, the depth is reset to 1 meter. This is to ensure that every
depth between 1 meter to 2 meters is trained. Every 14 iterations, we record the
number of shifting pixel q (how much the eye rotates) correspond to the depth d
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Figure 3.5: Example of motion parallax images from simulation (left to right)

at that iteration in a depth data matrix D.

D =

[
q1 q2 q3 · · ·
d1 d2 d3 · · ·

]
(3.1)

When the training of the framework is satisfied 1, we continue to train the depth
data. For the depth training part, we use a neural network toolbox provided in
MATLAB to train the depth dataD. We use a simple two layer feed-forward neural
network with a sigmoid transfer function in the hidden layer and a linear transfer
function in the output layer (Figure 3.6). The number of neurons in hidden layer
is 10. For training algorithm, we use Levenberg-Marquardt method. Because it is
capable of solving most of the problems, and the depth data is very simple. In the
first row of the depth data matrix D, we use it for the input of neural network.
We use the second row of the matrix to be the target. 70-percent of the data is
reserved for training. 15-percent is for validating. And another 15-percent is for
testing.

3.3.2 Simulation Results

From Figure 3.7, we can see that we can fixate object in the same position for
two successive images. However, there are still some errors as shown as AME
(equation 2.16) in Figure 3.8. We can see that AME converges around 1 to 2
pixels. Although we could not achieve zero pixel AME, but we can still use the

1the framework can generate an overlapped of two successive images, or AME starts to satu-
rate (see section 2.5.2)
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Figure 3.6: The neural network used in this simulation

eye movement information (amount of shifting in pixels) for finding depth of the
object. Figure 3.9 shows error histogram of the trained neural network. It shows

Figure 3.7: Example of object fixating in simulation

depth estimation error, the difference between real depth and output depth. Each
bin contain instances that have error in that range. We can see that the most of
the error is closed to zero. This tells that the neural network we used can handle
the data very well.

Then, we test the framework by using the image at the same depth as in training.
The depth of the object is varied from 1 meter to 2 meters increasing by 10
centimeters in the same way as in training period. The results and errors are
shown in Table 3.1. Then we input some images at different depth other than the
ones that are used in training. The result is shown in Table 3.2.

From the results, we can see that the framework can estimate the depth of the
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Figure 3.8: AME of HOAP3 simulation
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Table 3.1: HOAP3 simulation result (training depths)

Input Depth (meter) Output Depth (meter) Error (centimeter)
1.00 1.02 2
1.10 1.10 0
1.20 1.20 0
1.30 1.27 3
1.40 1.47 7
1.50 1.47 3
1.60 1.60 0
1.70 1.81 11
1.80 1.86 6
1.90 1.91 1
2.00 1.99 1

Table 3.2: HOAP3 simulation result (random depths)

Input Depth (meter) Output Depth (meter) Error (centimeter)
1.25 1.29 4
1.53 1.60 7
1.77 1.86 9
1.92 1.90 2

object with some small errors. Although, for some depths, the framework outputs
the same result. This is because there is still a little offset error of pixel shifting.
Also, there is not enough space for eye movement (pixel shifting) to represent a
certain depth. So, for the depths that are close together, there is a chance that the
results are the same. So, in this case, we could only estimate depths in step of 10
centimeters. This problem could be solved by increasing size of image patch and
resolution of input images to increase resolution of eye movement. Thus, there are
more eye movement pixels to represent depths. However, increasing the patch and
input image size will increase computation time.

3.4 Hardware

After we finished testing on the simulation, we test the framework in a real world.
For the moving part, we did not use the HOAP3 robot, because time is limited
and generating lateral motion for the robot takes time and difficult. Using the real
HOAP3 robot will be considered in the future work.
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3.4.1 Hardware Setup

The setup that we use in this experiment is shown in Figure 3.10. We use MATLAB
to run the framework. A micro-controller, Arduino, is used for receiving command
from MATLAB and controlling an XY-table. A camera is attached to the XY-
table.

Figure 3.10: Setup for real world experiment

However, motion parallax requires only lateral movement, so we use only one
axis of the XY-table. The flow of the system is the same as in the simulation,
except that the camera and camera controlling part are in the real world.

In this experiment, we have the XY-table and object on a floor. As shown
in Figure 3.11, the camera (blue eye symbol) can move laterally to generate the
motion parallax images. The depth between the camera and the object (black
cube with red stripe) will be varied by hand manually. In this case, the camera
will move laterally for 12 centimeters. Each step move for 3 centimeters, thus we
have 4 images per lateral movement. The view from the camera is shown in Figure
3.12.

In order to make training easier, we gather all of the data required to train before
run the training. We capture all images generated from lateral movement in various
depth, from 40 centimeters to 1 meter (each step increased by 10 centimeters).
Then we use the set of images that we have gathered to train the framework.

3.4.2 Experimental Results

Figure 3.13 shows an example of tracking of object from two successive frames.
Figure 3.14 shows AME of pixel shifting.

Figure 3.15 shows error histogram of the trained neural network. We test the
framework in the same way as in HOAP3 simulation. The results are shown in
Table 3.3, and Table 3.4.
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Figure 3.11: XY-table and the object

Table 3.3: Experimental result (training depths)

Input Depth (centimeter) Output Depth (centimeter) Error (centimeter)
40 35.34 4.66
50 49.40 0.60
60 54.33 5.67
70 72.18 2.18
80 83.45 3.45
90 88.76 1.24
100 91.98 8.02

The experimental results are similar to the simulation results in the HOAP3
simulation. As discussed in the simulation section 3.3.2, we can increase the reso-
lution of the input images and patch size to increase perceivable depth resolution.
But, it comes with costs of computation time.

We showed that the framework can be trained by using only one cost function
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Figure 3.12: View from camera

Figure 3.13: Example of object fixating image from real world
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Figure 3.14: AME of real world experiment
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Table 3.4: Experimental result (random depths)

Input Depth (centimeter) Output Depth (centimeter) Error (centimeter)
45 47.90 2.90
65 60.35 4.65
85 88.76 3.76

which is reconstruction error. The framework autonomously learn perception and
behavior simultaneously, i.e. joint development learning. They could improve each
other. Only two successive images from lateral movement are used to estimate
depth. The experiment and simulation setup shows that the system does not
require calibration. Finally, we can use a simple linear regression model, neural
network, to utilize eye movement to estimate the depths. So, the framework is
autonomous learning and self-calibrating.

3.5 Chapter Conclusion

We have proposed a method to extend the active depth perception of original
framework proposed in [8]. In addition, we proposed a method to use the in-
formation from motion parallax to estimate the depth between camera and the
object.
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Chapter 4

Conclusions

This last chapter will conclude our work done in this thesis and the contribution
made to network throughput. It will also give some points which can further
studied and improved in this thesis.

4.1 Concluding Remarks

In order to perceive world in three dimension, depth perception is required. Depth
perception is the visual ability to perceive the world in three dimensions and the
distance of an object. Depth perception is the most fundamental artificial vision
problem that must be solved. There are three kinds of depth perception which are
stereo vision, motion parallax, and optic flow.

In Chapter 1, we first give a brief explanation of depth perception. We pointed
out the lack of robustness in conventional artificial vision system. To deal with
this problem, we proposed a method that adapted biological vision systems with
artificial vision system by using motion parallax active depth perception. At first,
we studied a framework proposed in [8].

In Chapter 2, we have explained the step and procedure for each module in the
framework. We also considered to use the multi-scale image extension proposed
in [9]. We showed that the system is can generate vergence eye movements. In
addition, we made the simulation to test our understanding of the framework and
to be extended later with motion parallax active depth perception.

In Chapter 3, we proposed a method to extend te active depth perception with
motion parallax. We use the concept of motion parallax movement which when
we are moving laterally, our eyes try to fixate the object. We utilized eye rotation
information to generate depth information by using two layers neural network. We
tested the framework in both simulation and real world experiment. The result
of both simulation and real world experiment are acceptable, although there are
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some depth errors. The results could be improved, if we used larger resolution of
input images and patch size. However, it will increases computation time.

4.2 Contributions

The main contributions of this thesis would be

• Motion parallax extension

We have proved that an extension to active depth perception part of the
framework is possible. We can use the framework to fixate the object while
moving laterally. This tells us that we could extend and develop this frame-
work farther.

• Depth estimation

The framework could only fixate the object between two cameras or two
successive images, but it still lacked of depth estimation. We have developed
a way to utilize movement information to extract depth information.

• Smooth pursuit of lateral movement

As we have discussed in Chapter 1, in [13], they developed a model that
can pursuit a moving object by using stereo vision while maintaining zero
disparity. However, in our case, the framework could fixate the object while
the camera is moving at a unit speed with one camera.

4.3 Open Questions

In this thesis, there are still some open questions remaining for further develop-
ment.

4.3.1 Optic Flow Extension

As we have mentioned before that there are three types of depth perception which
are stereo vision, motion parallax, and optic flow. We have studied the stereo vision
framework. We have proposed a way to extended the active depth perception with
motion parallax. However, there is one remaining type of depth perception that
have not yet been used yet which is optic flow. To perceive depth by optic flow, we
have to move forward and backward. When we are moving forward and backward,
we can sense that the closer object have the size increased more than the object
that is far away. So, the question is left that can we utilize those information to
extend the framework.
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4.3.2 Depth Perception Integration

The prospective of this thesis is to mimic the depth perception system in developed
organisms. So, it is interesting that whether it is possible to integrate depth
perception into a single framework or not. For example, we may integrate motion
parallax and stereo vision together. The framework is able to decide to choose
which depth perception is more reliable in a specific situation and environment.

4.3.3 Depth of Multiple Objects

Even though, we can extended the active depth perception part with motion par-
allax and estimate the depth, we can only find depth of a single object in the
scene. So, there is an interesting question that whether the framework can esti-
mate depths for multiple objects or not. We may implement an algorithm that
divide the image for each object and input into the framework.

4.4 Future Directions

In the future, this project will be farther developed in my Doctoral research project.
The remaining active depth perception, optic flow, will be used to extended the
depth perception of the framework. Finally, a way to complete integrated of three
active depth perception will be proposed.
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