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Glossary

CLDSA Chandy-Lamport Distributed Snapshot Algorithm.

UDS Underlying Distributed System.

DSR Distributed Snapshot Reachability.

MUDS The State Machine for a UDS.

MCLDSA The State Machine for a UDS Superimposed by CLDSA.

i



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Purpose of the Research and Outcome . . . . . . . . . . . . . . . . . . 2
1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 5
2.1 Underlying Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 CLDSA and the DSR Property . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Model Cheking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Maude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Specification and Model Checking of CLDSA in Maude 15
3.1 Specification of CLDSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Model Checking of CLDSA . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Formalizing a UDS and a UDS Superimposed by CLDSA as State Ma-
chines 19
4.1 Modeling a UDS as a State Machine . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 State Expression for a UDS . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 State Transitions for MUDS . . . . . . . . . . . . . . . . . . . . . . 21
4.1.3 State Machine MUDS . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Modeling a UDS Superimposed by CLDSA as a State Machine . . . . . . 23
4.2.1 State Expression for CL(MUDS) . . . . . . . . . . . . . . . . . . . . 23
4.2.2 State Transitions for CL(MUDS) . . . . . . . . . . . . . . . . . . . . 27
4.2.3 State Machine CL(MUDS) . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 A More Faithful Definition of the DSR Property 36
5.1 Some Definitions and Proposition 1 . . . . . . . . . . . . . . . . . . . . . . 36

5.1.1 Some Definitions on SCLDSA . . . . . . . . . . . . . . . . . . . . . . 36

ii



5.1.2 Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 A More Faithful Definition of the DSR Property . . . . . . . . . . . . . . 45
5.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Equivalence of Two Definitions of the DSR Property 47
6.1 The Theorem on Equivalence of the Two Definitions and Some Lemmas . . 47
6.2 Proof of Lemma 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3 Proof of Lemma 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.4 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.4.1 Proof of the “if” part of Lemma 1 . . . . . . . . . . . . . . . . . . . 52
6.4.2 Proof of the “only if” part of Lemma 1 . . . . . . . . . . . . . . . . 53

6.5 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7 CLDSA does not alter the behaviors of a UDS 55
7.1 A Binary Relation Between Two State Machines MUDS and MCLDSA . . . 55
7.2 Theorem 2 and the Proof of It . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.2.1 Simulation from MCLDSA to MUDS . . . . . . . . . . . . . . . . . . . 56
7.2.2 Simulation from MUDS to MCLDSA . . . . . . . . . . . . . . . . . . 76

7.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8 Future Work 83
8.1 The Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.2 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

9 Conclusion 89

Appendix A Specification of CLDSA in Maude 91

Appendix B Model Checking of CLDSA in Maude 110

This dissertation was prepared according to the curriculum for the Collaborative Ed-
ucation Program organized by Japan Advanced Institute of Science and Technology and
University of Engineering and Technology, Vietnam National University.

iii



Chapter 1

Introduction

1.1 Motivation

In recent decades, many applications have relied on distributed systems, which involve
multiple processes connected by channels. Due to the fact that distributed systems should
be fault tolerant because they need to run for a long time, keeping on providing services
to human beings, other systems, etc. To make distributed systems fault tolerant, it is
necessary to use many non-trivial distributed algorithms, such as snapshot algorithms and
checkpointing algorithms. Since many problems on distributed systems, such as recovering
from faulty states and detecting stable properties can be cast to taking global snapshots
of distributed systems [8], distributed snapshot algorithms are crucial.

A distributed system consists of a finite set of processes and channels. The processes
communicate by sending and receiving messages through channels. A global state of
a distributed system includes the states of all processes and all channels in the system,
where the state of a channel is a sequence of messages sent along the channel, but not been
received. Distributed snapshot algorithms help to determine global states of a distributed
system (called global snapshots) during a computation. One desired property distributed
snapshot algorithms should enjoy is as follows: let s1 be the state in which a distributed
snapshot algorithm concerned initiates, s2 be the state in which the distributed snapshot
algorithm terminates, and s∗ be the snapshot taken, and then s∗ is reachable from s1 and
s2 is reachable from s∗, whenever the distributed snapshot algorithm terminates. The
property is called the distributed snapshot reachability (DSR) property. Note that the
snapshot may not appear in the actual computation from the start state to the finish
state.

Taking global snapshots of a distributed system is not straightforward because dis-
tributed systems are asynchronous and processes do not share clocks and memory. These
lead to that all processes cannot record their local states at exactly the same time. What
we obtained might be inconsistent global states. Therefore, Chandy and Lamport have
proposed a distributed snapshot algorithm [1] called CLDSA in this thesis, by which
processes can record their own states and the states of communication channels such that
the combination of process states and channel states form a consistent global state.
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With the advancement of computer and model checking technologies, many model
checkers, such as Spin [3] and NuSMV [4] have been developed and applied to formal
verification of various kinds of software and hardware systems. To the best of our knowl-
edge, however, application of model checking to formal verification of distributed snapshot
algorithms have not been fully investigated. Since distributed snapshot algorithms are
non-trivial, the problem to model check that the distributed snapshot algorithms enjoys
the DSR property is not straightforward. There is an existing study [2] in which Maude
[5] has been used to model check that CLDSA enjoys the DSR property. Maude is a
specification and programming language system based on rewriting logic, and equipped
with model checking facilities: the LTL model checker and the search command. The
search command is used in the existing study. The authors of the existing study, how-
ever, do not discuss whether their definition of the DSR property faithfully expresses the
property. In addition, we recognize that the informal description of the DSR property
involves both an underlying distributed system (UDS) and the UDS superimposed by
CLDSA, while the DSR property encoded in terms of the Maude search command in-
volves only the UDS superimposed by CLDSA in the existing study. Consequently, we
do not think that the existing study provides the good foundation to guarantee that the
DSR property has been sufficiently model checked.

Therefore, it is necessary to faithfully express the DSR property, and then consider
the similarities between the new formal definition and the existing one. Moreover, one
significant characteristic of distributed snapshot algorithms is that distributed snapshot
algorithms should run concurrently with but not alter the UDS. Since this property relate
to computation and the behaviors of a UDS, however, it is not straightforward to prove
that a distributed snapshot algorithm satisfies this property manually. The authors in [1]
asserts that CLDSA satisfy this property, but they have not yet proved it. Until now, we
have not yet found out any reliable studies, in which this property is proven. In addition,
this property is not mentioned in the existing study. But, we should prove that CLDSA
does not alter the behaviors of a UDS.

1.2 The Purpose of the Research and Outcome

The purpose of our research is to revisit model checking of CLDSA. Carefully inves-
tigating the informal description of the DSR property, the way to faithfully express the
DSR property has been given in [6]. However, the study has not yet completed. The
technical report [6] has not been reviewed. Our research complete [6] giving a formal
definition of the DSR property, which is more likely to faithfully express the informal
description. Then we prove that the new definition of the DSR property is equivalent
to the definition in the existing study to confirm the validity of the model checking ap-
proach used in the existing study. Since the new definition involves both a UDS and the
UDS superimposed by CLDSA, it is not straightforward to directly model check the new
definition with any existing model checker. Hence the equality of the two definitions also
asserts that we can use the model checking approach used in the existing study to model
check the new definition. Moreover, we prove that CLDSA does not alter the behaviors
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of a UDS .
Since state machines are suitable to formalize concurrent systems including distributed

systems, state machines are used in our research to formalize a UDS and the UDS
superimposed by CLDSA. To faithfully express the informal description of the DSR
property, we first formalize a UDS and the UDS superimposed by CLDSA as state
machines MUDS and MCLDSA, respectively. The DSR property is formalized based on
them. Maude notation is used to describe state machines. Then we prove Theorem 1
saying that our new definition is equivalent to the definition of the DSR property in
the existing study. To prove the Theorem 1, we prove Proposition 1 and Lemma 1.
Lemma 1 asserts that reachability is preserved between MUDS and MCLDSA. Proposition
1 says that whenever CLDSA terminates in state s, there is no marker in the start state,
the snapshot and the finish state. We prove as Lemma 2 and Lemma 3 that one-step
reachability is preserved between MUDS and MCLDSA to prove Lemma 1. The proof of
Theorem 1 follows from Proposition 1 and Lemma 1. Furthermore, a binary simulation
between MUDS and MCLDSA is used to prove that CLDSA does not alter the behaviors
of a UDS. Since CLDSA works by using a special message called marker, CLDSA does
not alter the behaviors of a UDS means that excepting for putting markers in a UDS,
the algorithm does not change the state of all processes and channels. We propose the
binary relation r between MUDS and MCLDSA saying that for each s1 ∈ SUDS and each
s2 ∈ SCLDSA, r(s1, s2) if and only if s1 is the same as the state obtained by deleting all
markers from s2. To guarantee that CLDSA does not alter the behaviors of a UDS, we
prove Theorem 2 saying that r is a bi-simulation relation between MUDS and MCLDSA.

Summarizing the research results, we have given a more faithful formal definition of the
DSR property. Moreover, we have proved Theorem 1 saying that our formalization of the
DSR property is equivalent to the existing one for each MUDS . Theorem 1 guarantees
that it suffices to model check the definition used in the existing study for CLDSA and the
existing model checking approach can be used for this end. We have also proved Theorem
2 asserting that MCLDSA simulates MUDS and vice versa to guarantee that CLDSA does
not alter the behaviors of the UDS. The research results are depicted in Fig. 1.1.

1.3 Related Work

CLDSA has been originally proposed in [1] as the first, in which the DSR property
is described in the informal way. The DSR property is formalized as an invariant in [7],
but their definition does not explicitly involve two state machines. CLDSA is modeled in
Promela and model checked with Spin [10]. In which, the consistent snapshot is defined,
but the DSR property is not mentioned directly.

Andriamiarina, Méry and Singh [9] investigate the correct-by-construction process through
which some distributed snapshot algorithms including CLDSA are derived with Event-B
and Rodin. Starting with an abstract model in which a consistent cut is instantaneously
recorded, several refinement steps are repeated to construct some distributed snapshot
algorithms that describe how to obtain consistent cuts by multiple transition steps. A
consistent cut is a set of events of a distributed snapshot algorithm that satisfy some con-
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The informal description of DSR property

• Involving two state machines.

Theorem 1

• Saying that the two definitions are equivalent.

• Allowing the existing approach to model check the DSR property for CLDSA.

The existing definition

• Involving only one state machine.

• Being able to be model checked with Maude.

A more faithful formal definition

•   Faithfully expressing the informal description.

• Not straightforward to be directly model checked.

Our contributions
Formalize Formalize

Theorem 2

• Guaranteeing that CLDSA does not alter the behaviour of the UDS.

Figure 1.1: The contributions of our research

ditions, and can induce a snapshot. So, recording a consistent cut is regarded as taking a
snapshot. Although they use multiple state machines described in Event-B, the relation
between their state machines and ours (MUDS and CL(MUDS)) is not clear and must be
worth investigating.

1.4 Organization of the Thesis

The thesis is organized as follows:

• Chapter 2 introduces some preliminaries, such as a UDS, state machines, model
checking and CLDSA, and gives an informal description of the DSR property.

• Chapter 3 presents the specification and model checking of CLDSA in Maude.

• Chapter 4 describes how to formalize a UDS and the UDS superimposed by CLDSA
as state machines MUDS and CL(MUDS), where CL is a function that takes MUDS
and returns the state machine of the UDS superimposed by CLDSA.

• Chapter 5 gives the more faithful formal definition of the DSR property.

• Chapter 6 proves the theorem that guarantees the validity of the model checking
approach used in the existing study and we can use the model checking approach
to model check the new definition of the DSR property.

• Chapter 7 proves another theorem asserting that MCLDSA simulates MUDS and vice
versa to guarantee that CLDSA does not alter the behaviors of a UDS.

• Chapter 8 discusses some future work.

• Chapter 9 concludes the thesis.
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Chapter 2

Preliminaries

2.1 Underlying Distributed Systems

As described in [1], a UDS consists of a finite set of processes and channels, which can
be described as a labeled, directed graph in which the vertices represent the processes and
the directed edges represent the channels. An example is shown in Fig. 2.1. The UDS
consists of three processes p, q, r and four channels c1, c2, c3, c4. The channel c4 is used
to directly send messages to the process p from the process r, but not vice versa. There
may be more than one channel from one process to another. There are the two channels
c1, c2 from the process p and the process q in the UDS. In addition, channels are assumed
to have infinite buffers, to be error-free and to deliver messages in the order sent. The
delay experienced by a message is arbitrary but finite. The processes communicate by
sending and receiving messages through channels.

The global state of a distributed system consists of the states of all processes and all
channels in the system, where the state of a channel is characterized by the sequence of
messages sent along the channel, excluding the messages received along the channel. Since
many problems on distributed systems such as recovering from faulty states and detecting
stable properties can be cast to taking global snapshots of distributed systems. Taking
a global state of a distributed system is very important. A global state is a consistent
global state iff it satisfies that: if in the local state of a sender process p, a message m is
recorded as sent, it must be captured in the state of the channel c connected the sender
and the receiver or in the local state of the receiver process q and in the collected global
state, for every effect, its cause must be present, and if a message m is not recorded as
sent in the local state of process p, then it must neither be presented in the state of the
channel c nor in the local state of the receiver process q [8]. To recording the meaning
a global state of a distributed system, the states of all processes and all channels should
be record at exactly the same instant. Due to the asynchrony of distributed systems, the
lack of globally shared memory, global clock and unpredictable message delays, however,
all processes cannot record their local states at exactly the same time. Then the global
states we obtained may be inconsistent. This makes recording consistent global states
non-trivial.
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p q

r

c1

c2

c3c4

Figure 2.1: A distributed system with processes p, q, r and channels c1, c2, c3, c4.

2.2 CLDSA and the DSR Property

Chandy and Lamport have proposed a distributed snapshot algorithm [1] by which
processes can record their own states and the states of incoming channels such that the
combination of all process states and all channel states forms a consistent global state.
CLDSA guides each process when it should record its own state and the state of each
incoming channel by using a special message called marker. CLDSA runs concurrently
with the computation but does not alter the underlying computation. Each process can
record its state at any time when it has not yet received any markers from other processes.
The following rules must be followed:

Marker-Sending Rule for a process p: for each its outgoing channel c, p sends one
marker along c after recording its state and before sending further messages along c.

Marker-Receiving Rule for a process p: when the process p gets a marker from
one its incoming channel c,

if p has not yet recorded its state

then p records its state according to Marker-Sending Rule for p and the state of
channel c as empty sequence

else p records the state of c as the sequence of messages received along c after
recording p’s state and before receiving the marker along c.

CLDSA can be initiated by one or more processes in a distributed system by executing
the “Marker Sending Rule” by which each of them records its local state spontaneously
without receiving markers from other processes and sends one marker along each of its
outgoing channels. A process executes the “Marker Receiving Rule” on receiving a marker.
If the process has not yet recorded its local state, then it records its local state, records the
state of the channel on which the marker is received as the empty sequence, and sends one
marker along each of its outgoing channels. Otherwise, it records the state of the channel

6



p q

r

Figure 2.2: The UDS with processes p, q, r and 4 channels

p q

r

Figure 2.3: The process p initially start the algorithm.

as the sequence of messages received along the channel after its state was recorded and
before it received the marker along the channel. When the algorithm terminates, each
process has already recorded its state and the states of all its incoming channels. The
global snapshot is the combination of those records.

One Scenario of CLDSA.

Let us consider the UDS that consists of three processes p, q, r and four channels as
shown in Fig .2.2. We assume that there are two tokens in the system and the state of
each process depends on the number of tokens it has. In the state shown in Fig .2.2, there
are one token in p and one token in q.

Now we assume that p initially starts the algorithm. The start state is same the state
of the system as shown in Fig .2.2. There are one token in p and another in q. Since p
initially starts the algorithm, it records its state as the state in which there is one token
and the state of two its incoming channels as empty sequence. Then, it sends one marker
along one its outgoing channel from p to q. Assume that in the same time q sends one
token to p. Let see the illustration in Fig .2.3.

Then q receives the marker. Because this is the first time q receives a marker, it records
its state as the state in which there is no token and the state of the channel is as empty

7



p q

r

p q

r

Figure 2.4: The process q receive the marker from p.

p q

r

p q

r

Figure 2.5: The process p and r receive the marker from p.

sequence. Then, it sends two markers along two its outgoing channels. Since q has only
one incoming channel, it locally completes the algorithm. Assuming that in the same
time, p sends one token to q. Let see the illustration in Fig .2.4.

Because of FIFO channel, p receives the token before it receives the marker from q.
When p receives the marker from q, since it has already recored its state then it records
the state of the channel from q to p as the sequence in which there is one token. Also,
r receives a marker from q. In the same way, r records its state and the state of the
channel and then it sends one marker to p. r locally completes the algorithm. Let see the
illustration in Fig .2.5.

The algorithm is globally completed when p receives the marker from r. The finish
state is shown in Fig .2.6. The snapshot is shown in Fig .2.7 in which there are one token
in p and another in the channel from q to p.

The DSR Property.

Let s1, s∗ and s2 be the state in which CLDSA initiates, the snapshot taken, and
the state in which CLDSA terminates, respectively. Although the snapshot s∗ may not
be identical to any of the global states that occur in the computation from s1 to s2, one

8



p q

r

Figure 2.6: The finish state.

p q

r

Figure 2.7: The snapshot taking by CLDSA.
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Figure 2.8: Simulation from MA to MB.

desired property (called the DSR property) CLDSA should satisfy is that s∗ is reachable
from s1 and s2 is reachable from s∗, whenever CLDSA terminates. Note that s1, s2 and
s∗ are states of the UDS but not those of the UDS superimposed by CLDSA.

2.3 State Machine

State machines can be used to formalize distributed systems. It consists of a set of
states including a set of initial states and a total binary relation over states. The definition
is as follows:

Definition 1 (State Machine) A state machine
M , 〈S, I, T 〉 consists of

1. a set of states S;

2. a set of initial states I ⊆ S;

3. a total binary relation over states T ⊆ S × S.

Each element (s, s′) ∈ T is called a (state) transition from s to s′ (or just a transition).
Since T is total, for each state s ∈ S there exists a state s′ ∈ S such that (s, s′) ∈ T.

Infinite sequences of states called paths are generated from a state machine. Paths are
defined as follows:

Definition 2 (Path) A path π of a state machine M , 〈S, I, T 〉 from a state s0 is an
infinite sequence of states π , (s0, s1, s2, . . . ), where (∀i ≥ 0)((si, si+1) ∈ T ). πi denotes
the i-th state (i.e., si) in π and Π denotes the set of all paths of M .

Simulation from one state machine to another state machine is defined as follows:

Definition 3 (Simulation from MA to MB) Given two state machines
MA , 〈SA, IA, TA〉 and MB , 〈SB, IB, TB〉 , r : SA SB → Bool is called a simulation
from MA to MB if it satisfies the following conditions:

10



1. For each sA ∈ IA, there exists sB ∈ IB such that r(sA, sB).

2. For each sA, s
′
A ∈ SA and sB ∈ SB such that r(sA, sB) and sA  MA s

′
A, there exists

s′B ∈ SB such that r(s′A, s
′
B) and sB  ∗MB

s′B.

Note that sA  MA s′A means that sA goes to s′A by one state transition in MA and
sB  ∗MB

s′B means that sB goes to s′B by zero or more state transitions in MB.
Fig. 2.8 shows the diagrams corresponding to the two conditions in the Definition 3.

2.4 Model Cheking

Model checking is an automated technique for verifying finite state systems, such as se-
quential circuit designs and communication protocols [11]. Given a finite-state model of a
system and a formal property, that technique systematically checks whether this property
holds for that model. The principle of model checking is: generate all possible states of
the system and check that whether its desired property holds in each state. In case, there
are errors, the property does not hold, model checking will produce a counterexample that
can be used to find the source of the errors. Model-checking problem can be described as
follows:

Given a transition system M and a formula f , the model-checking problem is to decide
whether M |= f holds or not. If not, the model checker should provide an explanation
why, in the form of counterexample.

A model checker is the software tool that performs the model checking in which a model
is described in a formal description language and a property is specified in formal way. A
model checker generate all possible states of a system, then it automatically checks that
whether the system satisfies its desired property. If the property is found to not hold, a
counterexample is generated to help to find out why the property does not hold.

The process of model checking can be distinguished into the following different tasks:

• Modeling: is to model a system under consideration using the model description
language. Models of systems describe the behavior of systems in an accurate and
unambiguous way. They are often expressed by using finite-state automata, which
consist of a finite set of states and a set of transitions. Transitions describe how a
system moves from one state to another.

• Specification: is to state the property that a system must satisfy before model
checking. The property is specified in a specification language, usually in a logic-
based formalism. A model of the system and a formula of the property are considered
as inputs to model checking. Completeness is one of the important issue in spec-
ification. Model checking provides means for checking that a model of the system
satisfies a given specification. However, it is impossible to determine whether the
given specification covers all the properties that the system should satisfy [11].
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Property 
specification

system model

systemProperty

Formalizing Modeling

Model checking

Satisfied
Not satisfied + 

Counterexample

Figure 2.9: Schematic view of the model-checking approach.

• Verification: is to check the validity of the property. Running the model checker
to automatic check the validity of the property in the system model. There are
basically three possible outcomes: the specified property is either valid in the given
model or not, or the model turns out to be too large to fit within the physical limits
of the computer memory.

The entire model-checking process should be well organized, well structured, and well
planned. One schematic view of the model-checking approach is shown in Fig .2.9.

Model checking has a number of advantages over verification techniques based on auto-
mated theorem proving. The main benefit of model checking is highly automatic. How-
ever, the main challenge in model checking is dealing with the state space explosion
problem. This problem occurs in systems with many components that can interact with
each other or systems with data structures that can assume many different values.

2.5 Maude

Maude, a specification and programming language, is based on rewriting logic, which
contains membership equational logic as its sub-logic. State machines (or transition sys-
tems) and their data are specified in rewriting logic and membership equaltional logic,
respectively. States of state machines are expressed as data, such as tuples and associative

12



commutative collections, and state transition rules are described in rewriting rules. The
specifications of state machines are called system specifications. Basic units of Maude
specification and programming are modules. A module consists of syntax declaration,
which declare for sorts, subsorts, kinds and operators. The syntax declaration part pro-
vides appropriate language to describe system and is called a signature. There are two
kinds of modules in Core Maude: functional modules and system modules. Signatures are
common for both of them, however,

- A functional modules is a equational theory in membership equational logic. func-
tional modules admit equations and memberships. functional modules are declared with
the keywork fmod ... endfm, where ‘...’ corresponding to all declaration of submodule
importation, sorts, subsorts, operators, variables, equations, and so on.

- A system modules is a rewrite theory. system modules admit rules, which are used to
describe transitions between states. system modules are declared with the keywork mod
... endm, where ‘...’ corresponding to all declaration of submodule importation, sorts,
subsorts, operators, variables, equations, rules and so on.

Some built-in modules are provided in Maude such as BOOL and NAT for Boolean
values and natural numbers. The boolean values are denoted as true and false, and
natural numbers as 0, 1, 2, ... as usual. The corresponding sorts are Bool and Nat.

In addition, Maude is equipped with many useful functionalities. Among them are
model checking facilities and meta-programming facilities. The model checking facilities
mainly consists of an LTL model checker and a search command that can be used as
a reachability checker. The search command is used in the existing study. the search
command is used to model check invariant properties of concurrent systems specified as
system modules in Maude.

Given a state s, a state pattern p and an optional condition c, the search command
searches the reachable state space from s in a breadth-first manner for all states that
match p such that c holds. The syntax of search command is as follows:

search [ n, m ] in M : s ⇒ p such that c .

where M is a module in which the specification of the state machine concerned is described
or available, s is the start term, p is the pattern that has to be reached, ⇒ is an arrow
indicating the form of the rewriting proof from s until p. A rewrite expression t⇒ t′ can
be used in the optional condition c, that has to be satisfied by the reached state. This
checks if t′ is reachable from t by zero or more rewrite steps with rewrite rules. ⇒ can
be:
⇒1 : means a rewriting proof consisting of exactly one step,
⇒+ : means a rewriting proof consisting of exactly one or more steps.
⇒* : means a rewriting proof consisting of exactly none, one or more steps, and
⇒! : indicates that only canonical final states are allowed.

Although the reachable state space is bounded, the whole state space is unbounded.
The search command can be given as options the maximum number of solutions and the
maximum depth of search, namely n is an optional argument proving a bound on the
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number of desired solutions and m is an optional argument for the maximum depth of
search.

A metaprogram is a program that takes programs as inputs and performs some useful
computation. It may transform one program into another or my analyze such programs.
In Maude, metaprogram has a logical, reflective semantics. This reflect the fact that
both membership equational logic and rewriting are reflective logics. The Maude meta-
programming functionalities can treat Maude specifications as data. The META-LEVEL
module, in which key functionality of the universal theory has been implemented, is built.
META-LEVEL module can be imported to easy write meta-programming in Maude. It
includes the module META-MODULE and META-TERM. In the META-TERM mod-
ule, Maude terms are metarepresented as elements of a data type Term of terms. In the
META-MODULE module, Maude modules are metarepresented as elements of a data
type Module of modules. In the META-LEVEL, there are operations, such as upMod-
ule, upTerm and downTerm to allow moving between reflection levels. The process of
reducing and rewriting a term using Maude’s command is metarepresented by built-in
functions metaReduce and metaRewrite, respectively. The process of applying a rule is
metarepresented by built-in function metaApply. The process of matching two terms is
metarepresented by built-in function metaApply and the process of searching for a term
satisfying some conditions is reified by built-in functions metaSearch and metaSearchPath.
The functions metaReduce, metaRewrite, metaApply, metaSearch and metaSearchPath are
called descent functions that allow us to descend levels in the reflective tower.

2.6 Chapter Summary

This chapter introduced some preliminaries that are very necessary. It first described
a UDS and introduced the concept of the global state of a distributed system. Also, the
problems of taking global snapshots of distributed systems were mentioned.

It then introduced CLDSA and the DSR property. One scenario of CLDSA was given
to easily imagine how the algorithm works. The informal description of the DSR property
was given based on the original paper [1] in which the DSR property is described as the
first.

The chapter then gave the definitions of state machine. Then some other definitions
on state machines, such as path and simulation from one state machine to another state
machine were given.

The Model checking section presented about model checking in which the principle of
model checking was presented and the model-checking problem was described. Also, this
section described the process of model checking and the schematic view of the model-
checking approach.

The last section in this chapter introduced Maude, in which Maude search command
and metaprogram in Maude were introduced in detail.
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Chapter 3

Specification and Model Checking of
CLDSA in Maude

CLDSA has been formally analyzed in the existing study [2] in which Maude has
been used to model check that CLDSA enjoys the DSR property. The authors describe
how to specify CLDSA in Maude and how to model check that CLDSA enjoys the DSR
properties with the Maude search command.

3.1 Specification of CLDSA
CLDSA has been specified in Maude. What is modeled is actually the UDS super-

imposed by CLDSA. A UDS consists one or more processes that are connected with
directed channels that are unbounded queues. A system is assumed that it may be has
only one process, and some processes have no outgoing channels, no incoming channels,
or neither of them. There are no self-channel, which from one process to its self. Messages
in the system are separated into token for non-marker message and marker for CLDSA.
Tokens can be consumed by processes.

To specify the algorithm, basic data used for identifying processes, tokens and makers
are sorts Pid, Tokens and marker, respectively. Sorts EmpChan, NeChan and Chan are
used for empty channels, non-empty channels and channels. The state of each process
and the state of each channel are considered as observable components, in which the state
of a process and the state of a channel are denoted as p-state and c-state, respectively.
The state of a process depends on the number of token it has and the state of a channel
is as the sequence of messages containing tokens and markers on the channel. Other
observable components are for control information, which are used to control behavour of
the algorithm. The state of a UDS, the start state, the finish state, and the snapshot are
expressed as base-state(...), start-state(...), finish-state(...) and snapshot(...), respectively,
where ‘ ... ’ is a soup of p-state and c-state observable components. Those are called meta
configuration components and the sort is MCComp. Moreover, the control information is
expressed as control(...) that is also meta configuration components, where ‘ ... ’ is also
a soup of observable components of control information. A state of a UDS superimposed
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by CLDSA is expressed as a soup of meta configuration components, which is called
a meta configuration. A meta configuration is a global view of the system (the UDS
superimposed by CLDSA). Although the system specification does not depend on the
number of processes or the number of channels, they need to fix those number to model
check the DSR property. Fixing those number is described in initial meta configurations.

Each process in the a UDS superimposed by CLDSA can do the following actions:

1. The process may consume a token owned by it and changes its state accordingly.

2. The process may put a token into one of its outgoing channels if it has some outgoing
channels and changes its state accordingly.

3. The process may get a token from one of its nonempty incoming channels if it has
some nonempty incoming channels and changes its state accordingly.

4. The process may start the CLDSAwhen it has not yet received any markers. It
records its state, initializes the states of its incoming channels as empty if any, and
puts one marker into each of its outgoing channels if any.

5. The process may get a marker from one of its incoming channels if it has some
incoming channel. If it has already started the CLDSA, it has completed the record
of the incoming channel. Moreover, if it has received markers from all the incoming
channels, it has locally completed the CLDSA. If it has not yet started, it records
its state and the state of the incoming channel as empty, and initializes the states
of the other incoming channels as empty if any. Then, it puts one marker into each
of its outgoing channels if any. If it has only one incoming channel, it has locally
completed the CLDSA. Note that the first three describe the UDSpart.

Actions of processes in the UDS superimposed by CLDSA are described by rewriting
rules in Maude. Here is an example, in which the consumption of tokens is described by
the following rewriting rule:

rl [chgStt] :
base-state((p-state[P ] : (T PS)) BC) finish-state(empConfig) control((consume : true) CC)
⇒
base-state((p-state[P ] : PS) BC) finish-state(empConfig) control((consume : true) CC)

where BC and CC are variable of sort for a soup of observable components, T is variable
of sort for Token, PS is variable of sort for state of processes (as the sequence of Tokens).

For each of basic actions of processes, there are multiple rewriting rules that have been
obtained by case analyzes based on predicates that are not locally observable by any
process. Case analyzes are to cover all possible situations.
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3.2 Model Checking of CLDSA
The Maude system is equipped with model checking facilities: the search command

and the LTL model checker. In the existing study, the model checking invariants through
search is used. They model check that CLDSA satisfies the DSR property by the Maude
search command. The DSR property can be divided into RP1 and RP2 as follows:

1. s∗ is always reachable from s1 ( RP1 ), and

2. s2 is always reachable from s∗ ( RP2 ).

which can be checked with the Maude search command. The Maude search command
is used to search states that satisfies some conditions. To model check DSR property,
they do the following Maude search commands. The following part, SC, FC and SSC
are variable of sort for a soup of observable components, MC is variable of sort for meta
configuration, b is either true or false, and n is the number of processes in the system.

- To find all states in which a snapshot has been taken by following Maude search com-
mand:

search in EXPERIMENT : imc ⇒* start-state(SC) finish-state(FC) snapshot(SSC) MC

such that FC =/= empConfig .

- To find all states in which a snapshot has been taken such that the snapshot SSC
is reachable from the start state SC by following Maude search command:

search in EXPERIMENT :
imc ⇒* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig
∧ base-state(SC) control((prog[p(0)]: notYet) ... (prog[p(n-1)]: notYet) (consume : b))
⇒
base-state(SSC) control((prog[p(0)]: notYet) ... (prog[p(n-1)]: notYet) (consume : b)) .

- To find all states in which a snapshot has been taken such that the snapshot FC is
reachable from the snapshot SSC by following Maude search command:

search in EXPERIMENT :
imc01 ⇒* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig
∧ base-state(SSC) control((prog[p(0)]: notYet) ... (prog[p(n-1)]: notYet) (consume : b))
⇒
base-state(FC) control((prog[p(0)]: notYet) ... (prog[p(1)]: notYet) (consume : b)) .

Let m0, m1 and m2 be the number of the solutions to the search for snapshots, the
search for RP1 and the search for RP2 . The search for snapshots finds all states in
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which a snapshot has been taken. The search for RP1 finds all states in which a snapshot
has been taken such that the snapshot is reachable from the start state under the UDS, if
m1 equals m0, CLDSA enjoys RP1 . RP2 can be checked likewise. The search for RP2
finds all states in which a snapshot has been taken such that the finish state is reachable
from the snapshot under the UDS, if m2 equals m0, CLDSA enjoys RP2 . The DSR
property (RP1 and RP2 ) holds if and only if ((m1 == m0) ∧ (m2 == m0)). And this
is the key point of model checking the DSR property.

3.3 Chapter Summary

This chapter described how to specify CLDSA and how to model check that the
algorithm enjoy the DSR property in the existing study. In detail, it described what
the system is actually specified and presented how the states of the system is expressed.
Then it described how the actions of processes in the UDS superimposed by CLDSA are
described by rewriting rules in Maude. The way to specify the algorithm in Maude is
presented. However, please see fully the specification of CLDSA in Appendix A.

The chapter then showed how to model check that CLDSA enjoy the DSR property by
Maude search command in the existing study. It also explained how the DSR property
is encoded in Maude search command. The method to model check that CLDSA enjoy
the DSR property was presented. However, more experiments conducted are shown in
Appendix B.
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Chapter 4

Formalizing a UDS and a UDS
Superimposed by CLDSA as State
Machines

4.1 Modeling a UDS as a State Machine

To model a UDS as a state machine MUDS , we consider how to express states and
transitions of MUDS .

4.1.1 State Expression for a UDS
Each process in a UDS has its own local state, and so does each channel. Each state

of MUDS should consist of the state of each process and the state of each channel in the
UDS. We use name-value pairs (called observable components) to express the states of
processes and channels, where name may have parameters. For observable components
for process states and channel states, the following operators that are constructors as
specified with ctor are prepared1:

sort MsgQueue .
op empChan : → MsgQueue [ctor] .
op | : Msg MsgSeq → MsgQueue [ctor] .
sort OCom .
op p-state[ ]: : Pid PState → OCom [ctor] .

op c-state[ , , ]: : Pid Pid Nat MsgQueue → OCom [ctor] .

where Pid is the sort for process identifiers, PState is the sort for process states, Nat is
the sort for natural numbers, MsgQueue is the sort for queues of messages for which the
sort Msg is used, and OCom is the sort for observable components. A sort is also used as
the set of all ground constructor terms (or values) of the sort. Let p, q ∈ Pid, ps ∈ PState,

1Maude notation is used to describe state machines.
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n ∈ Nat and ms ∈ MsgQueue. (p-state[p]: ps) is an observable component whose name
is p-state[p] where p is a parameter and whose value is ps, expressed as a term of OCom
that says that the local state of a process p is ps. (c-state[p, q, n]: ms) is an observable
component whose name is c-state[p, q, n] where p, q, n are parameters and whose value is
ms, expressed as a term of OCom that says that the state of a channel from a process p
to a process q is ms. Since there may be more than one channel from p to q, a natural
number n is used in (c-state[p, q, n]: ms) to identify the channel.

We use a soup2 of process and channel states to represent each state of MUDS . For this
end, the following sorts and operators are prepared:

sort Config.
subsort OCom < Config .
op empConfig : → Config [ctor] .

op : Config Config → Config [ctor assoc comm id:empConfig] .

Config is the sort for soups of observable components and a super-sort of OCom, which
means that each term of OCom is treated as the singleton soup only consisting of the
term. empConfig denotes the empty soup of observable components, and the juxtaposi-
tion operator is used to construct soups of observable components. For c1, c2 ∈ Config,
c1 c2 ∈ Config. The juxtaposition operator is associative and commutative as specified
with assoc and comm, and empConfig is an identity of the operator specified with id:
empConfig.

We give the following functions on the states of a UDS. In the following part, P,Q ∈
Pid, PS ∈ PState, N ∈ Nat, CS,MS ∈ MsgQueue, CF,CF1 ∈ Config and M ∈ Msg
are variables of those sorts.

- Function chans : to get the set of all channels of a UDS;

op chans : Config → Config .
eq chans(empConfig) = empConfig .
eq chans((p-state[P ]: PS) CF ) = chans(CF ) .

eq chans((c-state[P,Q,N ]: CS) CF ) = (c-state[P,Q,N ] : CS) chans(CF ) .

- Function msg : to get the state of a channel;

op msg : Ocom → MsgSeq .
eq msg(c-state[P,Q,N ] : CS) = CS .

eq msg(p-state[P ]: PS) = empChan .

- Function enq : to put a message at the end of a sequence of messages;

op enq : MsgSeq Msg → MsgSeq .

2Associative-commutative collections may be called multisets or bags, but we use soups to refer to
such collections according to the nomenclature of the Maude community.
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eq enq(empChan, M2) = M2 | empChan .

eq enq(M1 |MS, M2) = M1 | enq(MS,M2) .

Function # : to count the number of occurrences of a process or channel in a state
of a UDS;

op # : Config Pid → Nat .
eq #(empConfig, P ) = 0 .
eq #((p-state[P1]: PS) CF , P ) = if P = P1 then 1 + #(CF,P ) else #(CF,P ) fi .
eq # ((c-state[P1, Q1, N1]: CS) CF , P ) = #(CF,P ) .

op # : Config Pid Pid Nat → Nat .
eq # (empConfig, P,Q,N) = 0 .
eq # ((p-state[P1] : PS) CF,P,Q,N) = #(CF,P,Q,N) .
eq # ((c-state[P1, Q1, N1]: CS) CF,P,Q,N) =
if (P = P1) and (Q = Q1) and (N = N1)

then 1 + #(CF,P,Q,N) else #(CF,P,Q,N) fi .

Function = : to check out the equivalence between the two states of a UDS;

op = : Config Config → Bool .
eq (empConfig = empConfig) = true .
eq (((p-state[P ]: PS) CF ) = ((p-state[P ]: PS) CF1)) = (CF = CF1) .
eq (((c-state[P,Q,N ]: CS) CF ) = ((c-state[P,Q,N ] : CS) CF1)) = (CF = CF1) .

eq ((OC CF ) = (OC1 CF1)) = false [owise] .

4.1.2 State Transitions for MUDS

Each process in a UDS may do three kinds of actions:

i it may change its state without putting any message into any of its outgoing channels
nor getting any message from any of its incoming channels,

ii it may put a message into one of its outgoing channels and may change its state (may
not change its state), and

iii it may get the top message from one of its incoming channels if the channel is not
empty and may change its state (may not change its state).

The three kinds of actions i, ii and iii are called Change of Process State, Sending
of Message and Receipt of Message, respectively. The actions are described as transition
rules. A transition rule is described in form of rewrite rule. In the following part, P,Q ∈
Pid, PS1, PS2 ∈ PState, N ∈ Nat, CS ∈ MsgQueue and M ∈ Msg are variables of those
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sorts.
- Change of Process State is described as the following transition rule3:

(p-state[P ] : PS1) ⇒ (p-state[P ] : PS2)

- Sending of Message is described as the following transition rule:

(p-state[P ] : PS1) (c-state[P,Q,N ] : CS)

⇒

(p-state[P ] : PS2) (c-state[P,Q,N ] : enq(CS,M))

where PS1 may be the same as PS2 and enq is a standard function for queues, taking a
queue q and an element e and putting e into q at bottom.
- Receipt of Message is described as the following transition rule:

(p-state[P ] : PS1) (c-state[Q,P,N ] : M | CS)

⇒

(p-state[P ] : PS2) (c-state[Q,P,N ] : CS)

where PS1 may be the same as PS2. The operator | is used to construct queues of
messages. For m ∈ Msg and q ∈ MsgQueue, m | q ∈ MsgQueue where m is the top
message of the queue.

There are only three transition rules. Due to the number of states for each process, the
number of channels, the number of states for each channel, etc., however, there may be
more than three ground instances of the transition rules. Given a transition rule L ⇒ R,
a ground instance of the transition rule is obtained by replacing each variable in L ⇒ R
with a ground constructor term (or a value) of the sort of the variable.

Definition 4 (TRUDS) Let TRUDS be the set of all ground instances of the three transi-
tion rules.

3The rewrite rule is not executable because the variable PS2 does not appear in the left-hand side.
Each rewrite rule (and each equation) should be executable and the rewrite rule should be split into
multiple executable ones so that model checking can be doable with Maude. Since the main purpose of
the paper is to give a more faithful definition of the DSR property and confirm the validity of the model
checking approach used in the existing study, we make each rewrite rule as general as possible to cover
all possible situations.
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4.1.3 State Machine MUDS

A UDS is formalized as MUDS , 〈SUDS , IUDS , TUDS〉. SUDS is the set of all ground
constructor terms whose sorts are Config. IUDS is a subset of SUDS such that for each
state s ∈ IUDS , for each channel c in s, the message queue in c is empty, for each process p ∈
Pid, there exists at most one p-state[p] observable component in s, for each (p, q, n) where
p, q ∈ Pid and n ∈ Nat, there exists at most one c-state[p, q, n] observable component in
s, and there is no dangling channel in s. TUDS is the binary relation over SUDS made from
TRUDS .

Definition 5 (MUDS) The state machine formalizing a UDS is MUDS , 〈SUDS , IUDS ,
TUDS〉, where

1. SUDS is the set of all ground constructor terms whose sorts are Config;

2. IUDS is a subset of SUDS such that (∀s ∈ IUDS)(∀c ∈ chans(s))(msg(c) = empChan),
(∀ s ∈ IUDS) (∀ p ∈ Pid) (#(s, p) ≤ 1), (∀ s ∈ IUDS) (∀ p, q ∈ Pid) (∀ n ∈ Nat)
(#(s, p, q, n) ≤ 1) and (∀ s ∈ IUDS) (∀ (c-state[p, q, n] : cs) ∈ s) ((#(s, p) = 1)
∧ (#(s, q) = 1));

3. TUDS is the binary relation over SUDS defined as follows:

{(L CF, R CF) | L ⇒ R ∈ TRUDS , CF ∈ Config}.

Function chans gets all channels of a state s ∈ SUDS , msg gets the state of a channel c in
s, and # counts the number of occurrences of a process or a channel in s.

4.2 Modeling a UDS Superimposed by CLDSA as a

State Machine

This part considers how to model a UDS superimposed by CLDSA as a state machine
CL(MUDS). Let us consider the state expression and the state transition for CL(MUDS).

4.2.1 State Expression for CL(MUDS)

Taking into account a UDS superimposed by CLDSA, each state of CL(MUDS) con-
sists of the local states of all processes and channels, the state (called the start state)
when CLDSA initiates, the snapshot, the state (called the finish state) when CLDSA
terminates and the information to control behaviour of CLDSA. The local states of all
processes and channels, the start state, the snapshot, the finish state and the control in-
formation are expressed as base-state(bc), start-state(sc), snapshot(ssc), finish-state(fc)
and control(ctl) meta configuration components, respectively, where:
- bc is a soup of process and channel states whose sorts are BOCom and the correspond-
ing sort is BConfig. Note that there may be makers in channels of bc. MMsg is the sort
for ordinary messages and a marker. MMsgQueue is the sort for queues of MMsg. We
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prepare the following sorts and operators for them:

sort MMsg .
subsort Msg < MMsg .
op marker : → MMsg [ctor] .
op empChan : → MMsgQueue [ctor] .
op | : MMsg MMsgQueue → MMsgQueue [ctor] .
op p-state[ ]: : Pid PState → BOCom [ctor] .
op c-state[ , , ]: : Pid Pid Nat MMsgQueue → BOCom [ctor].
subsort BOCom < BConfig .
op empBConfig : → BConfig [ctor] .

op : BConfig BConfig → BConfig [ctor assoc comm id:empBConfig] .

- sc, ssc, fc are ground constructor terms of BConfig .
- ctl is a soup of cnt, prog, #ms, and done control observable components that will be
described. CtlOCom is the sort for those control observable components, and CtlConfig
is the sort for soups of CtlOCom. We prepare the following sorts and operators for them:

sort Prog .
ops notYet, started, completed : → Prog [ctor] .
op cnt: : Nat → CtlOCom [ctor] .
op prog[ ]: : Pid Prog → CtlOCom [ctor] .
op #ms[ ]: : Pid Nat → CtlOCom [ctor] .
op done[ , , ]: : Pid Pid Nat Bool → CtlOCom [ctor] .
subsort CtlOCom < CtlConfig .
op empCtlConfig : → CtlConfig [ctor] .

op : CtlConfig CtlConfig → CtlConfig [ctor assoc comm id: empCtlConfig] .

We need the following control observable components to specify the behaviour of CLDSA,
where p, q ∈ Pid, n ∈ Nat, pg ∈ Prog, b ∈ Bool:

- (cnt : n): n is the number of processes that have not yet completed CLDSA.

- (prog[p] : pg): pg is the progress of a process p, indicating that the process has not yet
started, has started, or completed CLDSA.

- (#ms[p] : n): n is the number of incoming channels to a process p from which markers
have not yet been received.

- (done[p, q, n] : b): b is either true or false. If b is true, q has received a marker from the

incoming channel identified by n from q. Otherwise, q has not.

Each state of CL(MUDS) is expressed as the soup of the meta configuration components
whose sorts are MBCom, which is typically in the form:

base-state(bc) start-state(sc) snapshot(ssc) finish-state(fc)
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control(ctl)

which is called a meta configuration and the corresponding sort is MBConfig. We prepare
the following operators for expressing a state of CL(MUDS):

sort MBCom .
op base-state: BConfig → MBCom [ctor] .
ops start-state, snapshot, finish-state : BConfig → MBCom [ctor].
op control : CtlConfig → MBCom [ctor] .
sort MBConfig .
subsort MBCom < MBConfig [ctor] .

op : MBConfig MBConfig → MBConfig [ctor assoc comm].

Initially, bc is an initial state of MUDS and all of sc, ssc and fc are empBConfig. The
number of processes that have not yet completed CLDSA is equal to the number of pro-
cesses in the system, the progress of all processes are notYet and all processes have not
yet received any markers. If fc is not empBConfig, a distributed snapshot has been taken
and then ssc is the snapshot.

We give the following functions on the state of a MCLDSA. In the following part, P,Q ∈
Pid, PS ∈ PState, N ∈ Nat, CS,MS ∈ MMsgQueue, CF,CF1 ∈ Config, BCF ∈ BCon-
fig and M ∈ MMsg are variables of those sorts.

- Function cntN: to get the number of processes in a UDS;

op cntN : BConfig → Nat .
eq cntN(empConfig) = 0 .
eq cntN((p-state[P ]: PS) CF ) = 1 + cntN(CF ) .

eq cntN((c-state[P,Q,N ]: CS) CF ) = cntN(CF ) .

- Function msN: to get the number of incoming channel of a process;

op msN : Pid BConfig → Nat .
eq msN(P , empConfig) = 0 .
eq msN(P , (p-state[P1]: PS) CF ) = msN(P,CF ) .
eq msN(P , (c-state[P1, Q1, N ]: CS) CF )) =

if (P = Q1) then 1 + msN(P,CF ) else msN(P,CF ) fi.

- Function mkCnt: the number of processes that have not yet completed CLDSA is
equal to the number of processes in the system;

op mkCnt : BConfig → CtlConfig .

eq mkCnt(CF ) = (cnt: cntN(CF )) .

25



- Function mkProg : the progress of all processes in a system are notYet;

op mkProg : BConfig → CtlConfig .
eq mkProg(empConfig) = empCtlConfig .
eq mkProg((p-state[P ]: PS) CF ) = (prog[P ]: notYet) mkProg(CF ) .

eq mkProg((c-state[P,Q,N ]: MS) CF ) = mkProg(CF ) .

- Function mkDone : all processes have not yet received any markers from any their
incoming channels;

op mkDone : BConfig → CtlConfig .
eq mkDone(empConfig) = empCtlConfig .
eq mkDone((p-state[P ]: PS) CF ) = mkDone(CF ) .

eq mkDone((c-state[P,Q,N ]: CS) CF ) = (done[P,Q,N ]: false) mkDone(CF ) .

- Function mkMs : the number of channels of a process that have not yet received a
marker is equal to the number of channels of the process;

op mkMs : BConfig BConfig → CtlConfig .
eq mkMs(empConfig, CF1) = empCtlConfig .
eq mkMs((p-state[P ]: PS) CF,CF1) = (#ms[P ]: msN(P,CF1)) mkMs(CF,CF1) .

eq mkMs((c-state[P,Q,N ]: CS) CF,CF1) = mkMs(CF,CF1) .

- Function InitCtlConfig;

op InitCtlConfig : BConfig → CtlConfig .
eq InitCtlConfig(BC) = mkCnt(BC) mkMs(BC, BC)

mkDone(BC) mkDone(BC) mkProg(BC) .

Functions InitCtlConfig, which call sub-functions mkCnt, mkProg, mkDone and mkMs,
is to initial control meta configuration component of an initial state of MUDS such that
the number of processes that have not yet completed CLDSA is equal to the number of
processes in the system, the progress of all processes are notYet and all processes have
not yet received any markers.

- Function delMchan: to delete all markers in the sequence of message. Note that there is
almost one marker in a channel in a state of a UDS superimposed by CLDSA, but this
function is defined for general case, means that there may have more than one marker in
a channel.

op delMchan : MMsgSeq → MsgSeq .
eq delMchan(empChan) = empChan .
eq delMchan(M |MMS ) = if M = marker then delMchan(MMS)

else M | delMchan(MMS) fi.
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- Function delM: to delete all markers in all channels in a soup of process and chan-
nel states in a UDS superimposed by CLDSA;

op delM: BConfig → Config .
eq delM(empBConfig) = empConfig .
eq delM((p-state[P ]: PS) BCF ) = (p-state[P ]: PS) delM(BCF ) .
eq delM((c-state[P,Q,N ] : MMS) BCF ) = (c-state[P,Q,N ] :

delMchan(MMS)) delM(BCF ) .

- Function bcast: to puts markers in all the outgoing channels from a process P ;

op bcast : BConfig Pid MMsg → BConfig .
eq bcast(empBConfig, P , marker) = empBConfig .
eq bcast((c-state[P,Q,N ] : MMS) BCF , P , marker) =
(c-state[P,Q,N ]: put(MMS, marker)) bcast(BCF,P , marker) .

eq bcast(OCBCF,P,M1) = OC bcast(BCF,P , marker) [owise] .

- Function inchans : to initialize the states of a process’s all incoming channels as empty
channel;

op inchans : Config Pid → Config .
eq inchans(empConfig, P ) = empConfig .
eq inchans((c-state[P,Q,N ]: CS) CF,P ) = (c-state[P,Q,N ]: empChan) inchans(CF,P ) .

eq inchans(OCCF,P ) = inchans(CF,P ) [owise] .

4.2.2 State Transitions for CL(MUDS)

Each process in the system may do five kinds of actions. The three kinds of actions
i, ii and iii are almost the same as those for a UDS and the two more kinds of actions iv
and v are as follows:

iv it may record its state and put markers into its outgoing channels, and

v it may get a marker from one of its incoming channels.

The two kinds of actions iv and v are called Record of Process State and Receipt of
Marker, respectively. In the following part, P , Q ∈ Pid, PS, PS1, PS2 ∈ PState, BC,
SC, FC, SSC ∈ BConfig, MMS , MMS ′ ∈ MMsgQueue, CC ∈ CtlConfig, N , NzN ,
NzN ′ ∈ NzNat and M ∈ Msg are variables of those sorts, where NzNat is the sort for
non-zero natural numbers and a subsort of Nat.
- Change of Process State is described as the following transition rule:

base-state((p-state[P ] : PS1) BC)
⇒
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base-state((p-state[P ] : PS2) BC)

- Sending of Message is described as the following transition rule:

base-state((p-state[P ] : PS1) (c-state[P,Q,N ] : MMS )
BC)
⇒
base-state((p-state[P ] : PS2) (c-state[P,Q,N ] : enq(MMS ,M))

BC)

- Receipt of Message is split into four subcases:

1. The process has not yet started CLDSA.

base-state((p-state[P ] : PS1) (c-state[Q,P,N ] : M | MMS ) BC)

control((prog[P ] : notYet) CC)

⇒
base-state((p-state[P ] : PS2) (c-state[Q,P,N ] : MMS ) BC)

control((prog[P ] : notYet) CC)

2. The process has completed CLDSA.

base-state((p-state[P ] : PS1) (c-state[Q,P,N ] : M | MMS ) BC)

control((prog[P ] : completed) CC)

⇒
base-state((p-state[P ] : PS2) (c-state[Q,P,N ] : MMS ) BC)

control((prog[P ] : completed) CC)

3. The process has started CLDSA, not yet completed it, and not yet received a marker
from the incoming channel.

base-state((p-state[P ] : PS1) (c-state[Q,P,N ] : M | MMS ) BC)

snapshot((c-state[Q,P,N ] : MMS ′) SSC)

control((prog[P ] : started) (done[Q,P,N ] : false) CC)

⇒
base-state((p-state[P ] : PS2) (c-state[Q,P,N ] : MMS ) BC)

snapshot((c-state[Q,P,N ] : enq(MMS ′,M)) SSC)

control((prog[P ] : started) (done[Q,P,N ] : false) CC)
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4. The process has started CLDSA, but not yet completed it and it has already re-
ceived a marker from the incoming channel.

base-state((p-state[P ] : PS1) (c-state[Q,P,N ] : M | MMS ) BC)

control((prog[P ] : started) (done[Q,P,N ] : true) CC)

⇒
base-state((p-state[P ] : PS2) (c-state[Q,P,N ] : MMS ) BC)

control((prog[P ] : started) (done[Q,P,N ] : true) CC)

- Record of Process State is split into two subcases:

1. The process globally initiates CLDSA. This case is further split into three subcases:

(a) The UDS only consists of the process.

base-state((p-state[P ] : PS))

start-state(empBConfig)

snapshot(empBConfig)

finish-state(empBConfig)

control((prog[P ] : notYet) (cnt : 1) (#ms[P ] : 0) CC)

⇒
base-state((p-state[P ] : PS))

start-state((p-state[P ] : PS))

snapshot((p-state[P ] : PS))

finish-state((p-state[P ] : PS))

control((prog[P ] : completed) (cnt : 0) (#ms[P ] : 0) CC)

(b) The system consists of more than one process, and the process does not have
any incoming channels.

base-state((p-state[P ] : PS) BC)

start-state(empBConfig)

snapshot(empBConfig)

finish-state(empBConfig)

control((prog[P ] : notYet) (cnt : NzN) (#ms[P ] : 0) CC)

⇒
base-state((p-state[P ] : PS) bcast(BC, P , marker))

start-state((p-state[P ] : PS) BC)

snapshot((p-state[P ] : PS))

control((prog[P ] : completed) (cnt : sd(NzN ,1)) (#ms[P ] : 0) CC)

if NzN > 1
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where bcast is a function, putting makers in all outgoing channels from process
P and sd is a function for natural number, taking two natural numbers x and
y and then return x− y if x > y and y − x otherwise.

(c) The system consists of more than one process, and the process has one or more
incoming channels.

base-state((p-state[P ] : PS) BC)

start-state(empBConfig)

snapshot(empBConfig)

finish-state(empBConfig)

control((prog[P ] : notYet) (#ms[P ] : NzN ′) CC)

⇒
base-state((p-state[P ] : PS) bcast(BC, P , marker))

start-state((p-state[P ] : PS) BC)

snapshot((p-state[P ] : PS) inchans(BC, P ))

control((prog[P ] : started) (#ms[P ] : NzN ′) CC)

where inchans(BC,P ) initialises the states of all incoming channels of P as
empChan.

2. The process does not globally initiates CLDSA. This case is further split into three
subcases:

(a) The process does not have any incoming channels, and there are no processes
except for the process that has not completed CLDSA.

base-state((p-state[P ] : PS) BC)

start-state(SC)

snapshot(SSC)

finish-state(empBConfig)

control((prog[P ] : notYet) (cnt : 1) (#ms[P ] : 0) CC)

⇒
base-state((p-state[P ] : PS))

start-state(SC)

snapshot((p-state[P ] : PS) SSC)

finish-state((p-state[P ] : PS) BC)

control((prog[P ] : completed) (cnt : 0) (#ms[P ] : 0) CC)

if (SC 6= empBConfig) .

(b) The process does not have any incoming channels, and there are some other
processes that have not completed CLDSA.

base-state((p-state[P ] : PS) BC)

start-state(SC)
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snapshot(SSC)

control((prog[P ] : notYet) (cnt : NzN) (#ms[P ] : 0) CC)

⇒
base-state((p-state[P ] : PS) bcast(BC, P , marker))

start-state(SC)

snapshot(SSC)

control((prog[P ] : completed) (cnt : sd(NzN ,1)) (#ms[P ] : 0) CC)

if (SC 6= empBConfig) ∧ (NzN > 1)

(c) The process has some incoming channels.

base-state((p-state[P ] : PS) BC)

start-state(SC)

snapshot(SSC)

control((prog[P ] : notYet) (#ms[P ] : NzN ′) CC)

⇒
base-state((p-state[P ] : PS) bcast(BC, P , marker))

start-state(SC)

snapshot((p-state[P ] : PS) inchans(BC, P ) SSC)

control((prog[P ] : started) (#ms[P ] : NzN ′) CC)

if (SC 6= empBConfig)

- Receipt of Marker is split into two subcases:

1. The process has not yet started CLDSA. This case is further split into three
subcases:

(a) The process has only one incoming channel, and there are no processes that
have not yet completed CLDSA except for the process.

base-state((p-state[P ] : PS) (c-state[Q, P , N ] : marker | MMS ) BC )

snapshot(SSC)

finish-state(empBConfig)

control((prog[P ] : notYet) (cnt : 1) (#ms[P ] : 1) (done[Q, P , N ] : false) CC)

⇒
base-state((p-state[P ] : PS) (c-state[Q, P , N ] : MMS ) BC)

snapshot((p-state[P ] : PS) (c-state[Q, P , N ] : empChan) SSC)

finish-state((p-state[P ] : PS) (c-state[Q, P , N ] : MMS ) BC)

control((prog[P ] : completed) (cnt : 0) (#ms[P ] : 0) (done[Q, P , N ] : true) CC)

(b) The process has only one incoming channel, and there are some other processes
that have not yet completed CLDSA.
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base-state((p-state[P ] : PS) (c-state[Q, P , N ] : marker | MMS ) BC )

snapshot(SSC)

control((prog[P ] : notYet) (cnt : NzN) (#ms[P ] : 1) (done[Q, P , N ] : false) CC)

⇒
base-state((p-state[P ] : PS) (c-state[Q, P , N ] : MMS ) bcast(BC, P , maker))

snapshot((p-state[P ] : PS) (c-state[Q, P , N ] : empChan) SSC)

control((prog[P ] : completed) (cnt : sd(NzN ,1)) (#ms[P ] : 0) (done[Q, P , N ] :

true) CC)

if NzN > 1

(c) The process has more than one incoming channel.

base-state((p-state[P ] : PS) (c-state[Q, P , N ] : marker | MMS ) BC )

snapshot(SSC)

control((prog[P ] : notYet) (cnt : NzN) (#ms[P ] : NzN ′) (done[Q, P , N ] : false)

CC)

⇒
base-state((p-state[P ] : PS) (c-state[Q, P , N ] : MMS ) bcast(BC, P , maker))

snapshot((p-state[P ] : PS) (c-state[Q, P , N ] : empChan) inchans(BC,P ) SSC)

control((prog[P ] : started) (cnt : sd(NzN ,1)) (#ms[P ] : sd(NzN ′,1)) (done[Q, P ,

N ] : true) CC)

if NzN ′ > 1

2. The process has already started CLDSA. This case is further split into three sub-
cases:

(a) There are no incoming channels from which markers have not been received
except for the incoming channel, and there are no processes that have not yet
completed CLDSA except for the process.

base-state((p-state[P ] : PS) (c-state[Q, P , N ] : marker | MMS ) BC )

finish-state(empBConfig)

control((prog[P ] : started) (cnt : 1) (#ms[P ] : 1) (done[Q, P , N ] : false) CC)

⇒
base-state((p-state[P ] : PS) (c-state[Q, P , N ] : MMS ) BC)

finish-state((p-state[P ] : PS) (c-state[Q, P , N ] : MMS ) BC)

control((prog[P ] : completed) (cnt : 0) (#ms[P ] : 0) (done[Q, P , N ] : true) CC)

(b) There are no incoming channels from which markers have not been received
except for the incoming channel, and there are some other processes that have
not yet completed CLDSA.
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base-state((p-state[P ] : PS) (c-state[Q, P , N ] : marker | MMS ) BC )

control((prog[P ] : started) (cnt : NzN) (#ms[P ] : 1) (done[Q, P , N ] : false) CC)

⇒
base-state((p-state[P ] : PS) (c-state[Q, P , N ] : MMS ) BC)

control((prog[P ] : completed) (cnt : sd(NzN ,1) (#ms[P ] : 0) (done[Q, P , N ] : true)

CC)

if NzN > 1

(c) There are some other incoming channels from which markers have not been
received.

base-state((p-state[P ] : PS) (c-state[Q, P , N ] : marker | MMS ) BC )

control((prog[P ] : started) (cnt : NzN) (#ms[P ] : NzN ′) (done[Q, P , N ] : false)

CC)

⇒
base-state((p-state[P ] : PS) (c-state[Q, P , N ] : MMS ) BC)

control((prog[P ] : started) (cnt : NzN)) (#ms[P ] : sd(NzN ′,1)) (done[Q, P , N ] :

true) CC)

if NzN ′ > 1

The 18 transition rules can be classified into three parts: UDS, UDS&CLDSA, and
CLDSA. The UDS part consists of the transition rules describing actions i, ii and iii-1.
The UDS part depends on the UDS concerned, can be constructed from the three tran-
sition rules of the UDS and changes the base-state meta configuration component of a
state of CL(MUDS). The UDS&CLDSA part also depends on the UDS concerned and
can be constructed from the three transition rules of the UDS, but changes the other
meta configuration components of a state of CL(MUDS) as well. Three transition rules
describing actions iii-2, iii-3 and iii-4 are in the UDS&CLDSA part. The CLDSA part is
independent from the UDS concerned, can be constructed regardless of any UDSs, and
does not change the base-state meta configuration component of a state of CL(MUDS).
The transition rules describing two kinds of actions iv and v are in the CLDSA part.

Definition 6 (TRCLDSA) Let TRCLDSA be the set of all ground instances of the 18 tran-
sition rules.

4.2.3 State Machine CL(MUDS)

In this part, we propose the function CL that takes a state machine MUDS , 〈SUDS ,
IUDS , TUDS〉 and returns another state machine MCLDSA , 〈SCLDSA, ICLDSA, TCLDSA〉.
Note that MUDS is a state machine of a UDS and MCLDSA is a state machine of the UDS
superimposed by CLDSA. The definition of the function CL is as follows:

Definition 7 (CL(MUDS)) For a state machine MUDS , 〈SUDS , IUDS , TUDS〉 formaliz-
ing a UDS, CL is the function that takes MUDS and returns CL(MUDS) , 〈CLState(SUDS),
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CLInit(IUDS), CLTrans(TUDS)〉, where

1. CLState(SUDS) is the set of all ground constructor terms of sort MBConfig;

2. CLInit(IUDS) is
{base-state(bc) start-state(empBConfig)
snapshot(empBConfig) finish-state(empBConfig)
control(ctl) | bc ∈ IUDS , clt = InitCtlConfig(bc)};

3. CLTrans(TUDS) ⊆ CLState(SUDS) × CLState(SUDS) is {(L MCF, R MCF) | L ⇒ R
∈ TRCLDSA, MCF ∈ MBConfig}.

Function InitCtlConfig(bc) initializes values for all control information components. Let
MCLDSA be CL(MUDS). Note that SCLDSA is the set of all ground constructor terms of
sort MBConfig, although each reachable state from an initial state in ICLDSA is in the
following form:

base-state(bc) start-state(sc) snapshot(ssc) finish-state(fc) control(ctl)

4.3 Chapter Summary

This chapter described how to formalize a UDS and the UDS superimposed by CLDSA
as state machines MUDS and MCLDSA.

The first section of the chapter described how to formalize a UDS as state machines
MUDS . It first showed how to express a state of a UDS. The sorts Pid, PState, Msg
and MsgQueue are used for process identifiers, process states, messages and queues of
messages, respectively. The name-value pairs (called observable components) are used
to express the states of processes and channels, where name may have parameters. The
corresponding operators for observable components for process states and channel states
were given. The sort OCom is used for observable components. A soup of process and
channel states is used to represent each state of MUDS . The corresponding sort is Config.
Also, the functions on the states of a UDS were given. It then showed how the actions
of a UDS are described as transition rules and a transition rule is described in form of
rewrite rule. At the end of this section, the definition of state machine MUDS was given.

The chapter then described how to formalize a UDS superimposed by CLDSA as a
state machines CL(MUDS). Each state of CL(MUDS) consists of the local states of all
processes and channels, the start state, the snapshot, the finish state and the informa-
tion to control behaviour of CLDSA. The local states of all processes and channels, the
start state, the snapshot, the finish state and the control information are expressed as
base-state(bc), start-state(sc), snapshot(ssc), finish-state(fc) and control(ctl) meta con-
figuration components, respectively. Each state of CL(MUDS) is expressed as the soup
of the meta configuration components whose sorts are MBCom, which is typically in the
form: base-state(bc) start-state(sc) snapshot(ssc) finish-state(fc) control(ctl), which is
called a meta configuration and the corresponding sort is MBConfig. The functions on
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the states of a CL(MUDS) were presented. Then state transitions for CL(MUDS) was
described.

The chapter then defined the function CL that takes a state machine MUDS and returns
the state machine CL(MUDS). Let MCLDSA is CL(MUDS). MCLDSA is the state machine
of the UDS superimposed by CLDSA.
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Chapter 5

A More Faithful Definition of the
DSR Property

5.1 Some Definitions and Proposition 1

5.1.1 Some Definitions on SCLDSA

Some functions on SCLDSA are defined as follows:

Definition 8 (b-state, s-state, snapshot, f-state, finished) For each s ∈ SCLDSA,
b-state(s) is bc if there exists exactly one occurrence of the base-state(bc) meta configura-
tion component in s and empBConfig otherwise,
s-state(s) is sc if there exists exactly one occurrence of the start-state(sc) meta configura-
tion component in s and empBConfig otherwise,
snapshot(s) is ssc if there exists exactly one occurrence of the snapshot(ssc) meta config-
uration component in s and empBConfig otherwise,
f-state(s) is fc if there exists exactly one occurrence of the finish-state(fc) meta configura-
tion component in s and empBConfig otherwise, and
finished(s) is false if f-state(s) is empBConfig and true otherwise.

The following is the definition that CLDSA has terminated in a state s in MCLDSA:

Definition 9 (MCLDSA |= terminated(s)) For a state machine MUDS , 〈SUDS , IUDS ,
TUDS〉, for each s ∈ SCLDSA, MCLDSA |= terminated(s) iff finished(s).

5.1.2 Proposition 1

We have the following proposition on MCLDSA:

Proposition 1 (No marker in s-state, snapshot and f-state) For each s ∈ SCLDSA,
if MCLDSA |= terminated(s), then there is no maker in s-state(s), snapshot(s) and f-
state(s), equivalently that the sorts of s-state(s), snapshot(s) and f-state(s) are Config.
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Note that, whenever CLDSA has terminated in a state s, the function s-state(s), snapshot(s)
and f-state(s) return start state, snapshot and finish state, respectively.

Proof of Proposition 1. We will separate Proposition 1 into three parts, then prove
them independently.

1. For each s ∈ SCLDSA, if MCLDSA |= terminated(s), there is no maker
in s-state(s).

It suffices to consider s ∈ SCLDSA that can be reach from any initial state in SCLDSA.
Then s is in form base-state(bc) start-state(sc) snapshot(ssc) finish-state(fc) control(ctl).
if MCLDSA |= terminated(s), s-state(s) is sc. We will prove that there is no marker in sc.
To prove, we consider all transition rules that change the start-state meta configuration
component of a state of MCLDSA. Our proof shows that there is no marker in any the
start-state meta configuration component in the right hand side of any those transition
rules. This means that there is no marker in sc.
All transition rules that change the start-state meta configuration component of a state
of MCLDSA are the following transition rules:

- Record of Process State: the process globally initiates CLDSA. This case is fur-
ther split into three subcases:

1. The UDS only consists of the process.

base-state((p-state[P ] : PS))

start-state(empBConfig)

snapshot(empBConfig)

finish-state(empBConfig)

control((prog[P ] : notYet) (cnt : 1) (#ms[P ] : 0) CC)

⇒
base-state((p-state[P ] : PS))

start-state((p-state[P ] : PS))

snapshot((p-state[P ] : PS))

finish-state((p-state[P ] : PS))

control((prog[P ] : completed) (cnt : 0) (#ms[P ] : 0) CC)

Since the process globally initiates CLDSA, there is no-marker in (p-state[P ] :
PS). Therefore, there is no marker in start-state((p-state[P ] : PS)).

2. The system consists of more than one process, and the process does not have any
incoming channels.

base-state((p-state[P ] : PS) BC)
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start-state(empBConfig)

snapshot(empBConfig)

finish-state(empBConfig)

control((prog[P ] : notYet) (cnt : NzN) (#ms[P ] : 0) CC)

⇒
base-state((p-state[P ] : PS) bcast(BC, P , marker))

start-state((p-state[P ] : PS) BC)

snapshot((p-state[P ] : PS))

control((prog[P ] : completed) (cnt : sd(NzN ,1)) (#ms[P ] : 0) CC)

if NzN > 1

Since the process globally initiates CLDSA, there is no-marker in (p-state[P ] :
PS) BC. Therefore, there is no marker in start-state((p-state[P ] : PS) BC).

3. The system consists of more than one process, and the process has one or more
incoming channels.

base-state((p-state[P ] : PS) BC)

start-state(empBConfig)

snapshot(empBConfig)

finish-state(empBConfig)

control((prog[P ] : notYet) (#ms[P ] : NzN ′) CC)

⇒
base-state((p-state[P ] : PS) bcast(BC, P , marker))

start-state((p-state[P ] : PS) BC)

snapshot((p-state[P ] : PS) inchans(BC, P ))

control((prog[P ] : started) (#ms[P ] : NzN ′) CC)

Since the process globally initiates CLDSA, there is no-marker in (p-state[P ] :
PS) BC. Therefore, there is no marker in start-state((p-state[P ] : PS) BC).

Our proof have considered all transition rules that change the start-state meta con-
figuration component of a state of MCLDSA and showed that there is no marker in the
start-state meta configuration component after apply those transition rules. This case is
dischanged.

2. For each s ∈ SCLDSA, if MCLDSA |= terminated(s), there is no maker in
snapshot(s).

It suffices to consider s ∈ SCLDSA that can be reach from any initial state in SCLDSA.
Then s is in form base-state(bc) start-state(sc) snapshot(ssc) finish-state(fc) control(ctl).
if MCLDSA |= terminated(s), snapshot(s) is ssc. We will prove that there is no marker in
ssc. To prove, we consider all transition rules that change the snapshot meta configuration
component of a state of MCLDSA. Our proof shows that those transition rules do not put
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any marker into snapshot meta configuration component of a state of MCLDSA when they
change the snapshot meta configuration component, this means that there is no marker
in the snapshot.

All the transition rules that change the snapshot meta configuration component of a
state of MCLDSA are the following transition rules:

- Receipt of Message is split into four subcases. The subcase that change the snapshot
meta configuration component of a state of MCLDSA is as follows:

1. The process has started CLDSA, not yet completed it, and not yet received a marker
from the incoming channel.

base-state((p-state[P ] : PS1) (c-state[Q,P,N ] : M | MMS ) BC)

snapshot((c-state[Q,P,N ] : MMS ′) SSC)

control((prog[P ] : started) (done[Q,P,N ] : false) CC)

⇒
base-state((p-state[P ] : PS2) (c-state[Q,P,N ] : MMS ) BC)

snapshot((c-state[Q,P,N ] : enq(MMS ′,M)) SSC)

control((prog[P ] : started) (done[Q,P,N ] : false) CC)

where M ∈ Msg. Because M is a message, the transition rule does not put any
marker in the the snapshot meta configuration component: snapshot((c-state[Q,P,N ]
: MMS ′) SSC) ⇒ snapshot((c-state[Q,P,N ] : enq(MMS ′,M)) SSC)

- Record of Process State is split into two subcases:

1. The process globally initiates CLDSA. This case is further split into three subcases:

(a) The UDS only consists of the process.

base-state((p-state[P ] : PS))

start-state(empBConfig)

snapshot(empBConfig)

finish-state(empBConfig)

control((prog[P ] : notYet) (cnt : 1) (#ms[P ] : 0) CC)

⇒
base-state((p-state[P ] : PS))

start-state((p-state[P ] : PS))

snapshot((p-state[P ] : PS))

finish-state((p-state[P ] : PS))

control((prog[P ] : completed) (cnt : 0) (#ms[P ] : 0) CC)

Since the process globally initiates CLDSA, there is no marker in (p-state[P ] :
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PS). The transition rule does not put any marker in the the snapshot meta con-
figuration component: snapshot(empBConfig)⇒ snapshot((p-state[P ] : PS)).

(b) The system consists of more than one process, and the process does not have
any incoming channels.

base-state((p-state[P ] : PS) BC)

start-state(empBConfig)

snapshot(empBConfig)

finish-state(empBConfig)

control((prog[P ] : notYet) (cnt : NzN) (#ms[P ] : 0) CC)

⇒
base-state((p-state[P ] : PS) bcast(BC, P , marker))

start-state((p-state[P ] : PS) BC)

snapshot((p-state[P ] : PS))

control((prog[P ] : completed) (cnt : sd(NzN ,1)) (#ms[P ] : 0) CC)

if NzN > 1

Since the process globally initiates CLDSA, there is no marker in (p-state[P ]
: PS) BC. The transition rule does not put any marker in the the snap-
shot meta configuration component: snapshot(empBConfig) ⇒ snapshot((p-
state[P ] : PS) BC).

(c) The system consists of more than one process, and the process has one or more
incoming channels.

base-state((p-state[P ] : PS) BC)

start-state(empBConfig)

snapshot(empBConfig)

finish-state(empBConfig)

control((prog[P ] : notYet) (#ms[P ] : NzN ′) CC)

⇒
base-state((p-state[P ] : PS) bcast(BC, P , marker))

start-state((p-state[P ] : PS) BC)

snapshot((p-state[P ] : PS) inchans(BC, P ))

control((prog[P ] : started) (#ms[P ] : NzN ′) CC)

where inchans(BC,P ) initialises the states of all incoming channels of P as
empChan. The transition rule does not put any marker in the the snap-
shot meta configuration component: snapshot(empBConfig) ⇒ snapshot((p-
state[P ] : PS) inchans(BC, P )).

2. The process does not globally initiates CLDSA. This case is further split into three
subcases:

(a) The process does not have any incoming channels, and there are no processes
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except for the process that has not completed CLDSA.

base-state((p-state[P ] : PS) BC)

start-state(SC)

snapshot(SSC)

finish-state(empBConfig)

control((prog[P ] : notYet) (cnt : 1) (#ms[P ] : 0) CC)

⇒
base-state((p-state[P ] : PS))

start-state(SC)

snapshot((p-state[P ] : PS) SSC)

finish-state((p-state[P ] : PS) BC)

control((prog[P ] : completed) (cnt : 0) (#ms[P ] : 0) CC)

if (SC 6= empBConfig) .

It is clear to see that the transition rule does not put any marker in the the snap-
shot meta configuration component: snapshot(SSC)⇒ snapshot((p-state[P ] :
PS) SSC).

(b) The process has some incoming channels.

base-state((p-state[P ] : PS) BC)

start-state(SC)

snapshot(SSC)

control((prog[P ] : notYet) (#ms[P ] : NzN ′) CC)

⇒
base-state((p-state[P ] : PS) bcast(BC, P , marker))

start-state(SC)

snapshot((p-state[P ] : PS) inchans(BC, P ) SSC)

control((prog[P ] : started) (#ms[P ] : NzN ′) CC)

if (SC 6= empBConfig)

It is clear to see that the transition rule does not put any marker in the the snap-
shot meta configuration component: snapshot(SSC)⇒ snapshot((p-state[P ] :
PS) inchans(BC, P ) SSC).

- Receipt of Marker is split into two subcases:

1. The process has not yet started CLDSA. This case is further split into three
subcases:

(a) The process has only one incoming channel, and there are no processes that
have not yet completed CLDSA except for the process.

base-state((p-state[P ] : PS) (c-state[Q, P , N ] : marker | MMS ) BC )

snapshot(SSC)
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finish-state(empBConfig)

control((prog[P ] : notYet) (cnt : 1) (#ms[P ] : 1) (done[Q, P , N ] : false) CC)

⇒
base-state((p-state[P ] : PS) (c-state[Q, P , N ] : MMS ) BC)

snapshot((p-state[P ] : PS) (c-state[Q, P , N ] : empChan) SSC)

finish-state((p-state[P ] : PS) (c-state[Q, P , N ] : MMS ) BC)

control((prog[P ] : completed) (cnt : 0) (#ms[P ] : 0) (done[Q, P , N ] : true) CC)

Since there is no marker in (c-state[Q, P , N ] : empChan). The transition
rule does not put any marker in the the snapshot meta configuration com-
ponent: snapshot(SSC) ⇒ snapshot((p-state[P ] : PS) (c-state[Q, P , N ] :
empChan) SSC).

(b) The process has only one incoming channel, and there are some other processes
that have not yet completed CLDSA.

base-state((p-state[P ] : PS) (c-state[Q, P , N ] : marker | MMS ) BC )

snapshot(SSC)

control((prog[P ] : notYet) (cnt : NzN) (#ms[P ] : 1) (done[Q, P , N ] : false) CC)

⇒
base-state((p-state[P ] : PS) (c-state[Q, P , N ] : MMS ) bcast(BC, P , maker))

snapshot((p-state[P ] : PS) (c-state[Q, P , N ] : empChan) SSC)

control((prog[P ] : completed) (cnt : sd(NzN ,1)) (#ms[P ] : 0) (done[Q, P , N ] :

true) CC)

if NzN > 1

Since there is no marker in (c-state[Q, P , N ] : empChan). The transition
rule does not put any marker in the the snapshot meta configuration com-
ponent: snapshot(SSC) ⇒ snapshot((p-state[P ] : PS) (c-state[Q, P , N ] :
empChan) SSC) .

(c) The process has more than one incoming channel.

base-state((p-state[P ] : PS) (c-state[Q, P , N ] : marker | MMS ) BC )

snapshot(SSC)

control((prog[P ] : notYet) (cnt : NzN) (#ms[P ] : NzN ′) (done[Q, P , N ] : false)

CC)

⇒
base-state((p-state[P ] : PS) (c-state[Q, P , N ] : MMS ) bcast(BC, P , maker))

snapshot((p-state[P ] : PS) (c-state[Q, P , N ] : empChan) inchans(BC,P ) SSC)

control((prog[P ] : started) (cnt : sd(NzN ,1)) (#ms[P ] : sd(NzN ′,1)) (done[Q, P ,

N ] : true) CC)

if NzN ′ > 1

Since there is no marker in (c-state[Q, P , N ] : empChan) inchans(BC,P ).
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The transition rule does not put any marker in the the snapshot meta configu-
ration component: snapshot(SSC) ⇒ snapshot((p-state[P ] : PS) (c-state[Q,
P , N ] : empChan) inchans(BC,P ) SSC).

3. For each s ∈ SCLDSA, if MCLDSA |= terminated(s), there is no maker
in f-state(s).

It suffices to consider s ∈ SCLDSA that can be reach from any initial state in SCLDSA.
Then s is in form base-state(bc) start-state(sc) snapshot(ssc) finish-state(fc) control(ctl).
if MCLDSA |= terminated(s), f-state(s) is fc. We will prove that there is no marker in fc.
To prove, we consider all transition rules that change the finsh-state meta configuration
component of a state of MCLDSA. Our proof shows that there is no marker in any the
finsh-state meta configuration component in the right hand side of any those transition
rules. This means that there is no marker in fc.
All transition rules that change the finish state meta configuration component of a state
of MCLDSA are the following transition rules:

- Record of Process State is split into two subcases:

1. The process globally initiates CLDSA. This case is further split into three subcases.
The subcase that change the snapshot meta configuration component of a state of
MCLDSA is as follows:

(a) The UDS only consists of the process.

base-state((p-state[P ] : PS))

start-state(empBConfig)

snapshot(empBConfig)

finish-state(empBConfig)

control((prog[P ] : notYet) (cnt : 1) (#ms[P ] : 0) CC)

⇒
base-state((p-state[P ] : PS))

start-state((p-state[P ] : PS))

snapshot((p-state[P ] : PS))

finish-state((p-state[P ] : PS))

control((prog[P ] : completed) (cnt : 0) (#ms[P ] : 0) CC)

Since there is no marker in (p-state[P ] : PS). There is no marker in finish-
state((p-state[P ] : PS)). Therefore, there is no marker in the finsh-state meta
configuration component in the right hand side of any the transition rule:
finish-state(empBConfig) ⇒ finish-state((p-state[P ] : PS)).

2. The process does not globally initiates CLDSA. This case is further split into three
subcases:
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(a) The process does not have any incoming channels, and there are no processes
except for the process that has not completed CLDSA.

base-state((p-state[P ] : PS) BC)

start-state(SC)

snapshot(SSC)

finish-state(empBConfig)

control((prog[P ] : notYet) (cnt : 1) (#ms[P ] : 0) CC)

⇒
base-state((p-state[P ] : PS))

start-state(SC)

snapshot((p-state[P ] : PS) SSC)

finish-state((p-state[P ] : PS) BC)

control((prog[P ] : completed) (cnt : 0) (#ms[P ] : 0) CC)

if (SC 6= empBConfig) .

Since there is no marker in (p-state[P ] : PS) BC. There is no marker in
finish-state((p-state[P ] : PS)). Therefore, there is no marker in the finsh-state
meta configuration component in the right hand side of any the transition rule:
finish-state(empBConfig) ⇒ finish-state((p-state[P ] : PS) BC).

- Receipt of Marker is split into two subcases:

(a) The process has not yet started CLDSA. This case is further split into three
subcases:

i. The process has only one incoming channel, and there are no processes
that have not yet completed CLDSA except for the process.

base-state((p-state[P ] : PS) (c-state[Q, P , N ] : marker | MMS ) BC )

snapshot(SSC)

finish-state(empBConfig)

control((prog[P ] : notYet) (cnt : 1) (#ms[P ] : 1) (done[Q, P , N ] : false) CC)

⇒
base-state((p-state[P ] : PS) (c-state[Q, P , N ] : MMS ) BC)

snapshot((p-state[P ] : PS) (c-state[Q, P , N ] : empChan) SSC)

finish-state((p-state[P ] : PS) (c-state[Q, P , N ] : MMS ) BC)

control((prog[P ] : completed) (cnt : 0) (#ms[P ] : 0) (done[Q, P , N ] : true) CC)

Because the process has only one incoming channel, and there are no pro-
cesses that have not yet completed CLDSA except for the process, there
is no marker in BC. Then there is no marker in finish-state((p-state[P ] :
PS) (c-state[Q, P , N ] : MMS ) BC).

(b) The process has already started CLDSA. This case is further split into three
subcases:
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i. There are no incoming channels from which markers have not been received
except for the incoming channel, and there are no processes that have not
yet completed CLDSA except for the process.

base-state((p-state[P ] : PS) (c-state[Q, P , N ] : marker | MMS ) BC )

finish-state(empBConfig)

control((prog[P ] : started) (cnt : 1) (#ms[P ] : 1) (done[Q, P , N ] : false) CC)

⇒
base-state((p-state[P ] : PS) (c-state[Q, P , N ] : MMS ) BC)

finish-state((p-state[P ] : PS) (c-state[Q, P , N ] : MMS ) BC)

control((prog[P ] : completed) (cnt : 0) (#ms[P ] : 0) (done[Q, P , N ] : true) CC)

Because There are no incoming channels from which markers have not
been received except for the incoming channel, and there is no process
that has not yet completed CLDSA except for the process, there is no
marker in BC. Then there is no marker in finish-state((p-state[P ] : PS)
(c-state[Q, P , N ] : MMS ) BC).

The case has been discharged.

From the three parts are proven, Proposition 1 is proven. QED.

We have already given the proof of Proposition 1.

5.2 A More Faithful Definition of the DSR Property

For a state machine M , M , π |= isReachable(s2, s1) that s2 is reachable from s1 in a
path π in M is defined and then M |= isReachable(s2, s1) that s2 is reachable from s1 in
M is defined.

Definition 10 (Reachabilty in M) For a state machine M , 〈S, I, T 〉, for each π ∈ Π
and each s1, s2 ∈ S,
M,π |= isReachable(s2, s1) iff (∃i, j ∈ Nat) (i ≤ j ∧ s1 = πi ∧ s2 = πj), and M |=
isReachable(s2, s1) iff (∃π ∈ Π) (M,π |= isReachable(s2, s1)).

In other words, a state s2 is said to be reachable from a state s1 if and only if s1 can go
to s2 by zero or more state transition steps in the state machine M .

In the informal description of the DSR property, it is checked that CLDSA terminates,
and it is checked that some states of a UDS are reachable from some others in the UDS
but not the UDS superimposed by CLDSA. Accordingly, the property involves two
systems, a UDS and the UDS superimposed by CLDSA, and hence we need to use two
state machines MUDS and MCLDSA to faithfully define the DSR property. Our definition
of the DSR property is as follows:

45



Definition 11 (DSR Property) For a state machine MUDS , 〈SUDS , IUDS , TUDS〉,
(∀s ∈ SCLDSA)
(MCLDSA |= terminated(s) ⇒MUDS |= isReachable(s∗, s1) ∧MUDS |= isReachable(s2, s∗)),
where s1 = s-state(s), s∗ = snapshot(s) and s2 = f-state(s).

5.3 Chapter Summary

This chapter gave the more faithful formal definition of the DSR property. It first
gave the definitions of functions b-state, s-state, snapshot and f-state corresponding to
the local states of all processes and channels, the start-state, the snapshot, the finish-state
of MCLDSA, and function finished for termination of CLDSA. It then gave Proposition1
saying that whenever CLDSA terminates in state s, there is no marker in the start state,
the snapshot and the finish state.

The chapter then gave the proof of Proposition 1, which is separated into three parts:
whenever CLDSA terminates in state s, there is no marker in the start state, whenever
CLDSA terminates in state s, there is no marker in the snapshot and whenever CLDSA
terminates in state s, there is no marker in the finish state.

At the end of the chapter, the more faithful formal definition of the DSR property
was given, which involes two state machines MUDS and MCLDSA. The definition more
faithfully expresses the informal description of the DSR property.
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Chapter 6

Equivalence of Two Definitions of
the DSR Property

6.1 The Theorem on Equivalence of the Two Defini-

tions and Some Lemmas

Since our new definition of the DSR property involves two state machines, it is
not straightforward to directly model check the new definition of the DSR property for
CLDSA with any existing model checker. If the new definition is equivalent to the defi-
nition used in the existing study for each UDS, we can use the model checking approach
used in the existing study to model check the new definition of the DSR property for
CLDSA. Therefore, we prove a theorem saying that our new definition is equivalent to
the definition in the existing study, which also guarantees the validity of the model check-
ing approach used in the existing study.
Let us suppose that there are n processes in a UDS and let p1, ..., pn be their identifi-
cations, namely that Pid is {p1, ..., pn}, where n ≥ 1. Let ctl be (prog[p1] : notYet) ...
(prog[pn] : notYet) in the rest of the paper.
Although the DSR property is encoded in terms of the Maude search command, the
definition of DSR property in the existing study can be expressed as follows:

For a state machine MUDS , 〈SUDS , IUDS , TUDS〉, (∀ s ∈ SCLDSA) (MCLDSA |= termi-
nated(s) ⇒ MCLDSA |= isReachable(base-state(s∗) control(ctl), base-state(s1) control(ctl))
∧ MCLDSA |= isReachable(base-state(s2) control(ctl), base-state(s∗) control(ctl))),
where s1 = s-state(s), s∗ = snapshot(s) and s2 = f-state(s).

Checked are the termination of CLDSA and then the reachability from the snapshot and
the final state to the start state and the snapshot, respectively, in a UDS superimposed
by CLDSA but not in the UDS. Their definition of the DSR property only involves
MCLDSA, while the new definition involves MUDS and MCLDSA. Hence, both definitions
are seemingly different. However, we reveal that the new definition coincides with theirs
by proving a theorem in this section. The theorem on the equivalence of two definitions
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is as follows:

Theorem 1 (Equivalence of the Two Definitions) For a state machine MUDS ,
〈SUDS , IUDS , TUDS〉, (∀s ∈ SCLDSA) (MCLDSA |= terminated(s) ⇒
MUDS |= isReachable(s∗, s1) ∧ MUDS |= isReachable(s2, s∗))
⇔
(MCLDSA |= terminated(s) ⇒ MCLDSA |= isReachable(base-state(s∗) control(ctl),
base-state(s1) control(ctl)) ∧ MCLDSA |= isReachable(base-state(s2) control(ctl),
base-state(s∗) control(ctl))),
where s1 = s-state(s), s∗ = snapshot(s) and s2 = f-state(s).

Only the difference between the new definition of the DSR property and the definition
used in the existing study is the conclusion parts of the implications. If the conclusion
parts are equivalent, then the two definitions are equivalent. The equivalence of the
conclusion parts means that reachability is preserved between MUDS and MCLDSA. The
lemma on reachability preservation between MUDS and MCLDSA is as follows:

Lemma 1 (Reachability Preservation) For a state machine MUDS , 〈SUDS , IUDS ,
TUDS〉, (∀s1, s2 ∈ SUDS) (MUDS |= isReachable(s2, s1) ⇔ MCLDSA |=
isReachable(base-state(s2) control(ctl), base-state(s1) control(ctl))).

We first prove two more lemmas, which say that one-step reachability is preserved
between MUDS and MCLDSA, to prove Lemma 1. The two lemmas are as follows:

Lemma 2 (One-step Reachability Preservation from MUDS to MCLDSA) ∀s1, s2 ∈
SUDS such that s1 goes to s2 with one state transition step in MUDS , base-state(s1)
control(ctl) goes to base-state(s2) control(ctl) with one state transition step in MCLDSA.

Lemma 3 (One-step Reachability Preservation from MCLDSA to MUDS) ∀s1, s2 ∈
SUDS such that base-state(s1) control(ctl) goes to base-state(s2) control(ctl) with one state
transition step in MCLDSA, s1 goes to s2 with one state transition step in MUDS .

For each UDS, TUDS is constructed from the three transition rules and TCLDSA is
constructed from the 18 transition rules. Therefore, all we have to do is to take into
account the three transition rules and the 18 transition rules to discuss TUDS and TCLDSA,
respectively. In the following proofs, p, q ∈ Pid, ps1, ps2 ∈ PState, cs ∈ MsgQueue, m ∈
Msg, bc ∈ Config and n ∈ Nat are fresh constants of those sorts.

6.2 Proof of Lemma 2.

Assume that s1 goes to s2 by a state transition t inMUDS . Our proof shows that there ex-
ists a state transition t′ in MCLDSA that moves base-state(s1) control(ctl) to base-state(s2)
control(ctl). In our proof, we consider all possible state transition t in MUDS that can
move s1 to s2. As we mentioned above, it suffices to take into account the three transition
rules that describes Change of Process State, Sending of Message and Receipt of Message
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in MUDS .

1. Change of Process State. Let us consider the case in which t is constructed from
the transition rule that describes Change of Process State in MUDS .

(p-state[P ] : PS1) ⇒ (p-state[P ] : PS2)

It suffices to consider s1 as an arbitrary state (p-state[p]: ps1) bc in SUDS to which the
transition rule can be applied. Therefore, s2 is (p-state[p]: ps2) bc. Then, base-state(s1)
control(ctl) is base-state((p-state[p] : ps1) bc) control(ctl), and base-state(s2) control(ctl)
is base-state((p-state[p]: ps2) bc) control(ctl). The transition rule that describes Change
of Process State in MCLDSA can be applied to base-state(s1) control(ctl) and obtains base-
state(s2) control(ctl).

base-state((p-state[P ] : PS1) BC) ⇒ base-state((p-state[P ] : PS2) BC)

Hence, there exists t′. The case has been discharged.

2. Sending of Message. Let us consider the case in which t is constructed from the
transition rule that describes Sending of Message in MUDS .

(p-state[P ] : PS1) (c-state[P,Q,N ] : CS)

⇒

(p-state[P ] : PS2) (c-state[P,Q,N ] : enq(CS,M))

It suffices to consider s1 as an arbitrary state (p-state[p]: ps1) (c-state[p, q, n]: cs) bc in
SUDS to which the transition rule can be applied. Therefore, s2 is (p-state[p]: ps2) (c-
state[p, q, n]: enq(cs,m)) bc. Then, base-state(s1) control(ctl) is base-state((p-state[p] :
ps1) (c-state[p, q, n]: cs) bc) control(ctl), and base-state(s2) control(ctl) is base-state((p-
state[p]: ps2) (c-state[p, q, n]: enq(cs,m)) bc) control(ctl). The transition rule that de-
scribes Sending of Message in MCLDSA can be applied to base-state(s1) control(ctl) and
obtains base-state(s2) control(ctl).

base-state((p-state[P ] : PS1) (c-state[P,Q,N ] : MMS ) BC)
⇒
base-state((p-state[P ] : PS2) (c-state[P,Q,N ] : enq(MMS ,M)) BC)

Hence, there exists t′. The case has been discharged.

3. Receipt of Message. Let us consider the case in which t is constructed from the
transition rule that describes Receipt of Message in MUDS .

(p-state[P ] : PS1) (c-state[Q,P,N ] : M | CS)

⇒
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(p-state[P ] : PS2) (c-state[Q,P,N ] : CS)

It suffices to consider s1 as an arbitrary state (p-state[p]: ps1) (c-state[q, p, n]: m | cs)
bc in SUDS to which the transition rule can be applied. Therefore, s2 is (p-state[p]: ps2)
(c-state[q, p, n]: cs) bc. Then, base-state(s1) control(ctl) is base-state((p-state[p] : ps1)
(c-state[p, q, n]: m | cs) bc) control(ctl), and base-state(s2) control(ctl) is base-state((p-
state[p]: ps2) (c-state[p, q, n]: cs) bc) control(ctl). The transition rule that describes
Receipt of Message in MCLDSA can be applied to base-state(s1) control(ctl) and obtains
base-state(s2) control(ctl).

base-state((p-state[P ] : PS1) (c-state[Q,P,N ] : M | MMS ) BC)
control((prog[P ] : notYet) CC)
⇒
base-state((p-state[P ] : PS2) (c-state[Q,P,N ] : MMS ) BC)

control((prog[P ] : notYet) CC)

Hence, there exists t′. The case has been discharged.

We have considerd all possible state transition t in MUDS that can move s1 to s2. All
cases has been discharged. QED

6.3 Proof of Lemma 3.

Assume that base-state(s1) control(ctl) goes to base-state(s2) control(ctl) by a state
transition t in MCLDSA. Because s1 ∈ SUDS , there is no marker in s1. This is why any
of the transition rules that describe Record of Process State and Receipt of Marker in
MCLDSA cannot be applied to base-state(s1) control(ctl). Therefore, t is not a state tran-
sition constructed from those transition rules. Any of the transition rules that describe
the 2nd, 3rd and 4th sub-cases of Receipt of Message in MCLDSA cannot be applied to
base-state(s1) control(ctl), either. Therefore, t is not a state transition constructed from
those transition rules, either. Then, all we have to do is to consider the transition rules
that describe Change of Process State, Sending of Message and the 1st part of Receipt of
Message in MCLDSA. The same proof strategy used in the proof of Lemma 2 can be used
to show that there exists a state transition that moves s1 to s2 in MUDS for each state
transition that moves base-state(s1) control(ctl) to base-state(s2) control(ctl) in MCLDSA.
The following proof considers all the possible transition rules as what we mentioned above.

1. Change of Process State. Let us consider the case in which t is constructed from
the transition rule that describes Change of Process State in MCLDSA.

base-state((p-state[P ] : PS1) BC) ⇒ base-state((p-state[P ] : PS2) BC)

It suffices to consider base-state(s1) control(ctl) as an arbitrary state base-state((p-state[p]
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: ps1) bc) control(ctl) in SCLDSA to which the transition rule can be applied. Therefore,
base-state(s2) control(ctl) is base-state((p-state[p]: ps2) bc) control(ctl). Then, s1 is (p-
state[p]: ps1) bc , and s2 is (p-state[p]: ps2) bc. The transition rule that describes Change
of Process State in MUDS can be applied to s1 and obtains s2.

(p-state[P ] : PS1) ⇒ (p-state[P ] : PS2)

Hence, there exists t′. The case has been discharged.

2. Sending of Message. Let us consider the case in which t is constructed from the
transition rule that describes Sending of Message in MCLDSA.

base-state((p-state[P ] : PS1) (c-state[P,Q,N ] : MMS ) BC)
⇒
base-state((p-state[P ] : PS2) (c-state[P,Q,N ] : enq(MMS ,M)) BC)

It suffices to consider base-state(s1) control(ctl) as an arbitrary state base-state((p-state[p]
: ps1) (c-state[p, q, n]: cs) bc) control(ctl) in SCLDSA to which the transition rule can be ap-
plied. Therefore, base-state(s2) control(ctl) is base-state((p-state[p]: ps2) (c-state[p, q, n]:
enq(cs,m)) bc) control(ctl). Then, s1 is (p-state[p]: ps1) (c-state[p, q, n]: cs) bc, and s2
is (p-state[p]: ps2) (c-state[p, q, n]: enq(cs,m)) bc. The transition rule that describes
Sending of Message in MUDS can be applied to s1 and obtains s2.

(p-state[P ] : PS1) (c-state[P,Q,N ] : CS)

⇒

(p-state[P ] : PS2) (c-state[P,Q,N ] : enq(CS,M))

Hence, there exists t′. The case has been discharged.

3. Receipt of Message.
a. The process has not yet started the CLDSA. Let us consider the case in which
t is constructed from the transition rule that describes 1st case of Receipt of Message in
MCLDSA.

base-state((p-state[P ] : PS1) (c-state[Q,P,N ] : M | MMS ) BC)
control((prog[P ] : notYet) CC)
⇒
base-state((p-state[P ] : PS2) (c-state[Q,P,N ] : MMS ) BC)

control((prog[P ] : notYet) CC)

It suffices to consider base-state(s1) control(ctl) as an arbitrary state base-state((p-state[p]
: ps1) (c-state[p, q, n]: m | cs) bc) control(ctl) in SCLDSA to which the transition rule
can be applied. Therefore, base-state(s2) control(ctl) is base-state((p-state[p]: ps2) (c-
state[p, q, n]: cs) bc) control(ctl). Note that because ctl is (prog[p1] : notYet) ... (prog[pn]
: notYet), CLDSA has not yet started. There is no marker in cs. Then, s1 is (p-state[p]:
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Figure 6.1: The correspondence from the transitions in MCLDSA to the transitions in
MUDS .

ps1) (c-state[q, p, n]: m | cs) bc, and s2 is (p-state[p]: ps2) (c-state[q, p, n]: cs) bc. The
transition rule that describes Receipt of Message in MCLDSA can be applied to s1 and
obtains s2.

(p-state[P ] : PS1) (c-state[Q,P,N ] : M | CS)

⇒

(p-state[P ] : PS2) (c-state[Q,P,N ] : CS)

Hence, there exists t′. The case has been discharged.

We have considerd all possible state transition t in MUDS that can move base-state(s1)
control(ctl) to base-state(s2) control(ctl). All cases has been discharged. QED

6.4 Proof of Lemma 1

6.4.1 Proof of the “if” part of Lemma 1

We prove that ∀s1, s2 ∈ SUDS , if MCLDSA |= isReachable(base-state(s2) control(ctl),
base-state(s1) control(ctl)), then MUDS |= isReachable(s2, s1).

Assume that MCLDSA |= isReachable(base-state(s2) control(ctl), base-state(s1)
control(ctl)) and then there must be a natural number k such that base-state(s1) control(ctl)
goes to base-state(s2) control(ctl) by k state transition steps in MCLDSA. The proof is
done by induction on k.
- Base case: since base-state(s1) control(ctl) is the same as base-state(s2) control(ctl) in
this case, s1 is the same as s2. So, this case is discharged.
- Induction case: suppose that base-state(s1) control(ctl) moves to base-state(s2) control(ctl)
by k+1 transition steps and the k+1 transitions taken are t1, ..., tk+1. As shown in Fig.
3, base-state(sk) control(ctl) is the state to which base-state(s1) control(ctl) moves by the
first k transition steps, namely that MCLDSA |= isReachable(base-state(sk) control(ctl),
base-state(s1) control(ctl)). From the induction hypothesis, MUDS |= isReachable(sk, s1).
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Figure 6.2: The correspondence from the transitions in MUDS to the transitions in
MCLDSA.

Since base-state(sk) control(ctl) moves to base-state(s2) control(ctl) by one transition step
in MCLDSA, sk also moves to s2 by one transition step in MUDS from Lemma 3. Then,
this case is also discharged. Fig. 6.1 shows the correspondence from the transitions in
MCLDSA totransitions in MUDS . QED

6.4.2 Proof of the “only if” part of Lemma 1

We prove that ∀ s1, s2 ∈ SUDS , if MUDS |= isReachable(s2, s1), then (MCLDSA |=
isReachable(base-state(s2) control(ctl), base-state(s1) control(ctl)).
Assume that MUDS |= isReachable(s2, s1) and then there must be a natural number k such
that s1 goes to s2 by k state transition steps in MUDS . The proof is done by induction on
k.
- Base case: since s1 is the same as s2 in this case, base-state(s1) control(ctl) is the same
as base-state(s2) control(ctl). So, this case is discharged.
- Induction case: suppose that s1 moves to s2 by k+1 transition steps and the k + 1
transitions taken are t1, ..., tk+1. As shown in Fig. 4, sk is the state to which s1 moves
by the first k transition steps, namely that MUDS |= isReachable(sk, s1). From the
induction hypothesis, MCLDSA |= isReachable(base-state(sk) control(ctl), base-state(s2)
control(ctl)). Since sk moves to s2 by one transition step in MCLDSA, base-state(sk)
control(ctl) also moves to base-state(s2) control(ctl) by one transition step in MCLDSA
from Lemma 2. Then, this case is also discharged. Fig. 6.2 shows the correspondence
from the transitions in MUDS to transitions in MCLDSA. QED

6.5 Proof of Theorem 1

Since Proposition 1 says that whenever CLDSA terminates in state s, there is no
marker in the start state, the snapshot and the finish state, and Lemma 1 asserts that
reachability is preserved between MUDS and MCLDSA. Proof of Theorem 1 follows from
Proposition 1 and Lemma 1. QED
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6.6 Chapter Summary

This chapter gave the theorem on equivalence of the two definitions, the more faithful
formal definition and the definition in the existing study, and some lemmas. Also, the
proofs of them were given.

The chapter first represented the definition of DSR property in the existing study,
which is encoded in terms of the Maude search command in the existing study. Then
the analysis of the similarities between the new definition of the DSR property and the
existing definition was conducted.

The chapter then gave Theorem 1 saying that new definition is equivalent to the defi-
nition of the DSR property in the existing study. To prove the Theorem 1, it the proved
Proposition 1 and Lemma 1. Lemma 1 asserts that reachability is preserved betweenMUDS
and MCLDSA. Proposition 1 says that whenever CLDSA terminates in state s, there is
no marker in the start state, the snapshot and the finish state. We prove as Lemma 2
and Lemma 3 that one-step reachability is preserved between MUDS and MCLDSA to prove
Lemma 1.

At the end of the chapter, The proof of Theorem 1 was given following from Proposition
1 and Lemma 1.
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Chapter 7

CLDSA does not alter the behaviors
of a UDS

7.1 A Binary Relation Between Two State Machines

MUDS and MCLDSA

Since CLDSA works by using a special message called marker, CLDSA does not alter
the behaviors of a UDS means that excepting for putting markers in a UDS, the algorithm
does not change the state of all processes and channels. We propose a binary relation
r between MUDS and MCLDSA saying that for each s1 ∈ SUDS and each s2 ∈ SCLDSA,
r(s1, s2) if and only if s1 is the same as the state obtained by deleting all markers from
s2.

Definition 12 (Binary relation r) Given two state machines MUDS , 〈SUDS , IUDS ,
TUDS〉 and MCLDSA , 〈SCLDSA, ICLDSA, TCLDSA〉, ∀ sUDS∈ SUDS and ∀ sCLDSA∈ SCLDSA:
A binary relation between MUDS and MCLDSA r : SUDS SCLDSA → Bool .

r(sUDS , sCLDSA) = (sUDS = delM( b-state(sCLDSA)))

Note that: For ∀ sUDS ∈ SUDS , sUDS = delM(sUDS) because there is no marker in sUDS .

Figure 7.1: The binary relation r is a simulation from MCLDSA to MUDS .
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7.2 Theorem 2 and the Proof of It

To guarantee that CLDSA does not alter the behaviors of a UDS, we prove that
MCLDSA simulates MUDS and vice versa. To prove that we prove that exists a bi-simulation
relation between MUDS and MCLDSA. Therefore, we prove Theorem 2 saying that r is a
bi-simulation relation between MUDS and MCLDSA.

Theorem 2 (Bi-simulation relation r) Binary relation r is a bi-simulation relation
between MUDS and MCLDSA.

To prove Theorem 2, we shall prove that r is a simulation from MCLDSA to MUDS and
it is also a simulation from MUDS to MCLDSA.

Since, binary relation r is considered as a simulation from MCLDSA to MUDS (MUDS to
MCLDSA). For two state machines, we only consider states what can be reached from any
initial states, which has specific configuration and the configuration is never changed by
any state transition. This is used to assume the configuration of states of MCLDSA and
states of MUDS in the following proof.

7.2.1 Simulation from MCLDSA to MUDS.

To prove that r is a simulation from MCLDSA to MUDS , We will prove that r satisfies the
following two conditions. Fig. 7.1 shows the diagrams corresponding to the two conditions.

1. For each sCLDSA ∈ ICLDSA there exists sUDS ∈ IUDS, such that r(sUDS, sCLDSA).

Prove:

For each sCLDSA ∈ CLInit(IUDS), from the definition of CL, we have:

sCLDSA= base-state(bc) start-state(empConfig) snapshot(empConfig)
finsh-state(empConfig) control(ctl), where bc ∈ IUDS , ctl = InitCtlConfig(bc).

We have b-state(sCLDSA) = bc. Let sUDS= bc ∈ IUDS . Since, sUDS = bc and delM(b-
state(sCLDSA)) = delM(sUDS) = bc, sUDS= delM(b-state(sCLDSA) ). Then r(sUDS , sCLDSA).

Therefore, for each sCLDSA ∈ ICLDSA there exists sUDS ∈ IUDS , such that r(sUDS , sCLDSA).
This condition is satisfied.

2. For each sCLDSA, s′CLDSA ∈ SCLDSA and sUDS ∈ SUDS such that r(sUDS , sCLDSA)
and sCLDSA MCLDSA

s′CLDSA by one state transition of the MCLDSA, there exists
s′UDS such that r(s′UDS , s′CLDSA) and sUDS ∗MUDS

s′UDS by zero or more
state transitions of the MUDS .

Prove:
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In the following proofs, p, q ∈ Pid, ps1, ps2 ∈ PState, cs ∈ MMsgQueue, m ∈ Msg,
bc, sc, ssc, fc ∈ BConfig, ctl ∈ CtlConfig and n ∈ Nat are fresh constants of those sorts.
As we said before, for two state machines, we only consider states what can be reached
from any initial states. The configuration of a state of MCLDSA is as following:

sCLDSA= base-state(bc) start-state(sc) snapshot(ssc) finish-state(fc) control(ctl), where
bc, sc, ssc, fc ∈ BConfig and ctl ∈ CtlConfig.

Because of r(sUDS , sCLDSA), sUDS= delM(b-state(sCLDSA)) = delM(bc).

Assume that sCLDSA MCLDSA
s′CLDSA by state transition t.

The same as what we have mentioned before. For each UDS, TUDS is constructed
from the three transition rules and TCLDSA is constructed from the 18 transition rules.
Therefore, all we have to do is to take into account the three transition rules and the 18
transition rules to discuss TUDS and TCLDSA, respectively. Since, the 18 transition rules
can be classified into three parts: UDS, UDS&CLDSA, and CLDSA. The UDS part
consists of the transition rules describing actions i, ii and iii-1. Three transition rules
describing actions iii-2, iii-3 and iii-4 are in the UDS&CLDSA part. The transition rules
describing two kinds of actions iv and v are in the CLDSA part. No loss of generality,
in our proof, state transition t is separated into three parts: UDS, UDS&CLDSA, and
CLDSA. In the following proofs, p, q ∈ Pid, ps1, ps2 ∈ PState, cs ∈ MsgQueue, m ∈
Msg, bc, sc, ssc ∈ BConfig, ctl ∈ CtlConfig and n ∈ Nat are fresh constants of those sorts.
To prove that this condition is satisfied, we will separate the proof in two parts depended
on the transition rules.

The UDS and UDS&CLDSA part: the transition t constructed from the
transition rules in the UDS part and the UDS&CLDSA part.

Since, the UDS part depends on the UDS concerned, can be constructed from the three
transition rules of the UDS and changes the base-state meta configuration component of
a state of MCLDSA. The UDS&CLDSA part also depends on the UDS concerned and can
be constructed from the three transition rules of the UDS, but changes the other meta
configuration components of a state of CL(MUDS) as well. For any state transition t in
UDS and UDS&CLDSA part that moves state sCLDSA to state s′CLDSA in MCLDSA. We
can find state transition t′ in MUDS that can moves state sUDS =delM(b-state(sCLDSA))
to state s′UDS = delM(b-state(s′CLDSA)) in MUDS . This will be proven by the following.
Existing t′ in MUDS corresponding t is shown in Fig .7.2.

1. Change of Process State. Let us consider the case in which t is constructed from
the transition rule that describes Change of Process State in MCLDSA.

base-state((p-state[P ] : PS1) BC)

⇒
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Figure 7.2: Existing t′ in MUDS corresponding t.

base-state((p-state[P ] : PS2) BC)

It suffices to consider sCLDSA as base-state((p-state[p] : ps1) bc) start-state(sc)
snapshot(ssc) finish-state(fc) control(ctl) in SCLDSA to which the transition rule
can be applied.
Because of r(sUDS , sCLDSA), sUDS is delM((p-state[p] : ps1) bc) = (p-state[p] : ps1)
delM(bc) from definition of function delM. sCLDSA goes to s′CLDSA by state transi-
tion t, then s′CLDSA is base-state((p-state[p] : ps2) bc) start-state(sc) snapshot(ssc)
finish-state(fc) control(ctl).
Let us choose the state transition t′ is constructed from the transition rule that
describes Change of Process State in MUDS .

(p-state[P ] : PS1) ⇒ (p-state[P ] : PS2)

Let s′UDS be (p-state[p] : ps2) delM(bc). Then sUDS can goes to s′UDS by state
transition t′.

We have:
s′UDS= (p-state[p] : ps2) delM(bc) (*) and,
delM(b-state(s′CLDSA)) = delM((p-state[p] : ps2) bc) = (p-state[p] : ps2) delM(bc)
(**),
From (*) and (**), s′UDS= delM(b-state(s′CLDSA)).

Therefore, r(s′UDS , s′CLDSA) and sUDS MUDS
s′UDS by state transition t′.

2. Sending of Message. Let us consider the case in which t is constructed from the
transition rule that describes Sending of Message in MCLDSA.

base-state((p-state[P ] : PS1) (c-state[P,Q,N ] : MMS )
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BC)

⇒
base-state((p-state[P ] : PS2) (c-state[P,Q,N ] : enq(MMS ,M))

BC)

It suffices to consider sCLDSA as base-state((p-state[p] : ps1) (c-state[p, q, n] : mms)
bc) start-state(sc) snapshot(ssc) finish-state(fc) control(ctl) in SCLDSA to which the
transition rule can be applied.
Because of r(sUDS , sCLDSA), sUDS = delM((p-state[p] : ps1) (c-state[p, q, n] : mms)
bc) = (p-state[p] : ps1) (c-state[p, q, n] : delChan(mms)) delM(bc) from definition
of function delM.
sCLDSA goes to s′CLDSA by state transition t, then s′CLDSA is base-state((p-state[p]:
ps2) (c-state[p, q, n] : enq(mms,m)) bc)) start-state(sc) snapshot(ssc) finish-state(fc)
control(ctl).
Let us choose the state transition t′ is constructed from the transition rule that
describes Sending of Message in MUDS .

(p-state[P ] : PS1) (c-state[P,Q,N ] : CS)

⇒

(p-state[P ] : PS2) (c-state[P,Q,N ] : enq(CS,M))

Let s′UDS be (p-state[p] : ps2) (c-state[p, q, n] : enq(delChan(mms), m)) delM(bc).
Then sUDS can goes to s′UDS by state transition t′.

We have:
s′UDS= (p-state[p] : ps2) (c-state[p, q, n] : enq(delChan(mms), m)) delM(bc) (*)
and, because m is a message, delChan(enq(mms,m)) = enq(delChan(mms), m).
Then, delM(base-sate(s′CLDSA)) = (p-state[p] : ps2)
(c-state[p, q, n] : delChan(enq(mms,m))) delM(bc)) = (p-state[p] : ps2) (c-state[p, q, n]
: enq(delChan(mms),m)) delM(bc)) (**).

From (*) and (**), s′UDS= delM(b-state(s′CLDSA)) .

Therefore, r(s′UDS , s′CLDSA) and sUDS MUDS
s′UDS by state transition t′.

3. Receipt of Message: can be separated into four subcases

(a) The process has not yet started the CLDSA. Let us consider the case in
which t is constructed from the transition rule that describes 1st case of Re-
ceipt of Message in MCLDSA.

base-state((p-state[P ] : PS1) (c-state[Q,P,N ] : M | MMS ) BC)

control((prog[P ] : notYet) CC)
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⇒
base-state((p-state[P ] : PS2) (c-state[Q,P,N ] : MMS ) BC)

control((prog[P ] : notYet) CC)

It suffices to consider sCLDSA as base-state((p-state[p] : ps1) (c-state[q, p, n]
: m | mms) bc) start-state(sc) snapshot(ssc) finish-state(fc) control((prog[p] :
notYet) cc) in SCLDSA to which the transition rule can be applied.
Because of r(sUDS , sCLDSA), sUDS is delM(b-state(sCLDSA)) = delM((p-state[p]
: ps1) (c-state[q, p, n] : m | mms) bc)) = (p-state[p] : ps1) (c-state[q, p, n]
: delChan(m | mms)) delM(bc) = (p-state[p] : ps1) (c-state[q, p, n] : m |
delChan(mms)) delM(bc) from definition of function delM.
sCLDSA goes to s′CLDSA by state transition t, then s′CLDSA is base-state((p-
state[p] : ps2) (c-state[q, p, n] : mms) bc) start-state(sc) snapshot(ssc) finish-
state(fc) control((prog[p] : notYet) cc).
Let us choose the state transition t′ is constructed from the transition rule that
describes Receipt of Message in MUDS .

(p-state[P ] : PS1) (c-state[Q,P,N ] : M | CS)

⇒
(p-state[P ] : PS2) (c-state[Q,P,N ] : CS)

Let s′UDS is (p-state[p] : ps2) (c-state[q, p, n] : delChan(mms)) delM(bc). Then
sUDS can goes to s′UDS by state transition t′.

We have:
s′UDS is (p-state[p] : ps2) (c-state[q, p, n] : delChan(mms)) delM(bc) (*) and,

delM(b-state(s′CLDSA)) = delM((p-state[p] : ps2) (c-state[q, p, n] : mms) bc))=
(p-state[p] : ps1) (c-state[q, p, n] : delChan(mms)) delM(bc) from definition of
function delM(**),

From (*) and (**), s′UDS= delM(b-state(s′CLDSA)) .

Therefore, r(s′UDS , s′CLDSA) and sUDS MUDS
s′UDS by state transition t′.

(b) The process has completed CLDSA. Let us consider the case in which t
is constructed from the transition rule that describes 2st case of Receipt of
Message in MCLDSA.

base-state((p-state[P ] : PS1) (c-state[Q,P,N ] : M | MMS ) BC)

control((prog[P ] : completed) CC)

⇒
base-state((p-state[P ] : PS2) (c-state[Q,P,N ] : MMS ) BC)
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control((prog[P ] : completed) CC)

It suffices to consider sCLDSA as base-state((p-state[p] : ps1) (c-state[q, p, n]
: m | mms) bc) start-state(sc) snapshot(ssc) finish-state(fc) control((prog[p] :
completed) cc) in SCLDSA to which the transition rule can be applied.
Because of r(sUDS , sCLDSA), sUDS is delM(b-state(sCLDSA)) = delM((p-state[p]
: ps1) (c-state[q, p, n] : m | mms) bc)) = (p-state[p] : ps1) (c-state[q, p, n]
: delChan(m | mms)) delM(bc) = (p-state[p] : ps1) (c-state[q, p, n] : m |
delChan(mms)) delM(bc) from definition of function delM.
sCLDSA goes to s′CLDSA by state transition t, then s′CLDSA is base-state((p-
state[p] : ps2 (c-state[q, p, n] : mms) bc) start-state(sc) snapshot(ssc) finish-
state(fc) control((prog[p] : (prog[p] : completed)) cc).
Let us choose the state transition t′ is constructed from the transition rule that
describes Receipt of Message in MUDS .

(p-state[P ] : PS1) (c-state[Q,P,N ] : M | CS)

⇒
(p-state[P ] : PS2) (c-state[Q,P,N ] : CS)

Let s′UDS is (p-state[p] : ps2) (c-state[q, p, n] : delChan(mms)) delM(bc). Then
sUDS can goes to s′UDS by state transition t′.

We have:
s′UDS is (p-state[p] : ps2) (c-state[q, p, n] : delChan(mms)) delM(bc) (*) and,

delM(b-state(s′CLDSA)) = delM((p-state[p] : ps2) (c-state[q, p, n] : mms) bc))=
(p-state[p] : ps1) (c-state[q, p, n] : delChan(mms)) delM(bc) from definition of
function delM(**),

From (*) and (**), s′UDS= delM(b-state(s′CLDSA)) .

Therefore, r(s′UDS , s′CLDSA) and sUDS MUDS
s′UDS by state transition t′.

(c) The process has started CLDSA, not yet completed it, and has not
yet received a marker from the incoming channel. Let us consider the
case in which t is constructed from the transition rule that describes 3 st case
of Receipt of Message in MCLDSA.

base-state((p-state[P ] : PS1) (c-state[Q,P,N ] : M | MMS ) BC)

snapshot((c-state[Q,P,N ] : MMS ′) SSC)

control((prog[P ] : started) (done[Q,P,N ] : false) CC)

⇒
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base-state((p-state[P ] : PS2) (c-state[Q,P,N ] : MMS ) BC)

snapshot((c-state[Q,P,N ] : enq(MMS ′,M)) SSC)

control((prog[P ] : started) (done[Q,P,N ] : false) CC)

It suffices to consider sCLDSA as base-state((p-state[p] : ps1) (c-state[q, p, n]
: m | mms) bc) start-state(sc) snapshot(ssc) finish-state(fc) control((prog[p] :
started) (done[q, p, n] : false) cc). in SCLDSA to which the transition rule can
be applied.
Because of r(sUDS , sCLDSA), sUDS is delM(b-state(sCLDSA)) = delM((p-state[p]
: ps1) (c-state[q, p, n] : m | mms) bc)) = (p-state[p] : ps1) (c-state[q, p, n]
: delChan(m | mms)) delM(bc) = (p-state[p] : ps1) (c-state[q, p, n] : m |
delChan(mms)) delM(bc) from definition of function delM.
sCLDSA goes to s′CLDSA by state transition t, then s′CLDSA is base-state((p-
state[p] : ps2) (c-state[q, p, n] : mms) bc) start-state(sc) snapshot((c-state[q, p, n]
: enq(ms,m)) ssc) finish-state(fc) control((prog[p] : started) (done[q, p, n] :
false) cc).
Let us choose the state transition t′ is constructed from the transition rule that
describes Receipt of Message in MUDS .

(p-state[P ] : PS1) (c-state[Q,P,N ] : M | CS)

⇒
(p-state[P ] : PS2) (c-state[Q,P,N ] : CS)

Let s′UDS is (p-state[P] : ps2) (c-state[q, p, n] : delChan(mms)) delM(bc).
Then sUDS can goes to s′UDS by state transition t′.

We have:
s′UDS is (p-state[p] : ps2) (c-state[q, p, n] : delChan(mms)) delM(bc) (*) and,

delM(b-state(s′CLDSA)) = delM((p-state[p] : ps2) (c-state[q, p, n] : mms) bc))=
(p-state[p] : ps1) (c-state[q, p, n] : delChan(mms)) delM(bc) from definition
of function delM(**),

From (*) and (**), s′UDS= delM(b-state(s′CLDSA)) .

Therefore, r(s′UDS , s′CLDSA) and sUDS MUDS
s′UDS by state transition t′.

(d) The process has started CLDSA, not yet completed it, and has
already received a marker from the incoming channel. Let us consider
the case in which t is constructed from the transition rule that describes 4 st
case of Receipt of Message in MCLDSA.

base-state((p-state[P ] : PS1) (c-state[Q,P,N ] : M | MMS ) BC)
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control((prog[P ] : started) (done[Q,P,N ] : true) CC)

⇒
base-state((p-state[P ] : PS2) (c-state[Q,P,N ] : MMS ) BC)

control((prog[P ] : started) (done[Q,P,N ] : true) CC)

It suffices to consider sCLDSA as base-state((p-state[p] : ps1) (c-state[q, p, n]
: m | mms) bc) start-state(sc) snapshot(ssc) finish-state(fc) control((prog[p] :
started) (done[q, p, n] : true) cc) in SCLDSA to which the transition rule can be
applied.
Because of r(sUDS , sCLDSA), sUDS is delM(b-state(sCLDSA)) = delM((p-state[p]
: ps1) (c-state[q, p, n] : m | mms) bc)) = (p-state[p] : ps1) (c-state[q, p, n]
: delChan(m | mms)) delM(bc) = (p-state[p] : ps1) (c-state[q, p, n] : m |
delChan(mms)) delM(bc) from definition of function delM.
sCLDSA goes to s′CLDSA by state transition t, then s′CLDSA is base-state((p-
state[p] : ps2) (c-state[q, p, n] : mms) bc) start-state(sc) snapshot(ssc) finish-
state(fc) control((prog[p] : started) (done[q, p, n] : true) cc).
Let us choose the state transition t′ is constructed from the transition rule that
describes Receipt of Message in MUDS .

(p-state[P ] : PS1) (c-state[Q,P,N ] : M | CS)

⇒
(p-state[P ] : PS2) (c-state[Q,P,N ] : CS)

Let s′UDS is (p-state[p] : ps2) (c-state[q, p, n] : delChan(mms)) delM(bc). Then
sUDS can goes to s′UDS by state transition t′.

We have:
s′UDS is (p-state[p] : ps2) (c-state[q, p, n] : delChan(mms)) delM(bc) (*) and,

delM(b-state(s′CLDSA)) = delM((p-state[p] : ps2) (c-state[q, p, n] : mms) bc))=
(p-state[p] : ps1) (c-state[q, p, n] : delChan(mms)) delM(bc) from definition of
function delM(**),

From (*) and (**), s′UDS= delM(b-state(s′CLDSA)).

Therefore, r(s′UDS , s′CLDSA) and sUDS MUDS
s′UDS by state transition t′.

The CLDSApart: state transition t is constructed from the transition rule in
the CLDSA part

Since, the CLDSA part is independent from the UDS concerned, can be constructed
regardless of any UDSs, and does not change the base-state meta configuration compo-
nent of a state of CL(MUDS). Our proof show that we can choose s′UDS the same as sUDS
then sUDS goes to s′UDS by zero step and r(s′UDS , s′CLDSA). This is shown in Fig. 7.3.
The following prove will consider transition rules in CLDSA part.
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Figure 7.3: s′UDS is the same as sUDS when state transition t in the CLDSA part.

- Record of Process State is split into two subcases:

1. The process globally initiates CLDSA. This case is further split into
three subcases:

(a) The UDS only consists of the process.

Let us consider the case in which t is constructed from the transition rule
that describes this case of Record of Process State in MCLDSA.

base-state((p-state[P ] : PS))

start-state(empBConfig)

snapshot(empBConfig)

finish-state(empBConfig)

control((prog[P ] : notYet) (cnt : 1) (#ms[P ] : 0) CC)

⇒
base-state((p-state[P ] : PS))

start-state((p-state[P ] : PS))

snapshot((p-state[P ] : PS))

finish-state((p-state[P ] : PS))

control((prog[P ] : completed) (cnt : 0) (#ms[P ] : 0) CC)

It suffices to consider sCLDSA as base-state((p-state[p]: ps))
start-state(empConfig) snapshot(empConfig) finish-state(empConfig)
control((prog[p] : notYet) (cnt : 1) (#ms[p] : 0) cc) in SCLDSA to which the
transition rule can be applied.

Because of r(sUDS , sCLDSA), sUDS is delM(p-state[p] : ps) = (p-state[p] : ps)
from definition of function delM.
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sCLDSA goes to s′CLDSA by state transition t, then s′CLDSA is base-state((p-
state[p] : ps)) start-state((p-state[p] : ps)) snapshot((p-state[p] : ps)) finish-
state((p-state[p] : ps)) control((prog[p] : completed) (cnt : 0) (#ms[p] : 0) cc) .

Let we choose s′UDS is the same sUDS , means that s′UDS is (p-state[p] : ps) (*).

We have delM(b-state(s′CLDSA)) = delM(p-state[p] : ps) = (p-state[p] : ps)
(**).

From (*) and (**), s′UDS= delM(b-state(s′CLDSA)) = (p-state[p] : ps).

Therefore, r(s′UDS , s′CLDSA)

(b) The system consists of more than one process, and the process does not have
any incoming channels.

Let us consider the case in which t is constructed from the transition rule
that describes this case of Record of Process State in MCLDSA.

base-state((p-state[P ] : PS) BC)
start-state(empBConfig)
snapshot(empBConfig)
finish-state(empBConfig)
control((prog[P ] : notYet) (cnt : NzN) (#ms[P ] : 0) CC)
⇒
base-state((p-state[P ] : PS) bcast(BC, P , marker))
start-state((p-state[P ] : PS) BC)
snapshot((p-state[P ] : PS))
control((prog[P ] : completed) (cnt : sd(NzN ,1)) (#ms[P ] : 0) CC)
if NzN > 1

It suffices to consider sCLDSA as base-state((p-state[p]: ps) bc)
start-state(empConfig) snapshot(empConfig) finish-state(fc) control((prog[p] :
notYet) (cnt : nzn′) (#ms[p] : 0) cc) such that nzn′ > 1 in SCLDSA to which
the transition rule can be applied.

Because of r(sUDS , sCLDSA), sUDS is delM((p-state[p] : ps) bc) = (p-state[p] :
ps) delM(bc) from definition of function delM

sCLDSA goes to s′CLDSA by state transition t, then s′CLDSA is base-state((p-
state[p] : ps) bcast(bc, p, marker)) start-state((p-state[p] : ps)) snapshot((p-
state[p] : ps)) finish-state(fc) control((prog[p] : completed) (cnt : 0) (#ms[p]
: 0) cc).

Let we choose s′UDS is the same sUDS , means that s′UDS is (p-state[p] : ps)
delM(bc) (*).
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We have delM(b-state(s′CLDSA)) = delM((p-state[p] : ps) bcast(bc, p, marker))
= (p-state[p] : ps) delM(bcast(bc, p, marker)) from definition of function delM.

Function bcast(bc, p, marker)) to puts markers in all the outgoing channels
from a process p, then delM(bcast(bc, p, marker))) = delM(bc).

Then s′UDS= delM(b-state(s′CLDSA)) = (p-state[p] : ps) delM(bc) (**).

From (*) and (**), s′UDS= delM(b-state(s′CLDSA)) = (p-state[p] : ps) delM(bc).

Therefore, r(s′UDS , s′CLDSA)

(c) The system consists of more than one process, and the process has one or more
incoming channels.

Let us consider the case in which t is constructed from the transition rule
that describes this case of Record of Process State in MCLDSA.

base-state((p-state[P ] : PS) BC)

start-state(empBConfig)

snapshot(empBConfig)

finish-state(empBConfig)

control((prog[P ] : notYet) (#ms[P ] : NzN ′) CC)

⇒
base-state((p-state[P ] : PS) bcast(BC, P , marker))

start-state((p-state[P ] : PS) BC)

snapshot((p-state[P ] : PS) inchans(BC, P ))

control((prog[P ] : started) (#ms[P ] : NzN ′) CC)

It suffices to consider sCLDSA as base-state((p-state[p]: ps) bc) start-state(empConfig)
snapshot(empConfig) finish-state(fc) control((prog[p] : notYet) ( #ms[p] :
nzn) cc) in SCLDSA to which the transition rule can be applied.

Because of r(sUDS , sCLDSA), sUDS is delM((p-state[p] : ps) bc) = (p-state[p] :
ps) delM(bc) from definition of function delM.

Since sCLDSA goes to s′CLDSA by state transition t, s′CLDSA is base-state((p-
state[p] : ps) bcast(bc, p, marker)) start-state((p-state[p] : ps) bc) snapshot((p-
state[p] : ps) inchans(bc, p)) finish-state(fc) control((prog[p] : started) (cnt :
0) (#ms[p] : 0) cc).

Let we choose s′UDS is the same sUDS , means that s′UDS is (p-state[p] : ps)
delM(bc) (*).
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Function bcast(bc, p, marker)) to put markers in all the outgoing channels
of the process p, delM(bcast(bc, p, marker))) = delM(bc) .

Then we have delM(b-state(s′CLDSA)) = (p-state[p] : ps) delM(bc) (**).

From (*) and (**), s′UDS= delM(b-state(s′CLDSA)) = (p-state[p] : ps) delM(bc).

Therefore, r(s′UDS , s′CLDSA)

2. The process does not globally initiates CLDSA. This case is further split into three
subcases:

(a) The process does not have any incoming channels, and there are no processes
except for the process that has not completed CLDSA.

Let us consider the case in which t is constructed from the transition rule
that describes this case of Record of Process State in MCLDSA.

base-state((p-state[P ] : PS) BC)
start-state(SC)
snapshot(SSC)
finish-state(empBConfig)
control((prog[P ] : notYet) (cnt : 1) (#ms[P ] : 0) CC)
⇒
base-state((p-state[P ] : PS))
start-state(SC)
snapshot((p-state[P ] : PS) SSC)
finish-state((p-state[P ] : PS) BC)
control((prog[P ] : completed) (cnt : 0) (#ms[P ] : 0) CC)
if (SC 6= empBConfig) .

It suffices to consider sCLDSA as base-state((p-state[p]: ps) bc) start-state(sc)
snapshot(ssc) finish-state(empConfig) control((prog[p] : notYet) (cnt : 1) (
#ms[p] : 0) cc), such that (sc =/= empConfig) in SCLDSA to which the tran-
sition rule can be applied.

Because of r(sUDS , sCLDSA), sUDS is delM((p-state[p] : ps) bc) = (p-state[p] :
ps) delM(bc) from definition of function delM.

Since sCLDSA goes to s′CLDSA by state transition t, s′CLDSA is base-state((p-
state[p] : ps) bc) start-state(sc) snapshot((p-state[p] : ps) ssc) finish-state((p-
state[p] : ps) fc) control((prog[p] : complated) (cnt : 0) (#ms[p] : 0) cc) .

Let we choose s′UDS is the same sUDS , means that s′UDS is (p-state[p] : ps)
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delM(bc) (*).

We have delM(b-state(s′CLDSA)) = delM((p-state[p] : ps) bc) = (p-state[p] :
ps) delM(bc) from definition of function delM(**).

From (*) and (**), s′UDS= delM(b-state(s′CLDSA)) = (p-state[p] : ps) delM(bc).

Therefore, r(s′UDS , s′CLDSA)

(b) The process does not have any incoming channels, and there are some other
processes that have not completed CLDSA.

Let us consider the case in which t is constructed from the transition rule
that describes 5 st case of Record of Process State in MCLDSA.

base-state((p-state[P ] : PS) BC)
start-state(SC)
snapshot(SSC)
control((prog[P ] : notYet) (cnt : NzN) (#ms[P ] : 0) CC)
⇒
base-state((p-state[P ] : PS) bcast(BC, P , marker))
start-state(SC)
snapshot(SSC)
control((prog[P ] : completed) (cnt : sd(NzN ,1)) (#ms[P ] : 0) CC)
if (SC 6= empBConfig) ∧ (NzN > 1)

It suffices to consider sCLDSA as base-state((p-state[p]: ps) bc) start-state(sc)
snapshot(ssc) finish-state(fc) control((prog[p] : notYet) (cnt : nzn) ( #ms[p]
: 0) cc), such that (nzn > 1) and (sc =/= empConfig) in SCLDSA to which the
transition rule can be applied.

Because of r(sUDS , sCLDSA), sUDS is delM((p-state[p] : ps) bc) = (p-state[p] :
ps) delM(bc) from definition of function delM.

sCLDSA goes to s′CLDSA by state transition t, then s′CLDSA is base-state((p-
state[p] : ps) bcast(bc, p, marker)) start-state(sc) snapshot((p-state[p] : ps)
ssc) finish-state(fc) control((prog[p] : completed) (cnt : sd(nzn,1)) cc) .

Let we choose s′UDS is the same sUDS , means that s′UDS is (p-state[p] : ps)
delM(bc)(*).

We have delM(b-state(s′CLDSA)) = delM((p-state[p] : ps) bcast(bc, p, marker))
= (p-state[p] : ps) delM(bcast(bc, p, marker)) from definition of function del-
Mand delM(bcast(bc, p, marker))) = delM(bc).
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Then s′UDS= delM(b-state(s′CLDSA)) = (p-state[p] : ps) delM(bc) (**).

From (*) and (**), s′UDS= delM(b-state(s′CLDSA)) = (p-state[p] : ps) delM(bc).

Therefore, r(s′UDS , s′CLDSA)

(c) The process has some incoming channels.

Let us consider the case in which t is constructed from the transition rule
that describes 6 st case of Record of Process State in MCLDSA.

base-state((p-state[P ] : PS) BC)

start-state(SC)

snapshot(SSC)

control((prog[P ] : notYet) (#ms[P ] : NzN ′) CC)

⇒
base-state((p-state[P ] : PS) bcast(BC, P , marker))

start-state(SC)

snapshot((p-state[P ] : PS) inchans(BC, P ) SSC)

control((prog[P ] : started) (#ms[P ] : NzN ′) CC)

if (SC 6= empBConfig)

It suffices to consider sCLDSA as base-state((p-state[p]: ps) bc) start-state(sc)
snapshot(ssc) finish-state(fc) control((prog[p] : notYet) ( #ms[p] : nzn′) cc)
such that sc =/= empConfig in SCLDSA to which the transition rule can be
applied.

Because of r(sUDS , sCLDSA), sUDS is delM((p-state[p] : ps) bc) = (p-state[p] :
ps) delM(bc) from definition of function delM.

Since sCLDSA goes to s′CLDSA by state transition t, s′CLDSA is base-state((p-
state[p] : ps) bcast(bc, p, marker)) start-state(sc) snapshot((p-state[p] : ps)
inchans(bc, p) ssc) finish-state(fc) control((prog[p] : started) (#ms[p] : nzn′)
cc) .

Let we choose s′UDS is the same sUDS , means that s′UDS is (p-state[p] : ps)
delM(bc) (*).

We have delM(b-state(s′CLDSA)) = delM(b-state(s′CLDSA)) = delM((p-state[p]
: ps) bcast(bc, p, marker)) = (p-state[p] : ps) delM(bc) from definition of func-
tion delM(**).
From (*) and (**), s′UDS= delM(b-state(s′CLDSA)) = (p-state[p] : ps) delM(bc).

Therefore, r(s′UDS , s′CLDSA)
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- Receipt of Marker is split into two subcases:

1. The process has not yet started CLDSA. This case is further split into three
subcases:

(a) The process has only one incoming channel, and there are no processes that
have not yet completed CLDSA except for the process.

Let us consider the case in which t is constructed from the transition rule
that describes this case of Receipt of Marker in MCLDSA.

base-state((p-state[P ] : PS) (c-state[Q, P , N ] : marker | MMS ) BC )
snapshot(SSC)
finish-state(empBConfig)
control((prog[P ] : notYet) (cnt : 1) (#ms[P ] : 1) (done[Q, P , N ] : false) CC)
⇒
base-state((p-state[P ] : PS) (c-state[Q, P , N ] : MMS ) BC)
snapshot((p-state[P ] : PS) (c-state[Q, P , N ] : empChan) SSC)
finish-state((p-state[P ] : PS) (c-state[Q, P , N ] : MMS ) BC)
control((prog[P ] : completed) (cnt : 0) (#ms[P ] : 0) (done[Q, P , N ] : true) CC)

It suffices to consider sCLDSA as base-state((p-state[p] : ps) (c-state[q, p, n] :
marker | ms) bc) start-state(sc) snapshot(ssc) finish-state(empConfig)
control((prog[p] : notYet) (#ms[p] : 1) (cnt : 1 ) (done[q, p, n] : false) cc) in
SCLDSA to which the transition rule can be applied.

Because of r(sUDS , sCLDSA), sUDS is delM((p-state[p]: ps) (c-state[q, p, n] :
marker | ms) bc)
= (p-state[p] : ps) (c-state[q, p, n] : delChan(marker | ms)) delM(bc)

= (p-state[p] : ps) (c-state[q, p, n] : delChan(ms)) delM(bc) from definition of
function delM.

Since sCLDSA goes to s′CLDSA by state transition t, s′CLDSA is base-state((p-
state[p] : ps) (c-state[q, p, n] : ms) bc) start-state(sc) snapshot((p-state[p] : ps)
(c-state[q, p, n] : empChan) ssc) finish-state((p-state[p] : ps) (c-state[q, p, n] :
ms) bc) control((prog[p] : completed) (#ms[p] : 0) (cnt : 0) (done[q, p, n] :
true) cc)

Let we choose s′UDS is the same sUDS , means that s′UDS is (p-state[p] : ps)
(c-state[q, p, n] : delChan(ms)) delM(bc)(*).

We have delM(b-state(s′CLDSA)) = delM((p-state[p]: ps) (c-state[q, p, n] : ms)
bc)

= (p-state[p] : ps) (c-state[q, p, n] : delChan(ms)) delM(bc) from definition of
function delM.
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From (*) and (**), s′UDS = delM(b-state(s′CLDSA)) = (p-state[p] : ps) (c-
state[q, p, n] : delChan(ms)) delM(bc).

Therefore, r(s′UDS , s′CLDSA)

(b) The process has only one incoming channel, and there are some other processes
that have not yet completed CLDSA.

Let us consider the case in which t is constructed from the transition rule
that describes this case of Receipt of Marker in MCLDSA.

base-state((p-state[P ] : PS) (c-state[Q, P , N ] : marker | MMS ) BC )
snapshot(SSC)
control((prog[P ] : notYet) (cnt : NzN) (#ms[P ] : 1) (done[Q, P , N ] : false) CC)
⇒
base-state((p-state[P ] : PS) (c-state[Q, P , N ] : MMS ) bcast(BC, P , maker))
snapshot((p-state[P ] : PS) (c-state[Q, P , N ] : empChan) SSC)
control((prog[P ] : completed) (cnt : sd(NzN ,1)) (#ms[P ] : 0) (done[Q, P , N ] :
true) CC)
if NzN > 1

It suffices to consider sCLDSA as base-state((p-state[p]: ps) (c-state[q, p, n] :
marker | ms) bc) start-state(sc) snapshot(ssc) finish-state(empConfig)
control((prog[p] : notYet) (#ms[p] : 1) (cnt : nzn ) (done[q, p, n] : false) cc),
where nzn > 1, in SCLDSA to which the transition rule can be applied.

Because of r(sUDS , sCLDSA), sUDS is delM((p-state[p]: ps) (c-state[q, p, n] :
marker | ms) bc)
= (p-state[p] : ps) (c-state[q, p, n] : delChan(ms)) delM(bc) from definition of
function delM.

Since sCLDSA goes to s′CLDSA by state transition t, s′CLDSA is base-state((p-
state[p] : ps) (c-state[q, p, n] : ms) bc) start-state(sc) snapshot((p-state[p] : ps)
(c-state[q, p, n] : empChan) ssc) finish-state((p-state[p] : ps) (c-state[q, p, n] :
ms) bc) control((prog[p] : completed) (#ms[p] : 0) (cnt : sd(nzn,1)) (done[q, p, n]
: true) cc)

Let we choose s′UDS is the same sUDS , means that s′UDS is (p-state[p] : ps)
(c-state[q, p, n] : delChan(ms)) delM(bc) (*).

We have delM(b-state(s′CLDSA)) = delM((p-state[p]: ps) (c-state[q, p, n] : ms)
bc) = (p-state[p] : ps) (c-state[q, p, n] : delChan(ms)) delM(bc) from definition
of function delM.

From (*) and (**), s′UDS= delM(b-state(s′CLDSA)) = (p-state[p] : ps) (c-
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state[q, p, n] : delChan(ms)) delM(bc).

Therefore, r(s′UDS , s′CLDSA)

(c) The process has more than one incoming channel.

Let us consider the case in which t is constructed from the transition rule
that describes this case of Receipt of Marker in MCLDSA.

base-state((p-state[P ] : PS) (c-state[Q, P , N ] : marker | MMS ) BC )

snapshot(SSC)

control((prog[P ] : notYet) (cnt : NzN) (#ms[P ] : NzN ′) (done[Q, P , N ] : false)

CC)

⇒
base-state((p-state[P ] : PS) (c-state[Q, P , N ] : MMS ) bcast(BC, P , maker))

snapshot((p-state[P ] : PS) (c-state[Q, P , N ] : empChan) inchans(BC,P ) SSC)

control((prog[P ] : started) (cnt : sd(NzN ,1)) (#ms[P ] : sd(NzN ′,1)) (done[Q, P ,

N ] : true) CC)

if NzN ′ > 1

It suffices to consider sCLDSA as base-state((p-state[p]: ps) (c-state[q, p, n] :
marker | ms) bc) start-state(sc) snapshot(ssc) finish-state(fc) control((prog[p]
: notYet) (#ms[p] : nzn′) (cnt : nzn ) (done[q, p, n] : false) cc), such that nzn′

> 1, in SCLDSA to which the transition rule can be applied.

Because of r(sUDS , sCLDSA), sUDS is delM((p-state[p]: ps) (c-state[q, p, n] :
marker | ms) bc)

= (p-state[p] : ps) (c-state[q, p, n] : delChan(ms)) delM(bc) from definition of
function delM.

Since sCLDSA goes to s′CLDSA by state transition t, s′CLDSA is base-state((p-
state[p] : ps) (c-state[q, p, n] : ms) bc) start-state(sc) snapshot((p-state[p] : ps)
(c-state[q, p, n] : empChan) inchans(bc, p) ssc) finish-state(fc) control((prog[p]
: started) (#ms[p] : sd(nzn′,1)) (cnt : nzn) (done[q, p, n] : true) cc)

Let we choose s′UDS is the same sUDS , means that s′UDS is (*).

We have delM(b-state(s′CLDSA)) = (p-state[p] : ps) (c-state[q, p, n] : delChan(ms))
delM(bc)

From (*) and (**), s′UDS= delM(b-state(s′CLDSA)) = delM((p-state[p]: ps)
(c-state[q, p, n] : ms) bc)

= (p-state[p] : ps) (c-state[q, p, n] : delChan(ms)) delM(bc) from definition of
function delM.
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Therefore, r(s′UDS , s′CLDSA)

2. The process has already started CLDSA. This case is further split into three sub-
cases:

(a) There are no incoming channels from which markers have not been received
except for the incoming channel, and there are no processes that have not yet
completed CLDSA except for the process.

Let us consider the case in which t is constructed from the transition rule
that describes this case of Receipt of Marker in MCLDSA.

base-state((p-state[P ] : PS) (c-state[Q, P , N ] : marker | MMS ) BC )
finish-state(empBConfig)
control((prog[P ] : started) (cnt : 1) (#ms[P ] : 1) (done[Q, P , N ] : false) CC)
⇒
base-state((p-state[P ] : PS) (c-state[Q, P , N ] : MMS ) BC)
finish-state((p-state[P ] : PS) (c-state[Q, P , N ] : MMS ) BC)
control((prog[P ] : completed) (cnt : 0) (#ms[P ] : 0) (done[Q, P , N ] : true) CC)

It suffices to consider sCLDSA as base-state((p-state[p]: ps) (c-state[q, p, n] :
marker | ms) bc) start-state(sc) snapshot(ssc) finish-state(empConfig)
control((prog[p] : started) (#ms[p] : 1) (cnt : 1 ) (done[q, p, n] : false) cc) in
SCLDSA to which the transition rule can be applied.

Because of r(sUDS , sCLDSA), sUDS is delM((p-state[p]: ps) (c-state[q, p, n] :
marker | ms) bc)
= (p-state[p] : ps) (c-state[q, p, n] : delChan(ms)) delM(bc) from definition of
function delM.

Since sCLDSA goes to s′CLDSA by state transition t, s′CLDSA is base-state((p-
state[p] : ps) (c-state[q, p, n] : ms) bc) start-state(sc) snapshot((p-state[p] : ps)
(c-state[q, p, n] : empChan) ssc) finish-state((p-state[p] : ps) (c-state[q, p, n] :
ms) bc) control((prog[p] : completed) (#ms[p] : 0) (cnt : 0) (done[q, p, n] :
true) cc) (*).

Let we choose s′UDS is the same sUDS , means that s′UDS is (p-state[p] : ps)
(c-state[q, p, n] : delChan(ms)) delM(bc)

We have delM(b-state(s′CLDSA)) = delM((p-state[p]: ps) (c-state[q, p, n] : ms)
bc)

= (p-state[p] : ps) (c-state[q, p, n] : delChan(ms)) delM(bc) from definition of
function delM(**).
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From (*) and (**), s′UDS= delM(b-state(s′CLDSA)) = (p-state[p] : ps) (c-
state[q, p, n] : delChan(ms)) delM(bc).

Therefore, r(s′UDS , s′CLDSA)

(b) There are no incoming channels from which markers have not been received
except for the incoming channel, and there are some other processes that have
not yet completed CLDSA.

Let us consider the case in which t is constructed from the transition rule
that describes this case of Receipt of Marker in MCLDSA.

base-state((p-state[P ] : PS) (c-state[Q, P , N ] : marker | MMS ) BC )

control((prog[P ] : started) (cnt : NzN) (#ms[P ] : 1) (done[Q, P , N ] : false) CC)

⇒
base-state((p-state[P ] : PS) (c-state[Q, P , N ] : MMS ) BC)

control((prog[P ] : completed) (cnt : sd(NzN ,1) (#ms[P ] : 0) (done[Q, P , N ] : true)

CC)

if NzN > 1

It suffices to consider sCLDSA as base-state((p-state[p]: ps) (c-state[q, p, n] :
marker | ms) bc) start-state(sc) snapshot(ssc) finish-state(fc)
control((prog[p] : started) (#ms[p] : 1) (cnt : nzn) (done[q, p, n] : false) cc)
such that nzn > 1 in SCLDSA to which the transition rule can be applied.

Because of r(sUDS , sCLDSA), sUDS is delM((p-state[p]: ps) (c-state[q, p, n] :
marker | ms) bc)
= (p-state[p] : ps) (c-state[q, p, n] : delChan(ms)) delM(bc) from definition of
function delM.

Since sCLDSA goes to s′CLDSA by state transition t, s′CLDSA is base-state((p-
state[p] : ps) (c-state[q, p, n] : ms) bc) start-state(sc) snapshot((p-state[p] : ps)
(c-state[q, p, n] : empChan) ssc) finish-state(fc) control((prog[p] : completed)
(#ms[p] : 0) (cnt : 0) (done[q, p, n] : true) cc)

Let we choose s′UDS is the same sUDS , means that s′UDS is (p-state[p] : ps)
(c-state[q, p, n] : delChan(ms)) delM(bc) (*).

We have delM(b-state(s′CLDSA)) = delM((p-state[p]: ps) (c-state[q, p, n] : ms)
bc) = (p-state[p] : ps) (c-state[q, p, n] : delChan(ms)) delM(bc) from definition
of function delM

From (*) and (**), s′UDS= delM(b-state(s′CLDSA)) = (p-state[p] : ps) (c-
state[q, p, n] : delChan(ms)) delM(bc).
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Therefore, r(s′UDS , s′CLDSA)

(c) There are some other incoming channels from which markers have not been
received.

Let us consider the case in which t is constructed from the transition rule
that describes this case of Receipt of Marker in MCLDSA.

base-state((p-state[P ] : PS) (c-state[Q, P , N ] : marker | MMS ) BC )
control((prog[P ] : started) (cnt : NzN) (#ms[P ] : NzN ′) (done[Q, P , N ] : false)
CC)
⇒
base-state((p-state[P ] : PS) (c-state[Q, P , N ] : MMS ) BC)
control((prog[P ] : started) (cnt : NzN)) (#ms[P ] : sd(NzN ′,1)) (done[Q, P , N ] :
true) CC)
if NzN ′ > 1

It suffices to consider sCLDSA as base-state((p-state[p]: ps) (c-state[q, p, n] :
marker | ms) bc) start-state(sc) snapshot(ssc) finish-state(empConfig)
control((prog[p] : started) (#ms[p] : nzn′) (cnt : nzn ) (done[q, p, n] : false)
cc) such that nzn′ > 1 in SCLDSA to which the transition rule can be applied.

Because of r(sUDS , sCLDSA), sUDS is delM((p-state[p]: ps) (c-state[q, p, n] :
marker | ms) bc)
= (p-state[p] : ps) (c-state[q, p, n] : delChan(ms)) delM(bc) from definition of
function delM.

Since sCLDSA goes to s′CLDSA by state transition t, s′CLDSA is base-state((p-
state[p] : ps) (c-state[q, p, n] : ms) bc) start-state(sc) snapshot((p-state[p] : ps)
(c-state[q, p, n] : empChan) ssc) finish-state((p-state[p] : ps) (c-state[q, p, n] :
ms) bc) control((prog[p] : started) (#ms[p] : sd(nzn′,1)) (cnt : nzn) (done[q, p, n]
: true) cc)

Let we choose s′UDS is the same sUDS , means that s′UDS is (p-state[p] : ps)
(c-state[q, p, n] : delChan(ms)) delM(bc) (*).

We have delM(b-state(s′CLDSA)) = delM((p-state[p]: ps) (c-state[q, p, n] : ms)
bc)

= (p-state[p] : ps) (c-state[q, p, n] : delChan(ms)) delM(bc) from definition of
function delM(**).

From (*) and (**), s′UDS= delM(b-state(s′CLDSA)) = p-state[p] : ps) (c-state[q, p, n]
: delChan(ms)) delM(bc) .
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Therefore, r(s′UDS , s′CLDSA)

We have considered all transition rules in MCLDSA and prove that for each sCLDSA, s′CLDSA
∈ SCLDSA and sUDS ∈ SUDS such that r(sUDS , sCLDSA) and sCLDSA MCLDSA

s′CLDSA
by one state transition of the MCLDSA, there exists s′UDS such that r(s′UDS , s′CLDSA)
andsUDS ∗MUDS

s′UDS by zero or more. Therefor, this condition is hold.

From what have been proved above, we can see that binary relation r satisfies that
forall state s in ICLDSA, exist s′ in IUDS such that s is simulated by s′ and forall s1, s2 in
SCLDSA and s1 moves to s2 by state transition t, s′1 in SUDS such that s1 is simulated by
s′1, then there exist s′2 such that s2 moves to s′2 by zero or more state transitions and
s2 is simulated by s′2. This mean that for any state s in SCLDSA which can be moved
from any state in ICLDSA, we can find a state s′ in SUDS , such that s is simulated by s′.
Therefore, binary relation r is simulation from MCLDSA to MUDS . QED

7.2.2 Simulation from MUDS to MCLDSA

To prove that r is a simulation from MUDS to MCLDSA, we shall prove that r satisfies the
following two conditions. Fig. 7.2 shows the diagrams corresponding to the two conditions.

1. For each sUDS ∈ IUDS there exists sCLDSA ∈ ICLDSA, such that r(sUDS, sCLDSA).
Prove:

For each sUDS ∈ IUDS , from the definition of CL, we can find:

sCLDSA= base-state(sUDS) start-state(empConfig) snapshot(empConfig)
finsh-state(empConfig) control(ctl) where ctl = InitCtlConfig(sUDS).

Because of b-state(sCLDSA) = sUDS , delM(b-state(sCLDSA) ) = delM(sUDS) = sUDS
means that sUDS= delM(b-state(sCLDSA) ) then r(sUDS , sCLDSA).

Therefore, for each sUDS ∈ IUDS there exists sCLDSA ∈ ICLDSA, such that r(sUDS , sCLDSA).

2. For each sUDS , s′UDS ∈ SUDS and sCLDSA ∈ SCLDSA such that r(sUDS , sCLDSA)
and sUDS MUDS

s′UDS by one state transition of the MUDS , there exists s′CLDSA
such that r(s′UDS , s′CLDSA) and sCLDSA ∗MCLDSA

s′CLDSA by zero or more
state transitions of the MCLDSA.

Prove:

Assume that sUDS MUDS
s′UDS by state transition t,

To prove that r is simulation from MUDS to MCLDSA, it suffices to take into account
the three transition rules. It means that we only need to consider state transitions, which
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Figure 7.4: The binary relation r is a simulation from MUDS to MCLDSA.

are defined by the three transition rules.
We also know that for any transition rule in MUDS , there exists a transition rule in the
UDS part in MCLDSA, which can be constructed from the transition rules of the UDS
and changes the base-state meta configuration component of a state of MCLDSA.

More specifically in this proof, for any state transition t in MUDSthat moves state sUDS
to state s′UDS in MUDS , there exists s′CLDSA such that r(s′UDS , s′CLDSA) and we can
find state transition t′ in MCLDSAsuch that t′ can moves state sCLDSA to state s′CLDSA in
MCLDSA. This will be proven by the following. The following proof will consider all the
three transition rules in MUDS . In the following proof: p, q ∈ Pid, ps1, ps2 ∈ PState, n ∈
Nat, m ∈ Msg, cs ∈ MsgSeq, cs′ ∈ MMsgSeq, cf ∈ Config, bc, bc′, sc, ssc, fc ∈ BConfig
and ctl, cc ∈ CtlConfig are fresh constants of those sorts.

1. Change of Process State.

Let us consider the case in which t is constructed from the transition rule that
describes Change of Process State in MUDS .

(p-state[P ] : PS1) ⇒ (p-state[P ] : PS2)

It suffices to consider sUDS as to which the transition rule can be applied:

- sUDS= ((p-state[p] : ps1) cf)

sCLDSA is in form base-state(bc) start-state(sc) snapshot(ssc) finish-state(fc)
control(ctl)

Because of r(sUDS , sCLDSA),

sUDS = delM(b-state(sCLDSA)) = delM(bc), delM(bc) = (p-state[p] : ps1) cf .

Then bc = ((p-state[p] : ps1) bc′), where delM(bc′) = cf .
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sCLDSA is base-state((p-state[p] : ps1) bc′) start- state(sc) snapshot(ssc) finish-
state(fc) control(ctl), where delM(bc′) = cf .

Since sUDS goes to s′UDS by state transition t, s′UDS= ((p-state[p] : ps2) cf)

Let us choose the state transition t′ is constructed from the transition rule that
describes Change of Process State in MCLDSA.

base-state((p-state[P ] : PS1) BC)

⇒

base-state((p-state[P ] : PS2) BC)

Let us choose s′CLDSA is base-state((p-state[p] : ps2) bc′) start-state(sc) snapshot(ssc)
finish-state(fc) control(ctl).

We have s′UDS = ((p-state[p] : ps2) cf) (*) and,

delM(b-state(s′CLDSA)) = delM((p-state[p] : ps2) bc′) = (p-state[p] : ps2) delM(bc′)
= (p-state[p] : ps2) cf from delM(bc’) = cf.(**)

From (*) and (**), s′UDS = delM(b-state(s′CLDSA)) = (p-state[p] : ps2) cf .

Therefore r(s′UDS , s′CLDSA) and sCLDSA MCLDSA
s′CLDSA by state transition t′.

2. Sending of Message.

Let us consider the case in which t is constructed from the transition rule that
describes Sending of Message in MUDS .

(p-state[P ] : PS1) (c-state[P,Q,N ] : CS)

⇒

(p-state[P ] : PS2) (c-state[P,Q,N ] : enq(CS,M))

It suffices to consider sUDS as to which the transition rule can be applied is sUDS is
(p-state[p] : ps1) (c-state[p, q, n]: cs) cf .

sCLDSA is in form : base-state(bc) start-state(sc) snapshot(ssc) finish-state(fc)
control(ctl)

Because of r(sUDS , sCLDSA), sUDS = delM(b-state(sCLDSA)) = delM(bc).

So delM(bc) = (p-state[p] : ps1) (c-state[p, q, n] : cs) cf ,

Then bc = ((p-state[p] : ps1) (c-state[p, q, n]: cs′) bc′), where delM(bc′) = cf and
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delChan(cs′) = cs from definition of function delM.

Therefore sCLDSA is base-state((p-state[p] : ps1) (c-state[p, q, n] : cs′) bc′) start-
state(sc) snapshot(ssc) finish-state(fc) control(ctl), where delM(bc′) = cf and
delChan(cs′) = cs.

Because sUDS goes to s′UDS by state transition t, s′UDS= (p-state[p]: ps2) (c-
state[p,q,n]: enq(cs,m))

Let us choose the state transition t′ is constructed from the transition rule that
describes Sending of Message in MCLDSA.

base-state((p-state[P ] : PS1) (c-state[P,Q,N ] : MMS )

BC)

⇒
base-state((p-state[P ] : PS2) (c-state[P,Q,N ] : enq(MMS ,M))

BC)

Let us choose s′CLDSA is base-state((p-state[p] : ps1) (c-state[p, q, n]: enq(cs′,m)
bc′)

start-state(sc) snapshot(ssc) finish-state(fc) control(ctl).

We have s′UDS = (p-state[p]: ps2) (c-state[p, q, n]: enq(cs,m)) bc (*) and,

delM(b-state(s′CLDSA)) = delM((p-state[p] : ps2)
(c-state[p, q, n] : enq(cs′,m)) bc)
= (p-state[p] : ps2) (c-state[p, q, n]: delChan(enq(cs′,m)) delM(bc′)))

Because m is message, delChan(enq(cs′,m))) = enq(delChan(cs′), m), then

(p-state[p] : ps2) (c-state[p, q, n]: delChan(enq(cs′,m)) delM(bc′)))
= (p-state[p] : ps2) (c-state[p, q, n]: enq(delChan(cs′), m)) delM(bc′)))
= (p-state[p] : ps2) (c-state[p, q, n]: enq(cs,m)) cf)
{delM(bc’) = cf and delChan(cs’) = cs}.

Then s′UDS= delM(b-state(s′CLDSA)) (**).

From (*) and (**), r(s′UDS , s′CLDSA) and sCLDSA MCLDSA
s′CLDSA by state transi-

tion t′.

3. Receipt of Message.
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Let us consider the case in which t is constructed from the transition rule that
describes Receipt of Message in MUDS .

(p-state[P ] : PS1) (c-state[Q,P,N ] : M | CS)

⇒

(p-state[P ] : PS2) (c-state[Q,P,N ] : CS)

It suffices to consider an arbitrary state sUDS in SUDSto which the rule can be ap-
plied is sUDS = (p-state[p]: ps1) (c-state[p, q, n]: m | cs) cf .

sCLDSA is in form: base-state(bc) start-state(sc) snapshot(ssc) finish-state(fc)
control(ctl).

Because of r(sUDS , sCLDSA),

sUDS= delM(b-state(sCLDSA)) = delM(bc) and delM(bc) = (p-state[p]: ps1) (c-
state[p, q, n]: m | cs) cf .

Then bc = (p-state[p]: ps1) (c-state[p, q, n]: m | cs′) bc′, where delM(bc′) = cf
and delChan(cs′) = cs.

Therefore, sCLDSA is base-state((p-state[p]: ps1) (c-state[p, q, n]: m | cs′) bc′) start-
state(sc) snapshot(ssc) finish-state(fc) control(ctl), where delM(bc′) = cf and delM(cs′)
= cs.

Since, sUDS goes to s′UDS by state transition t, s′UDS = (p-state[p]: ps2) (c-state[q, p, n]:
cs) cf

Although, there are four transition rules and sCLDSA can apply one of them. How-
ever, No loss of generality, we can choose the following transition rule to consider.

Let us choose the state transition t′ is constructed from the transition rule that
describes the 1st of Receipt of Message in MCLDSA.

base-state((p-state[P ] : PS1) (c-state[Q,P,N ] : M | MMS ) BC)

control((prog[P ] : notYet) CC)

⇒
base-state((p-state[P ] : PS2) (c-state[Q,P,N ] : MMS ) BC)

control((prog[P ] : notYet) CC)

Let us choose s′CLDSA is base-state((p-state[p]: ps2) (c-state[p, q, n]: cs′) bc′) start-
state(sc) snapshot(ssc) finish-state(fc) control(ctl′).
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We have s′UDS = ((p-state[p] : ps2) (c-state[p, q, n]: m | cs) cf (*) and,

delM(b-state(s′CLDSA)) = delM((p-state[p]: ps2) (c-state[p, q, n]: cs′) bc′)
= (p-state[p]: ps2) (c-state[p, q, n]: delChan(cs′)) delM(bc′)
=(p-state[p]: ps2) (c-state[q, p, n]: cs) cf {delM(bc’) = cf and delChan(cs’) = cs}.

Then s′UDS = delM(b-state(s′CLDSA)) (**) .

From (*) and (**) r(s′UDS , s′CLDSA)and sCLDSA MCLDSA
s′CLDSA by state transition

t′.

From what have been proved above, we can see that binary relation r satisfies that for
all state s in IUDS , exist s’ in ICLDSA such that s is simulated by s’ and for all s1, s2 in
SUDS and s1 moves to s2 by state transition t, s’1 in SCLDSA such that s1 is simulated
by s’1, then there exists s’2 in SCLDSA such that s’1 can moves to s’2 by zero or more
state transitions and s2 is simulated by s’2. This means that for any state s in SUDS ,
which can be moved from any state in IUDS , we can find a state s’ in SCLDSA, such that s
is simulated by s’. Therefore, binary relation r is simulation from MUDS to MCLDSA. QED

We have proven that r is a simulation from MCLDSA to MUDS and it is also a simulation
from MUDS to MCLDSA to prove Theorem 2. QED

7.3 Chapter Summary

This chapter proposed a binary relation r between two state machines MUDS and
MCLDSA by which for each s1 ∈ SUDS and each s2 ∈ SCLDSA, r(s1, s2) if and only if s1 is
the same as the state obtained by deleting all markers from s2. To guarantee that CLDSA
does not alter the behaviors of a UDS, it then proved that MCLDSA simulates MUDS and
vice versa. Namely it proved Theorem 2 saying that r is a bi-simulation relation between
MUDS and MCLDSA. r is a bi-simulation relation between MUDS and MCLDSA if and only
if r is a simulation from MCLDSA to MUDS and it is also a simulation from MUDS to
MCLDSA.

To prove that r is a simulation from MUDS to MCLDSA, the chapter then proven that r
satisfies the two conditions as follows: forall state s in ICLDSA, exist s′ in IUDS such that
s is simulated by s′ and forall s1, s2 in SCLDSA and s1 moves to s2 by state transition t,
s′1 in SUDS such that s1 is simulated by s′1, then there exist s′2 such that s2 moves to
s′2 by zero or more state transitions and s2 is simulated by s′2. This mean that for any
state s in SCLDSA which can be moved from any state in ICLDSA, we can find a state s′ in
SUDS , such that s is simulated by s′.

To prove that r is a simulation from MCLDSA to MUDS , it then proven that r satisfies
the two conditions as follows: for all state s in IUDS , exist s′ in ICLDSA such that s is
simulated by s’ and for all s1, s2 in SUDS and s1 moves to s2 by state transition t, s′1 in
SCLDSA such that s1 is simulated by s′1, then there exists s′2 in SCLDSA such that s′1 can
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moves to s′2 by zero or more state transitions and s2 is simulated by s′2. This means that
for any state s in SUDS , which can be moved from any state in IUDS , we can find a state
s′ in SCLDSA, such that s is simulated by s′. Therefore, binary relation r is simulation
from MUDS to MCLDSA. Since r was proven that it is a simulation from MCLDSA to MUDS
and also a simulation from MUDS to MCLDSA, Theorem 2 was proven.

Theorem 2 was proven asserting that CLDSA does not alter the behaviors of a UDS.
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Chapter 8

Future Work

8.1 The Future Work

In recent decades, key software systems on which human beings heavily rely on are in
the form of distributed systems, which consist of multiple nodes (or processes) connected
with networks (or channels). Such systems should be fault tolerant because they need
to run for a long time, keeping on providing services to human beings, other systems,
etc. To make distributed systems fault tolerant, it is necessary to use many non-trivial
distributed algorithms, such as snapshot algorithms, checkpointing algorithms and self-
stabilizing algorithms. One common characteristic of these algorithms is that distributed
systems are superimposed by them and may be regarded and treated as data by them.
Therefore, such distributed algorithms can be called meta-distributed algorithms (MDAs)
(see Fig. 8.1).

Since meta-distributed algorithms play the core part in our software-centric society
and will become more and more important in our future highly advanced software-centric
society, it is necessary as well as demanding to verify that such algorithms enjoy their
desired properties. However, model checking that meta-distributed algorithms enjoy their
desired properties has not been fully investigated because of the following reasons. It is
challenging to specify meta-distributed algorithms in an existing specification language,
such as PROMELA because it is necessary to specify distributed systems as computa-
tional targets or data that are dealt with by meta-distributed algorithms while an existing
specification language, such as PROMELA is designed to fit to specify distributed systems

Meta-distributed algorithms None - MDAs 

A UDS 

Input Output Input Output

The UDS superimposed by MDAs 

Useful Information on 

the System

None - MDAs Input Output

Figure 8.1: Meta-distributed algorithms.

83



but not computations of distributed systems (sequences of states that satisfy some con-
ditions) as data, and to specify their desired properties in an existing temporal logic such
as LTL because it is necessary to take into account computations of distributed systems.
Therefore, it is also challenging to model check that meta-distributed algorithms enjoy
their desired properties with an existing model checker, such as Spin [3]. It is therefore
necessary to investigate how meta-distributed algorithms are formally analyzed.

Therefore, what we intend to do as the future work is to come up with how to specify
meta-distributed algorithms, how to specify their desired properties, how to model check
that meta-distributed algorithms enjoy their desired properties, and design and implement
a model checker for meta-distributed algorithms.

It is necessary to deal with states of a distributed system, its computations and/or even
a distributed system itself as data so as to specify an meta-distributed algorithm and its
desired properties. From what we have conducted the current research on model checking
of CLDSA revisited, we have learned that Maude is one promising specification language
for the purpose. Maude is a specification and programming language and system based on
rewriting logic. Rewriting logic is a logic designed to formally deal with concurrent systems
including distributed systems, and then Maude is suited to formally deal with distributed
systems. Maude is equipped with many useful functionalities. Among them are model
checking facilities and meta-programming facilities. The model checking facilities mainly
consists of an LTL model checker and a search command that can be used as a reachability
checker. Specifying a distributed system in Maude, its states are expressed as terms.
Therefore, states of a distributed system can be treated as data. Although computations
of a distributed system as they are cannot be directly treated as data in Maude, the
Maude search command is able to analyze the computations, checking if a given state is
reachable from another given state. The Maude meta-programming functionalities can
treat Maude specifications as data, and then can deal with distributed systems as data.
MDAs are typically used by superimposing distributed systems, and then the Maude
meta-programming facilities make it possible to describe generic specifications of meta-
distributed algorithms as meta-programs that take specifications of UDSs and generate
specifications of the UDSs superimposed by an meta-distributed algorithm.

To achieve the research goal, the first to do is to write a meta-program in Maude that
corresponds to the function CL. The meta-program takes a specification of a UDS in
Maude and generates a specification of the UDS superimposed by CLDSA in Maude.
The next to do is to implement a model checker as a meta-program in Maude that can
directly deal with the more faithful formalization of the DSR property. Then, some more
concrete meta-distributed algorithms, such as Koo-Toueg Checkpointing Algorithm, will
be taken and similar case studies will be repeated, coming up with a generic way to
specify meta-distributed algorithms, their desired properties and model check that such
algorithms enjoy such properties.

We will first specify a UDS as a program in Maude. The specification of a UDS
corresponds to state machine MUDS . The specification of a UDS corresponds to state
machine MUDS . The system is specified as the module UDS in Maude. In which, the
sorts Pid for process identifiers, PState for process states, Msg for messages, MsgQueue for
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Figure 8.2: Meta-distributed algorithms.

queues of messages, OCom for observable components and Config for soups of observable
components will be declared. Sub-sorts will also declared.

sorts Pid Msg PState .

sort MsgSeq .

sort OCom .

sort Config .

subsort OCom < Config .

Then the operator to constructor the sort are defined.

op empChan : -> MsgSeq [ctor] .

op _|_ : Msg MsgSeq -> MsgSeq [ctor] .

op p-state[_]:_ : Pid PState -> OCom [ctor] .

op c-state[_, _, _]:_ : Pid Pid Nat MsgSeq -> OCom [ctor] .

op empConfig : -> Config [ctor] .

op _ _ : Config Config -> Config [ctor assoc comm id: empConfig] .

Variables will be declared.

vars P P1 Q Q1 : Pid .

vars M1 M2 : Msg .

var N N1 : Nat .

var MS : MsgSeq .

var PS PS1 PS2 : PState .

var CS : MsgSeq .

vars OC OC1 : OCom .

vars CF CF1 : Config .

The operators and equations for the functions on the state of a UDS, such as chans, msg,
enq, # and = are defined.
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op chans : Config -> Config .

op msg : OCom -> MsgSeq .

op enq : MsgSeq Msg -> MsgSeq .

op # : Config Pid -> Nat .

eq chans(empConfig) = empConfig .

eq chans((p-state[P]: PS) CF) = chans(CF) .

eq chans((c-state[P, Q, N]: CS) CF) = (c-state[P, Q, N] : CS) chans(CF) .

eq msg(c-state[P, Q, N] : CS) = CS .

eq msg(p-state[P]: PS) = empChan .

eq enq(empChan, M2) = M2 | empChan .

eq enq(M1 | MS, M2) = M1 | enq(MS, M2) .

eq #(empConfig, P) = 0 .

eq #((p-state[P1]: PS) CF, P) = if P == P1 then 1 + #(CF, P)

else #(CF, P) fi .

eq #((c-state[P1, Q1, N1]: CS) CF, P) = #(CF, P) .

op # : Config Pid Pid Nat -> Nat .

eq #(empConfig, P, Q, N) = 0 .

eq #((p-state[P1] : PS) CF, P, Q, N) = #(CF, P, Q, N) .

eq #((c-state[P1, Q1, N1]: CS) CF, P, Q, N) = if (P == P1)

and (Q == Q1) and (N == N1) then 1 + #(CF, P, Q, N) else #(CF, P, Q, N) fi .

The three transition rules will be written.

rl [chgStt] :

(p-state[P]: PS1)

=>

(p-state[P]: PS2) .

rl[sndMsg] :

(p-state[P]: PS1) (c-state[P,Q,N]: CS)

=>

(p-state[P]: PS2) (c-state[P,Q,N]: enq(CS,M)) .

rl[recMsg] :

(p-state[P]: PS1) (c-state[Q,P,N]: M | CS)

=>

(p-state[P]: PS2) (c-state[Q,P,N]: CS) .
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Next, the meta-program corresponding to the function CL will be written, in which
the specification of a UDS is treated as input data of the meta-program. Taking look at
the meta-programming facilities in Maude, META-LEVEL module, in which terms and
modules can be meta-reprsented, can be imported to use to generate the specification of
the UDS superimposed by CLDSA from the specification of a UDS. The meta-program
corresponding to the function CL will be written in the module CLDSA in Maude that
import the function module META-LEVEL, which is imported to write meta-programs
in Maude. Module CLDSA define the meta-program corresponding to the function CL
as the function CL that takes a module, namely module UDS, as an its argument and
return another module.

mod CLDSA is

pr META-LEVEL .

op CL : Module -> Module .

The function CL will call three other functions CLstate, CLinit and CLtrans corresponding
to CLState, CLInit and CLTrans, respectively.

op CLstate : Module -> Module .

op CLinit : Module -> Module .

op CLtrans : ReluSet -> ReluSet .

Function CLstate use other functions to takes a part of the specifications of MUDS and
return a part of the specification of MCLDSA.

op modImportList : ImportList -> ImportList .

op modSortSet : SortSet -> SortSet .

op modSubsortDeclSet : SubsortDeclSet -> SubsortDeclSet .

op modOpDeclSet : OpDeclSet -> OpDeclSet .

op modEquationSet : EquationSet -> EquationSet .

Function CLtrans use other functions to takes the specification of the transition rules of
MUDS and return the specification of the transition rules of MCLDSA.

op getReluSet : Module -> ReluSet .

op modReluSet : ReluSet -> ReluSet .

op addReluSet : ReluSet ReluSet -> Module .

Beside, the more faithful formalization of the DSR property will be specified based
on the two specifications. After that, we will design and implement a model checker as
a meta-program in Maude. To implement the model checker, metalevel-operations in
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META-LEVEL module such as metaRewrite and metaSearch, which can be used to han-
dle a specification, can be used to analyze computations of distributed systems. Continu-
ously, we will conduct some similar studies on other meta-distributed algorithms such as
Dijkstra-Scholten algorithm, Chandy-Misra-Haas algorithm and Koo-Toueg coordinated
checkpointing to come up with a generic way to specify meta-distributed algorithms, their
desired properties and model check that these algorithms enjoy such properties. The pro-
cess to model check that meta-distributed algorithms enjoy desired properties is depicted
in Fig. 8.2.

The concept “meta-distributed algorithm” is brand-new. One possible important achieve-
ment of the future work is to clarify meta-distributed algorithms and identify a class of
meta-distributed algorithms and the main achievements of the research are model check-
ing techniques and a model checker suited for the class of meta-distributed algorithms
that cannot be reasonably well tackled by any existing model checkers.

8.2 Chapter Summary

This chapter mentioned the future work. As what is mentioned, the future work is
to come up with how to specify meta-distributed algorithms, how to specify their de-
sired properties, how to model check that meta-distributed algorithms enjoy their desired
properties, and design and implement a model checker for meta-distributed algorithms.
In detail, the chapter gave the concept of meta-distributed algorithms, then discussed the
problems to resolve.

The chapter then discussed the procedures and the contents of the future work. The
plan were also mentioned by which the first to do is to write a meta-program in Maude
that corresponds to the function CL, The next to do is to implement a model checker as a
meta-program in Maude that can directly deal with the more faithful formalization of the
DSR property and similar case studies will be repeated, coming up with a generic way to
specify meta-distributed algorithms, their desired properties and model check that such
algorithms enjoy such properties.

At the end of the chapter, the desired achievements of the future work were discussed
by which the main desired achievements of the research are model checking techniques
and a model checker suited for the class of meta-distributed algorithms that cannot be
reasonably well tackled by any existing model checkers.
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Chapter 9

Conclusion

The Contribution of the Research

Carefully taking into account an informal description of the DSR property, we have
given a new formal definition of the property, which more faithfully express the informal
description of the DSR property.

Since the definition of the DSR property in the existing study involves only one state
machine MCLDSA and our definition involves two state machines MUDS and MCLDSA, our
definition is seemingly different from the one used in the existing study. It is checked that
CLDSA terminates in MCLDSA and then the snapshot and the final state are reachable
from the start state and the snapshot, respectively, in MUDS in our definition, while it
is checked that the snapshot and the final state are reachable from the start state and
the snapshot, respectively, in MCLDSA in their definition. However, we have conducted
an analysis on the similarities between our definition and the existing definition. We
recognized that the new definition is equivalent to the existing definition. We have proved
Theorem 1 saying that our formalization of the DSR property is equivalent to the existing
definition for each MUDS . The theorem guarantees the validity of the model checking
approach used in the existing study. Since the existing definition have been model checked
with Maude and the new definition is not straightforward to be directly model checked.
The theorem also guarantees that we can use the model checking approach used in the
existing study to model check the new definition. To prove Theorem 1, we have proven
Proposition 1 and Lemma 1. It is required to prove two other lemmas, Lemma 2 and
Lemma 3, to prove Lemma 1. The proof of Theorem 1 follows from Proposition 1 and
Lemma 1.

Moreover, we have proposed a binary relation between MUDS and MCLDSA and then
proved that MCLDSA simulates MUDS and vice versa, namely we have proved another
theorem saying that the binary relation is a bi-simulation relation between MUDS and
MCLDSA, to guarantee that CLDSA does not alter the behaviors of the UDS.

The contributions of our research are:

• Completely giving the more faithful formal definition of the DSR property, which
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more faithfully express the informal description of the DSR property.

• Proving a theorem saying that our formalization of the DSR property is equiva-
lent to the existing definition for each MUDS to guarantees that the validity of the
model checking approach used in the existing study and the existing model checking
approach can be used to model check the new definition.

• Proposing a binary relation between MUDS and MCLDSA and then proving another
theorem asserting that MCLDSA simulates MUDS and vice versa to guarantee that
CLDSA does not alter the behaviors of the UDS.

What I Have Done on the Research

On the research, what I have done are as follows:

1. Learning necessary basic technical knowledge, such as underlying distributed sys-
tems, state machine, model checking and Maude specification and programming
language.

2. Learning CLDSA and the DSR property.

3. Investigating how to specify CLDSA and how to model check that the algorithm
enjoy the DSR property in the existing study.

4. Investigating how to formalize a UDS and the UDS superimposed by CLDSA as
state machines MUDS and MCLDSA.

5. Studying on completely giving the more faithful formal definition of the DSR prop-
erty.

6. Proving a theorem saying that the new definition of the DSR property is equivalent
to the existing definition for each MUDS .

7. Proposing a binary relation between MUDS and MCLDSA and then proving another
theorem asserting that MCLDSA simulates MUDS and vice versa.

Summary of the Future Work

In the future, we want to come up with how to specify meta-distributed algorithms,
how to specify their desired properties, how to model check that meta-distributed al-
gorithms enjoy their desired properties, and design and implement a model checker for
meta-distributed algorithms. We want to clarify meta-distributed algorithms and identify
a class of meta-distributed algorithms. The main expected achievements of the future work
is model checking techniques and a model checker suited for the class of meta-distributed
algorithms that cannot be reasonably well tackled by any existing model checkers.
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Appendix A

Specification of CLDSA in Maude

∗∗∗
∗∗∗ S p e c i f i c a t i o n o f the Chandy−Lamport D i s t r ibu t ed Snapshot
Algorithm in Maude
∗∗∗

fmod PID i s
pr NAT .
s o r t Pid .
op p : Nat −> Pid [ c to r ] .

endfm

fmod TOKEN i s
pr NAT .
s o r t Token .
op t : Nat −> Token [ c to r ] .

endfm

fmod MARKER i s
s o r t Marker .
op marker : −> Marker [ c t o r ] .

endfm

fmod MESSAGE i s
pr TOKEN .
pr MARKER .
s o r t Msg .
sub so r t s Token Marker < Msg .

endfm

fmod CHANNEL i s
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pr MESSAGE .
s o r t s EmpChan NeChan Chan .
sub so r t s EmpChan NeChan < Chan .
op empChan : −> EmpChan [ c to r ] .
op | : Msg Chan −> NeChan [ c to r ] .
op put : Chan Msg −> NeChan .
op delMC : Chan −> Chan .

vars M1 M2 : Msg .
var C : Chan .
var T : Token .

eq put (empChan ,M2) = M2 | empChan .
eq put (M1 | C,M2) = M1 | put (C,M2) .

endfm

fmod PROCESS−STATE i s
pr BOOL .
pr TOKEN .
s o r t PState .
subsor t Token < PState .
op noToken : −> PState [ c t o r ] .
op : PState PState −> PState [ c t o r as soc comm
id : noToken ] .

var T : Token .
eq T T = T .

endfm

fmod PROGRESS i s
s o r t Prog .
ops notYet s t a r t e d completed : −> Prog [ c t o r ] .

endfm

fmod OBSERVABLE−COMPONENT i s
pr PID .
pr CHANNEL .
pr PROCESS−STATE .
pr PROGRESS .
s o r t OCom .

∗∗∗ p−s t a t e [ p ] i s the s t a t e o f p roce s s p .
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op (p−s t a t e [ ] : ) : Pid PState −> OCom [ c to r ] .
∗∗∗ c−s t a t e [ p , q , n ] i s the n th channel from p to q .
op ( c−s t a t e [ , , ] : ) : Pid Pid Nat Chan −> OCom [ c to r ] .
∗∗∗ When cnt becomes 0 , the snapshot has been taken .
op ( cnt : ) : Nat −> OCom [ c to r ] .
∗∗∗ the number o f markers not yet r e c e i v e d by a proce s s .
op (#ms [ ] : ) : Pid Nat −> OCom [ c to r ] .
∗∗∗ i n d i c a t i n g whether a marker has been r e c e i v e d from
∗∗∗ a channel from p to q .
op ( done [ , , ] : ) : Pid Pid Nat Bool −> OCom [ c to r ] .
∗∗∗ i n d i c a t i n g that a proce s s has not yet s ta r ted ,
∗∗∗ has s ta r ted ,
∗∗∗ or completed the a lgor i thm .
op ( prog [ ] : ) : Pid Prog −> OCom [ c to r ] .
∗∗∗ i n d i c a t i n g whether messages are consumed .
op ( consume : ) : Bool −> OCom [ c to r ] .

endfm

fmod CONFIGURATIONS i s
pr OBSERVABLE−COMPONENT .
s o r t Config .
subsor t OCom < Config .
op empConfig : −> Config [ c t o r ] .
op : Conf ig Conf ig −> Config [ c t o r as soc comm id :
empConfig ] .

var OC : OCom .
eq OC OC = OC .

var CF : Config .
vars P’ P Q : Pid .
var PS : PState .
var C : Chan .
var M : Msg .
var N : Nat .

op bcast : Conf ig Pid Marker −> Config .
op inchans : Conf ig Pid −> Config .
op delM : Conf ig −> Config .

−−− Function bcast to puts markers in a l l the outgoing channe l s
from a proce s s P;
eq bcast ( empConfig ,P,M) = empConfig .
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eq bcast ( ( c−s t a t e [P,Q,N] : C) CF,P,M)
= ( c−s t a t e [P,Q,N] : put (C,M) ) bcast (CF,P,M) .
eq bcast (OC CF,P,M) = OC bcast (CF,P,M) [ owise ] .

−−− Function inchans to i n i t i a l i z e the s t a t e s o f a l l incoming
channe l s o f a p roce s s as empty channel ;
eq inchans ( empConfig ,P) = empConfig .
eq inchans ( ( c−s t a t e [Q,P,N] : C) CF,P)
= ( c−s t a t e [Q,P,N] : empChan) inchans (CF,P) .

eq inchans (OC CF,P) = inchans (CF,P) [ owise ] .

endfm

fmod META−CONFIGURATION−COMPONENT i s
pr CONFIGURATIONS .
s o r t MCComp .

ops base−s t a t e s ta r t−s t a t e f i n i s h−s t a t e
snapshot c o n t r o l : Conf ig −> MCComp .

endfm

fmod META−CONFIGURATION i s
pr META−CONFIGURATION−COMPONENT .
s o r t MConfig .
subsor t MCComp < MConfig .
op : MConfig MConfig −> MConfig [ a s soc comm] .

var MOC : MCComp .
eq MOC MOC = MOC .

endfm

fmod INIT−META−CONFIG i s
pr META−CONFIGURATION .

∗∗∗(

Let us con s id e r the f o l l o w i n g system :

− There are two p r o c e s s e s p ( 0 ) , p ( 1 ) .

− There i s one token t (0 ) in the system .

− The s t a t e o f each proce s s only depends on the tokens
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owned by the proce s s . So , the s t a t e o f each proce s s can
be expres sed as \empty , { t ( 0 ) } . I n i t i a l l y , p (0 ) has the token
t ( 0 ) , and p (1 ) does not have any tokens .

− There are two channe l s : p (0 ) −−> p ( 1 ) , p (1 ) −−> p ( 0 ) .
I n i t i a l l y each channel i s empty .

− Each proce s s r epea t ed ly does the f o l l o w i n g :

i . I f the p roce s s has a token , then i t puts the token in
the outgoing channel . According ly i t s s t a t e changes .

i i . I f the incoming channel to the proce s s i s not empty ,
then the proce s s ge t s the token from i t . According ly
i t s s t a t e changes .

Let imc00 be the i n i t i a l s t a t e o f the system .

)
op imc00 : −> MConfig .
eq imc00
= base−s t a t e ( ( p−s t a t e [ p ( 0 ) ] : t ( 0 ) ) (p−s t a t e [ p ( 1 ) ] : noToken )
( c−s t a t e [ p ( 0 ) , p ( 1 ) , 0 ] : empChan) ( c−s t a t e [ p ( 1 ) , p ( 0 ) , 0 ] : empChan ) )
s ta r t−s t a t e ( empConfig )
f i n i s h−s t a t e ( empConfig )
snapshot ( empConfig )
c o n t r o l ( ( cnt : 2) (#ms [ p ( 0 ) ] : 1) (#ms [ p ( 1 ) ] : 1)
( done [ p ( 0 ) , p ( 1 ) , 0 ] : f a l s e ) ( done [ p ( 1 ) , p ( 0 ) , 0 ] : f a l s e )
( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )
( consume : f a l s e ) ) .

−−−
∗∗∗(

Let us con s id e r the f o l l o w i n g system :

− There are two p r o c e s s e s p ( 0 ) , p ( 1 ) .

− There i s one token t (0 ) in the system .

− The s t a t e o f each proce s s only depends on the tokens
owned by the proce s s . So , the s t a t e o f each proce s s can
be expres sed as \empty , { t ( 0 ) } . I n i t i a l l y , p (0 ) has the token
t ( 0 ) , and p (1 ) does not have any tokens .
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− There are two channe l s : p (0 ) −−> p ( 1 ) , p (1 ) −−> p ( 0 ) .
I n i t i a l l y each channel i s empty .

− Each proce s s r epea t ed ly does the f o l l o w i n g :

i . The proce s s may consume a token owned by
the proce s s .

i i . I f the p roce s s has a token , then i t puts the token in
the outgoing channel . According ly i t s s t a t e changes .

i i i . I f the incoming channel to the proce s s i s not empty ,
then the proce s s ge t s the token from i t . According ly i t s
s t a t e changes .

Let imc01 be the i n i t i a l s t a t e o f the system .

)
op imc01 : −> MConfig .
eq imc01
= base−s t a t e ( ( p−s t a t e [ p ( 0 ) ] : t ( 0 ) )
(p−s t a t e [ p ( 1 ) ] : noToken )
( c−s t a t e [ p ( 0 ) , p ( 1 ) , 0 ] : empChan)
( c−s t a t e [ p ( 1 ) , p ( 0 ) , 0 ] : empChan ) )
s ta r t−s t a t e ( empConfig )
f i n i s h−s t a t e ( empConfig )
snapshot ( empConfig )
c o n t r o l ( ( cnt : 2) (#ms [ p ( 0 ) ] : 1) (#ms [ p ( 1 ) ] : 1)
( done [ p ( 0 ) , p ( 1 ) , 0 ] : f a l s e ) ( done [ p ( 1 ) , p ( 0 ) , 0 ] : f a l s e )
( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )
( consume : t rue ) ) .

−−−
∗∗∗

op imc02 : −> MConfig .
eq imc02
= base−s t a t e ( ( p−s t a t e [ p ( 0 ) ] : t ( 0 ) )
(p−s t a t e [ p ( 1 ) ] : noToken )

(p−s t a t e [ p ( 2 ) ] : t ( 2 ) )
( c−s t a t e [ p ( 0 ) , p ( 1 ) , 0 ] : empChan)

( c−s t a t e [ p ( 0 ) , p ( 1 ) , 1 ] : ( t (1 ) | empChan ) ) )
s t a r t−s t a t e ( empConfig )
f i n i s h−s t a t e ( empConfig )
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snapshot ( empConfig )
c o n t r o l ( ( cnt : 3) (#ms [ p ( 0 ) ] : 0)
(#ms [ p ( 1 ) ] : 2) (#ms [ p ( 2 ) ] : 0)
( done [ p ( 0 ) , p ( 1 ) , 0 ] : f a l s e )
( done [ p ( 0 ) , p ( 1 ) , 1 ] : f a l s e )
( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet )
( consume : t rue ) ) .

−−−
∗∗∗

op imc03 : −> MConfig .
eq imc03

= base−s t a t e ( ( p−s t a t e [ p ( 0 ) ] : ( t (0 ) t ( 1 ) ) )
(p−s t a t e [ p ( 1 ) ] : noToken )
( c−s t a t e [ p ( 0 ) , p ( 1 ) , 0 ] : empChan)
( c−s t a t e [ p ( 0 ) , p ( 1 ) , 1 ] : empChan)
( c−s t a t e [ p ( 1 ) , p ( 0 ) , 0 ] : empChan ) )

s ta r t−s t a t e ( empConfig )
f i n i s h−s t a t e ( empConfig )
snapshot ( empConfig )
c o n t r o l ( ( cnt : 2) (#ms [ p ( 0 ) ] : 1) (#ms [ p ( 1 ) ] : 2)

( done [ p ( 0 ) , p ( 1 ) , 0 ] : f a l s e ) ( done [ p ( 0 ) , p ( 1 ) , 1 ] : f a l s e )
( done [ p ( 1 ) , p ( 0 ) , 0 ] : f a l s e )
( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )
( consume : t rue ) ) .

−−−
∗∗∗

op imc04 : −> MConfig .
eq imc04

= base−s t a t e ( ( p−s t a t e [ p ( 0 ) ] : ( t (0 ) t ( 1 ) ) )
(p−s t a t e [ p ( 1 ) ] : noToken )

(p−s t a t e [ p ( 2 ) ] : noToken )
( c−s t a t e [ p ( 0 ) , p ( 1 ) , 0 ] : empChan)
( c−s t a t e [ p ( 0 ) , p ( 2 ) , 0 ] : empChan)
( c−s t a t e [ p ( 1 ) , p ( 0 ) , 0 ] : empChan)
( c−s t a t e [ p ( 1 ) , p ( 2 ) , 0 ] : empChan ) )

s ta r t−s t a t e ( empConfig )
f i n i s h−s t a t e ( empConfig )
snapshot ( empConfig )

c o n t r o l ( ( cnt : 3) (#ms [ p ( 0 ) ] : 1)
(#ms [ p ( 1 ) ] : 1) (#ms [ p ( 2 ) ] : 2)
( done [ p ( 0 ) , p ( 1 ) , 0 ] : f a l s e )
( done [ p ( 0 ) , p ( 2 ) , 0 ] : f a l s e )
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( done [ p ( 1 ) , p ( 0 ) , 0 ] : f a l s e )
( done [ p ( 1 ) , p ( 2 ) , 0 ] : f a l s e )
( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )
( prog [ p ( 2 ) ] : notYet )
( consume : f a l s e ) ) .

−−−
∗∗∗

op imc05 : −> MConfig .
eq imc05

= base−s t a t e ( ( p−s t a t e [ p ( 0 ) ] : ( t (0 ) t ( 1 ) ) )
(p−s t a t e [ p ( 1 ) ] : noToken )
(p−s t a t e [ p ( 2 ) ] : noToken )
( c−s t a t e [ p ( 0 ) , p ( 1 ) , 0 ] : empChan)
( c−s t a t e [ p ( 0 ) , p ( 2 ) , 0 ] : empChan)
( c−s t a t e [ p ( 1 ) , p ( 0 ) , 0 ] : empChan)
( c−s t a t e [ p ( 1 ) , p ( 2 ) , 0 ] : empChan ) )

s ta r t−s t a t e ( empConfig )
f i n i s h−s t a t e ( empConfig )
snapshot ( empConfig )
c o n t r o l ( ( cnt : 3) (#ms [ p ( 0 ) ] : 1)

(#ms [ p ( 1 ) ] : 1) (#ms [ p ( 2 ) ] : 2)
( done [ p ( 0 ) , p ( 1 ) , 0 ] : f a l s e )
( done [ p ( 0 ) , p ( 2 ) , 0 ] : f a l s e )
( done [ p ( 1 ) , p ( 0 ) , 0 ] : f a l s e )
( done [ p ( 1 ) , p ( 2 ) , 0 ] : f a l s e )
( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )
( prog [ p ( 2 ) ] : notYet )
( consume : t rue ) ) .

−−−
∗∗∗

op imc06 : −> MConfig .
eq imc06

= base−s t a t e ( ( p−s t a t e [ p ( 0 ) ] : ( t (0 ) t ( 1 ) ) )
(p−s t a t e [ p ( 1 ) ] : noToken )

(p−s t a t e [ p ( 2 ) ] : noToken )
( c−s t a t e [ p ( 0 ) , p ( 1 ) , 0 ] : empChan)
( c−s t a t e [ p ( 0 ) , p ( 1 ) , 1 ] : empChan)
( c−s t a t e [ p ( 1 ) , p ( 2 ) , 0 ] : empChan)
( c−s t a t e [ p ( 2 ) , p ( 0 ) , 0 ] : empChan ) )

s ta r t−s t a t e ( empConfig )
f i n i s h−s t a t e ( empConfig )
snapshot ( empConfig )
c o n t r o l ( ( cnt : 3) (#ms [ p ( 0 ) ] : 1)
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(#ms [ p ( 1 ) ] : 2) (#ms [ p ( 2 ) ] : 1)
( done [ p ( 0 ) , p ( 1 ) , 0 ] : f a l s e )
( done [ p ( 0 ) , p ( 1 ) , 1 ] : f a l s e )
( done [ p ( 1 ) , p ( 2 ) , 0 ] : f a l s e )
( done [ p ( 2 ) , p ( 0 ) , 0 ] : f a l s e )
( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )
( prog [ p ( 2 ) ] : notYet )
( consume : t rue ) ) .

−−−
∗∗∗

op imc07 : −> MConfig .
eq imc07

= base−s t a t e ( ( p−s t a t e [ p ( 0 ) ] : ( t (0 ) t (1 ) t ( 2 ) ) )
(p−s t a t e [ p ( 1 ) ] : noToken )
(p−s t a t e [ p ( 2 ) ] : noToken )
( c−s t a t e [ p ( 0 ) , p ( 1 ) , 0 ] : empChan)
( c−s t a t e [ p ( 0 ) , p ( 1 ) , 1 ] : empChan)
( c−s t a t e [ p ( 1 ) , p ( 2 ) , 0 ] : empChan)
( c−s t a t e [ p ( 2 ) , p ( 0 ) , 0 ] : empChan ) )

s ta r t−s t a t e ( empConfig )
f i n i s h−s t a t e ( empConfig )
snapshot ( empConfig )
c o n t r o l ( ( cnt : 3) (#ms [ p ( 0 ) ] : 1)
(#ms [ p ( 1 ) ] : 2) (#ms [ p ( 2 ) ] : 1)

( done [ p ( 0 ) , p ( 1 ) , 0 ] : f a l s e )
( done [ p ( 0 ) , p ( 1 ) , 1 ] : f a l s e )
( done [ p ( 1 ) , p ( 2 ) , 0 ] : f a l s e )
( done [ p ( 2 ) , p ( 0 ) , 0 ] : f a l s e )
( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )
( prog [ p ( 2 ) ] : notYet )
( consume : t rue ) ) .

−−−
∗∗∗

op imc08 : −> MConfig .
eq imc08

= base−s t a t e ( ( p−s t a t e [ p ( 0 ) ] : ( t (0 ) t ( 1 ) ) )
(p−s t a t e [ p ( 1 ) ] : noToken )
(p−s t a t e [ p ( 2 ) ] : noToken )
( c−s t a t e [ p ( 0 ) , p ( 1 ) , 0 ] : empChan)
( c−s t a t e [ p ( 0 ) , p ( 1 ) , 1 ] : empChan)
( c−s t a t e [ p ( 0 ) , p ( 2 ) , 0 ] : empChan)
( c−s t a t e [ p ( 1 ) , p ( 2 ) , 0 ] : empChan)
( c−s t a t e [ p ( 2 ) , p ( 0 ) , 0 ] : empChan ) )

99



s t a r t−s t a t e ( empConfig )
f i n i s h−s t a t e ( empConfig )
snapshot ( empConfig )
c o n t r o l ( ( cnt : 3) (#ms [ p ( 0 ) ] : 1)

(#ms [ p ( 1 ) ] : 2) (#ms [ p ( 2 ) ] : 2)
( done [ p ( 0 ) , p ( 1 ) , 0 ] : f a l s e )
( done [ p ( 0 ) , p ( 1 ) , 1 ] : f a l s e )
( done [ p ( 0 ) , p ( 2 ) , 0 ] : f a l s e )
( done [ p ( 1 ) , p ( 2 ) , 0 ] : f a l s e )
( done [ p ( 2 ) , p ( 0 ) , 0 ] : f a l s e )
( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )
( prog [ p ( 2 ) ] : notYet )
( consume : t rue ) ) .

−−−
∗∗∗

op imc09 : −> MConfig .
eq imc09

= base−s t a t e ( ( p−s t a t e [ p ( 0 ) ] : noToken )
(p−s t a t e [ p ( 1 ) ] : noToken ) (p−s t a t e [ p ( 2 ) ] : noToken )
(p−s t a t e [ p ( 3 ) ] : t ( 0 ) ) (p−s t a t e [ p ( 4 ) ] : noToken )
( c−s t a t e [ p ( 0 ) , p ( 1 ) , 0 ] : empChan)
( c−s t a t e [ p ( 1 ) , p ( 2 ) , 0 ] : empChan)
( c−s t a t e [ p ( 2 ) , p ( 3 ) , 0 ] : empChan)
( c−s t a t e [ p ( 2 ) , p ( 4 ) , 0 ] : empChan)
( c−s t a t e [ p ( 3 ) , p ( 0 ) , 0 ] : empChan)
( c−s t a t e [ p ( 3 ) , p ( 0 ) , 1 ] : empChan)
( c−s t a t e [ p ( 3 ) , p ( 2 ) , 0 ] : empChan)
( c−s t a t e [ p ( 4 ) , p ( 3 ) , 0 ] : empChan ) )

s ta r t−s t a t e ( empConfig )
f i n i s h−s t a t e ( empConfig )
snapshot ( empConfig )
c o n t r o l ( ( cnt : 5) (#ms [ p ( 0 ) ] : 2) (#ms [ p ( 1 ) ] : 1)

(#ms [ p ( 2 ) ] : 2) (#ms [ p ( 3 ) ] : 2) (#ms [ p ( 4 ) ] : 1)
( done [ p ( 0 ) , p ( 1 ) , 0 ] : f a l s e )
( done [ p ( 1 ) , p ( 2 ) , 0 ] : f a l s e )
( done [ p ( 2 ) , p ( 3 ) , 0 ] : f a l s e )
( done [ p ( 2 ) , p ( 4 ) , 0 ] : f a l s e )
( done [ p ( 3 ) , p ( 0 ) , 0 ] : f a l s e )
( done [ p ( 3 ) , p ( 0 ) , 1 ] : f a l s e )
( done [ p ( 3 ) , p ( 2 ) , 0 ] : f a l s e )
( done [ p ( 4 ) , p ( 3 ) , 0 ] : f a l s e )
( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )
( prog [ p ( 2 ) ] : notYet )
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( prog [ p ( 3 ) ] : notYet ) ( prog [ p ( 4 ) ] : notYet )
( consume : t rue ) ) .

−−−
∗∗∗

op imc10 : −> MConfig .
eq imc10

= base−s t a t e ( ( p−s t a t e [ p ( 0 ) ] : ( t (0 ) t ( 1 ) ) )
(p−s t a t e [ p ( 1 ) ] : noToken ) (p−s t a t e [ p ( 2 ) ] : noToken )
(p−s t a t e [ p ( 3 ) ] : noToken ) (p−s t a t e [ p ( 4 ) ] : noToken )
( c−s t a t e [ p ( 0 ) , p ( 1 ) , 0 ] : empChan)
( c−s t a t e [ p ( 1 ) , p ( 2 ) , 0 ] : empChan)
( c−s t a t e [ p ( 2 ) , p ( 3 ) , 0 ] : empChan)
( c−s t a t e [ p ( 2 ) , p ( 4 ) , 0 ] : empChan)
( c−s t a t e [ p ( 3 ) , p ( 0 ) , 0 ] : empChan)
( c−s t a t e [ p ( 3 ) , p ( 0 ) , 1 ] : empChan)
( c−s t a t e [ p ( 3 ) , p ( 2 ) , 0 ] : empChan)
( c−s t a t e [ p ( 4 ) , p ( 3 ) , 0 ] : empChan ) )

s ta r t−s t a t e ( empConfig )
f i n i s h−s t a t e ( empConfig )
snapshot ( empConfig )
c o n t r o l ( ( cnt : 5) (#ms [ p ( 0 ) ] : 2) (#ms [ p ( 1 ) ] : 1)

(#ms [ p ( 2 ) ] : 2) (#ms [ p ( 3 ) ] : 2) (#ms [ p ( 4 ) ] : 1)
( done [ p ( 0 ) , p ( 1 ) , 0 ] : f a l s e )
( done [ p ( 1 ) , p ( 2 ) , 0 ] : f a l s e )
( done [ p ( 2 ) , p ( 3 ) , 0 ] : f a l s e )
( done [ p ( 2 ) , p ( 4 ) , 0 ] : f a l s e )
( done [ p ( 3 ) , p ( 0 ) , 0 ] : f a l s e )
( done [ p ( 3 ) , p ( 0 ) , 1 ] : f a l s e )
( done [ p ( 3 ) , p ( 2 ) , 0 ] : f a l s e )
( done [ p ( 4 ) , p ( 3 ) , 0 ] : f a l s e )
( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )
( prog [ p ( 2 ) ] : notYet )
( prog [ p ( 3 ) ] : notYet ) ( prog [ p ( 4 ) ] : notYet )
( consume : t rue ) ) .

endfm

mod CHANDY−LAMPORT i s
pr META−CONFIGURATION .
vars BC CC SC SSC : Conf ig .
vars P’ P Q : Pid .
var T : Token .
var PS : PState .
var N : Nat .
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vars C C’ : Chan .
vars NzN NzN’ : NzNat .

∗∗∗∗∗∗ Consumption o f Tokens ∗∗∗∗∗∗
∗∗∗
∗∗∗ When a d i s t r i b u t e d snapshot has been taken ,
∗∗∗ we i n t e n t i o n a l l y
∗∗∗ stop the base computation because we want
∗∗∗ not to make the
∗∗∗ s i z e o f the reachab l e s t a t e space too l a r g e .
∗∗∗
∗∗∗ Process P only changes i t s s t a t e .
r l [ chgStt ] :

base−s t a t e ( ( p−s t a t e [P ] : (T PS) ) BC)
f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( consume : t rue ) CC)
=>
base−s t a t e ( ( p−s t a t e [P ] : PS) BC)
f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( consume : t rue ) CC) .

∗∗∗∗∗∗ Sending o f Tokens ∗∗∗∗∗∗
∗∗∗ Process P sends a token to proce s s Q.
r l [ sndTkn ] :

base−s t a t e ( ( p−s t a t e [P ] : (T PS) )
( c−s t a t e [P,Q,N] : C) BC)
f i n i s h−s t a t e ( empConfig )
=>
base−s t a t e ( ( p−s t a t e [P ] : PS)
( c−s t a t e [P,Q,N] : put (C,T) ) BC)
f i n i s h−s t a t e ( empConfig ) .

∗∗∗∗∗∗ Receipt o f Tokens ∗∗∗∗∗∗
∗∗∗ Process P r e c e i v e s a token along an incoming channel .
∗∗∗ case −1: The proce s s has not yet s t a r t e d the a lgor i thm .
∗∗∗ Note : No need ( done [Q,P,N] : f a l s e ) on both s i d e s .
r l [ recTkn&notYet&˜done ] :

base−s t a t e ( ( p−s t a t e [P ] : PS)
( c−s t a t e [Q,P,N] : T | C) BC)
f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [P] : notYet ) CC)
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=>
base−s t a t e ( ( p−s t a t e [P ] : (T PS) )
( c−s t a t e [Q,P,N] : C) BC)
f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [P] : notYet ) CC) .

∗∗∗ case −2: The proce s s has completed the a lgor i thm .
∗∗∗ Note : No need ( done [Q,P,N] : t rue ) on both s i d e s .
r l [ recTkn&completed&done ] :

base−s t a t e ( ( p−s t a t e [P ] : PS)
( c−s t a t e [Q,P,N] : T | C) BC)
f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [P] : completed ) CC)
=>
base−s t a t e ( ( p−s t a t e [P ] : (T PS) )
( c−s t a t e [Q,P,N] : C) BC)
f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [P] : completed ) CC) .

∗∗∗ case −3: The proce s s has s t a r t e d the algor ithm ,
∗∗∗ namely that i t has a l r eady recorded i t s s ta te ,
∗∗∗ not yet completed i t , and has not yet r e c e i v e d a marker
∗∗∗ from the incoming channel .
r l [ recTkn&s t a r t e d&˜done ] :

base−s t a t e ( ( p−s t a t e [P ] : PS) ( c−s t a t e [Q,P,N] : T | C) BC)
snapshot ( ( c−s t a t e [Q,P,N] : C’ ) SSC)
f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [P] : s t a r t e d ) ( done [Q,P,N] : f a l s e ) CC)
=>
base−s t a t e ( ( p−s t a t e [P ] : (T PS) ) ( c−s t a t e [Q,P,N] : C) BC)
snapshot ( ( c−s t a t e [Q,P,N] : put (C’ ,T) ) SSC)
f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [P] : s t a r t e d ) ( done [Q,P,N] : f a l s e ) CC) .

∗∗∗ case −4: The proce s s has s t a r t e d the algor ithm ,
∗∗∗ not yet completed i t , and has a l r eady r e c e i v e d a marker
∗∗∗ from the incoming channel .
r l [ recTkn&s t a r t e d&done ] :

base−s t a t e ( ( p−s t a t e [P ] : PS) ( c−s t a t e [Q,P,N] : T | C) BC)
f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [P] : s t a r t e d ) ( done [Q,P,N] : t rue ) CC)
=>
base−s t a t e ( ( p−s t a t e [P ] : (T PS) ) ( c−s t a t e [Q,P,N] : C) BC)
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f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [P] : s t a r t e d ) ( done [Q,P,N] : t rue ) CC) .

∗∗∗∗∗∗ Record o f Process S ta t e s ∗∗∗∗∗∗
∗∗∗ Process P s t a r t s tak ing the d i s t r i b u t e d snapshot .
∗∗∗ case −1: The proce s s g l o b a l l y i n i t i a t e s the algor ithm ,
∗∗∗ namely the f i r s t p roce s s that r e co rd s i t s s t a t e in the
∗∗∗ system .
∗∗∗ case −2: The proce s s does not , namely that the re e x i s t s
∗∗∗ another p roce s s
∗∗∗ that has g l o b a l l y i n i t i a t e d the a lgor i thm .
∗∗∗ case −1: i s f u r t h e r s p l i t i n to three sub−ca s e s :
∗∗∗ case−1−1: The under ly ing system only c o n s i s t s o f
∗∗∗ the p roce s s .
∗∗∗ Note : f i n i s h−s t a t e should be added .
r l [ s t a r t&cnt=1&#ms=0] :

base−s t a t e ( ( p−s t a t e [P ] : PS) )
s ta r t−s t a t e ( empConfig )
snapshot ( empConfig )
f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( cnt : 1) ( prog [P] : notYet )
(#ms [P] : 0) CC)
=>
base−s t a t e ( ( p−s t a t e [P ] : PS) )
s ta r t−s t a t e ( ( p−s t a t e [P ] : PS) )
snapshot ( ( p−s t a t e [P ] : PS) )
f i n i s h−s t a t e ( ( p−s t a t e [P ] : PS) )
c o n t r o l ( ( cnt : 0) ( prog [P] : completed )
(#ms [P] : 0) CC) .

∗∗∗ case−1−2: The system c o n s i s t s o f more than one process ,
∗∗∗ and the proce s s does not have any incoming channe l s .
c r l [ s t a r t&cnt>1&#ms=0] :

base−s t a t e ( ( p−s t a t e [P ] : PS) BC)
s ta r t−s t a t e ( empConfig )
snapshot ( empConfig )
c o n t r o l ( ( cnt : NzN’ ) ( prog [P] : notYet )
(#ms [P] : 0) CC)
=>
base−s t a t e ( ( p−s t a t e [P ] : PS) bcast (BC,P, marker ) )
s t a r t−s t a t e ( ( p−s t a t e [P ] : PS) BC)
snapshot ( ( p−s t a t e [P ] : PS) )
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c o n t r o l ( ( cnt : sd (NzN’ , 1 ) ) ( prog [P ] : completed )
(#ms [P] : 0) CC)

i f NzN’ > 1 .

∗∗∗ case−1−3: The system c o n s i s t s o f more than one process ,
∗∗∗ and the proce s s has one or more incoming channe l s .
r l [ s t a r t&cnt>1&#ms>0] :

base−s t a t e ( ( p−s t a t e [P ] : PS) BC)
s ta r t−s t a t e ( empConfig )
snapshot ( empConfig )
c o n t r o l ( ( prog [P] : notYet ) (#ms [P] : NzN’ ) CC)
=>
base−s t a t e ( ( p−s t a t e [P ] : PS) bcast (BC,P, marker ) )
s t a r t−s t a t e ( ( p−s t a t e [P ] : PS) BC)
snapshot ( ( p−s t a t e [P ] : PS) inchans (BC,P) )
c o n t r o l ( ( prog [P] : s t a r t e d ) (#ms [P] : NzN’ ) CC) .

∗∗∗ case −2: The proce s s does not , namely that the re e x i s t s
∗∗∗ another p roce s s
∗∗∗ that has g l o b a l l y i n i t i a t e d the a lgor i thm .
∗∗∗ case −2: i s f u r t h e r s p l i t i n to three sub−ca s e s :
∗∗∗ case−2−1: The proce s s does not have any incoming
∗∗∗ channels ,
∗∗∗ and there are no p r o c e s s e s except f o r the p roce s s
∗∗∗ that have not completed the a lgor i thm .
∗∗∗ Note : f i n i s h−s t a t e should be added .
c r l [ r ecord&cnt=1&#ms=0] :

base−s t a t e ( ( p−s t a t e [P ] : PS) )
s ta r t−s t a t e (SC)
snapshot (SSC)
f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( cnt : 1) ( prog [P] : notYet ) (#ms [P ] : 0) CC)
=>
base−s t a t e ( ( p−s t a t e [P ] : PS) )
s ta r t−s t a t e (SC)
snapshot ( ( p−s t a t e [P ] : PS) SSC)
f i n i s h−s t a t e ( ( p−s t a t e [P ] : PS) )
c o n t r o l ( ( cnt : 0) ( prog [P] : completed ) (#ms [P] : 0) CC)

i f (SC =/= empConfig ) .

∗∗∗ case−2−2: The proce s s does not have any incoming channels ,
∗∗∗ and there are some other p r o c e s s e s that have not completed
the a lgor i thm .
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c r l [ r ecord&cnt>1&#ms=0] :
base−s t a t e ( ( p−s t a t e [P ] : PS) BC)
s ta r t−s t a t e (SC)
snapshot (SSC)
c o n t r o l ( ( cnt : NzN’ ) ( prog [P] : notYet )
(#ms [P] : 0) CC)
=>
base−s t a t e ( ( p−s t a t e [P ] : PS) bcast (BC, P, marker ) )
s t a r t−s t a t e (SC)
snapshot ( ( p−s t a t e [P ] : PS) SSC)
c o n t r o l ( ( cnt : sd (NzN’ , 1 ) )
( prog [P] : completed )
(#ms [P] : 0) CC)

i f (NzN’ > 1) /\ (SC =/= empConfig ) .

∗∗∗ case−2−3: The proce s s has some incoming channe l s .
c r l [ r ecord&cnt>1&#ms>0] :

base−s t a t e ( ( p−s t a t e [P ] : PS) BC)
s ta r t−s t a t e (SC)
snapshot (SSC)
c o n t r o l ( ( prog [P] : notYet ) (#ms [P] : NzN’ ) CC)
=>
base−s t a t e ( ( p−s t a t e [P ] : PS) bcast (BC,P, marker ) )
s t a r t−s t a t e (SC)
snapshot ( ( p−s t a t e [P ] : PS) inchans (BC,P) SSC)
c o n t r o l ( ( prog [P] : s t a r t e d ) (#ms [P] : NzN’ ) CC)

i f (SC =/= empConfig ) .

∗∗∗∗∗∗ Receipt o f Markers ∗∗∗∗∗∗
∗∗∗ Process P r e c e i v e s a marker along an incoming channel .
∗∗∗ case −1: The proce s s has not yet s t a r t e d the a lgor i thm .
∗∗∗ case −2: The proce s s has a l r eady s t a r t e d the a lgor i thm .
∗∗∗ case−1 i s f u r t h e r s p l i t i n to three sub−ca s e s :
∗∗∗ case−1−1: The proce s s has only one incoming channel ,
∗∗∗ and there are no p r o c e s s e s that have not yet completed
∗∗∗ the a lgor i thm
∗∗∗ except f o r the process , which i m p l i e s that the proce s s
∗∗∗ does not have any outgoing channe l s .
∗∗∗ Note : f i n i s h−s t a t e should be added .
r l [ recMkr&notYet&#ms=1&cnt =1] :

base−s t a t e ( ( p−s t a t e [P ] : PS)
( c−s t a t e [Q,P,N] : marker | C) BC)
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snapshot (SSC)
f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [P] : notYet )
(#ms [P] : 1) ( cnt : 1)
( done [Q,P,N] : f a l s e ) CC)
=>
base−s t a t e ( ( p−s t a t e [P ] : PS)
( c−s t a t e [Q,P,N] : C) BC)
snapshot ( ( p−s t a t e [P ] : PS)
( c−s t a t e [Q,P,N] : empChan) SSC)
f i n i s h−s t a t e ( ( p−s t a t e [P ] : PS)
( c−s t a t e [Q,P,N] : C) BC)
c o n t r o l ( ( prog [P] : completed )
(#ms [P] : 0) ( cnt : 0)
( done [Q,P,N] : t rue ) CC) .

∗∗∗ case−1−2: The proce s s has only one incoming channel ,
∗∗∗ and there are some other p r o c e s s e s that have
∗∗∗ not yet completed the a lgor i thm .
c r l [ recMkr&notYet&#ms=1&cnt>1] :

base−s t a t e ( ( p−s t a t e [P ] : PS)
( c−s t a t e [Q,P,N] : marker | C) BC)
snapshot (SSC)
c o n t r o l ( ( prog [P] : notYet ) (#ms [P] : 1)
( cnt : NzN)
( done [Q,P,N] : f a l s e ) CC)
=>
base−s t a t e ( ( p−s t a t e [P ] : PS)
( c−s t a t e [Q,P,N] : C)
bcast (BC,P, marker ) )
snapshot ( ( p−s t a t e [P ] : PS )
( c−s t a t e [Q,P,N] : empChan) SSC)
c o n t r o l ( ( prog [P] : completed )
(#ms [P] : 0) ( cnt : sd (NzN, 1 ) )
( done [Q,P,N] : t rue ) CC)

i f NzN > 1 .

∗∗∗ case−1−3: The proce s s has more than one incoming channel .
c r l [ recMkr&notYet&#ms>1&cnt>1] :

base−s t a t e ( ( p−s t a t e [P ] : PS)
( c−s t a t e [Q,P,N] : marker | C) BC)
snapshot (SSC)
c o n t r o l ( ( prog [P] : notYet )
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(#ms [P] : NzN’ ) ( cnt : NzN)
( done [Q,P,N] : f a l s e ) CC)
=>
base−s t a t e ( ( p−s t a t e [P ] : PS)
( c−s t a t e [Q,P,N] : C)
bcast (BC,P, marker ) )
snapshot ( ( p−s t a t e [P ] : PS )
( c−s t a t e [Q,P,N] : empChan)
inchans (BC,P) SSC)
c o n t r o l ( ( prog [P] : s t a r t e d )
(#ms [P] : sd (NzN’ , 1 ) ) ( cnt : NzN)
( done [Q,P,N] : t rue ) CC)

i f NzN’ > 1 .

∗∗∗ case −2: The proce s s has a l r eady s t a r t e d the a lgor i thm .
∗∗∗ case−2 i s f u r t h e r s p l i t i n to three sub−ca s e s :
∗∗∗ case−2−1: There are no incoming channe l s
∗∗∗ from which markers have not been
∗∗∗ r e c e i v e d except f o r the incoming channel ,
∗∗∗ and there are no p r o c e s s e s
∗∗∗ that have not yet completed the a lgor i thm
∗∗∗ except f o r the p roce s s .
r l [ recMkr&s t a r t e d&#ms=1&cnt =1] :

base−s t a t e ( ( p−s t a t e [P ] : PS)
( c−s t a t e [Q,P,N] : marker | C) BC)
f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [P] : s t a r t e d )
(#ms [P] : 1) ( cnt : 1)
( done [Q,P,N] : f a l s e ) CC)
=>
base−s t a t e ( ( p−s t a t e [P ] : PS)
( c−s t a t e [Q,P,N] : C) BC)
f i n i s h−s t a t e ( ( p−s t a t e [P ] : PS)
( c−s t a t e [Q,P,N] : C) BC)
c o n t r o l ( ( prog [P] : completed )
(#ms [P] : 0) ( cnt : 0)
( done [Q,P,N] : t rue ) CC) .

∗∗∗ case−2−2: There are no incoming channe l s
∗∗∗ from which markers have not been
∗∗∗ r e c e i v e d except f o r the incoming channel ,
∗∗∗ and there are some other p r o c e s s e s
∗∗∗ that have not yet completed the a lgor i thm .
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∗∗∗ Note : f i n i s h−s t a t e should not be added .
c r l [ recMkr&s t a r t e d&#ms=1&cnt>1] :

base−s t a t e ( ( p−s t a t e [P ] : PS)
( c−s t a t e [Q,P,N] : marker | C) BC)
c o n t r o l ( ( prog [P] : s t a r t e d )
(#ms [P] : 1) ( cnt : NzN)
( done [Q,P,N] : f a l s e ) CC)
=>
base−s t a t e ( ( p−s t a t e [P ] : PS)
( c−s t a t e [Q,P,N] : C) BC)
c o n t r o l ( ( prog [P] : completed )
(#ms [P] : 0) ( cnt : sd (NzN, 1 ) )
( done [Q,P,N] : t rue ) CC)

i f NzN > 1 .

∗∗∗ case−2−3: There are some other incoming channe l s
∗∗∗ from which markers have not
∗∗∗ been r e c e i v e d .
∗∗∗ Note : f i n i s h−s t a t e should not be added .
c r l [ recMkr&s t a r t e d&#ms>1&cnt>1] :

base−s t a t e ( ( p−s t a t e [P ] : PS)
( c−s t a t e [Q,P,N] : marker | C) BC)
c o n t r o l ( ( prog [P] : s t a r t e d )
(#ms [P] : NzN’ ) ( cnt : NzN)
( done [Q,P,N] : f a l s e ) CC)
=>
base−s t a t e ( ( p−s t a t e [P ] : PS)
( c−s t a t e [Q,P,N] : C) BC)
c o n t r o l ( ( prog [P] : s t a r t e d )
(#ms [P] : sd (NzN’ , 1 ) ) ( cnt : NzN)
( done [Q,P,N] : t rue ) CC)

i f NzN’ > 1 .
endm

mod EXPERIMENT i s
pr CHANDY−LAMPORT .
pr INIT−META−CONFIG .
vars SC FC SSC : Conf ig .
vars MC : MConfig .

endm
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Appendix B

Model Checking of CLDSA in Maude

∗∗∗
∗∗∗ Model Checking o f the D i s t r ibu t ed Snapshot Reachab i l i t y
∗∗∗ Property
∗∗∗

∗∗∗ Experiment f o r imc00 ∗∗∗

∗∗∗ s t a t e s : 164
search in EXPERIMENT : imc00 =>∗ MC such that f a l s e .

∗∗∗ So lu t i on 40 ( s t a t e 163)
∗∗∗ s t a t e s : 164 r e w r i t e s : 1341 in 18ms cpu
∗∗∗ (6159ms r e a l ) (70817 r e w r i t e s / second )
search in EXPERIMENT :

imc00 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC)
snapshot (SSC) MC
such that FC =/= empConfig .

∗∗∗ So lu t i on 40 ( s t a t e 163)
∗∗∗ s t a t e s : 164 r e w r i t e s : 1578 in 25ms cpu
∗∗∗ (5896ms r e a l ) (61566 r e w r i t e s / second )
search in EXPERIMENT :

imc00 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC)
snapshot (SSC) MC
such that FC =/= empConfig

/\ base−s t a t e (SC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( consume : f a l s e ) )
=>
base−s t a t e (SSC) f i n i s h−s t a t e ( empConfig )
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c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )
( consume : f a l s e ) ) .

∗∗∗ So lu t i on 40 ( s t a t e 163)
∗∗∗ s t a t e s : 164 r e w r i t e s : 1575 in 26ms cpu
∗∗∗ (5871ms r e a l ) (60057 r e w r i t e s / second )
search in EXPERIMENT :

imc00 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC)
snapshot (SSC) MC
such that FC =/= empConfig

/\ base−s t a t e (SSC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( consume : f a l s e ) )
=>
base−s t a t e (FC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( consume : f a l s e ) ) .

∗∗∗ End o f Experiment f o r imc00 ∗∗∗

∗∗∗ Experiment f o r imc01 ∗∗∗

∗∗∗ s t a t e s : 239
search in EXPERIMENT : imc01 =>∗ MC such that f a l s e .

∗∗∗ So lu t i on 55 ( s t a t e 238)
∗∗∗ s t a t e s : 239 r e w r i t e s : 1968 in 27ms cpu
∗∗∗ (2169ms r e a l ) (70386 r e w r i t e s / second )
search in EXPERIMENT :

imc01 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC)
snapshot (SSC) MC
such that FC =/= empConfig .

∗∗∗ So lu t i on 55 ( s t a t e 238)
∗∗∗ s t a t e s : 239 r e w r i t e s : 2396 in 38ms cpu
∗∗∗ (2153ms r e a l ) (62003 r e w r i t e s / second )
search in EXPERIMENT :

imc01 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC)
snapshot (SSC) MC
such that FC =/= empConfig

/\ base−s t a t e (SC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )
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( consume : t rue ) )
=>
base−s t a t e (SSC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( consume : t rue ) ) .

∗∗∗ So lu t i on 55 ( s t a t e 238)
∗∗∗ s t a t e s : 239 r e w r i t e s : 2360 in 38ms cpu
∗∗∗ (2324ms r e a l ) (61615 r e w r i t e s / second )
search in EXPERIMENT :

imc01 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC)
snapshot (SSC) MC
such that FC =/= empConfig

/\ base−s t a t e (SSC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( consume : t rue ) )
=>
base−s t a t e (FC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( consume : t rue ) ) .

∗∗∗ End o f Experiment f o r imc01 ∗∗∗

∗∗∗ Experiment f o r imc02 ∗∗∗

∗∗∗ s t a t e s : 8451 r e w r i t e s : 101397 in 706ms cpu
∗∗∗ (707ms r e a l ) (143426 r e w r i t e s / second )
search in EXPERIMENT : imc02 =>∗ MC such that f a l s e .

∗∗∗ So lu t i on 874 ( s t a t e 8450)
∗∗∗ s t a t e s : 8451 r e w r i t e s : 109842 in 974ms cpu
∗∗∗ (59634ms r e a l ) (112729 r e w r i t e s / second )
search in EXPERIMENT :

imc02 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC)
snapshot (SSC) MC
such that FC =/= empConfig .

∗∗∗ So lu t i on 874 ( s t a t e 8450)
∗∗∗ s t a t e s : 8451 r e w r i t e s : 139329 in 1552ms cpu
∗∗∗ (44910ms r e a l ) (89716 r e w r i t e s / second )
search in EXPERIMENT :

imc02 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC)
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snapshot (SSC) MC
such that FC =/= empConfig

/\ base−s t a t e (SC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( consume : t rue ) )
=>
base−s t a t e (SSC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( consume : t rue ) ) .

∗∗∗ So lu t i on 874 ( s t a t e 8450)
∗∗∗ s t a t e s : 8451 r e w r i t e s : 121493 in 1255ms cpu
∗∗∗ (40742ms r e a l ) (96790 r e w r i t e s / second )
search in EXPERIMENT :

imc02 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC)
snapshot (SSC) MC
such that FC =/= empConfig

/\ base−s t a t e (SSC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( consume : t rue ) )
=>
base−s t a t e (FC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( consume : t rue ) ) .

∗∗∗ End o f Experiment f o r imc02 ∗∗∗

∗∗∗ Experiment f o r imc03 ∗∗∗

∗∗∗ s t a t e s : 60695
search in EXPERIMENT : imc03 =>∗ MC such that f a l s e .

∗∗∗ So lu t i on 9315 ( s t a t e 60694)
∗∗∗ s t a t e s : 60695 r e w r i t e s : 553158 in 8221ms cpu
∗∗∗ (462784ms r e a l ) (67285 r e w r i t e s / second )
search in EXPERIMENT :

imc03 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC)
snapshot (SSC) MC
such that FC =/= empConfig .

∗∗∗ So lu t i on 9315 ( s t a t e 60694)
∗∗∗ s t a t e s : 60695 r e w r i t e s : 1814286 in 24295ms cpu
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∗∗∗ (409544ms r e a l ) (74674 r e w r i t e s / second )
search in EXPERIMENT :

imc03 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC)
snapshot (SSC) MC
such that FC =/= empConfig

/\ base−s t a t e (SC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( consume : t rue ) )
=>
base−s t a t e (SSC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( consume : t rue ) ) .

∗∗∗ So lu t i on 9315 ( s t a t e 60694)
∗∗∗ s t a t e s : 60695 r e w r i t e s : 1725059 in 23364ms cpu
∗∗∗ (612072ms r e a l ) (73833 r e w r i t e s / second )
search in EXPERIMENT :

imc03 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC)
snapshot (SSC) MC
such that FC =/= empConfig

/\ base−s t a t e (SSC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( consume : t rue ) )
=>
base−s t a t e (FC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( consume : t rue ) ) .

∗∗∗ End o f Experiment f o r imc03 ∗∗∗

∗∗∗ Experiment f o r imc04 ∗∗∗

∗∗∗ s t a t e s : 269508
search in EXPERIMENT : imc04 =>∗ MC such that f a l s e .

∗∗∗ So lu t i on 20851 ( s t a t e 269506)
∗∗∗ s t a t e s : 269507 r e w r i t e s : 3825380 in 43031ms cpu
∗∗∗ (2074578ms r e a l ) (88898 r e w r i t e s / second )
search in EXPERIMENT :

imc04 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC)
snapshot (SSC) MC
such that FC =/= empConfig .
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∗∗∗ So lu t i on 20851 ( s t a t e 269506)
∗∗∗ s t a t e s : 269507 r e w r i t e s : 7333415 in 102291ms cpu
∗∗∗ (2741392ms r e a l ) (71691 r e w r i t e s / second )
search in EXPERIMENT :

imc04 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC)
snapshot (SSC) MC
such that FC =/= empConfig

/\ base−s t a t e (SC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( consume : f a l s e ) )
=>
base−s t a t e (SSC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( consume : f a l s e ) ) .

∗∗∗ So lu t i on 20851 ( s t a t e 269506)
∗∗∗ s t a t e s : 269507 r e w r i t e s : 6935913 in 99523ms cpu
∗∗∗ (2715449ms r e a l ) (69690 r e w r i t e s / second )
search in EXPERIMENT :

imc04 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC)
snapshot (SSC) MC
such that FC =/= empConfig

/\ base−s t a t e (SSC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( consume : f a l s e ) )
=>
base−s t a t e (FC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( consume : f a l s e ) ) .

∗∗∗ End o f Experiment f o r imc04 ∗∗∗

∗∗∗ Experiment f o r imc05 ∗∗∗

∗∗∗ s t a t e s : 471295
search in EXPERIMENT : imc05 =>∗ MC such that f a l s e .

∗∗∗ So lu t i on 33344 ( s t a t e 471293)
∗∗∗ s t a t e s : 471294 r e w r i t e s : 6874881 in 86366ms cpu
∗∗∗ (5815273ms r e a l ) (79601 r e w r i t e s / second )
search in EXPERIMENT :
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imc05 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC)
snapshot (SSC) MC
such that FC =/= empConfig .

∗∗∗ So lu t i on 33344 ( s t a t e 471293)
∗∗∗ s t a t e s : 471294 r e w r i t e s : 14393284 in 225842ms cpu
∗∗∗ (3378231ms r e a l ) (63731 r e w r i t e s / second )
search in EXPERIMENT :

imc05 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC)
snapshot (SSC) MC
such that FC =/= empConfig

/\ base−s t a t e (SC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( consume : t rue ) )
=>
base−s t a t e (SSC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( consume : t rue ) ) .

∗∗∗ So lu t i on 33344 ( s t a t e 471293)
∗∗∗ s t a t e s : 471294 r e w r i t e s : 12802410 in 214543ms cpu
∗∗∗ (3572482ms r e a l ) (59672 r e w r i t e s / second )
search in EXPERIMENT :

imc05 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC)
snapshot (SSC) MC
such that FC =/= empConfig

/\ base−s t a t e (SSC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( consume : t rue ) )
=>
base−s t a t e (FC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( consume : t rue ) ) .

∗∗∗ End o f Experiment f o r imc05 ∗∗∗

∗∗∗ Experiment f o r imc06 ∗∗∗

∗∗∗ s t a t e s : 810938 r e w r i t e s : 11021149 in
∗∗∗ 5357391096ms cpu
∗∗∗ (434192ms r e a l ) (2 r e w r i t e s / second )
∗∗∗ search in EXPERIMENT : imc06 =>∗ MC such that f a l s e .
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∗∗∗ So lu t i on 81740 ( s t a t e 810937)
∗∗∗ s t a t e s : 810938 r e w r i t e s : 11832087 in
∗∗∗ 5357391621ms cpu
∗∗∗ (1726642ms r e a l ) (2 r e w r i t e s / second )
search in EXPERIMENT :

imc06 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC)
snapshot (SSC) MC
such that FC =/= empConfig .

∗∗∗ So lu t i on 81740 ( s t a t e 810937)
∗∗∗ s t a t e s : 810938 r e w r i t e s : 31965889 in
∗∗∗ 5357390769ms cpu
∗∗∗ (2014779ms r e a l ) (5 r e w r i t e s / second )
search in EXPERIMENT :

imc06 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC)
snapshot (SSC) MC
such that FC =/= empConfig

/\ base−s t a t e (SC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( consume : t rue ) )
=>
base−s t a t e (SSC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( consume : t rue ) ) .

∗∗∗ So lu t i on 81740 ( s t a t e 810937)
∗∗∗ s t a t e s : 810938 r e w r i t e s : 31087639 in
∗∗∗ 5357394898ms cpu
∗∗∗ (1914408ms r e a l ) (5 r e w r i t e s / second )
search in EXPERIMENT :

imc06 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC)
snapshot (SSC) MC
such that FC =/= empConfig

/\ base−s t a t e (SSC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( consume : t rue ) )
=>
base−s t a t e (FC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( consume : t rue ) ) .

∗∗∗ End o f Experiment f o r imc06 ∗∗∗

117



∗∗∗ Experiment f o r imc07 ∗∗∗

∗∗∗ maude . inte lDarwin (708 ,0 xac6062c0 ) mal loc :
∗∗∗ mmap( s i z e =2097152) f a i l e d ( e r r o r code=12)
∗∗∗ e r r o r : can ’ t a l l o c a t e r eg i on
∗∗∗ s e t a breakpoint in m a l l o c e r r o r b r e a k to debug
∗∗∗ terminate c a l l e d throwing an except ionAbort trap : 6
−−−
search in EXPERIMENT : imc07 =>∗ MC such that f a l s e .

∗∗∗ So lu t i on 137140 ( s t a t e 6854875)
∗∗∗ s t a t e s : 6854876 r e w r i t e s : 105922148 in 5213061ms cpu
∗∗∗ (27530117ms r e a l ) (20318 r e w r i t e s / second )
−−−
∗∗∗ maude . inte lDarwin (737 ,0 xac6062c0 ) mal loc :
∗∗∗ mmap( s i z e =2097152) f a i l e d ( e r r o r code=12)
∗∗∗ e r r o r : can ’ t a l l o c a t e r eg i on
∗∗∗ s e t a breakpoint in m a l l o c e r r o r b r e a k to debug
∗∗∗ terminate c a l l e d throwing an except ionAbort trap : 6
−−−
search in EXPERIMENT :

imc07 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC) snapshot (SSC) MC
such that FC =/= empConfig .

∗∗∗ So lu t i on 122682 ( s t a t e 6400916)
∗∗∗ s t a t e s : 6400917 r e w r i t e s : 440565484 in 38431146ms cpu
∗∗∗ (54612651ms r e a l ) (11463 r e w r i t e s / second )
−−−
∗∗∗ maude . inte lDarwin (12040 ,0 xac1522c0 ) mal loc :
∗∗∗ mmap( s i z e =2097152) f a i l e d ( e r r o r code=12)
∗∗∗ e r r o r : can ’ t a l l o c a t e r eg i on
∗∗∗ s e t a breakpoint in m a l l o c e r r o r b r e a k to debug
∗∗∗ terminate c a l l e d throwing an except ionAbort trap : 6
−−−
search in EXPERIMENT :

imc07 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC) snapshot (SSC) MC
such that FC =/= empConfig

/\ base−s t a t e (SC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( consume : t rue ) )
=>
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base−s t a t e (SSC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( consume : t rue ) ) .

∗∗∗ So lu t i on 125725 ( s t a t e 6485240)
∗∗∗ s t a t e s : 6485241 r e w r i t e s : 373514223 in 23539706ms cpu
∗∗∗ (39141309ms r e a l ) (15867 r e w r i t e s / second )
−−−
∗∗∗ maude . inte lDarwin (205 ,0 xac6062c0 ) mal loc :
∗∗∗ mmap( s i z e =2097152) f a i l e d ( e r r o r code=12)
∗∗∗ e r r o r : can ’ t a l l o c a t e r eg i on
∗∗∗ s e t a breakpoint in m a l l o c e r r o r b r e a k to debug
∗∗∗ terminate c a l l e d throwing an except ionAbort trap : 6
−−−
search in EXPERIMENT :

imc07 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC) snapshot (SSC) MC
such that FC =/= empConfig

/\ base−s t a t e (SSC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( consume : t rue ) )
=>
base−s t a t e (FC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( consume : t rue ) ) .

∗∗∗( imc07 SSC FC
∗∗∗ So lu t i on 123827 ( s t a t e 6448377)
∗∗∗ s t a t e s : 6448378 r e w r i t e s : 368379995 in 32136576ms
∗∗∗ cpu (46709597ms r e a l ) (11462 r e w r i t e s / second )
∗∗∗maude . inte lDarwin (310 ,0 xac1522c0 ) mal loc :
∗∗∗ mmap( s i z e =262144) f a i l e d ( e r r o r code=12)
∗∗∗ e r r o r : can ’ t a l l o c a t e r eg i on
∗∗∗ s e t a breakpoint in m a l l o c e r r o r b r e a k to debug
terminate c a l l e d throwing an except ionAbort trap : 6
)

∗∗∗ End o f Experiment f o r imc07 ∗∗∗

∗∗∗ Experiment f o r imc08 ∗∗∗

∗∗∗ s t a t e s : 3587681 r e w r i t e s : 51560637 in 1914834ms cpu
∗∗∗ (1915236ms r e a l ) (26926 r e w r i t e s / second )
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−−−
search in EXPERIMENT : imc08 =>∗ MC such that f a l s e .

∗∗∗ So lu t i on 190434 ( s t a t e 3587680)
∗∗∗ s t a t e s : 3587681 r e w r i t e s : 55148210 in 2047317ms cpu
∗∗∗ (46673794ms r e a l ) (26936 r e w r i t e s / second )
−−−
search in EXPERIMENT :

imc08 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC) snapshot (SSC) MC
such that FC =/= empConfig .

∗∗∗ So lu t i on 190434 ( s t a t e 3587680)
∗∗∗ s t a t e s : 3587681 r e w r i t e s : 118469042 in 5181498ms cpu
∗∗∗ (49712756ms r e a l ) (22863 r e w r i t e s / second )
−−−
search in EXPERIMENT :

imc08 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC) snapshot (SSC) MC
such that FC =/= empConfig

/\ base−s t a t e (SC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( consume : t rue ) )
=>
base−s t a t e (SSC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( consume : t rue ) ) .

∗∗∗ So lu t i on 190434 ( s t a t e 3587680)
∗∗∗ s t a t e s : 3587681 r e w r i t e s : 116431923 in 5081011ms cpu
∗∗∗ (48872905ms r e a l ) (22915 r e w r i t e s / second )
−−−
search in EXPERIMENT :

imc08 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC) snapshot (SSC) MC
such that FC =/= empConfig

/\ base−s t a t e (SSC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( consume : t rue ) )
=>
base−s t a t e (FC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( consume : t rue ) ) .

∗∗∗ End o f Experiment f o r imc08 ∗∗∗
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∗∗∗ Experiment f o r imc09 ∗∗∗

∗∗∗ s t a t e s : 579896 r e w r i t e s : 24480376 in 192794ms cpu
∗∗∗ (192858ms r e a l ) (126976 r e w r i t e s / second )
search in EXPERIMENT : imc09 =>∗ MC such that f a l s e .

∗∗∗ So lu t i on 2380 ( s t a t e 579886)
∗∗∗ s t a t e s : 579887 r e w r i t e s : 25059911 in 194375ms cpu
∗∗∗ (500287ms r e a l ) (128925 r e w r i t e s / second )
search in EXPERIMENT :

imc09 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC) snapshot (SSC) MC
such that FC =/= empConfig .

∗∗∗ So lu t i on 2380 ( s t a t e 579886)
∗∗∗ s t a t e s : 579887 r e w r i t e s : 25128901 in 236470ms cpu
∗∗∗ (562877ms r e a l ) (106266 r e w r i t e s / second )
search in EXPERIMENT :

imc09 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC) snapshot (SSC) MC
such that FC =/= empConfig

/\ base−s t a t e (SC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( prog [ p ( 3 ) ] : notYet )
( prog [ p ( 4 ) ] : notYet ) ( consume : t rue ) )

=>
base−s t a t e (SSC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( prog [ p ( 3 ) ] : notYet )
( prog [ p ( 4 ) ] : notYet ) ( consume : t rue ) ) .

∗∗∗ So lu t i on 2380 ( s t a t e 579886)
∗∗∗ s t a t e s : 579887 r e w r i t e s : 25128496 in 267381ms cpu
∗∗∗ (647594ms r e a l ) (93980 r e w r i t e s / second )
search in EXPERIMENT :

imc09 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC) snapshot (SSC) MC
such that FC =/= empConfig

/\ base−s t a t e (SSC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( prog [ p ( 3 ) ] : notYet )
( prog [ p ( 4 ) ] : notYet ) ( consume : t rue ) )

=>
base−s t a t e (FC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )
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( prog [ p ( 2 ) ] : notYet ) ( prog [ p ( 3 ) ] : notYet )
( prog [ p ( 4 ) ] : notYet ) ( consume : t rue ) ) .

∗∗∗ End o f Experiment f o r imc09 ∗∗∗

∗∗∗ Experiment f o r imc10 ∗∗∗

∗∗∗ maude . inte lDarwin (295 ,0 xac6062c0 ) mal loc :
∗∗∗ mmap( s i z e =262144) f a i l e d ( e r r o r code=12)
∗∗∗ e r r o r : can ’ t a l l o c a t e r eg i on
∗∗∗ s e t a breakpoint in m a l l o c e r r o r b r e a k to debug
∗∗∗ terminate c a l l e d throwing an except ionAbort trap : 6
−−−
search in EXPERIMENT : imc10 =>∗ MC such that f a l s e .

∗∗∗
search in EXPERIMENT :

imc10 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC) snapshot (SSC) MC
such that FC =/= empConfig .

∗∗∗ So lu t i on 779 ( s t a t e 5662572)
∗∗∗ s t a t e s : 5662573 r e w r i t e s : 254245940 in 14463958ms cpu
∗∗∗ (14540092ms r e a l ) (17577 r e w r i t e s / second )
search in EXPERIMENT :

imc10 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC) snapshot (SSC) MC
such that FC =/= empConfig

/\ base−s t a t e (SC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( prog [ p ( 3 ) ] : notYet )
( prog [ p ( 4 ) ] : notYet ) ( consume : t rue ) )

=>
base−s t a t e (SSC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( prog [ p ( 3 ) ] : notYet )
( prog [ p ( 4 ) ] : notYet ) ( consume : t rue ) ) .

∗∗∗
search in EXPERIMENT :

imc10 =>∗ s t a r t−s t a t e (SC) f i n i s h−s t a t e (FC) snapshot (SSC) MC
such that FC =/= empConfig

/\ base−s t a t e (SSC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )
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( prog [ p ( 2 ) ] : notYet ) ( prog [ p ( 3 ) ] : notYet )
( prog [ p ( 4 ) ] : notYet ) ( consume : t rue ) )

=>
base−s t a t e (FC) f i n i s h−s t a t e ( empConfig )
c o n t r o l ( ( prog [ p ( 0 ) ] : notYet ) ( prog [ p ( 1 ) ] : notYet )

( prog [ p ( 2 ) ] : notYet ) ( prog [ p ( 3 ) ] : notYet )
( prog [ p ( 4 ) ] : notYet ) ( consume : t rue ) ) .

∗∗∗ End o f Experiment f o r imc10 ∗∗∗
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