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Abstract

Currently, the automotive systems provide many functionalities for automobile. Although those
functionalities are able to support our lives, the violation of those functionalities may be serious
issue that we have to concern. Obviously, the automotive systems require high-reliability of
the system to ensure safeness of our lives. In this research, we specifically focus on operating
systems of automotive systems. The operating system is the basis component which provide
services to serve application software. Thus, the correctness of the operating systems is the
serious condition to correctly implement the operating system kernel.

In addition, since the demand of usage is increasing, the multi-core processors are adopt
in the automotive systems for performance improving. The multi-core system is the system
that have multi-processors with shared-memory. In the shared-memory systems, according to
[Gha95], the results of programs might be not same as the sequential execution, which is the
execution which follow the program order specified by programs. As programmer’s point-of-
view, these results maybe unexpected results. These results are affected by memory consistency
models which are define the behaviors of memory in shared-memory systems.

In the shared-memory systems, the systems allow each processor to access the memory lo-
cations simultaneously. Moreover, each processor are able to issue the memory accesses out-of-
order because of optimization mechanisms. Since each processor is independent to each other,
the access order of memory access might be different. Hence, the memory maybe not consis-
tence among processors. The specifications of memory consistency models ensure the execution
order of memory accessing to shared-memory locations. Unfortunately, these behaviors are not
appeared explicitly. It might be difficult to consider the behaviors of program execution.

Our research aims to verify the automotive operating systems for multi-core systems. Since
the behaviors of program execution are not appeared explicitly, the verification might be diffi-
cult. In addition, the behaviors of program executions are affected by the hardware architecture.
That means we cannot verify the programs on multi-core systems by themselves. Hence, this
research will provide the verification which take the hardware behaviors into account for en-
sure the correctness. Moreover, the verification of the whole operating systems will be difficult
because operating system is a complex system. Therefore, the scope of this research considers
only multiprocessor programs to provide the verification for multi-core systems.

In software development, there are many approaches to ensure the correctness of the software.
Due to the automotive operating systems require high-reliability, the formal verification is
adopt in this research. Since the behaviors of program execution in multi-core systems might
be complicated, we apply the theorem proving approach instead of model checking. Therefore,
due to the behaviors of hardware is significant issue, this research provides the formal model
which represent such behaviors. Then, the verification method is proposed to provide the proofs
based on our formal model.
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Chapter 1

Introduction

Currently, computer systems are attached to electronic systems around us. This research
is interested in automotive systems which relate with our lives, such as automobile. In
the automobile systems, computer systems are adopt to control many parts inside the
automobiles, such as ABS braking systems. In addition, the most systems of automotive
systems relate to our lives. Due to the fact that some violations of the systems may
risk our lives, , we should ensure that the automotive systems is working correctly. In
the automotive systems, automotive operating systems are the basis components which
provide services for application software to control the hardware architecture. Hence,
automotive operating systems are significant components which we focus in this research.

To improve the performance of the systems, the multi-cores systems are used in the
modern automotive systems. In the multi-core systems, there are numerous optimization
techniques to reduce the memory latency, such as bypass the read accesses. However,
such techniques will change the order of executions in the systems. Even if the order of
executions is changed, uniprocessor systems1 are able to keep the correct results follow
the program orders2 Due to the fact that multi-core system is multiprocessors system with
shared-memory, each core are able to read/write the shared-memory simultaneously. In
addition, the order of updates, the results of write accesses to shared-memory, maybe
appeared to each core independently in shared-memory systems. To keep consistency of
the orders among cores, such optimization techniques have to restrict some behaviors in
the hardware. So, we may loose the performance of optimization techniques. However,
modern processor architectures assume that some executions of programs are acceptable.
Hence, there are memory consistency models, or memory models, which allow some out-
of-order executions to be happened for improving the performance of the models. Nev-
ertheless, due to some executions may produce unexpected results from the programs,
ensuring the correctness of the programs for multi-core systems becomes complex.

In software development, there are many techniques to confirm the correctness of the
programs, such as providing test cases. Nevertheless, the automotive systems need high-
reliability of the systems. Hence, in this research, formal verification approach is proper

1A computer system that has a single CPU
2The order of instructions that appear in the program
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1 A = 1
2 b = B
3

Program A

1 B = 1
2 a = A
3

Program B

Figure 1-1: Sample programs on different cores

to ensure the correctness of the systems. Because the formal verification approaches offer
rigorous approaches for the verification.

Since the operating systems are close to hardware architecture. Most of implementa-
tions are usually implemented by mixing assembly and c languages. As we said before,
multi-core systems are able to allow out-of-order executions of memory accesses. Nev-
ertheless, programmers usually assume that the executions will be sequential executions.
Many program verification methods, such as Hoare logic, consider the instructions will be
executed as atomic instructions in a sequential way. Therefore, unexpected results might
be happened in the multi-core systems.

1.1 Problems

As we mention before, the hardware behaviors might change the order of executions of
programs in multi-core systems. Even if we have ensured the programs, it’s not enough
to confirm programs are able to be performed correctly in multi-core systems. Firstly,
let’s consider the programs in figures 1-1. As for the programs, we define capital letters,
A and B, as global memory locations and small letters, a and b, as private memory
locations. Each program will be performed on different core on same multi-core systems.
As verification of programs, we usually verify the programs in the interleaving ways as
sequential executions. However, as we mention before, the order of executions will be
changed due to hardware behaviors in multi-core systems. As the programmer’s point of
view, the results of (a, b) will never be (0, 0). Nevertheless, some multi-core systems allow
operations ‘b = B’ and ‘a = A’ to be executed before ‘B = 1’ and ‘A = 1’. Therefore,
the results of (a, b) = (0, 0) might be possible in the multi-core systems. Obviously the
verification of programs performed on multi-cores systems cannot be verified by themselves.
Because behaviors of multi-core systems have not shown explicitly in the programs.

Due to the behaviors of multi-core systems can change the order of executions, the
degree of non-determinism of multi-core systems will be greater than programs considered
as interleaved executions. The verification becomes difficult because of degree of non-
determinism. Since the behaviors of multi-core systems are significant issues to be concern,
the verification should be able to ensure the correctness of programs with the behaviors
of multi-core systems.

CHAPTER 1. INTRODUCTION 2



1.2 Objective

The objective of this research is to propose a verification method for ensure the correctness
of automotive operating systems for multi-core systems. Since the operating systems are
close to hardware and the behaviors of multi-core systems affect the execution of the
programs, behaviors of multi-core systems are the most importance in the verification.
Therefore, the hardware behaviors of multi-core systems will be taken into account. The
proposed verification method also should able to ensure the correctness of the programs
in multi-core systems.

In addition, since operating systems are the complex systems which contain a lot
of functionalities to service the software application. The verification of the operating
systems become difficult. As this research we focus on verification of programs on multi-
core systems, thus verification of programs which service the multi-core functionalities is
enough to ensure the correctness of programs in multi-core systems. Because the out-of-
order execution is the significant issue to be concerned when the programs are executed
on different cores.

1.3 Approach

Since the operating systems usually implemented by mixing assembly with C languages.
These languages offer different programming paradigms to write programs. In addition,
assembly language is more close to the hardware which affect the execution order of
programs. Moreover, considering the complied programs as assembly languages also avoid
the compiler optimization which also change the program implementation. Therefore, this
research will focus on assembly programs in the verification.

In order to propose a verification method for programs executed on multi-core systems,
as we mention before, the behaviors of multi-core systems should be taken into account.
Thus, the verification also need a formal model which represent the multi-core systems.
The formal models should be an abstraction of multi-core systems and capable for veri-
fication of programs. In addition, the execution order of memory accesses in multi-core
systems is influenced by memory consistency models. In the multi-core processors, there
is a variation of memory consistency models which allow different behaviors of executions
to be happened in the systems. Therefore, the memory consistency models are necessary
issues to be formalized in the formal model.

Then, the verification method will be proposed to deal with programs executing on
multi-core systems based on our formal model. The verification should be able to cover
the executions of programs in the multi-core systems. As the executions of instructions
will not be an atomic step and more hardware behaviors will be appeared in the formal
model, the verification becomes more complex due to the degree of non-determinism.
Thus the verification method should be capable for programs in our formal model which
aren’t executed as sequential executions.

CHAPTER 1. INTRODUCTION 3



1.4 Organization

In this thesis, the next chapter will explain the preliminaries for this research. Firstly, we
will consider the behaviors of multi-core system. We specifically consider the behaviors of
program executions which is necessary in verification. Then, we will explain about formal
verification. The formal verification will be adopted to our research. In the verification,
we specifically use the theorem proving for ensuring the correctness.

In chapter 3, we provide the formal model of our work for verification. The model that
we have proposed captures the behaviors of program execution on multi-core processors.
Since the optimization mechanisms inside multi-core systems change the order of execu-
tion, the formal model is provided to capture those behaviors in the verification. In the
last section of this chapter, we show the sample of execution based on our formal model
as an evidence to convince that our model can be used.

In chapter 4, we will adopt the proposed formal model in the verification. In that
chapter, the method will cover the possible execution paths produced from our formal
model. In addition, we also show the proofs as a case study in chapter 5 to show that our
method can verify the programs executing on multi-core systems.

Since we have already proposed the formal model and verification method, those model
a method will be evaluated in the chapter 6. Then, the chapter 8 will discuss about them
and conclude the research.

CHAPTER 1. INTRODUCTION 4



Chapter 2

Multi-core systems and Verification

This section will explain about the underlying system behaviors that perform programs
on multi-core systems. Normally, we know that the assembly instructions will be fetched
to a processor and be executed in that processor. Behind an instruction execution, the
processor uses micro-operations and memory accesses to execute the fetched instruction.
That means a single instruction isn’t appeared as atomic. In addition, there are many
mechanisms to improve the performance of the systems. Such improving techniques will be
used for reducing the memory latency. Some techniques allow the latter memory accesses
to be executed before the earlier memory accesses. Hence improving techniques will affect
the execution order of memory access. In the section 2.1 will explain the behaviors of
multi-core systems which affect the executions of the programs in details.

In multi-core systems, memory accesses are used in programs which communicate via
shared-memory. There are optimization mechanisms provided to reduce the memory
latency of memory accesses. The optimization mechanisms will be in either compiler
optimization or hardware optimization. In the compiler optimization, the compiler uses
profile-guide optimization to reordering the assembly instructions. Anyway, in this re-
search, we focus on hardware optimization mechanisms which affect the hardware behav-
iors. The section 2.1.3 will explain the behaviors of optimization mechanisms in detail.
Moreover, the multi-core systems will have it’s own memory consistency model which
affects the order of executions of programs. That means the possible executions of the
programs may not be as sequential executions. The section 2.1.4 will explain the behaviors
of memory consistency models in details.

To ensure the correctness of the programs for multi-core systems, we choose formal
verification approach. The section 2.2 explain the idea of formal verification, describes
the existing approaches, and consider the related works which apply the formal verification
to verify operating systems.

2.1 Multi-core systems

Normally, the multi-core systems are the multiprocessor systems with shared-memory
systems. The program will be performed in a processor that belongs to one core and
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Figure 2-1: General shared-memory systems

communicate each other by memory accesses via shared-memory as the figure 2-1. The
programs usually are written in assembly code which belongs to Instruction Set Architec-
ture (ISA) of processors, such as ARM processors. For each instruction appeared in the
program will be fetched to the execution unit, or pipeline, inside a processor to be exe-
cuted as micro-operations and memory accesses. Each of micro-operations and memory
access will be issued from the processor to compute in the core or issue to outside the core
for accessing the shared-memory. This section will consider the behaviors of executing
programs on multi-core systems.

2.1.1 Terminology

Firstly, to describe the behaviors inside the multi-core systems, we would like to introduce
overview of terminologies that will be appeared in this research.

A multi-core systems is the multiprocessor with shared-memory systems. It consists
of a collection of cores , shared-memory locations, and a network, which connect cores and
shared-memory locations. A core is a group of components that contains a processor,
execution units, buffers, and private memory locations such as registers. The main role
of the processor is to fetch the instructions from a program to be performed in the
execution unit. A program is the sequence of instructions that will be performed in a
processor. Each of programs will be placed on a core separately in multi-core systems. The
fetched instructions are usually called instances to identify the execution in that time,
because same instruction is able to fetched many times. The execution unit will issue a
sequence of micro-operations and memory accesses for performing the fetch instructions.
The micro-operations are the low-level instructions which transfer data among registers
and buses inside a core. The memory access is the low-level instruction that access the
memory location either update or read the value. There are situations that the processor
try to perform a micro-operation and a memory access while earlier operations or accesses
is not finished yet. The buffers will be used to handle such micro-operations or memory
accesses which cannot be performed yet. The memory accesses which need to access the
shared-memory locations will be issued to the network outside the core.

The network is an external bus that connect the cores and shared-memory locations.
The memory accesses which access shared-memory locations might have a delay of memory
latency to access the external memory locations. The modern processors usually have
caches inside a core to reduce memory latency.

In the systems, we have information of program order of instances and program

CHAPTER 2. MULTI-CORE SYSTEMS AND VERIFICATION 6



1MOV r 1 , #1
2MOV r 2 , r1

Program A

1MOV r 1 , #1
2MOV r 2 , #2

Program B

Figure 2-2: Simple instructions

order of micro-operations and memory accesses. These order is specified by the
time that instances, micro-operations, or memory accesses are instantiated. These pro-
gram orders are total orders in the it’s own core. However they will be appeared as partial
orders in the multi-core systems. Such program order will be used to consider about exe-
cution behaviors in the future, because memory consistency models will be generalized in
formal model. Nevertheless, these information is not appeared in the hardware explicitly.

2.1.2 Behaviors for performing programs on multi-core systems

As the programs will be placed on each core separately, first we will consider the program
executed in a one core. Then, the memory accesses which issued to the network will be
considered later to interact with shared-memory locations.

Performing instructions

In order to execute a program assigned to the core, a processor inside a core will fetch
an instruction to the execution unit. The fetched instructions are considered as instruc-
tion instances. Even though such instances are instantiated from same instruction, the
instances should be different to each other. The program order of instances is depend on
the order of fetching instances from a programs. Obviously the program order of instances
is a partial order among cores.

After an instruction is fetched, execution unit will issue micro-operations and memory
accesses to perform an instance of such instruction. These micro-operations and memory
accesses also have their program order to keep order of executions of instance’s operations.

Moreover, fetching instruction is able to fetch the next instruction immediately if the
registers which will be used by such instructions are available to use. Let’s consider the
programs in figure 2-2, In the Program A, we have to wait instruction at line 1 before
fetching the next instruction because of dependency of register r1. Nevertheless, in the
Program B, we are able to fetch the instruction at line 2 even if the instruction at line 1
is not finish yet. The fetched instructions will be placed on available execution units, as
known as pipeline in modern processors.

Read and write accesses and their buffers

Let’s consider the memory accesses which issued from execution units. The accesses
are either read accesses or write accesses to memory locations. Generally, accessing the
memory always have a memory latency of memory operations. Due to memory latency,
a processor have to be stall until the outstanding memory access is finished. Hence, the

CHAPTER 2. MULTI-CORE SYSTEMS AND VERIFICATION 7



1A = 1
2B = 1

Program A

1 u = B
2 v = A

Program B

1 x = B
2 y = A

Program C

Figure 2-3: Sample for shared-memory systems

read and write buffers have been introduced to reduce memory latency. If there are any
read or write accesses as the next memory accesses which independent from outstanding
access, such read or write accesses are able to be issued from the buffers and performed
immediately. Because such accesses will be perform in different locations which do not
need to stall the processor. The access locations of memory accesses can be either private
or shared memory locations.

Atomic operations

In the hardware architecture, the instructions are not be appeared as atomic instructions.
Each instruction described in assembly language is performed as micro-operations and
memory accesses. However, such atomic instructions are necessary in the multi-core
systems. The hardware also have mechanisms to service the instructions which require
atomicity. Normally, atomicity behaviors will consist of read and write access which
access the same location. The atomicity behaviors ensure that once the read access is
executed, there is no any write access from another processors which access the same
location can update the value before the atomic’s write access. The such mechanism
can be implemented in either processors or memory. In a processors, atomicity can be
supported by controlling the cache coherency protocol. Once the atomicity is needed, the
processor will request the exclusive owner of the locations. Then, the cache coherency
protocol will lock that location until the write access is finished. In the related work
[Gha95], they refer to such kind of operations as read-modified-write operations.

Accessing shared-memory locations

Let’s consider the memory accesses which access the memory locations. Once the read
and write accesses are finished by accessing the caches, the caches also have mechanisms
to maintain the coherency of locations among cores. Although the cache protocol is able
to handle the coherency among cores, there are the execution order issues to be concerned.
Due to each core is independently and the optimization mechanisms are able to change
the order of execution, the order of updates might be different. In multi-core systems,
there are memory consistency models which describe the behaviors of memory accesses for
shared-memory systems. Such consistency models will affect the order of updates among
cores. Let’s consider the programs in figure 2-3, once the ‘A = 1’ and ‘B = 1’ are issued,
some memory consistency models can allow programs B to read the value of ‘A = 0’ and
‘B = 1’, and program C can read the value of ‘A = 1’ and ‘B = 0’. We can see that the
order of updates is appeared to each core independently.

CHAPTER 2. MULTI-CORE SYSTEMS AND VERIFICATION 8



In the related work [AAS03], they propose the formal model for share-memory sys-
tems. That model also take the memory consistency models into account for capturing
the behaviors of shared-memory. As for shared-memory systems, they have proposed
view-orders to each core to describe the order appeared to the core in each step of exe-
cutions. That approach also applicable to simulate the order which is appeared to each
core independently.

Fencing operations

Due to some systems allow out-of-order executions to be happened, such systems also
provide fencing operations, or memory barrier, to enforce some parts of programs to be
executed follow the program order. However, in each processor architecture also have
different mechanisms of fencing operations. Fencing operations will separate the group
of operation to be two groups. They usually define groups as past operations and future
operations. For the future operations, each system is able to define it’s group, such as
consider only write operations to the same location as operations in past operation group.
To control the order of executions, some systems put the fence operations into a write
buffer to enforce the executions.

2.1.3 Hardware optimization

This section will explain the hardware optimization mechanisms that usually be used
in the multi-core systems. However, some optimization mechanisms, such as lock-up free
cached, are ignored in this research. Due to we need to abstract the behaviors of hardware
for programs verification, the cache behaviors might not necessary to consider. If the
cache components are taken into account, the cache coherency protocols also might be
considered in details. Moreover, the effect of some mechanisms also lead to reordering of
executions. Such reordering also is able to be simulated by buffers behaviors. In addition,
to maintain the coherency, memory consistency models are also used to control the order
of updates among cores. Therefore, as optimization mechanisms proposed in this section
might be sufficient to verify the programs for multi-core systems.

Out-of-order issuing

In the fetching instruction, normally the instructions are fetched in order decided by a
program counter. Sometimes the next instruction should be wait until the necessary
registers are available, as described in section 2.1.2. Instead of waiting, this technique
stores the instruction into reservation station, or instruction buffer. The reservation
station will issue an instruction that it’s required registers are available. That means this
behaviors will allow out-of-order issuing of instructions. In some cases that the programs
are executed in multi-core systems, this behavior is known by only it’s own processor.
Therefore, the unexpected results maybe produced.
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1A = 1
2B = 1
3 a = A

Program A

1 x = B
2 y = A

Program B

Figure 2-4: Example for bypassing read access

Non-blocking read access

In the execution units, the instruction will be performed as micro-operations and memory
accesses. As for the read accesses, there are some situations that the read access cannot be
performed immediately. The causes maybe read miss in caches or the memory locations
is not available yet. Hence, this mechanisms have been introduced to skip such read
accesses to perform next micro-operation or memory access. However this read access
will be performed again once the value of the read is needed. This behavior is able to be
realized by read buffers.

Bypassing read access

The write accesses normally are putted into write buffers. To issue the read access as the
program order, the read operation usually have to wait until the previous write accesses
already be issued from buffers. In this case, the processor should be stall itself before per-
form the next operations. To reduce the stalls, bypassing read access have been introduced.
The read access can be performed immediately if and only if there are no write accesses
that access to the same address as the read access. Hence, this behavior will cause that a
read access may be executed before write accesses specified as earlier operations. In the
same processor, this behavior will not produce unexpected results. Nevertheless, in the
multi-core systems, the order of some write accesses and read accesses maybe significant
order to be considered.

For example, let’s consider the figure 2-4, we define ‘A =1’ and ‘B=1’ as write access,
and the remaining are read accesses. Assume that the write access ‘A=1’ already executed
in the shared-memory and ‘B=1’ is stored in the write buffers. In this case, the read access
‘a = A’ is able to read the value ‘A = 1’ from shared-memory immediately, even if the
write access ‘B = 1’ is not executed yet. In this case, the result of (x, y) is (0, 1) can be
happened in the multi-core systems.

Read forwarding

This mechanism also reduces the stalls of that processor by immediately issue the read
access if and only if there is a write access stored in write buffers which access the same
memory locations as the read access. However, such return value should be the value from
the last write access that appeared in the buffer. Although this mechanism can reduce
the stalls in processors, some hardware are not allow this mechanism to be implemented
due to it may provide some unexpected results.
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Non-FIFO read/write buffers

Generally, buffers usually act like queues which issue an entity in order as First-In-First-
Out(FIFO). In some cases the earlier read or write accesses cannot be executed yet,
because accessing memory location is not available. Moreover, In the case of out-of-order
issuing, some accesses should be issued in the program order, but buffers might have
earlier accesses which should be issued later. Hence, such accesses will be selected to be
issued before the earlier accesses in the buffers.

2.1.4 Memory consistency models

Due to the fact that the execution order on multi-core systems is significant issue to verify
the correctness of the programs, this section will explain about memory consistency mod-
els. Currently, there are many models have been proposed in the computer systems. In
each systems also provide different hardware behaviors to keep the memory consistency
among cores. Fortunately, there is a related work [Gha95] that generalize the memory
consistency models to their framework. They provide constrains to consider valid exe-
cutions on each model. So, such framework will be applied to formalize the multi-core
systems in our work.

A memory consistency model, or memory model, is the model to describe how read and
write access will be executed in the multiprocessor with shared-memory systems. Due to
the order of read and write accesses are able to be changed, the memory consistency
models are used to specify how it can be changed. As the programmer’s point of views,
the program should be executed follow the program order. Such behaviors that every
executions are executed in order are called sequential consistency model.Relaxed models
have been introduced to allow more optimization techniques can exploit the hardware
architecture.

Framework for representing memory consistency models

First of all, to describe the memory consistency models, we need a framework to describe
such model in a formal way. The framework that we use to describe the various of
memory consistency models is adopt from [Gha95]. The framework provides conceptual
abstract structure of shared-memory systems. The figure 2-5 show basic representation
for sequential consistency model. In their conceptual system for sequential consistency
consists of n processors sharing a single logical memory. In the conceptual systems, they
show the concept in the programmers point-of-view. That means caches components is
not appeared in this systems, even if it’s used to implement in the practical systems.

The read and write accesses are treated as R and W for representing as read and
write operations. A read operation is assumed to complete once the return value is
bound. A write operation is assumed to complete once the shared-memory is updated to
be new value. This framework also assume that read and write operations are issued from
processor as program order though the completed order might be out-of-order. A atomic
operation is represented as read-modified-write operation in this framework. The read-
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Figure 2-5: Representation for the sequential consistency (SC) model.

modified-write operation is treated as both a read operation and a write operation. The
most of memory consistency models require that there is no write operations appeared in
execution order between the execution of atomic operation.

To represent memory consistency models, this framework proposes a set of constraints
for the model. There are types of constraints for this framework. The first type of
constraint on the execution of memory operations relates to program order . This is
referred to as the program order requirement. Such requirements are figured in the right-
side of the figure 2-5, they represent all pairs of read and write operations issued by same
processor that follow one another in program order: read followed by a read, read followed
by a write, write followed by a read, and write followed by a write. The lines provide
constraints that the operations between the line should be maintained the program order
in the execution order. The second type of constraint relates to the values returned by
reads and is referred to as the value requirement. As for the sequential consistency, the
value requirement is as follows :a read is required to return the value of the last write to
the same location that completed in memory before the read completes. This requirement
is referred as memory value requirement. Some of the memory consistency model have
different value requirement that allows a processor to read the value of its own write
before the write completes in memory. This latter requirement is affected by optimization
mechanisms such as read forwarding that allows a read to return the value of a write from
a write buffer. This requirement is referred as the buffer-and-memory value requirement.
Other models may impose additional types of constraints to describe the models.

Sequential consistency model

According to framework in [Gha95], the conceptual systems as shown in figure 2-5 must
obey the program order and memory value requirement described above to satisfy sequen-
tial consistency. An implementation obeys a given model if the result of any execution is
the same as if the program was executed on the conceptual system. Therefore, a practical
system need not satisfy the constraints imposed by conceptual systems (e.g. program
order) as long as the results of its executions appear as if these constrains are maintained.

Let’s consider the programs in figure 2-6, this example is taken from the related work
[Gha95]. Assume that these programs are working together in a multi-core system, the
capital letters, A and B, refer to the shared memory locations. the small letters, a and
b, refer to private memory locations inside a core. Obviously these programs are working
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1A = 1
2B = 1

Program A

1 b = B
2 a = A

Program B

Figure 2-6: Sample programs

Figure 2-7: Representation for the total store ordering (TSO) model

on different cores. As for sequential consistency models, the results of executions should
follow the program order. That means some out-of-order executions also are allowed to be
happen in the sequential consistency models if and only if the correct results is maintained.
Hence the possible results of (a,b) from this programs are {(0, 0), (1, 0), (1, 1)}. In the
sequential consistency models, they allow operation ‘A=1’ and ‘B=1’ to be changed the
order of executions. Nevertheless, if ‘B=1’ already executed, the model will enforce the
operation ‘A=1’ to be executed before ‘a = A’. Therefore, the result of (a,b) is (0,1) will
not be happened in this model.

Since multi-core system has many hardware components working together. Moreover
each core is working independently. To maintain the sequential consistency among cores,
there is a work [Lam79] that describe how to correctly execute multiprocessor program
on multiprocessor computer. However, there are another models which allow some results
to be happened called relaxed models. These models assume that some results of the
programs are acceptable and the significant order in the program should be maintained
by programmers. Moreover, to control the significant order in some parts of programs,
they provide fencing instructions to enforce the order of operations. This kind of models
will be explained in the next section.

Relaxed models

The relaxed models are memory consistency models which allow the execution order of
memory access to be changed. Each model will provide different constraints for its own
conceptual system. Although the order of execution is allowed to be changed implicitly,
they provide some mechanisms to restrict the significant program order to avoid the
out-of-order execution of the order. We will give some sets of constraints for memory
consistency models. Each of models will provides different requirements to maintain the
behaviors of system.

The figure 2-7 represent the conceptual system for total store ordering. The systems
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Figure 2-8: Example programs for the TSO model

Figure 2-9: The partial store ordering (PSO) model

that use this model will be allow to finish the write operations out-of-program order.
This conceptual systems is similar to figure 2-5 with a single logical memory shared by
the processors. In contrast, this system provide a buffer buffer between each processor
and the memory. Since we assume that operations will be issued in program order. they
use the buffer to capture the behaviors of the operations are not necessary issued in the
same order to memory. Hence, program order requirement places the constraints on the
reordering that can tale place within the buffer. They also use the buffer to capture the
behavior of models that allow a read to return the value of conflicting write in the buffer
before the write is actually issued to the memory. The program order requirement for the
TSO model is shown on the right side of figure 2-7. It similar to sequential consistency
model, the only difference is in the program order from a write followed by a read is
allowed to complete out-of-order.

Let’s consider the example programs from [Gha95] in figure 2-8, under the sequen-
tial consistency model, the outcome (u,v,w,x) = (1,1,0,0) is disallowed. However, this
outcome is possible under TSO model because read operations are allowed to bypass pre-
vious write operations, even if they are to the same location. Therefore the sequence
(b1,b2,c1,c2,a1,a2) is a valid order for TSO model. Obviously the value requirement still
requires b1 and b2 to return the values of a1 and a2, respectively, even though the reads
occur earlier in the sequence than the writes.

The partial store ordering model(PSO) is an extension of the TSO models. Figure
2-9 shows the representation for this model. The conceptual system is same as the TSO
model. The program order requirement is also similar, the difference is the order of a write
followed by a write. The dotted line represent that the order of a write followed by a write
should be maintained if and only if both writes access the same location. Moreover, the
line with the description F represent that the order of a write follow by a write, which do
not access to the same location, will be maintained if there is a fence instruction between
them. Thus, the PSO model provides a fence instruction for maintaining the order.
Programmers have to use such instructions for maintaining the order by themselves.
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2.2 Formal Verification

In software development, there is a number of techniques to ensure the correctness of
the software, such as unit testing. Since the software which is focus in this research
is automotive operating system. The services of this operating systems will be used to
control the behaviors of automotive systems which might relate to our lives. The errors
of the systems also be significant issues which we should concern. Hence, to ensure the
correctness of automotive operating systems, we need rigorous approaches to ensure the
correctness of the systems. Therefore, formal verification is the appropriate approach for
this research.

Formal verification is the approach to ensure the systems whether satisfy the given
properties or not. Generally, it’s used to prove or disprove the given properties by using
formal methods. According to [But], “Formal Methods” refers to mathematically rigorous
techniques and tools for the specification, design and verification of software and hardware
systems. The phrase “mathematically rigorous” means that the specifications used in
formal methods are well-formed statements in a mathematical logic and that the formal
verifications are rigorous deductions in that logic (i.e. each step follows from a rule of
inference and hence can be checked by a mechanical process).

There are approaches for formal verification. One approach is model checking, which we
formalize the systems as the mathematical model and exploring all states and transitions
in the model. The properties to be verified usually given in temporal logic. The great
advantage of this techniques is fully automatically exploring all states of the models.
However, It’s doesn’t scale for large models, the state explosion will be happened in the
exploring process. Hence, there are many approaches to avoid such behaviors, such as
providing boundaries for exploring.

Another one is deductive verification, which construct the collection of mathematical
proof obligations, the truth of which imply conformance of the system to its specification.
Then, provide proofs for these proof obligations to verify the correctness. Generally, we
usually use either interactive theorem provers, automatic theorem provers, or satisfiability
modulo theories (SMT) solvers. The disadvantage of this technique is that it requires user
to understand the systems in detail, and how to convey the information for verification
systems.

There are related works that also use formal verification to ensure the correctness
of automotive operating systems. In the related work [Cho13], they use model checking
techniques in this work. The formal model is translated from the kernel code of the
operating systems. Thus, the model checking approach is adopted for this model. Then,
the verification of this model is using the SPIN model checker. In this work, the safety
properties are considered in the SPIN model checker to check the correctness of the
operating system which already formalized as formal model.

There is another related work [KAE+14] that use theorem provers, which is used for
deductive verification, to verify the correctness of it’s operating systems. Since it has the
advantage that it is not constrained to specific properties or finite, possible state spaces,
unlike more automated methods of verification such as static analysis or model checking.
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Chapter 3

Formalization for multi-core systems

This section will propose a formal model to represent multi-core systems. Since the
behaviors of multi-core systems is necessary issue in verification, the systems should be
formalized to verify the correctness of the programs for multi-core systems. In order to
formalize the multi-core systems, the formal model should keep the essences of the multi-
core system and sufficient to capture the behaviors of multi-core system. The first section
will provide the details of target multi-core system which is focused in this research.
The target system consists of components and behaviors which are sufficient for verifying
programs on multi-core systems. The next section will propose our formal model based
on operational semantics. Then, we give a sample execution of programs based on our
formal model.

3.1 Target multi-core systems

First of all, to capture the essences of multi-core systems, let’s consider the procedures to
execute programs on multi-core systems. In the section 3.1.1 will proposed the abstract
model of the target systems which represent multi-core systems. The model will capture
only the components that sufficient for program verification. To execute programs on
multi-core system, normally, each program will be assigned to each core. Then, a processor
in the core will fetch an instruction from the assigned program. The fetched instruction
will be performed by an execution unit. The details to performed each instruction will be
explained in section 3.1.2.

Then, the execution unit will issue micro-operations and memory accesses to complete
assigned instruction. We refer micro-operations and memory accesses as hardware op-
erations in the target systems for the formal model. There is a variation of hardware
operations to complete the instruction that provide semantics by Instruction set archi-
tecture. However, the target system captures only the operations which influence the
execution order issue. The behaviors of hardware operation will be explained in section
3.1.3.

Next, we will consider memory operations which accesses the memory locations either
shared-memory or private memory. In the practical systems, there are many components
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Figure 3-1: Abstract model for multi-core system

to store data, such as cache. In addition, the address locations and arithmetic calculation
are used in the low-level architecture. Since the formal model will keep only the essences
of the systems, the unnecessary components and behaviors will be eliminated in the target
systems.

Since memory consistency models are used for describing the behaviors of shared-
memory. As memory operations which access the shared-memory, the order of executions
should be controlled by memory consistency models. Thus, the section 3.1.5 will explain
idea to adapt the constraints which are proposed by [Gha95].

3.1.1 Abstract model

The figure 3-1 represent the abstract model that represent the multi-core system in the
target system. This model consists of a group of cores, and a network for communicating.
As for shared-memory locations, these locations are separated and be attached to each
core to capture the memory consistency of target system. Inside a core, It consists of a
processor, buffers, reservation stations, an execution unit, and memory location. In target
system, buffers is used for keeping the read/write operations. Memory locations in the
core is used to represent both shared-memory location and private memory locations. The
memory locations are also refer to a cache which can be appeared in the core. However,
we did not model the cache separately to take the cache coherency protocol into account
because cache coherency can be controlled by memory consistency which we focus in this
research. As for reservation station, we use this component as instruction buffer for the
core. The behaviors of this component will be explained in the followed section.

3.1.2 Fetching instruction

In order to execute assigned program in the core, the processor will fetch the instruction
indicated by program counter, which is a register in the core. Once the instruction was
fetched, such instruction will be placed into an available execution unit. Note that, in
the modern processors, there is a pipeline which consists a collection of execution units.
When the execution unit access the registers inside a core, sometimes the registers are
not updated immediately. Thus, the execution unit will lock the registers which is not
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updated yet.
In target systems, the processor is allowed to fetch the next instruction immediately.

However, such instruction cannot be performed immediately because there is dependence
of locked registers. In some cases, processor has reservation stations, or instruction buffer,
for keeping the instruction to be issue later. In addition, the reservation station allows
the out-of-order issuing to be happened. The followed topics will explain more about
reservation stations.

Moreover, there are some instructions that can update the value of program counter.
So, such instructions will lock the register that represent program counter in the core. In
the target system, we will eliminate the some behaviors which predict the next instruction
such as pre-fetch and branch-prediction. Therefore, to fetch next instruction, we will make
sure that the program counter is available.

Reservation stations for instructions

Reservation station, or instruction buffer, is a buffer to store the instructions which can-
not be performed immediately. As the programmer point-of-view, the program should
issue the instructions as program order. Nevertheless, to improve the performance of the
system, there is mechanism, called out-of-order issue, to issue an instruction from reser-
vation station out-of-order if that instruction is ready to be performed. To consider the
ready instructions to be performed, processor have to check whether the required registers
of such instructions is available to be accessed.

3.1.3 Hardware operations

Hardware operations refer to the operations issued by execution unit for performing the
assigned instruction. In the target system,these operations are either memory access,
arithmetic calculation, or fence operation for relaxed memory consistency models. In
addition, in the modern processors, the predicated instruction set have been introduced.
For example, Instruction set architecture of ARM processor provides instruction with
condition can be attached to it such as ‘MOVNE r1, #1’. The condition of ‘MOVNE r1,
#1’ is ‘NE’ used to consider whether this condition will be performed or not. Thus, the
behaviors of predicated instruction also be captured in the target system. In the follow
topics will describe some hardware operations in details.

Read/Write operation

The read and write operations refer to memory operations which provide memory access
to either private memory, such as register and program status registers, or shared-memory.
These operations usually used in the programs to communicate each other among cores.
As for read operations, the read will access the memory location to read the value. Then,
the read will return the value to the issued processor. To keep the intermediate value of
read, target system will store that value into the internal bus that will be used in the
next operations. The target system allows non-blocking read access behaviors, which was
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Figure 3-2: Example of out-of-order updates

described in section 2.1.3, to be happened in the system. Hence, the read operations will
be putted into the buffer if the hardware uses this optimization mechanism.

As for write operations, the write will get the value to update the memory location
in the write operation. The value should be came from the internal bus. Once the write
operation is issued from the execution unit, the write operation will be putted into the
buffer. In the target system, read and write operations are stored in the same buffer.
The practical systems can contains many buffers inside a core. However, to capture the
behaviors of reordering of memory operations, we have decided to use only single buffer
to represent.

The effect of write operation will update the value of memory location. In the case of
shared-memory location. The memory location will be appeared in each core separately
as copies of shared-memory. In order to keep coherency among cores, the write operations
will be distributed into the network. The network will update the shared-memory location
for each core. However, the order of write operations is allow to be changed the order,
except the writes to the same location for keeping coherency of memory among cores.

Let’s consider the figure 3-2, the figure shows that write operations WA,WB and W ′
A

are issued from Core1 in that order. Note that the subscriptions A and B locate the
shared-memory locations. These write operations will be putted into the Network and
update the memory in Core2. In some systems, it’s possible to update by the order
(WB,WA,W

′
A). In this order, WB is possible to be executed before WA. Nevertheless, W ′

A

is not allowed to be executed before WA because coherency properties should be kept.

Lock/Unlock operation

These operations are used to own the permission for accessing the memory location. In the
private memory locations, the execution unit will lock the used registers for the assigned
instruction. This will keep the dependency among instructions even if the instructions
are allowed to be issue out-of-order. As for shared-memory locations, the lock/unlock op-
erations will be used to facilitate the read-modify-write operation which will be described
in the next topic.

Read-modified-write operation

The read-modified-write operation is proposed to capture the atomicity behaviors. This
operation will consists of a lock, an unlock , a read, and a write operation. The read
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Figure 3-3: Example of read-modified-write requirement

and write operations will access the same shared-memory location. Moreover, the lock
and unlock operations will used to ensure that during the execution of read and write
operations, there are no another read-modified-write operations can access this location.

In addition, in the target systems, we have to control the behaviors of write operations
that access the same location of read-modified-write operation will not interrupt execution
of the read-modified-write operation. Let’s consider the figure 3-3, RMW1 refers to read-
modified-write operation which consists of a read and a write, RA and WA, respectively.
Moreover, network also has a write operation W ′

A. These read and write operations need
to access the memory location A in the core, which represent the copy of shared-memory
location. However, the read-modified-write operation requires that during the executions,
there is no write operations from another cores can interrupt the executions. Hence,
the possible executions of these operations will be either (..., RA, ...,WA, ...,W

′
A, ...) or

(...,W ′
A, ..., RA, ...,WA, ...). Obviously it’s possible to allow another read/write operations

to interrupt executions unless they are not write operations which access to the same
location.

Fence operation

Since the memory consistency models are provided to allow out-of-order execution, the
critical section of the programs should be kept the order to avoid the violation. The fence
operation is introduced for that purpose. Normally the fence operation will indicate two
groups of operations as past operations and future operations. In some architecture will
treat this operation as read or write operation. To separate the groups of operations, fence
operations will be putted in the write buffers or read buffers. To issue the next operations,
the fence operation will check that the previous operations already issued from the buffers
or cores.

However, the essence of the fence operation is to keep the order of execution to be exe-
cuted as the program order. Hence, in the formal model, we will just keep the information
of program order of fence operation to enforce the execution in the future.
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3.1.4 Target memory locations

The target multi-core system consists of a collection of cores and a network that connect
each core together. The memory locations appeared to each core consist of private mem-
ory locations and shared-memory locations. These locations are accessed by read/write
operations which are issued from the buffer or network.

In the practical systems, the locations of memory are described as the binary address
and the index of registers. In order to abstract the system, the target system define
address of memory location as a variable. This means that the address of location cannot
be considered as consequent address. Hence, some optimization mechanisms are not able
to be taken into account, such as merging write. As for the value to be kept inside the
memory location, the target system will consider the value as a natural number instead
of binary bits. Due to we need to deal with the execution order as a major topic, we will
keep the calculation inside the model to be simply.

3.1.5 Memory consistency models

For now the behaviors of read and write operations are able to be executed out-of-order
by hardware optimization mechanisms. Although the processor is able to keep the correct
result of programs by itself, another processors should be able to keep the correct result
too. Since the memory consistency models are introduced to describe the behaviors of
memory, we will adopt the constraints from [Gha95] for enforcing the possible execution
to produce the valid executions based on its memory consistency model.

First of all, we would like to introduce some of framework that propose by [Gha95] in
order to specify the system requirements. The system requirement is used to identify the
valid systems for the memory consistency model. The specification of system requirements
directly defines the ordering constraints for a given model. This framework is appropriate
to deal with the memory consistency models which are defined differently in each system.
Hence, we adopt the idea of [Gha95] to realize the behaviors based on a given model.
Nevertheless, we cannot use those specification directly, because the framework captures
the order constraints to be happened based on the given model. In contrast, our formal
model captures the execution behaviors that should be appeared in the verification. How-
ever, we will briefly describe this framework for identifying the specification of system
requirement.

Read and write operations

The figure 3-4 show the conceptual model for memory of their abstraction. In this model,
the system consists of n processors, P1, P2, ..., Pn. The processor will issue the operations
and put it into the buffer. Each node of processors has its own memory, Mi which belong
to Pi. The memory, Mi, is a complete copy of shared-memory in the system. the each node
will be connected by network. As processors use memory operations to access the mem-
ory and the presence of the copies memory, they introduce the notion of sub-operations
for each memory operation. A read operation R by Pi is comprised of two atomic sub-
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Figure 3-4: General model for shared-memory

operations: an initial sub-operation Rinit(i) and a single read sub-operationR(i). A write
operation W by Pi is comprised of at most n + 1 atomic sub-operations: an initial write
sub-operation Winit(i) and at most n sub-operations W (1),W (2), ...,W (n). A read oper-
ation on Pi results in the read sub-operation R(i) being placed into Pi’s memory buffer.
Similarly, a write operation on Pi results in write sub-operations W (1), ...,W (n) being
placed in its processor’s memory buffer. The initial sub-operations Rinit(i) and Winit(i)
are mainly used to capture the program order among conflicting operations. Conceptu-
ally, Rinit(i) for a read corresponds to the initial event of placing R(i) into a memory
buffer and Winit(i) for a write corresponds to the initial event of placing W (1), ...,W (n)
into the memory buffer.

Once the sub-operations are placed in the processor’s buffer, these operations will be
issued by system. However, it’s not necessary to issue the operations as first-in-first-out
order. As for W (j) issued by Pi will be placed into the network for updating the memory
which belong to processor Pj. Similarly, the operation R(i) issued by Pi will be used to
read the memory of processor Pi. Since the R(i) and W (i) are allowed to change the
execution order, Rinit(i) and Winit(i) are provided to capture the program order of these
memory operations. Obviously, Rinit(i) and Winit(i) are not appeared explicitly.

As for target system, we do not split the memory operation into sub-operations. In
order to capture the program order, we keep such information in the semantic configura-
tion in formal model. Moreover, to update the memory location among cores, our formal
model will distribute the write operation to the network as many operations Hence, the
update of memory location will be came from network.

Program order and execution order

The definitions 3.1 and 3.2, which are defined in [Gha95], describe the program order in
detail. However, this section will briefly explain the program order and execution order.
As the conceptual model describe in figure 3-4, the program order and execution order
are described to capture the behaviors of the systems. A program order is a partial order
(denoted by

po−→) on the instruction instances and on the memory operations. R
po−→ RW

means the read operation R is followed by RW in program order. A execution order is a
total order (denoted by

xo−→) on the sub-memory operations.
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In addition, there is conflicting order denoted by
co−→. For execution order

xo−→ and two
conflicting memory operation X and Y, X

co−→ Y iffX(i)
xo−→ Y (i) holds for any i. If X

and Y are on different processors and X
co−→ Y ,then X and Y are also ordered by the

interprocessor conflict order X
co′−→ Y . Note that neither

co−→ nor
co′−→ are partial orders;

for example, R
co−→ W and W

co−→ R′ do not imply R
co−→ R′.

These order will be used to constrain the execution of the memory consistency model.
For example, to constrain the behavior of coherency on multi-core system, for any W and

W ′ that W
co′−→ W ′, the valid executions should be the execution that W (i)

xo−→ W ′(i) for
all i. So, these orders are used to enforce the executions of the system. However, in some
systems may require more order relations to specify their behaviors.

Definition 3.1: Program Order among Instruction Instances

(Note that, this definition is defined in [Gha95] as definition(4.3))

The program order, denoted by
po−→, is a partial order on the dynamic instruction instances in

a run of the program. The program order is a total order among instruction instances from
the same process, reflecting the order specified by the next instruction relation described in
Definition 4.2. Dynamic instruction instances from different processes are not comparable by
program order.

Definition 3.2: Program Order among Memory Operations

(Note that, this definition is defined in [Gha95] as definition(4.4))

Two memory operations, o1 and o2, are ordered by program order (o1
po−→ o2) if either (a)

their corresponding instruction instances, i1 and i2, respectively, are ordered by
po−→ (i1

po−→ i2)
as specified by Definition 4.3, or (b) they both belong to the same instruction instance and o1
is partially ordered before o2 by the instruction instance (as specified by Definition 4.2(ii)).
In contrast to program order among instruction instances, the program order among memory
operations from the same process is not necessarily a total order (because an instruction
instance does not necessarily impose a total order among its own memory operations).

Conditions for system requirements

To consider the valid systems, there are some conditions to make sure that the system will
work properly. The first two conditions are Initial condition for reads and writes(3.1),
and Termination condition for writes(3.2).These conditions are the initial condition which
system should hold in the implemented systems. The next two conditions are Return value
for Read sub-operations(3.3) and Atomicity of read-modified-write operations(3.4). These
conditions are provided to maintain the correct results which produce from the systems.

Condition 3.1: Initiation Condition for Reads and Writes
(Note that, this condition is defined in [Gha95] as condition(4.4))

Given memory operations by P to the same location, the following conditions hold: If R
po−→

W , then Rinit(i)
xo−→ Winit(i). If W

po−→ R, then W
po−→ (i)

xo−→ Rinit(i). If W
po−→ W , then

Winit(i)
xo−→W init(i).

Condition 3.2: Termination Condition for Writes
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(Note that, this condition is defined in [Gha95] as condition(4.5))
Suppose a write sub-operation Winit(i) (corresponding to operation W ) by Pi appears in
the execution. The termination condition requires the other n corresponding sub-operations,
W (1), ...,W (n), to also appear in the execution. A memory model may restrict this condition
to a subset of all write sub-operations.

Condition 3.3: Return Value for Read Sub-Operations

(Note that, this condition is defined in [Gha95] as condition(4.6))
A read sub-operation R(i) by Pi returns a value that satisfies the following conditions. If there
is a write operation W by Pi to the same location as R(i) such that Winit(i)

xo−→ Rinit(i) and
R(i)

xo−→ W (i), then R(i) returns the value of the last such Winit(i) in
xo−→. Otherwise, R(i)

returns the value of W (i) (from any processor) such that W (i) is the last write sub-operation
to the same location that is ordered before R(i) by

xo−→. If there are no writes that satisfy
either of the above two categories, then R(i) returns the initial value of the location.

Condition 3.4: Atomicity of Read-Modify-Write Operations

(Note that, this condition is defined in [Gha95] as condition(4.7))
If R and W are the constituent read and write operations for an atomic read-modify-write
(R

po−→W by definition) on Pj , then for every conflicting write operation W from a different

processor Pk , either W (i)
xo−→ R(i) and W (i)

xo−→ W (i) for all i or R(i)
xo−→ W (i) and

W (i)
xo−→W (i) for all i.

Aggressive specification for system requirements

Since to describe the requirements for memory consistency model we can strict all of
executions to maintain the results. However, that means the optimization mechanisms
also have been restricted the behaviors and cannot improve the performance of the sys-
tem. Thus, [Gha95] proposed the aggressive specifications of memory consistency models
which fully exploits the features of their general abstraction to place fewer restrictions
on the execution order. The specification 1 show the aggressive condition for sequential
consistency model which proposed by that work.
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Specification 1: Aggressive conditions for sequential consistency

define
spo−−→: X

spo−−→ Y if X and Y are to different locations and X
spo−−→ Y

define
sco−−→: X

sco−−→ Y if X and Y are the first and last operations in one of

X
co′−−→ Y

R
co′−−→ W

co′−−→ R
Condition on

xo−→:
(a) the following conditions must be obeyed:

Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; applies to all write sub-operations.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.

(b) given memory operations X and Y, if X and Y conflict and X,Y are the first and last
operations in one of

uniprocessor dependence: RW
po−→W

coherence: W
co′−−→W

multiprocessor dependence chain: one of

W
co′−−→ R

po−→ RW
RW

spo−−→ {A sco−−→ B
spo−−→}+ RW

W
sco−−→ R

spo−−→ {A sco−−→ B
spo−−→}+ R

3.2 Formal model

In order to describe the behaviors of hardware based on multi-core systems, we choose
operational semantics to represent the multi-core system. In this section will describe the
intuition idea to propose the semantics. Then, the specification of the memory consistency
model will be adopt to the semantics by providing conditions for enforcing the semantics.

3.2.1 Preliminaries

Before we introduce the formal model, we would like to define some preliminaries that
will be used to define semantics.
• The set of lists of a set S is denoted as S∗,

we use ε for an empty list.
• An ordered set, or partial ordered sets, is a pair (S,≺),

where ≺ is a binary relation on S such that
– If (a ≺ b) and (b ≺ c) then a ≺ c (transitivity)
– Let (X,≺X) and (X,≺Y ) be ordered sets.

(X,≺X)⊕ (Y,≺Y ) = (X ∪ Y,≺X ∪ ≺Y ∪ (X × Y ))

• The set of ordered sets of a set S is denoted as Order〈S〉, such that
Order〈S〉 = {(S,≺) | ≺⊆ S × S}
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• Substitution of a function f : X → Y is defined as

(f [x 7→ y])(z) =

{
y If x = z
f(z) Otherwise

Where x, z ∈ X and y ∈ Y .

3.2.2 Syntax

First of all, we need to identify each core in the multi-core systems. Since each core issues
the memory accesses to the network, we provide identifier to track the source core that
issues the memory operation. Thus, we provide he definition of the set of identifier in 3.3
to keep the collection of identifiers in the system.

Definition 3.3:
The set of identifiers is denoted by ID.
The set of memory locations is denoted by Location.
the set of values that are used in the systems is denoted by Val.

In addition, we also define the set ofmemory locations, Location, which is the collection
of locations which appeared to one processor. The memory locations are known by the
processor’s point-of-view. In the memory location, we separate the location into private
memory, internal buses and shared-memory, which are defined in the following definitions.

Definition 3.4: Private memory locations

The set of private memory locations,denoted by Local, is the subset of Location. An
element of this set may be the member of either:

(a) The set of registers, denoted by Reg, or
(b) The set of application status registers, denoted by APSR.

Note that, the definitions of registers set and program status register set are defined as
{R1,R2, ...,R14, pc} and {Z,N,C,V}, respectively. By the definitions, these sets have
the relations as:

Local = Reg ∪ APSR,

Reg ⊆ Location, and

APSR ⊆ Location

Definition 3.5: Internal buses
The set of internal buses is denoted by internalBus, where internalBus ⊆ Location.
An internal bus is an intermediate storage to store the value, such as data or address,
which flows in a core.

Definition 3.6: Shared memory locations

The set of shared-memory location is denoted by Shared, where Shared = Location \
(Local∪ internalBus). A shared-memory location is denoted by Mem[v], where v ∈ Val.
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Next, we would like to introduce the grammar of expressions that capture the arithmetic
calculation inside a processor. The expression is defined as the definitions 3.7. In addi-
tion, since the target system supports the predicated instruction, we need to introduce
the grammar of conditional expressions to supports the predicated instruction inside the
target system. Hence, the definition is defined by definition 3.8.

Definition 3.7: Expressions

The grammar of an expression, denoted by Expr, is

Expr ::= Val | internalBus | (Expr + Expr) | (Expr− Expr) |
(〈CondExpr〉?Expr : Expr)

Definition 3.8: Conditional expression

The grammar of a conditional expression, denoted by CondExpr, is

CondExpr ::= True | False | (Expr = Expr) | (Expr != Expr) |
(Expr > Expr) | (Expr < Expr) | (CondExpr ∧ CondExpr) |
(CondExpr ∨ CondExpr)

The hardware operations are the operations that are issued by processors. In the general
context, these operations are micro-operations and memory accesses which are gener-
ated to complete the fetched instruction inside execution units. Thus, the definitions of
hardware operations are provided as follow.

Definition 3.9: Hardware operations

The set of hardware operations is denoted by Ops. A hardware operation is an operation
issued by processor. These operations are provided to complete the fetched instructions.
A hardware operation can be either:

(a) memory operation,
(b) lock or unlock operation,
(c) assignment operation, or
(d) condition operation.

Definition 3.10: Memory Operations

The set of memory operations is denoted by MemOp,where MemOp ⊆ Ops. The
memory operations are used to operate with the memory locations by the processor.
These operations can be either:

(a) read/write operations,
(b) read-modified-write operations, or
(c) fence operations.

The sets of these operations will be denoted by RW, RMW and FenceOp, respectively.
Moreover, these sets are the subset of the memory operations, RW,RMW,FenceOp ⊆
MemOp.
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Definition 3.11: Read/Write operations

The set of read and write operations is denoted by RW. This set is consists of two sets,
• Read operation set, denoted by R, and
• Write operation set, denoted by W.

Where RW = R ∪W and RW ⊆ MemOp.

Note that, in order to access the memory location, the read and write operations have
attributes for accessing the locations. The attributes of read and write operations are
extracted by following functions:

access :RW→ Location Access location

data :RW→ Expr updated value or stored register

Definition 3.12: Read-modified-write Operations

The set of read-modified-write operations is denoted by RMW, where RMW ⊆ MemOp.
This operation is a composite operation which consist of lock operation, unlock oper-
ation, read operation, and write operation.

The following functions are used to extract the necessary information to produce the
hardware operations in semantics.

access :RW→ Location Access location

data :RW→ Expr updated value or stored register

Definition 3.13: Fence Operations

The set of fence operations is denoted by FenceOp, where FenceOp ⊆ MemOp.

This fence operation will be used in each memory consistency model as different context.
Thus, we define type of the FenceOp as

fenceType : FenceOp→{STBAR,MB, SYNC,WMB}∪
{MEMBAR(type) | type ∈ {RR,RW,WR,WW}}

Definition 3.14: Assignment Operations

The set of assignment operations is denoted by AssignOp, where AssignOp ⊆ Ops.

Definition 3.15: Condition Operations

The set of condition operations is denoted by CondOp, where CondOp ⊆ Ops.

These assignment operations are used for calculation value of Expr. The results of calcu-
lation will be store in the internalBus. The grammar of these operations are

AssignOp = {data := cval | (data ∈ internalBus) and (cval ∈ Expr)}

Condition operations are provided to support predicated instructions. This operation
will have the condition expression, CondExpr, to decide that which operation should be
executed in the next step. The grammar of this operation is

CondOp = {(〈cond〉path1 : path2) | (cond ∈ CondExpr) and (path1, path2 ∈ Ops∗)}
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In addition, before we introduced the lock/unlock operations, we would like to define the
definition of lock entities as the follow definition.

Definition 3.16: Lock entities
The set of lock entities is denoted by Lock. These entities will be used for check-
ing registers dependency mechanisms and supporting atomicity of read-modified-write
operations.

Definition 3.17: Lock/Unlock Operations

The sets of lock operations and unlock operations are denoted by LockOp and
UnlockOp, respectively, where LockOp,UnlockOp ⊆ Ops.

We define the functions to extract the information from lock/unlock operations as,

lockEntity : ID× (LockOp ∪ UnlockOp)→ Lock

lockLocation : LockOp ∪ UnlockOp→ Location

Since the lock/unlock operation have two behaviors to be captured:
(1) Checking dependency of required registers of instructions, and
(2) Facilitate the atomicity of read-modified-write operations.

Therefore, we provide the restriction for the lock entities that the lock entities of shared-
memory location will be same among cores. In contrast to lock entities of local memory
location, the lock entities should be different among cores even if they lock the same
location. We provide the restriction as followed.
Restriction: For make sure that only shared location will lock the same lock

∀lock1, lock2 ∈ LockOp ∪ UnlockOp.∀i, j ∈ ID.

((i 6= j) ∧ (lockLocation(lock1) = lockLocation(lock2))

=⇒ ((lockLocation(lock1) ∈ Shared) ⇐⇒ (lockEntity(i, lock1) = lockEntity(j, lock2))))

In the verification, we also need the information to indicate the instances which are
produced from programs. In addition, we also need to identify the owner of hardware
operations in the verification for considering significant operations. Thus, we introduce
the timestamps to capture the specific behaviors. The definition is below,

Definition 3.18: Timestamps
The set of timestamps is denoted by TS.

We define the function uniqueTime : 2TS → TS for generating a fresh timestamp. In
addition, the function timePC : TS 7→ Val is used to capture the value of program counter
which the timestamps is generated. We also define annotations as below

Definition 3.19: Annotations for timestamps

For any o ∈ Ops and t ∈ TS,
ot is an operation that generated at timestamp t

OpsTS is the set {ot | o ∈ Ops and t ∈ TS}.
MemOpTS is the set {ot | o ∈ MemOp and t ∈ TS}.
RWTS is the set {rwt | rw ∈ RW and t ∈ TS}.
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Then, we will introduce the Instruction which will be used as interface to communicate
the assembly programs and hardware operations.

Definition 3.20: Instructions
InstrCond is the set of conditions for instructions. InstrName is the set of names
for instructions. Operand is the set of operands,where Operand = Val ∪ Reg ∪
{Mem(val) | val ∈ Expr}. An instruction is a tuple 〈name, cond, args〉 of

name ∈ InstrName The name of the instruction

cond ∈ InstrCond Condition for performing the instruction, and

args ∈ Operand∗ Operands for the instruction.

The set of instructions is denoted by Instr.

For the instruction, we define a function ISA : Instr→ Ops∗ to translate the instruction to
be a sequence of hardware operations. Note that, if ops = o1 ·o2 · ... ·on for any ops ∈ Ops∗

and t ∈ TS, then we provide the annotation of the sequence ops as

opst = ot1 · ot2 · ... · otn

A core is the component that is consisted in the multi-core system, which is defined in
the definition 3.21.

Definition 3.21: Core component

A core is a tuple 〈id, σ, B, L, exec, P 〉 of

id ∈ ID Identifier

σ : Location→ Val Memory location of processor id

B ⊆ RW buffer for operations

L ⊆ TS×Ops∗ buffer for instances

exec : (OpsTS)∗ Execution unit, and

P : Val→ Instr Program.

Then, as we consider the optimization mechanisms, we try to give a hardware configura-
tion to consider the behaviors in our semantics.

Definition 3.22: Hardware Configuration

HW is the set of hardware configurations.

The following functions are describe the hardware configuration whether use that opti-
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mization mechanism or not.

inOrderIssue : HW→ Boolean

nonBlocking : HW→ Boolean

readForwarding : HW→ Boolean

bypassing : HW→ Boolean

As we also take the memory consistency model ’s behaviors into account. We should also
define the definition of memory consistency model in the target system.

Definition 3.23: Memory consistency model
The set of memory consistency models is denoted by MemModel.

We provide the uniprocessor condition and network condition to enforce the execution for
the memory consistency model. The following functions are used to extract the informa-
tion of the memory consistency model to our system.

model :HW→ MemModel

networkCond :MemModel×Order〈ID×MemOp〉 ×Order〈ID× ID× RW〉
× ID× ID× RW→ Boolean

uniprocessorCond :MemModel×Order〈ID×MemOp〉 ×Order〈ID× ID× RW〉
× ID× RW→ Boolean

Configuration
In order to provide the semantics, we provide the configuration to represent the state as
a tuple 〈hw, 〈to, po, xo〉, locked,N,C〉 of

C : A set of cores,

hw ∈ HW A configuration of hardware,

locked ⊆ Lock A set of current lock,

N ⊆ ID× ID×W A network component,

to ∈ Order〈TS〉 A timestamp order,

po ∈ Order〈ID×MemOpTS〉 A program order, and

xo ∈ Order〈ID× ID× RWTS〉 An execution order.

Restrictions:

∀c1, c2 ∈ C.( (c1 = 〈id1, σ1, B1, L1, exec1, p1〉)∧
(c2 = 〈id2, σ2, B2, L2, exec2, p2〉)∧
(c1 6= c2) =⇒ (id1 6= id2))
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3.2.3 Semantics

First of all, we would like to provide the evaluation context for describing the configuration.
The context for this formal model is defined as followed,

E ::= [] | E ·Ops∗ | data := E | (〈E〉Ops∗ : Ops∗) |
(E + Expr) | (Expr + E) | (E − Expr) | (Expr− E) |
(〈E〉?Expr : Expr)

Where � ∈ {=, != , >,<} and ◦ ∈ {∨,∧}
Then, the semantics will consider the behaviors of the multi-core systems as the following
topics.

Fetching instruction

The first topic we consider to fetch an instruction from the program. For the fetching
instruction, out-of-order issuing can be apply to the system to improve the performance
of the systems. Before proposed the semantics, we would like to define some predicates
as condition for each rule. The predicates are:

notUsePC(o1 · o2 · ... · on) ⇐⇒ ∀i ∈ N, pid ∈ ID.(

(oi ∈ UnlockOp =⇒
lockLocation(oi) 6= (pid, pc))∧

(oi = (〈cond〉ops1 : ops2) =⇒
notUsePC(ops1) ∧ notUsePC(ops2)))

requireRegs(〈name, cond, a1 · ... · an〉) = {ai | i ∈ N ∧ ai /∈ Local∧
∃expr ∈ Expr.((ai = Mem[expr])

=⇒ (expr ∈ Reg))}
regsAvailable(pid, regs, o1 · o2 · ... · on) ⇐⇒ ∀i ∈ N, pid ∈ ID, reg ∈ Local.

((oi ∈ UnlockOp ∧ (lockLocation(oi) = reg)

=⇒ (reg /∈ regs))∧
((oi = (〈cond〉ops1 : ops2) =⇒

(regsAvailable(pid, regs, ops1)∧
regsAvailable(pid, regs, ops2)))))

• Rule 1. In-order issuing

〈hw, 〈(Sts,≺ts), po, xo〉, locked,N, {〈pid, σ, B, L, exec, p〉} ] C〉 −→
〈hw, 〈(Sts,≺ts)⊕ ({t′}, ∅), po′, xo〉, locked,N, {〈pid, σ[pc 7→ σ(pc) + 1], B, L, exec · opst, p〉} ] C〉
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If inOrderIssue(hw)∧notUsePC(exec)∧regsAvailable(pid, requireRegs(p(σ(pc))), exec)
Where

uniqueTime(Sts) = t

timePC(t) = σ(pc)

ISA(p(σ(pc))) = ops

opst = ot1 · ot2 · ... · otn
Sops = {(pid, oti) | (i ∈ N) and (oti ∈ MemOpTS)}

(id, oti) ≺ops (id′, otj) ⇐⇒ (id = id′) and (id = pid) and (i, j ∈ N) and

(i < j) and (oti, o
t
j ∈ MemOpTS)

po′ = po⊕ (Sops,≺ops)

• Out-of-order issuing

– Rule 2. Putting

〈hw, 〈(Sts,≺ts), po, xo〉, locked,N, {〈pid, σ, B, L, exec, p〉} ] C〉 −→
〈hw, 〈to′, po′, xo〉, locked,N, {〈pid, σ[pc 7→ σ(pc) + 1], B, L ∪ {(t′, ops)}, exec, p〉} ] C〉

If ¬inOrderIssue(hw) ∧ notUsePC(exec) ∧ ∀(t, ops) ∈ L.(notUsePC(ops)) ∧
∀w ∈ B.(w ∈W =⇒ access(w) 6= pc)
Where

uniqueTime(Sts) = t

timePC(t) = σ(pc)

ISA(p(σ(pc))) = ops

opst = ot1 · ot2 · ... · otn
to′ = (Sts,≺ts)⊕ ({t}, ∅)
Sops = {(pid, oti) | (i ∈ N) and (oti ∈ MemOp)}

(id, oti) ≺ops (id′, otj) ⇐⇒ (id = id′) and (id = pid) and (i, j ∈ N) and

(i < j) and (oti, o
t
j ∈ MemOp)

po′ = po⊕ (Sops,≺ops)

– Rule 3. Issuing

〈hw, 〈(Sto,≺to), po, xo〉, locked,N, {〈pid, σ, B, L ] {(t, ops)}, exec, p〉} ] C〉 −→
〈hw, 〈(Sto,≺to), po, xo〉, locked,N, {〈pid, σ, B, L, exec · opst, p〉} ] C〉

If ¬inOrderIssue(hw) ∧ execDependCond(ops, exec) ∧
∀(t′, ops′) ∈ L.(t′ ≺to t =⇒ dependCond(ops, ops′))
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Where

execDependCond(o1 · o2 · ... · on,
o′1 · o′2 · ... · o′n) ⇐⇒ ∀i, j ∈ N, oi ∈ LockOp.

(((o′j ∈ UnlockOp) =⇒
(lockLocation(oi) 6= lockLocation(o′j)))∨
((o′j = (〈cond〉ops1 : ops2)) =⇒
(execDependCond(oi, ops1)∧
execDependCond(oi, ops2))))

dependCond(o1 · o2 · ... · on,
o′1 · o′2 · ... · o′n) ⇐⇒ ∀i, j ∈ N, oi ∈ LockOp.

(((o′j ∈ LockOp) =⇒
(lockLocation(oi) 6= lockLocation(o′j)))∨
((o′j = (〈cond〉ops1 : ops2)) =⇒
(dependCond(oi, ops1) ∧ dependCond(oi, ops2))))

Perform an operation

As the execution unit has a list of operations to be compute, this topics will provide the
semantics to deal with the issued operations from the execution unit as follow,

• Write operation
Before provide semantics for write operations, we would like to propose the conditions
to facilitate the atomicity condition, which define in condition 3.4, as:

isAtomic(pid, (Spo,≺po), r, w) ⇐⇒ (r ∈ R) ∧ (w ∈W) ∧ (access(r) = access(w))

∧ ((pid, r) ≺po (pid, w))

atomicCond(i, po, (Sxo,≺xo), wj) ⇐⇒ ∀wi ∈W, ri ∈ R.((wj ∈W)

∧ isAtomic(i, po, ri, wi)∧
(access(ri) = access(wj)) =⇒
(((i, ri) ∈ Sxo) ⇐⇒ ((i, wi) ∈ Sxo))

– Rule 4. Putting to buffer

〈hw,Φ, locked,N, {〈pid, σ, B, L,E[w], p〉} ] C〉 −→
〈hw,Φ, locked,N, {〈pid, σ, B ∪ {w}, L, E[ε], p〉} ] C〉

If (w ∈W) ∧ (data(w) ∈ Val)
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– Rule 5. Issuing a write operation

〈hw, 〈to, po, xo〉, locked,N, 〈pid, σ, B ] {w}, L, exec, p〉〉 −→
〈hw, 〈to, po, xo〉, locked,N ′, 〈pid, σ′, B, L, exec, p〉〉

If uniprocessorCond(model(hw), po, xo, pid, w)
Where

performWrite(xo,N, σ, w) = (xo′, N ′, σ′)

The performWrite function is defined as:

performWrite((Sxo,≺xo), N, σ, w) ={
(xo⊕ ({(pid, pid, w)}, ∅), N, σ[access(w) 7→ data(w)]) if access(w) ∈ Local
((to, po, xo), N ∪ {(i, pid, w) | i ∈ ID}, σ) if access(w) /∈ Local

– Rule 6. Update from network

〈hw, 〈to, po, xo〉, locked,N ∪ {(i, j, wj)}, {〈i, σ, B, L, exec, p〉} ] C〉 −→
〈hw, 〈to, po, xo⊕ ({(i, j, wj)}, ∅)〉, locked,N, {〈i, σ[access(wj) 7→ data(wj)], B, L, exec, p〉} ] C〉

If networkCond(model(hw),Φ, i, j, wj) ∧ ((i 6= j) =⇒ atomicCond(i, po, xo, wj))

• Read operation
Before introduce the semantics for read operations, we would like to define predicates
for optimization mechanisms as:

readForwardingCond(pid, po, B, r) ⇐⇒ ∀w′ ∈ B.((w′ ∈ R)∧
(access(w′) = access(r)) =⇒
((pid, w′) ≺po (pid, r)))

bypassCond(hw, pid, (Spo,≺po), B, r) ⇐⇒
∀w ∈ B.((w ∈W) ∧ (pid, w) ≺po (pid, r) if bypassing(HW )

=⇒ access(w) 6= access(r))
∀w ∈ B.((w ∈W) =⇒ ¬((pid, w) ≺po (pid, r))) Otherwise

In addition, we also define a function to return the value of read forwarding mechanism

as:

forwardValue(pid, (Spo,≺po), B ] {w}, loc) =
val(w) if (w ∈W) ∧ (access(w) = loc)∧

∀w′ ∈ B.((w′ ∈W) ∧ ((pid, w′) ≺po (pid, w)))
forwardValue(pid, (Spo,≺po), B, loc) Otherwise

Then, the semantics for read operations are:
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– Rule 7. Blocking read

〈hw, 〈to, po, xo〉, locked,N, {〈pid, σ, B, L,E[r], p〉} ] C〉 −→
〈hw, 〈to, po, xo⊕ ({(pid, pid, r)}, ∅)〉, locked,N, {〈pid, σ[data(r) 7→ val], B, L,E[ε], p〉} ] C〉

If ¬nonBlocking(hw) ∧ (r ∈ R) ∧
readForwardingCond(pid, po, B, r) if readForwarding(hw)
bypassCond(hw, pid, po, B, r)∧ Otherwise
networkCond(model(hw), po, xo, pid, pid, r)∧
uniprocessorCond(model(hw), po, xo, pid, r)

Where,

val =

{
forwardValue(pid, po, B, access(r)) if readForwarding(hw)
σ(access(r)) Otherwise

– Non-blocking read
∗ Rule 8. Putting a read operation

〈hw,Φ, locked,N, {〈pid, σ, B, L,E[r], p〉} ] C〉 −→
〈hw,Φ, locked,N, {〈pid, σ, B ∪ {r}, L, E[ε], p〉} ] C〉

If nonBlocking(hw) ∧ (r ∈ R) ∧ (data(r) /∈ {data(r′) | (r′ ∈ B) and (r′ ∈ R)})
∗ Rule 9. Issuing a read operation

〈hw, to, po, xo, locked,N, {〈pid, σ, B ] {r}, L, exec, p〉} ] C〉 −→
〈hw, to, po, xo⊕ ({(pid, pid, r)}, ∅), locked,N, {〈pid, σ[data(r) 7→ val], B, L, exec, p〉} ] C〉

If nonBlocking(hw) ∧ (r ∈ R) ∧
(readForwarding(hw) =⇒ readForwardingCond(pid, po, B, r)) ∧
(¬readForwarding(hw) =⇒ bypassCond(hw, pid, po, B, r) ∧
networkCond(model(hw), po, xo, pid, pid, r) ∧
uniprocessorCond(model(hw), po, xo, pid, r))

Where

val =

{
forwardValue(pid, po, B, access(r)) if readfForwarding(hw)
σ(access(r)) Otherwise

• Rule 10. Lock operation

〈hw,Φ, locked,N, {〈pid, σ, B, L,E[lock], p〉} ] C〉 −→
〈hw,Φ, locked ∪ {lockEntity(pid, lock)}, N, {〈pid, σ, B, L,E[ε], p〉} ] C〉

If lock ∈ LockOp ∧ lockEntity(pid, lock) /∈ locked
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• Rule 11. Unlock operation

〈hw,Φ, locked,N, {〈pid, σ, B, L,E[unlock], p〉} ] C〉 −→
〈hw,Φ, locked \ {lockEntity(pid, unlock)}, N, {〈pid, σ, B, L,E[ε], p〉} ] C〉

If unlock ∈ UnlockOp

• Rule 12. Read-modify-write operations

〈hw, 〈to, po, xo〉, locked,N, {〈pid, σ, B, L,E[rmw], p〉} ] C〉 −→
〈hw, 〈to, po⊕ ({r, w, rmw}, {r ≺rmw w}), xo〉, locked,N, {〈pid, σ, B, L,E[opsrmw], p〉} ] C〉

If rmw ∈ RMW, Where

lock ∈ LockOp

unlock ∈ UnlockOp

lockLocation(lock) = locationRMW(rmw)

lockLocation(unlock) = locationRMW(rmw)

componentR(rmw) = r

componentW(rmw) = w

opsrmw = lock · r · w · unlock

• Rule 13. Fence operations

〈hw, 〈to, po, xo〉, locked,N, {〈pid, σ, B, L,E[fence], p〉} ] C〉 −→
〈hw, 〈to, po⊕ ({fence}, ∅), xo〉, locked,N, {〈pid, σ, B, L,E[ε], p〉} ] C〉

If fence ∈ FenceOp

• Expression valuation
Let Val2N : Val → N be a function to convert Val for computation in semantics. In
addition, we need a function N2Val : N → Val for converting to Val. We define a
valuation alu : Expr→ N to compute expressions as followed,

JeKalu = Val2N(e) If e ∈ Val

Je1 + e2Kalu = Je1Kalu + Je2Kalu
Je1 − e2Kalu = Je1Kalu − Je2Kalu

The semantics will be
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– Rule 14. Read data from bus

〈hw,Φ, locked,N, {〈pid, σ, B, L,E[expr], p〉} ] C〉 −→
〈hw,Φ, locked,N, {〈pid, σ, B, L,E[σ(expr)], p〉} ] C〉

If (expr ∈ internalBus) ∧
(nonBlocking(hw) =⇒ expr /∈ {data(r) | (r ∈ R) ∧ (r ∈ B)})

– Rule 15. Calculate value

〈hw,Φ, locked,N, {〈pid, σ, B, L,E[e1 ◦ e2], p〉} ] C〉 −→
〈hw,Φ, locked,N, {〈pid, σ, B, L,E[Je1 ◦ e2Kalu)], p〉} ] C〉

If e1, e2 /∈ Val,
Where ◦ ∈ {+,−}

• Rule 16. Assign operation

〈hw,Φ, locked,N, {〈pid, σ, B, L,E[data := val], p〉} ] C〉 −→
〈hw,Φ, locked,N, {〈pid, σ[data 7→ val], B, L,E[ε], p〉} ] C〉

If val ∈ Val

• Condition valuation Let condVal : CondExpr→ {0, 1} be a valuation to compute value
of condition as followed,

Je1 = e2KcondVal =

{
1 If Je1Kalu = Je2Kalu
0 Otherwise

Je1 != e2KcondVal = 1− Je1 = e2Kalu

Je1 > e2KcondVal =

{
1 If Je1Kalu > Je2Kalu
0 Otherwise

Je1 < e2KcondVal =

{
1 If Je1Kalu < Je2Kalu
0 Otherwise

Je1 ∧ e2KcondVal =

{
Je1KcondVal If Je1KcondVal > Je2KcondVal
Je2KcondVal Otherwise

Je1 ∨ e2KcondVal =

{
Je1KcondVal If Je1KcondVal < Je2KcondVal
Je2KcondVal Otherwise

• Condition operation

– Rule 17. Opt operations

〈hw,Φ, locked,N, {〈pid, σ, B, L,E[(〈cond〉ops1 : ops2)], p〉} ] C〉 −→
〈hw,Φ, locked,N, {〈pid, σ, B, L,E[ops′], p〉} ] C〉

Where ops′ =

{
ops1 if JcondKcondVal = 1
ops2 Otherwise
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– Rule 18. Opt values

〈hw,Φ, locked,N, {〈pid, σ, B, L,E[(〈cond〉?expr1 : expr2)], p〉} ] C〉 −→
〈hw,Φ, locked,N, {〈pid, σ, B, L,E[expr′], p〉} ] C〉

Where expr′ =

{
expr1 if JcondKcondVal = 1
expr2 Otherwise

3.2.4 Conditions for memory consistency models

In order to enforce the execution of our formal model, we have introduced two predicated
functions, uniprocessorCond and networkCond, which enforce the execution in the se-
mantics. As we have proposed rules to perform the read/wrire operations, these predicate
functions are used as conditions for applying these rules. These predicated functions are
defined the structures as:

uniprocessorCond :MemModel×Order〈ID×MemOp〉 ×Order〈ID× ID× RW〉
× ID× RW→ Boolean

networkCond :MemModel×Order〈ID×MemOp〉 ×Order〈ID× ID× RW〉
× ID× ID× RW→ Boolean

These predicated functions are adopt idea from the framework of [Gha95], which specify
the system requirements of a given model. As we have introduced the the framework
in section 3.1.5, we adopt the idea of the constraints on program order and execution
order for a given model. As for uniprocssorCond, we constraint the execution order
of read/write operations on the core. In contrast, networkCond constraint the execution
order happened among cores. Hence, these functions also need the information of memory
consistency model,program order, execution order and the read/write operation, which
consider whether can be performed.

In order to provide these predicated functions based on memory consistency model,
we adopt the constraints provided by the framework in [Gha95]. In the specifications
which they proposed, we focus on aggressive specifications which are proposed to exploit
the optimization mechanisms. In such specifications, we will adopt the constraints on the
program order(

po−→) and execution order(
xo−→) which are proposed in the condition (b), as

we give an example in specification 1 for sequential consistency model. As our model have
proposed the program order and execution order as (Spo,≺po) and (Sxo,≺xo), these orders

correspond to the program order(
po−→) and execution order(

xo−→) in that framework. The
following list is described the correspondence of their framework and our semantics. Let
X and Y are read or write operations.
• X po−→ Y corresponds to (pidx, X) ≺po (pidy, Y ),

where X and Y are issued from processor Ppidx and Ppidy , respectively.

• X(i)
xo−→ Y (j) corresponds to (pidX , i, X) ≺xo (pidY , j, Y ),

where X and Y are issued from processor Ppidx and Ppidy , respectively.

• X co−→ Y corresponds to X <co(xo) Y
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• X co′−→ Y corresponds to X <co′(xo) Y
The (Spo,≺po) and (Sxo,≺xo) are the information contained in the configuration,
〈hw,Φ, locked,N,C〉 and Φ = 〈to, (Spo,≺po), (Sxo,≺xo)〉 ,of semantics. These information
are necessary for considering the execution behaviors on our semantics. However, the last
two relations are not appeared in our semantics. The definitions are as following:

conflict(x, y) ⇐⇒ (x, y ∈ RW) ∧ (access(x) = access(y)) ∧ ((x ∈W) ∨ (y ∈W))

x <co((Sxo,≺xo)) y ⇐⇒ conflict(x, y) ∧ ∃i, k ∈ ID.((i, k, x) ≺xo (i, k, y))

x <co′((Sxo,≺xo)) y ⇐⇒ conflict(x, y) ∧ ∃i, j, k ∈ ID.(j 6= k =⇒ (i, j, x) ≺xo (i, k, y))

Next, we will consider the aggressive conditions provided by [Gha95]. Each model will
provide different constraints and additional relations to consider the execution behaviors.
Hence, the following topics will consider sequential consistency model and partial store
ordering model.

Sequential consistency model

Firstly, let’s consider the easiest model to consider the conditions for execution. The
aggressive constraints of sequential consistency is provided as specification 1. To provide
the conditions, we consider only condition (b) which is provided by that figure because
the condition (b) is the condition for enforcing the behaviors of executions. In addition,

this model requires additional relations,
spo−−→ and

sco−→. Those relations are defined based
on our semantics as followed:

x <spo(pid,(Spo,≺po)) y ⇐⇒ ((pid, x) ≺po (pid, y)) ∧ (access(x) 6= access(y))

x <sco(xo) y ⇐⇒ ((x <co′(xo) y)∨
((x, y ∈ R) ∧ ∃w ∈W.((x <co′(xo) w) ∧ (w <co′(xo) y))))

The condition (b) of sequential consistency in specification 1 is defined as:
Giving memory operation X and Y , if X and Y are conflict and X, Y are the first and
last operations in one of:
• Uniprocessors: RW

po−→ W

• Coherence: W
co′−→ W

• Multiprocessor dependence chain: one of

– W
co′−→ R

po−→ RW
– RW

spo−−→ {A sco−→ B
spo−−→}+RW

– W
sco−→ R

spo−−→ {A sco−→ B
spo−−→}+R

Then X(i)
xo−→ Y (i) for all i.

To provide condition based on our semantics, we provide this condition (b) as

• uniprocessorCond that consists only Uniprocessor (RW
po−→ W )

• networkCond which consists of
– Coherence : W

co′−→ W , and
– Multiprocessor dependence chain.
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Therefore, these conditions are defined as followed:

uniprocessorCond(SC, (Spo,≺po), xo, i, w) ⇐⇒ (w ∈W) ∧ ∀x ∈ RW.(conflict(x,w)∧
((i, x) ≺po (i, w)) =⇒ (i, i, x) ≺xo′ (i, i, w)

Where (Sxo′ ,≺xo′) = xo⊕ ({(i, i, w)}, ∅)

networkCond(SC, po, xo, i, j, rw) ⇐⇒ ∀x ∈ RW, k ∈ ID.((conflict(x, rw)∧
(co cond(xo, x, rw) ∨mul chain(po, xo, k, x, j, rw)) )

=⇒ (i, k, x) ≺xo′′ (i, j, rw))

Where (Sxo′′ ,≺xo′′) = xo⊕ ({(i, j, rw)}, ∅)
For networkCond, we need additional predicated functions for representing co cond and
mul chain. Such predicated functions are described as:

• co cond (W
co′−→ W ) :

co cond(xo, w,w′) ⇐⇒ (w ∈ W ) ∧ (w′ ∈ W ) ∧ (w <co′(xo) w
′)

• Multiprocessor dependence chain

mul chain(po, xo, i, x, j, y) ⇐⇒ mul cond1(po, xo, x, j, y)∨
mul cond2(po, xo, i, x, j, y) ∨mul cond3(po, xo, x, y)

• mul cond1 (W
co′−→ R

po−→ RW ):

mul cond1((Spo,≺po), xo, w, j, rw) ⇐⇒ (w ∈W)∧
∃r ∈ R.(w <co′(xo) r ∧ (j, r) ≺po (j, rw))

• mul cond2 (RW
spo−−→ {A sco−→ B

spo−−→}+RW ):

mul cond2(po, xo, i, rw, j, rw′) ⇐⇒ ∃a, b, c ∈ RW.((rw <spo(i,po) a) ∧ (c <spo(j,po) rw
′)∧

(a <sco(xo) b) ∧ trans rel1(po, xo, b, c))

trans rel1(po, xo, b, c) ⇐⇒


True if b = c
∃a,b′∈RW,i∈ID(
(b <spo(i,po) a) ∧ (a <sco(xo) b

′)∧
trans rel1(po, xo, b′, c)) if b 6= c

• mul cond3 ( W
sco−→ R

spo−−→ {A sco−→ B
spo−−→}+R ):

mul cond3(po, xo, w, j, r) ⇐⇒ (w ∈W) ∧ (r ∈ R)∧
∃r1 ∈ R.∃a, b, c ∈ RW.∃i ∈ ID.(

(w <sco(xo) r1) ∧ (r1 <spo(i,po) a) ∧ (a <sco(xo) b)∧
(c <spo(j,po) r) ∧ trans rel1(po, xo, b, c))
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Partial store ordering model

The next memory consistency model which describe in this work is partial consistency
model. The conceptual system of this model is shown as specification 2.

Specification 2: Aggressive conditions for partial store ordering

define
spo−−→: X

spo−−→ Y if X and Y are the first and last operations in one of
X

po−→ RW
W

po−→ STBAR
po−→ W

W(in RMW)
po−→ RW

W
po−→ STBAR

po−→ RMW
po−→ R

define
sco−−→: X

sco−−→ Y if X and Y are the first and last operations in one of
X

co−→ Y
R

co−→ W
co−→ R

Condition on
xo−→:

(a) the following conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; applies to all write sub-operations.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.

(b) given memory operations X and Y, if X and Y conflict and X,Y are the first and last
operations in one of

uniprocessor dependence: RW
po−→W

coherence: W
co′−−→W

multiprocessor dependence chain: one of

W
co′−−→ R

po−→ RW
RW

spo−−→ {A sco−−→ B
spo−−→}+ RW

W
sco−−→ R

spo−−→ {A sco−−→ B
spo−−→}+ R

This model requires the fence instruction, STBAR, to consider the relation
spo−−→. The ad-

ditional relations of this model are defined based on our semantics as followed:

x <pso
spo(pid,(Spo,≺po))

y ⇐⇒ (((x ∈ R) ∧ ((pid, x) ≺po (pid, y)))∨
((x, y ∈W) ∧ ∃stbar ∈ FenceOp.((fenceType(stbar) = STBAR)

∧ ((pid, x) ≺po(po) (pid, stbar)) ∧ ((pid, stbar) ≺po (pid, y))))∨
(∃rmw ∈ RMW((componentW(rmw) = x) ∧ ((pid, x) ≺po (pid, y))))∨
((x ∈W) ∧ (y ∈ R) ∧ ∃rmw ∈ RMW, stbar ∈ FenceOp.(

((pid, x) <po (pid, stbar)) ∧ ((pid, stbar) <po (pid, rmw))∧
((pid, rmw) ≺po (pid, y)))))

x <pso
sco(xo) y ⇐⇒ ((x <co(xo) y)∨

((x, y ∈ R) ∧ ∃w ∈W.((x <co(xo) w) ∧ (w <co(xo) y))))

The condition (b) of partial store ordering is defined as:
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Giving memory operation X and Y , if X and Y are conflict and X, Y are the first and
last operations in one of:
• Uniprocessors: RW

po−→ W

• Coherence: W
co′−→ W

• Multiprocessor dependence chain: one of
– W

co−→ R
spo−−→ RW

– RW
spo−−→ {A sco−→ B

spo−−→}+RW

– W
co−→ R

spo−−→ {A spo−−→ B
spo−−→}+R

Then X(i)
xo−→ Y (i) for all i.

We have seen that the conditions of partial store ordering are similar to sequential con-
sistency model. Nevertheless, the different are the additional relations,

spo−−→ and
sco−→.

Therefore, the conditions of partial store ordering based on our semantics are:

uniprocessorCond(PSO, (Spo,≺po), xo, i, w) ⇐⇒ (w ∈W) ∧ ∀x ∈ RW.(conflict(x,w)∧
((i, x) ≺po (i, w)) =⇒ (i, i, x) ≺xo′ (i, i, w)

Where (Sxo′ ,≺xo′) = xo⊕ ({(i, i, w)}, ∅)

networkCond(PSO, po, xo, i, j, rw) ⇐⇒ ∀x ∈ RW, k ∈ ID.((conflict(x, rw)∧
(co cond(xo, x, rw) ∨mul chain(po, xo, k, x, j, rw)) )

=⇒ (i, k, x) ≺xo′′ (i, j, rw))

Where (Sxo′′ ,≺xo′′) = xo⊕ ({(i, j, rw)}, ∅)
For networkCond, we need additional predicated functions for representing co cond and
mul chain. Such predicated functions are described as:

• co cond (W
co′−→ W ) :

co cond(xo, w,w′) ⇐⇒ (w ∈ W ) ∧ (w′ ∈ W ) ∧ (w <co′(xo) w
′)

• Multiprocessor dependence chain

mul chain(po, xo, i, x, j, y) ⇐⇒ mul cond1(po, xo, x, j, y)∨
mul cond2(po, xo, i, x, j, y) ∨mul cond3(po, xo, x, y)

• mul cond1 (W
co′−→ R

po−→ RW ):

mul cond1((Spo,≺po), xo, w, j, rw) ⇐⇒ (w ∈W)∧
∃r ∈ R.(w <co′(xo) r ∧ (j, r) ≺po (j, rw))

• mul cond2 (RW
spo−−→ {A sco−→ B

spo−−→}+RW ):

mul cond2(po, xo, i, rw, j, rw′) ⇐⇒ ∃a, b, c ∈ RW.((rw <pso
spo(i,po) a) ∧ (c <pso

spo(j,po) rw
′)∧

(a <pso
sco(xo) b) ∧ trans rel1(po, xo, b, c))

trans rel1(po, xo, b, c) ⇐⇒


True if b = c
∃a,b′∈RW,i∈ID(
(b <pso

spo(i,po) a) ∧ (a <pso
sco(xo) b

′)∧
trans rel1(po, xo, b′, c)) if b 6= c
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• mul cond3 ( W
sco−→ R

spo−−→ {A sco−→ B
spo−−→}+R ):

mul cond3(po, xo, w, j, r) ⇐⇒ (w ∈W) ∧ (r ∈ R)∧
∃r1 ∈ R.∃a, b, c ∈ RW.∃i ∈ ID.(

(w <pso
sco(xo) r1) ∧ (r1 <

pso
spo(i,po) a) ∧ (a <pso

sco(xo) b)∧
(c <pso

spo(j,po) r) ∧ trans rel1(po, xo, b, c))

3.2.5 Instruction set

Since the semantics focus on the behaviors that instruction, the definitions of instruction
set architecture are not taken into account,yet. Due to there are many instruction set
architectures, we do need to generalize the behaviors of hardware that affect the memory
operations inside the hardware. Nevertheless, in this subsection, we will give some example
of instruction definition based on ARM Instruction set architecture[Lim08]. The definition
of the ARM instructions will be provided by ISA functions defined in the syntax.

• MOV{〈cond〉} Rd, #imm32

ISA(〈mov, cond, rd · imm〉) =(〈passCond(cond)〉(lock · w · unlock) : ε)

If ((rd ∈ Reg) ∧ (imm ∈ Val))
Where

w ∈W

access(w) = rd access Rd

data(w) = imm Rd = imm32

lock ∈ LockOp

unlock ∈ UnlockOp

lockLocation(lock) = access(w) lock Rd

lockLocation(unlock) = access(w) unlock Rd

• MOV{〈cond〉} Rd, Rm

ISA(〈mov, cond, rd · rm〉) =(〈passCond(cond))〉lockrd · lockrm · r · w · unlockrm · unlockrd : ε)

If ((rd ∈ Reg) ∧
(rm ∈ Reg))
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Where

w ∈W

r ∈ R

result ∈ internalBus

(access(r), data(r)) = (Rm, result) result = Rm

(access(w), data(w)) = (Rd, result) Rd = result

lockrd, lockrm ∈ LockOp

unlockrd, unlockrm ∈ UnlockOp

lockLocation(lockrd) = Rd

lockLocation(unlockrd) = Rd

lockLocation(lockrm) = Rm

lockLocation(unlockrm) = Rm

• B{〈cond〉} imm32

ISA(〈b, cond, imm〉) =(〈passCond(cond))〉opsB : ε)

If imm ∈ Val,
Where

w ∈W

r ∈ R

result ∈ internalBus

(access(r), data(r)) = (pc, result) result = pc

(access(w), data(w)) = (pc, result) pc = result

lockpc ∈ LockOp

unlockpc ∈ UnlockOp

lockLocation(lockpc) = pc

lockLocation(unlockpc) = pc

opsB = lockpc · r · (result := result+ imm) · w · unlockpc

• CMP{〈cond〉} Rn, Rm

ISA(〈cmp, cond, rn · rm〉) =(〈passCond(cond)〉lockrn · lockrm · rrn·
rrm · (result := (〈tmprn = tmprm〉?1 : 0))·
wZ · (result := (〈tmprm > tmprn〉?1 : 0))·
wN · unlockrn · unlockrm : ε)
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If rn, rm ∈ Reg
Where

rrn, rrm ∈ R

wZ , wN ∈W

tmprm, tmprn, result ∈ internalBus

(access(rrn), data(rrn)) = (rn, tmprn)

(access(rrm), data(rrm)) = (rm, tmprm)

(access(wZ), data(wZ)) = (Z, result)

(access(wN), data(wN)) = (N, result)

lockrn, lockrm ∈ LockOp

unlockrn, unlockrm ∈ UnlockOp

lockLocation(lockrn) = lockLocation(unlockrn) = rn

lockLocation(lockrm) = lockLocation(unlockrm) = rm

• CMP{〈cond〉} Rn, imm (ignore overflow and currying bits)

ISA(〈cmp, cond, rn · imm〉) =(〈passCond(cond)〉
lockrn · rrn · (result := 〈tmprn = imm〉?1 : 0) · wZ ·
(result := 〈imm > tmprn〉?1 : 0) · wN · unlockrn : ε)

If (rn ∈ Reg)
Where

rrn ∈ R

wZ , wN ∈W

tmprn, result ∈ internalBus

(access(rrn), data(rrn)) = (rn, tmprn)

(access(wZ), data(wZ)) = (Z, result)

(access(wN), data(wN)) = (N, result)

lockrn ∈ LockOp

unlockrn ∈ UnlockOp

lockLocation(lockrn) = lockLocation(unlockrn) = rn
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• SWP{〈cond〉} Rt, Rt2, [Rn]

ISA(〈swp, cond, rt · rt2 ·Mem[rn]〉) =(〈passCond(cond)〉lockrt · lockrt2 · lockrn · rrt2 · rrn·
rmwmem[rn] · wrt · unlockrt · unlockrt2 · unlockrn : ε)

If (rt, rt2, rn ∈ Reg)
Where

rrt2, rrn, rmem[rn] ∈ R

wrt, wmem[rn] ∈W

rmwmem[rn] ∈ RMW

data, tmprn, tmprt, tmprt2 ∈ internalBus

(access(rrt2), data(rrt2)) = (rt2, tmprt2) (tmprt2) = Rt2

(access(rrn), data(rrn)) = (rn, tmprn) (tmprn) = Rn

(access(rmem[rn]), data(rmem[rn])) = (Mem[tmprn], data) data = Mem[Rn(tmprn)]

(access(wmem[rn]), data(wmem[rn])) = (Mem[tmprn], tmprt2) Mem[Rn] = Rt2(tmprt2)

(access(wrt), data(wrt)) = (rt, data) Rt = data

locationRMW(rmwmem[rn]) = Mem[rn]

componentR(rmwmem[rn]) = rmem[rn]

componentW(rmwmem[rn]) = wmem[rn]

lockrt, lockrt2, lockrn ∈ LockOp

unlockrt, unlockrt2, unlockrn ∈ UnlockOp

lockLocation(lockrt) = rt

lockLocation(unlockrt) = rt

lockLocation(lockrt2) = rt2

lockLocation(unlockrt2) = rt2

lockLocation(lockrn) = rn

lockLocation(unlockrn) = rn
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• LDR{〈cond〉} Rt, [Rn]

ISA(〈ldr, cond, rt ·Mem[rn]〉) =(〈passCond(cond)〉lockrt · lockrn · rrn · rmem[rn]·
wrt · unlockrt · unlockrn : ε)

If (rt, rn ∈ Reg)
Where

rn, rmem[rn] ∈ R

wrt ∈W

tmprn, data ∈ internalBus

(access(rn), data(rrn)) = (rn, tmprn) (tmprn) = Rn

(access(rmem[rn]), data(rmem[rn])) = (Mem[tmprn], data) data = Mem[Rn]

(access(wrt), data(wrt)) = (rt, data) Rt = data

lockrt, lockrn ∈ LockOp

unlockrt, unlockrn ∈ UnlockOp

lockLocation(lockrt) = lockLocation(unlockrt) = rt

lockLocation(lockrn) = lockLocation(unlockrn) = rn

• STR{〈cond〉} Rt, [Rn]

ISA(〈str, cond, rt ·Mem[rn]〉) =(〈passCond(cond)〉lockrt · lockrn · rrt · rrn·
wmem[rn] · unlockrt · unlockrn : ε)

If (rt, rn ∈ Reg)
Where

rrt, rrn ∈ R

wmem[rn] ∈W

(access(rrt), data(rrt)) = (rt, data) data = Rt

(access(rrn), data(rrn)) = (rn, tmprn) (tmprn) = Rn

(access(wmem[rn]), data(wmem[rn])) = (Mem[tmprn], data) Mem[Rn] = data

lockrt, lockrn ∈ LockOp

unlockrt, unlockrn ∈ UnlockOp

lockLocation(lockrt) = lockLocation(unlockrt) = rt

lockLocation(lockrn) = lockLocation(unlockrn) = rn
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1MOV r 2 , #1
2STR r 2 , [ r3 ]

ProgramA

1LDR r 1 , [ r3 ]

ProgramB

Figure 3-5: A sample program for considering execution

3.3 Sample executions based on our semantics

As we have proposed operational semantics for describing the abstract multi-core systems.
In this section, we would like to show the sample execution of a sample program.We will
consider the program shown as figure 3-5. Note that, the register r3 on both cores refer
to the same shared-memory location.

Due to there are many possible executions that can be produced by this programs, we
will consider only one path of the execution to show the execution of our semantics. First
of all, we consider the initial state as:

〈hw, 〈(∅, ∅), (∅, ∅), (∅, ∅)〉, ∅, ∅, C〉
Where

Cores = (〈1, σ1
init, ∅, ∅, ε, ProgramA〉·

〈2, σ2
init, ∅, ∅, ε, ProgramB〉)

σ1
init = σ2

init

= {loc 7→ 0 | ∀loc ∈ Location}[pc 7→ 1]

As for hardware configuration, we will let attributes of the hw as

inOrderIssue(hw) = True

nonBlocking(hw) = True

readForwarding(hw) = True

bypassing(hw) = False

model(hw) = SC

Then, let’s consider the execution from the initial state,

〈hw, 〈(∅, ∅), (∅, ∅), (∅, ∅)〉, ∅, ∅, C〉
= 〈hw, 〈toinit, poinit, xoinit〉, ∅, ∅, C〉 (Simplify)

= 〈hw,Φinit, ∅, ∅, C〉 (Simplify)

= 〈hw, 〈(∅, ∅), (∅, ∅), xo〉, ∅, ∅, {〈1, σ1
init, ∅, ∅, ε, ProgramA〉} ] C〉 (Consider core 1)

→ 〈hw, 〈({t1}, ∅), po1, xo〉, ∅, ∅, {〈1, σ1
init[pc = 2], ∅, ∅, (〈True〉opst1mov : ε), P rogramA〉} ] C〉

Where opst1mov = ISAt1(ProgramA(σ1
init(pc))) = lockr2 · wr2 · unlockr2, and

po1 = ({wr2}, ∅) (Fetching in-order)

→ 〈hw, 〈({t1}, ∅), po1, xo〉, ∅, ∅, {〈1, σ1
init[pc = 2], ∅, ∅, opst1mov, P rogramA〉} ] C〉

(Condition operations)

= 〈hw, 〈to1, po1, xo〉, ∅, ∅, {〈1, σ1
t1
, ∅, ∅, opst1mov, P rogramA〉} ] C〉 (Simplify)
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= 〈hw, 〈to1, po1, xo〉, ∅, ∅, {〈1, σ1
t1
, ∅, ∅, E[lockr2], P rogramA〉} ] C〉 (Lock operation)

→ 〈hw, 〈to1, po1, xo〉, {entr2}, ∅, {〈1, σ1
t1
, ∅, ∅, E[ε], P rogramA〉} ] C〉

(Lock semantic)

= 〈hw, 〈to1, po1, xo〉, {entr2}, ∅, {〈1, σ1
t1
, ∅, ∅, E[wr2], P rogramA〉} ] C〉

(Write operation)

→ 〈hw, 〈to1, po1, xo〉, {entr2}, ∅, {〈1, σ1
t1
, {wr2}, ∅, E[ε], P rogramA〉} ] C〉

(Write semantics)

= 〈hw, 〈to1, po1, xo〉, {entr2}, ∅, {〈1, σ1
t1
, {wr2}, ∅, E[unlockr2], P rogramA〉} ] C〉

(Unlock operation)

→ 〈hw, 〈to1, po1, xo〉, ∅, ∅, {〈1, σ1
t1
, {wr2}, ∅, E[ε], P rogramA〉} ] C〉

(Unlock semantic)

= 〈hw, 〈to1, po1, xo〉, ∅, ∅, {〈1, σ1
t1
, {wr2}, ∅, ε, ProgramA〉} ] C〉 (Simplify)

→ 〈hw, 〈to2, po2, xo〉, ∅, ∅, {〈1, σ1
t1

[pc = 3], {wr2}, ∅, opst2str, P rogramA〉} ] C〉
Where opst2str = ISAt2(ProgramA(2))

= (〈True〉lockr2 · lockr3 ·Rr2 ·Rr3 ·Wmem[r3] · unlockr3 · unlockr2 : ε)

to2 = to1 ⊕ ({t2}, ∅) = ({t1, t2}, {t1 ≺ t2}),
po2 = po1 ⊕ ({Rr2, Rr3,Wmem[r3]}, {Rr2 ≺ Rr3, Rr3 ≺ Wmem[r3]})

(Fetching in-order)

= 〈hw, 〈to2, po2, xo〉, ∅, ∅, {〈1, σ1
t2
, {wr2}, ∅, (〈True〉ops′ : ε), P rogramA〉} ] C〉

→ 〈hw, 〈to2, po2, xo〉, ∅, ∅, {〈1, σ1
t2
, {wr2}, ∅, (ops′), P rogramA〉} ] C〉

(Condition operations)

= 〈hw, 〈to2, po2, xo〉, ∅, ∅, {〈1, σ1
t2
, {wr2}, ∅, E[lockr2], P rogramA〉} ] C〉

→ 〈hw, 〈to2, po2, xo〉, {entr2}, ∅, {〈1, σ1
t2
, {wr2}, ∅, E[ε], P rogramA〉} ] C〉

(Lock semantics)

= 〈hw, 〈to2, po2, xo〉, {entr2}, ∅, {〈1, σ1
t2
, {wr2}, ∅, E[lockr3], P rogramA〉} ] C〉

→ 〈hw, 〈to2, po2, xo〉, {entr2, entr3}, ∅, {〈1, σ1
t2
, {wr2}, ∅, E[ε], P rogramA〉} ] C〉

= 〈hw, 〈to2, po2, xo〉, {entr2, entr3}, ∅, {〈1, σ1
t2
, {wr2}, ∅, E[Rr2], P rogramA〉} ] C〉

→ 〈hw, 〈to2, po2, xo〉, {entr2, entr3}, ∅, {〈1, σ1
t2
, {wr2, Rr2}, ∅, E[ε], P rogramA〉} ] C〉

→ 〈hw, 〈to2, po2, xo⊕ ({(1, Rr2)}, ∅)〉, lockedr2,r3, ∅, {〈1, σ1
t′2
, {wr2}, ∅, E[ε], P rogramA〉} ] C〉

Where σ1
t′2

= σ1
t2

[data 7→ 1]

lockr2,r3 = {entr2, entr3} (Read-forwarding behavior)

= 〈hw, 〈to2, po2, xo1〉, lockedr2,r3, ∅, {〈1, σ1
t′2
, {wr2}, ∅, E[ε], P rogramA〉} ] C〉

= 〈hw, 〈to2, po2, xo1〉, lockedr2,r3, ∅, {〈1, σ1
t′2
, {wr2}, ∅, E[Rr3], P rogramA〉} ] C〉

→ 〈hw, 〈to2, po2, xo1〉, lockedr2,r3, ∅, {〈1, σ1
t′2
, {wr2, Rr3}, ∅, E[ε], P rogramA〉} ] C〉

= 〈hw, 〈to2, po2, xo1〉, lockedr2,r3, ∅, {〈1, σ1
t′2
, {wr2, Rr3}, ∅, E[Wmem[r3]], P rogramA〉} ] C〉
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→ 〈hw, 〈to2, po2, xo2〉, lockedr2,r3, ∅, {〈1, σ1
t′′2
, {Rr3}, ∅, E[Wmem[r3]], P rogramA〉} ] C〉

Where σ1
t′′2

= σ1
t′2

[R2 7→ 1]

xo2 = xo1 ⊕ ({(1, 1, R2)}, ∅)
→ 〈hw, 〈to2, po2, xo3〉, lockedr2,r3, ∅, {〈1, σ1

t′′′2
, ∅, ∅, E[Wmem[r3]], P rogramA〉} ] C〉

Where σ1
t′′′2

= σ1
t′′2

[tmpr3 7→ Adr]

xo3 = xo2 ⊕ ({(1, 1, Rr3}, ∅) (Adr refers to a constant)

→ 〈hw, 〈to2, po2, xo3〉, lockedr2,r3, ∅, {〈1, σ1
t′′′2
, {Wmem[r3]}, ∅, E[ε], P rogramA〉} ] C〉

= 〈hw, 〈to2, po2, xo3〉, lockedr2,r3, ∅, {〈1, σ1
t′′′2
, {Wmem[r3]}, ∅, E[unlockr3], P rogramA〉} ] C〉

→ 〈hw, 〈to2, po2, xo3〉, {entr3}, ∅, {〈1, σ1
t′′′2
, {Wmem[r3]}, ∅, E[ε], P rogramA〉} ] C〉

= 〈hw, 〈to2, po2, xo3〉, {entr3}, ∅, {〈1, σ1
t′′′2
, {Wmem[r3]}, ∅, E[unlockr2], P rogramA〉} ] C〉

→ 〈hw, 〈to2, po2, xo3〉, ∅, ∅, {〈1, σ1
t′′′2
, {Wmem[r3]}, ∅, ε, ProgramA〉} ] C〉

→ 〈hw, 〈to2, po2, xo3)〉, ∅, {(1, 1,Wmem[r3]), (1, 2,Wmem[r3])}, {〈1, σ1
t′′′2
, ∅, ∅, ε, ProgramA〉} ] C〉

= 〈hw, 〈to2, po2, xo3〉, ∅, {(1, 1,Wmem[r3]), (1, 2,Wmem[r3])}, {〈2, σ2
init, ∅, ∅, ε, ProgramB〉} ] C〉

= 〈hw, 〈to2, po2, xo3〉, ∅, N1 ] {(1, 2,Wmem[r3])}, {〈2, σ2
init, ∅, ∅, ε, ProgramB〉} ] C〉

→ 〈hw, 〈to2, po2, xo3〉, ∅, N1, {〈2, σ2
init[Mem[Adr] 7→ 1], ∅, ∅, ε, ProgramB〉} ] C〉

= 〈hw, 〈to2, po2, xo3〉, ∅, N1, {〈2, σ2
1, ∅, ∅, ε, ProgramB〉} ] C〉

→ 〈hw, 〈to2 ⊕ ({t3}, ∅), po3, xo3〉, ∅, N1, {〈2, σ2
1[pc 7→ 2], ∅, ∅, opst3ldr, P rogramB〉} ] C〉

Where ISA(ProgramB(1)) = opsldr

= 〈True〉(lockr1 · lockr3 ·Rr3 ·Rmem[r3] ·Wr1 · unlockr3 · unlockr1 : ε)

po3 = po2 ⊕ ({(2, Rr3), (2, Rmem[r3]), (2,Wr1)},
{(2, Rr3) ≺po (2, Rmem[r3]), (2, Rmem[r3]) ≺po (2,Wr1)})

= 〈hw, 〈to3, po3, xo3〉, ∅, N1, {〈2, σ2
2, ∅, ∅, ops

t3
ldr, P rogramB〉} ] C〉

= 〈hw, 〈to3, po3, xo3〉, ∅, N1, {〈2, σ2
2, ∅, ∅, (〈True〉ops′ : ε), P rogramB〉} ] C〉

→ 〈hw, 〈to3, po3, xo3〉, ∅, N1, {〈2, σ2
2, ∅, ∅, ops′, P rogramB〉} ] C〉

= 〈hw, 〈to3, po3, xo3〉, ∅, N1, {〈2, σ2
2, ∅, ∅, E[lockr1], P rogramB〉} ] C〉

→ 〈hw, 〈to3, po3, xo3〉, {entr1}, N1, {〈2, σ2
2, ∅, ∅, E[ε], P rogramB〉} ] C〉

= 〈hw, 〈to3, po3, xo3〉, {entr1}, N1, {〈2, σ2
2, ∅, ∅, E[lockr3], P rogramB〉} ] C〉

→ 〈hw, 〈to3, po3, xo3〉, {entr1, entr3}, N1, {〈2, σ2
2, ∅, ∅, E[ε], P rogramB〉} ] C〉

= 〈hw, 〈to3, po3, xo3〉, {entr1, entr3}, N1, {〈2, σ2
2, ∅, ∅, E[Rr3], P rogramB〉} ] C〉

→ 〈hw, 〈to3, po3, xo3〉, {entr1, entr3}, N1, {〈2, σ2
2, {Rr3}, ∅, E[ε], P rogramB〉} ] C〉

→ 〈hw, 〈to3, po3, xo4〉, {entr1, entr3}, N1, {〈2, σ2
2[tmpr3 7→ Adr], ∅, ∅, E[ε], P rogramB〉} ] C〉

Where xo4 = xo3 ⊕ ({(2, 2, Rr3)}, ∅)
= 〈hw, 〈to3, po3, xo4〉, {entr1, entr3}, N1, {〈2, σ2

3, ∅, ∅, E[Rmem[r3]], P rogramB〉} ] C〉
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→ 〈hw, 〈to3, po3, xo4〉, {entr1, entr3}, N1, {〈2, σ2
3, {Rmem[r3]}, ∅, E[ε], P rogramB〉} ] C〉

→ 〈hw, 〈to3, po3, xo4〉, {entr1, entr3}, N1, {〈2, σ2
3[data 7→ 1], ∅, ∅, E[ε], P rogramB〉} ] C〉

= 〈hw, 〈to3, po3, xo4〉, {entr1, entr3}, N1, {〈2, σ2
4, ∅, ∅, E[Wr1], P rogramB〉} ] C〉

→ 〈hw, 〈to3, po3, xo4〉, {entr1, entr3}, N1, {〈2, σ2
4, {Wr1}, ∅, E[ε], P rogramB〉} ] C〉

→ 〈hw, 〈to3, po3, xo5〉, {entr1, entr3}, N1, {〈2, σ2
4[r1 7→ 1], ∅, ∅, E[ε], P rogramB〉} ] C〉

Where xo5 = xo4 ⊕ ({(2, 2,Wr1)}, ∅)
= 〈hw, 〈to3, po3, xo5〉, {entr1, entr3}, N1, {〈2, σ2

5, ∅, ∅, E[unlockr3], P rogramB〉} ] C〉
→ 〈hw, 〈to3, po3, xo5〉, {entr1}, N1, {〈2, σ2

5, ∅, ∅, E[ε], P rogramB〉} ] C〉
= 〈hw, 〈to3, po3, xo5〉, {entr1}, N1, {〈2, σ2

5, ∅, ∅, E[unlockr1], P rogramB〉} ] C〉
→ 〈hw, 〈to3, po3, xo5〉, ∅, N1, {〈2, σ2

5, ∅, ∅, ε, ProgramB〉} ] C〉
= 〈hw, 〈to3, po3, xo5〉, ∅, {(1, 1,Wmem[r3])}, {〈1, σ1

t′′′2
, ∅, ∅, ε, ProgramA〉} ] C〉

→ 〈hw, 〈to3, po3, xo6〉, ∅, ∅, {〈1, σ1
t′′′2

[Mem[Adr] 7→ 1], ∅, ∅, ε, ProgramA〉} ] C〉
Where xo6 = xo5 ⊕ ({(1, 1,Wmem[r3])}, ∅)
= 〈hw, 〈to3, po3, xo6〉, ∅, ∅, {〈1, σ1

3, ∅, ∅, ε, ProgramA〉} ] C〉
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Chapter 4

Verification method for multi-core
systems

It’s so difficult to verify the operating system because the operating system is a complex
system which has a lot of functionalities. Since this research focuses on the out-of-order
execution which is affect the correctness of the programs executed in multi-core system.
This research will take multiprocessor programs into account. Moreover, to adopt our
formal system in the verification, the multiprocessor programs will be complied as assembly
language which is close to the hardware. However, as we see the sample execution in the
previous section, the computation is too long for a simple program. In addition, the
execution of instruction in the programs will not be atomic. Moreover, the memory
accesses issued from the processor are able to be executed out-of-order. Thus, this section
will propose a verification method for multiprocessor programs.

4.1 Verification of multiprocessor programs based on

our semantics

Normally the execution of our semantics is change the state as step by step. Hence, we
adopt the induction for providing a verification method. To verify the correctness of the
program, we usually consider the required properties of the programs for ensuring the
correctness. For example, in the mutex lock program, it provides the safety properties
that is “There is no more one process can enter the critical section simultaneously”.

To use induction in the verification, the properties of programs should be formalized
as invariant. To ensure the correctness of programs, each state of execution should hold
the invariant in each step of execution. For the induction proofs, first, we have to show
the initial state holds the invariant. Then, the induction step will verify every arbitrary
states to hold the invariant. Thus, to verify the programs based on our semantics, we
have to show:
• Base case: INV (sinit)
• Induction step: ∀s, s′.(INV (s) ∧ s→ s′ =⇒ INV (s′))
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1MOV r 1 ,#1
2CMP r 1 ,#1
3LDREQ r 2 , [ r3 ]

Figure 4-1: A sample program

initial program (s̃init)

MOV r1,#1 (s̃beforeLDR)

CMP r1,#1

LDREQ r2, [r3] (s̃executingLDR)

Figure 4-2: Set of states of programs 4-1

The sinit, s and s′ are the configurations,〈hw,Φ, locked,N,C〉, based on our semantics.
The INV represents the invariant which should be held for each arbitrary states. The
‘sinit’ is an initial state of the verification. However, the initial state may not be defined
concretely, because we have the arbitrary configuration of hw. So, we will introduce a
set of states for verification. The set of states will be denoted as s̃. The set of state that
refer to initial state will be defined as,

s̃init = {〈hw, (〈(∅, ∅), (∅, ∅), (∅, ∅)〉), ∅, ∅, Coresinit〉 | hw ∈ HW∧
σinit = {loc→ 0 | loc ∈ Location}[pc 7→ 1]∧
∀c ∈ Coresinit, pid ∈ ID, p ∈ 2V al→Instr.(c = 〈pid, σinit, ∅, ∅, ε, p〉)}

Therefore, to show the based case, we have to show INV (s̃init) holds.
Moreover, since the properties of the programs usually consider the execution of a

program. To show the invariant hold the arbitrary states in the induction step, we assume
that the properties usually concern about the steps that appeared to the program. In
addition, the arbitrary state is able to consider the next state as non-determinism. Hence,
for a single program, we define the sets of states to identify each set of states should holds
the invariant.

Let’s consider the program on figure 4-1, assume that the properties of this program
will ensure the instruction ‘LDREQ r2,[r3]’ is always executed in this program, the value
of program status register Z always be 1 at line 3. Assume that we already have invariant
for verify the execution of this program. The invariant will ensure that the read access
of ‘LDREQ r2,[r3]’, which access the location ‘Z’, always return 1 as a result. Hence,
to consider the induction step, we group the arbitrary states as s̃init, s̃beforeLDR, and
s̃executingLDR. These sets of states are attached to the program as figure 4-2 . However,
these states are considered in a single program. Hence, in the verification, we indicate
sets of states for specific program as s̃beforeLDR(i) and s̃executingLDR(i) for the program in
processor i. Even if the another programs are executed based on our semantics, we also
consider such states as arbitrary states inside our defined states.
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As induction proof, we have to show that ∀s, s′.(INV (s) ∧ s → s′ =⇒ INV (s′)) as
usual. The verification will consider the invariant based on executions of a single program.
So, we split the induction step on processor i by using the sets of states as:

∀s ∈ s̃init, s′.(INV (s) ∧ s→ s′ =⇒ INV (s′)) (4.1)

∀s ∈ s̃beforeLDR(i), s′.(INV (s) ∧ s→ s′ =⇒ INV (s′)) (4.2)

∀s ∈ s̃executingLDR(i), s′.(INV (s) ∧ s→ s′ =⇒ INV (s′)) (4.3)

To prove each case, we have to consider the rules that we have proposed in previous
chapter. The rules which are able to apply to the source state will be considered the next
state. For the case (4.1),‘∀s ∈ s̃init, s′.(INV (s) ∧ s→ s′ =⇒ INV s′)’, the possible rules
which can apply are Rule 1 and Rule 2. For every s ∈ s̃init, we consider the next set of
states that apply rules Rule 1 and Rule 2 as,

s̃Rule(1) = {〈hw,Φ′, ∅, ∅, {〈i, σ[pc 7→ 2], ∅, ∅, opst, p〉} ] C〉 |
Φ′ = 〈({t}, ∅), po′, (∅, ∅)〉 ∧ (ISA(p(σ(pc))) = ops) ∧ i ∈ ID}

s̃Rule(2) = {〈hw,Φ′, ∅, ∅, {〈i, σ[pc 7→ 2], ∅, {(t, ops)}, ε, p〉} ] C〉 |
Φ′ = 〈({t}, ∅), po′, (∅, ∅)〉 ∧ (ISA(p(σ(pc))) = ops) ∧ i ∈ ID}

Therefore, to prove the case (4.1), we will consider the sub-cases,

∀s ∈ s̃init, s′ ∈ s̃Rule(1).(INV (s) ∧ s→ s′ =⇒ INV (s′)) (4.1-1)

∀s ∈ s̃init, s′ ∈ s̃Rule(2).(INV (s) ∧ s→ s′ =⇒ INV (s′)) (4.1-2)

Moreover, to finish another cases, we will consider the possible rules which can apply to
s̃beforeLDR for proving case (4.2) and s̃executingLDR for proving case (4.3).

To summarize, this section has proposed the idea to deal with our semantics for ver-
ification. In the next section we will propose the verification method as formal for the
verification for multi-core systems. Then, we will show the verification for mutex lock
programs as a case study.

4.2 Verification method

This section provides our verification method to verify programs for multi-core processor.
However, the method is not provided as systematically because of the context of each
programs to be verified might be different. Hence, the method is provided like a guidance
to provide proofs. The following subsection will describe the steps of the method.

4.2.1 Provide invariant as the predicate

First of all, the invariant,INV (s) , should be formalized for ensuring the correctness.
Since the properties are described as natural languages, we must formalize those properties
to be ensured in our semantics.
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By a given state, 〈hw,Φ, locked,N,C〉, we are allowed to use these information to
consider the invariant relate to the properties. Moreover, the syntax of our semantics
also provide the function timePC to indicate the line of instruction in the programs. This
might be useful to indicate the significant instructions for checking the correctness of the
program. However, the formalization of properties should be manually formalized.

4.2.2 Define the sets of states

The sets of states are the states to be verified in the induction proofs. These sets will be
used to split the case in induction step for induction proofs. In order to define the sets of
state, we provide the mechanisms as followed:

Step 1 Firstly, we should identify the significant states. These states usually consider the
cutting-points which consider the loop of the program. Some of the states might
be determined by defined invariant. For example, the sets of states s̃executingLDR,
which describe in programs 4-2, is determined by the requirement of that pro-
gram.

Step 2 Propose the intermediate states for the two states which cannot reachable another
state by a single step. Note that, each states should be reachable by initial state,
s̃init. For example, in the program as figure 4-2, the set of states s̃beforeLDR has
been introduced for connecting s̃init and s̃executinhLDR.

Then, these proposed sets of states, included s̃init, will be considered in the induction
proof for case splitting. Assume that, from this step, we will get the (n+ 1) sets of states
as: s̃init, s̃1, s̃2, ..., s̃n.

4.2.3 Provide the induction proofs

To provide the induction proof on process i, we have to show:

• Base case: ∀s ∈ s̃init.INV (s)

• Induction step: ∀s̃ ∈ {s̃init, s̃1(i), s̃2(i), ..., s̃n(i)}.∀s ∈ s̃, s′.(INV (s) ∧ s → s′ =⇒
INV (s′))

The most difficult proof is the induction step. We have seen that the number of cases
is relate to the number of sets of states.Moreover, each case will be split based on the
possible rules that can apply to an arbitrary state in the source set of states. In some
cases, the proof might be too difficult, because of the formal model complexity. Since
the our formal model provides many semantics to represent the hardware behaviors, the
verification should cover such behaviors to ensure the correctness. As we consider s→ s′,
from the one arbitrary state, the number of transitions is depend on the semantics that
can be applied to that state. For the initial state, only fetch behaviors are taken into
account. Nevertheless, for another arbitrary state, the semantics that can be applied
might be too much because our semantics are considered as non-determinism.
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Chapter 5

A case study : a mutex lock
verification

This section provides a case study that we verify the correctness of multiprocessor pro-
grams for multi-core systems. The programs that we consider as case study is mutual
exclusion programs. This programs facilitate the mutual exclusion of the process among
cores. We assume that the implementation of mutual exclusion will be as a code segment
of the program. Hence, we define a segment of the program for facilitate mutual exclusion
as,

...

α : MOV r2,#1 (Acquire lock)

SWP r1, r2, [r0]

CMP r1, r2

BNE #− 3

β : ... (critical section)

...

γ : MOV r2,#0 (Release lock)

STR r2, [r0]

...

In this program, the location r0 will be the location of the locked variable. The line α
indicates the fist instruction of acquire lock mechanism. This mechanism will try to lock
by using SWP instruction to acquire the lock variable in shared-memory location. The
line β indicates the first line of critical section. The line γ indicates the first instruction
of release lock mechanisms.

As for the properties, the mutual exclusion programs usually confirm that there are
not more one process can be enter the critical section simultaneously. Basically, we should
consider the fetched instructions at every execution that should not have more than one
process are executing in the critical section. To consider more about memory operations,
we should ensure that the memory operations which issued from one processor can not
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be interrupted by memory operations from instructions in another processors. Therefore,
we provide the safety properties to be ensured as
Safe1 : more than one process can never enter their critical section simultaneously, and
Safe2 : all read and write operations from instructions in one’s critical section never be

interrupted by another write accesses from another critical section.
The second property, Safe2, is introduced because the fact that memory operations might
return the result to its processor, but those operations maybe not completed, yet. More-
over, the order of executions is the significant issue to consider. Hence, we also should
consider the second properties.

5.1 Apply verification method

First of all, we will propose an invariant to ensure the correctness of the program. The
properties Safe1 and Safe2 will be formalized as Inv1(s) and Inv2(s) as followed,

Inv1(s) ⇐⇒ ∀i, j ∈ ID.((i 6= j) =⇒ ¬(isEnterCrit(i, s) ∧ isEnterCrit(j, s)))
Inv2(s) ⇐⇒ ∀rw1, rw2, rw

′ ∈ CritRW.∀i, j ∈ ID.((i 6= j)∧
((i, rw1), (i, rw2), (j, rw

′) ∈ Spo) ∧ (rw1 ≺po rw2) =⇒
¬((rw1 ≺xo rw′) ∧ (rw′ ≺xo rw2)))

Where

s = 〈hw, 〈to, po, xo〉, locked,N,C〉
to = (Sto,≺to)
po = (Spo,≺po)
xo = (Sxo,≺xo)

isEnterCrit(i, s) = ((pc(i, s) >= β + 1 ∧ pc(i, s) <= γ)

σ(pc) = pc(pid, 〈hw,Φ, locked,N, {〈pid, σ, B, L, exec, p〉} ] C〉)
CritRW = {rwt | (timePC(t) = pc) ∧ (pc ∈ CritPC)}
CritPC = {pc ∈ PC | (pc >= β) ∧ (pc <= γ)}

The invariant for the proofs is

INV (s) ⇐⇒ Inv1(s) ∧ Inv2(s)

Then, we should provide the sets of states to identify the significant states to be considered.
As we consider the cut-points, we will get the sets s̃loop and s̃branch. Moreover, once we
consider the invariant, the sets that we should consider are s̃crit, s̃try−release and s̃release.
Next we will provide the remain sets to connect each step of execution. Therefore the
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sets of states for the code segment as:

//initial (s̃init)

... (s̃1−α)

α : MOV r2,#1 (s̃loop)

SWP r1, r2, [r0] (s̃α−β)

CMP r1, r2

BNE #− 3 (s̃branch)

β : ... (s̃crit)

... (s̃β−γ)

γ : MOV r2,#0 (s̃try−release)

STR r2, [r0] (s̃γ−realease)

... (s̃release)

Note that, the descriptions of the significant sets of states are:
• s̃loop : The states that already fetch the instruction at line α. It can be either put

the instruction into instruction buffer or directly put into the execution unit.
• s̃branch : The states which have decided the next instruction should be at line α or
β. That means these states are already to fetch the next instruction.
• s̃crit : The states that already fetch the first instruction in critical section.
• s̃try−release : The states that already fetch the instruction at line γ.
• s̃release : The states that finish execute the instruction at line γ + 1.

As for the induction proofs, we will show:
• Based case: ∀s ∈ s̃init.INV (s)
• Induction step : ∀s̃.∀s ∈ s̃, s′.(INV (s) ∧ s→ s′ =⇒ INV (s′))

As for the proofs of induction step, we split the case as:

∀s ∈ s̃init, s′.(INV (s) ∧ s→ s′ =⇒ INV (s′))

∀s ∈ s̃1−α, s′.(INV (s) ∧ s→ s′ =⇒ INV (s′))

∀s ∈ s̃loop, s′.(INV (s) ∧ s→ s′ =⇒ INV (s′))

∀s ∈ s̃α−β, s′.(INV (s) ∧ s→ s′ =⇒ INV (s′))

∀s ∈ s̃branch, s′.(INV (s) ∧ s→ s′ =⇒ INV (s′))

∀s ∈ s̃crit, s′.(INV (s) ∧ s→ s′ =⇒ INV (s′))

∀s ∈ s̃β−γ, s′.(INV (s) ∧ s→ s′ =⇒ INV (s′))

∀s ∈ s̃try−release, s′.(INV (s) ∧ s→ s′ =⇒ INV (s′))

∀s ∈ s̃γ−release, s′.(INV (s) ∧ s→ s′ =⇒ INV (s′))

∀s ∈ s̃release, s′.(INV (s) ∧ s→ s′ =⇒ INV (s′))

Since, it’s too difficult to provide the all of proofs by manual proof. In the next section,
we will choose some cases to show the proof and idea to provide a proof for some cases.
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5.2 Proofs

In this section will show the proofs of mutual exclusion programs for multi-core processors.
However, we will show some proofs to show that our verification method can deal with the
programs executed in multi-core processors. As for induction proof, we will show that,

∀s ∈ s̃init.INV (s) (based case)

∀s̃, s ∈ s̃, s′.(INV (s) ∧ s→ s′ =⇒ INV (s′)) (Induction case)

Based case

We define s̃init as

s̃init = {〈hw, 〈(∅, ∅), (∅, ∅), (∅, ∅)〉, ∅, ∅, Coresinit〉 | hw ∈ HW}

In order to consider the mutual exclusion properties, consider only 2 programs which each
program consists of a code segment of mutual exclusion program. So, the definition of
Coresinit is defined as,

Coresinit = 〈1, σinit, ∅, ∅, ε, Pmutex〉 · 〈2, σinit, ∅, ∅, ε, Pmutex〉

where σinit = {loc → 0 | loc ∈ Location}[pc 7→ 1]. The proofs of based cases will show
that for any arbitrary s ∈ s̃init, the invariant INV (s) holds.

INV (s) ⇐⇒ Inv1(s) ∧ Inv2(s) (Extract the invariant)

⇐⇒ ∀i, j ∈ ID.((i 6= j) =⇒
¬(isEnterCrit(i, s) ∧ isEnterCrit(j, s))) ∧ Inv2(s) (Consider Inv1)

⇐⇒ ((1 6= 2) =⇒
¬(isEnterCrit(1, s) ∧ isEnterCrit(2, s))) ∧ Inv2(s)

(Initiate i = 1, j = 2)

⇐⇒ ((True) =⇒
¬(isEnterCrit(1, s) ∧ isEnterCrit(2, s))) ∧ Inv2(s)

⇐⇒ (¬(isEnterCrit(1, s) ∧ isEnterCrit(2, s))) ∧ Inv2(s)
⇐⇒ (¬(((pc(1, s) >= β + 1 ∧ pc(1, s) <= γ) ∧ isEnterCrit(2, s)))∧

Inv2(s) (Extract the isEnterCrit(1, s))

⇐⇒ (¬(((1 >= β + 1 ∧ 1 <= γ) ∧ isEnterCrit(2, s))) ∧ Inv2(s)
(The initial pc is 1)

⇐⇒ (¬(((False ∧ False) ∧ isEnterCrit(2, s))) ∧ Inv2(s)
⇐⇒ (¬((False ∧ isEnterCrit(2, s))) ∧ Inv2(s)
⇐⇒ ¬(False) ∧ Inv2(s)
⇐⇒ Inv2(s)
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⇐⇒ ∀rw1, rw2, rw
′ ∈ CritRW.∀i, j ∈ ID.((i 6= j)∧

((i, rw1), (i, rw2), (j, rw
′) ∈ Spo) ∧ (rw1 ≺po rw2) =⇒

¬((rw1 ≺xo rw′) ∧ (rw′ ≺xo rw2))) (Consider the invariant Inv2)

⇐⇒ ∀rw1, rw2, rw
′ ∈ CritRW.∀i, j ∈ ID.((i 6= j) ∧ (False) ∧ (False) =⇒

¬((False) ∧ (False))) (There is no execution, yet)

⇐⇒ ∀rw1, rw2, rw
′ ∈ CritRW.∀i, j ∈ ID.(False =⇒ True)

⇐⇒ True

Induction case

As for induction step, we have to show

∀s̃, s ∈ s̃, s′.(INV (s) ∧ s→ s′ =⇒ INV (s′))

As we consider before, we will split this case by the sets of states defined before. Therefore
the cases that we will consider are:

∀s ∈ s̃init, s′.(INV (s) ∧ s→ s′ =⇒ INV (s′)) (5.1)

∀s ∈ s̃1−α, s′.(INV (s) ∧ s→ s′ =⇒ INV (s′)) (5.2)

∀s ∈ s̃loop, s′.(INV (s) ∧ s→ s′ =⇒ INV (s′)) (5.3)

∀s ∈ s̃α−β, s′.(INV (s) ∧ s→ s′ =⇒ INV (s′)) (5.4)

∀s ∈ s̃branch, s′.(INV (s) ∧ s→ s′ =⇒ INV (s′)) (5.5)

∀s ∈ s̃crit, s′.(INV (s) ∧ s→ s′ =⇒ INV (s′)) (5.6)

∀s ∈ s̃β−γ, s′.(INV (s) ∧ s→ s′ =⇒ INV (s′)) (5.7)

∀s ∈ s̃try−release, s′.(INV (s) ∧ s→ s′ =⇒ INV (s′)) (5.8)

∀s ∈ s̃γ−release, s′.(INV (s) ∧ s→ s′ =⇒ INV (s′)) (5.9)

∀s ∈ s̃release, s′.(INV (s) ∧ s→ s′ =⇒ INV (s′)) (5.10)

For each cases, we should consider the possible rules, which are defined in section 3.2.3,
that can be applied to an arbitrary state. Since the number of rules is 18 and the number
of cases to be verified is 10, the proofs of induction cases might be so difficult for the
manual proof. Thus, we just show some proofs and the idea to prove each case in this
section.
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Case (5.1) ∀sinit ∈ s̃init, s′.(INV (sinit) ∧ sinit → s′ =⇒ INV (s′))
Let’s consider the possible rules which can be applied to any arbitrary state s ∈ s̃init.
Thus, the possible rules are:
• Rule 1. Fetching in-order

After we apply the rule, there are many concrete states that next state(s′) can be.
Hence, we define a set of states which refers to fetched states as

s̃fetch1 = {s | s = 〈hw,Φ′, ∅, ∅, {〈pid, σ[pc 7→ 2], ∅, ∅, ISAt(Pmutex(pid)), Pmutex〉} ] C〉∧
Φ′ = 〈({t}, ∅), po′, (∅, ∅)〉 ∧ pid ∈ ID}

The states in the set s̃fetch1 have chosen one core to fetch an instruction for execution.
• Rule 2. Fetching out-of-order (put instruction into the instruction buffer)

This rule also able to produce many possible states (s′). We also define a set of
states which refers to out-of-order fetched states as

s̃fetch2 = {s | s = 〈hw,Φ′, ∅, ∅, {〈pid, σ[pc 7→ 2], ∅, {(t, ISAt(Pmutex(1)))}, ε, Pmutex〉} ] C〉
∧ Φ′ = 〈({t}, ∅), po′, (∅, ∅)〉 ∧ pid ∈ ID}

Hence, we have to show that

∀sinit ∈ s̃init, s′ ∈ s̃fetch1 ∪ s̃fetch2(INV (sinit) ∧ (sinit → s′) =⇒ INV (s′))

So, It’s better to split the case to be

∀sinit ∈ s̃init, s′ ∈ s̃fetch1(INV (sinit) ∧ (sinit → s′) =⇒ INV (s′)) (5.11)

∀sinit ∈ s̃init, s′ ∈ s̃fetch2(INV (sinit) ∧ (sinit → s′) =⇒ INV (s′)) (5.12)

First of all, for any arbitrary sinit, let’s show the case (5.11) as

∀s′ ∈ s̃fetch1.(INV (sinit) ∧ sinit → s′ =⇒ INV (s′))

⇐⇒ ∀s′ ∈ s̃fetch1.(INV (sinit) ∧ sinit → s′ =⇒ Inv1(s
′) ∧ Inv2(s′))

⇐⇒ ∀s′ ∈ s̃fetch1.(INV (sinit) ∧ sinit → s′ =⇒
∀i, j ∈ ID.((i 6= j) =⇒ ¬(isEnterCrit(i, s′) ∧ isEnterCrit(j, s′)))
∧ Inv2(s′))

⇐⇒ ∀s′ ∈ s̃fetch1.(INV (sinit) ∧ sinit → s′ =⇒ ∀i, j ∈ ID.((i 6= j) =⇒ ¬(

((pc(i, s′) >= β + 1) ∧ (pc(i, s′) <= γ)) ∧ isEnterCrit(j, s′)))
∧ Inv2(s′))

We know that pc(i, s′) =

{
2 if i = pid
1 if i 6= pid

,for all s′ ∈ s̃fetch1.

According to the program, we also know that 1 <= α and α + 4 = β.
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Hence (pc(i, s′) > β + 1) ⇐⇒ False, for all i ∈ ID

⇐⇒ ∀s′ ∈ s̃fetch1.(INV (sinit) ∧ sinit → s′ =⇒ ∀i, j ∈ ID.((i 6= j) =⇒ ¬(

(False) ∧ (pc(i, s′) <= γ)) ∧ isEnterCrit(j, s′)))
∧ Inv2(s′))

⇐⇒ ∀s′ ∈ s̃fetch1.(INV (sinit) ∧ sinit → s′ =⇒ ∀i, j ∈ ID.((i 6= j) =⇒ ¬(

(False) ∧ isEnterCrit(j, s′)))
∧ Inv2(s′))

⇐⇒ ∀s′ ∈ s̃fetch1.(INV (sinit) ∧ sinit → s′ =⇒ True ∧ Inv2(s′))
⇐⇒ ∀s′ ∈ s̃fetch1.(INV (sinit) ∧ sinit → s′ =⇒ Inv2(s

′))

⇐⇒ ∀s′ ∈ s̃fetch1.(INV (sinit) ∧ sinit → s′ =⇒
∀rw1, rw2, rw

′ ∈ CritRW.∀i, j ∈ ID.((i 6= j)∧
((i, rw1), (i, rw2), (j, rw

′) ∈ Spo) ∧ (rw1 ≺po rw2) =⇒
¬((rw1 ≺xo rw′) ∧ (rw′ ≺xo rw2))))

⇐⇒ ∀s′ ∈ s̃fetch1.(INV (sinit) ∧ sinit → s′ =⇒
∀rw1, rw2, rw

′ ∈ CritRW.∀i, j ∈ ID.((i 6= j)∧
((i, rw1), (i, rw2), (j, rw

′) ∈ Spo) ∧ (rw1 ≺po rw2) =⇒
¬(False)) (No execution)

⇐⇒ True

For the case (5.12), It will provide a proof in the same way. Because, the proof considers
only pc’s value and executions. Hence, we can conclude that

∀sinit ∈ s̃init, s′.(INV (sinit) ∧ sinit → s′ =⇒ INV (s′))
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Sketch proof for case (5.2)

∀s ∈ s̃1−α, s′.(INV (s) ∧ s→ s′ =⇒ INV (s′))

First of all, we need to indicate the target processor for verification. As for the processor
i, we denote the states s̃1−α and s̃loop of the program which belong to processor i as
s̃1−α(i) and s̃loop(i). Then, we define the definition of s̃1−α and s̃loop as:

s̃1−α(i) = {〈hw,Φ, locked,N, {〈i, σ, B, L, exec,Pmutex〉} ] C〉 | (σ(pc) ≤ α)}
s̃loop(i) = {〈hw, 〈to⊕ (t, ∅), po.xo〉, locked,N, {〈i, σ, B, L, exec,Pmutex〉} ] C〉 |

(σ(pc) = α + 1) and (ops = ISA(Pmutex(α))) and (

(¬(inOrderIssue(hw)) =⇒ ((t, ops) ∈ L)) or

((inOrderIssue(hw)) =⇒ exec = (exec′ · ops)))}

Then, let’s consider the possible rules which can be applied to any arbitrary state s ∈
s̃1−α(i), for all i ∈ ID. In this case, all 18 rules can be applied to arbitrary states
s ∈ s̃1−α(i). So, we will group the possible next state, s→ s′, as follow:
• s′ ∈ s̃loop(i), this case is produced from the Rules 1 and 2 that apply to processor i.
• s′ ∈ s̃1−α(i), this case is produced form the remaining rules.

So, to proof the case (5.2), we will show

∀s ∈ s̃1−α(i), s′ ∈ s̃loop(i).(INV (s) ∧ s→ s′ =⇒ INV (s′)) (5.2-1)

∀s ∈ s̃1−α(i), s′ ∈ s̃1−α(i).(INV (s) ∧ s→ s′ =⇒ INV (s′)) (5.2-2)

Let’s consider the case (5.2-1), the Rules 1 and 2 can be applied to the arbitrary state
s, where s = 〈hw, 〈to, po, xo〉, locked,N, {〈i, σ, B, L, exec,Pmutex〉} ]C〉, if and only if the
state s satisfies the rule’s condition. The applied states s that satisfy the rules 1 and 2
are defined as follow, respectively.

s̃fetch1(i) = {〈hw,Φ′, locked,N, {〈i, σ[pc 7→ σ(pc) + 1], B, L, exec · opst, Pmutex〉} ] C〉 |
Φ′ = 〈to⊕ ({t}, ∅), po′, xo〉 and ops = ISA(Pmutex(i))}

s̃fetch2(i) = {〈hw,Φ′, locked,N, {〈i, σ[pc 7→ σ(pc) + 1], B, L ∪ {(t, ops)}, exec, Pmutex〉} ] C〉 |
Φ′ = 〈to⊕ ({t}, ∅), po′, xo〉 and ops = ISA(Pmutex(i))}

Therefore, to conclude the case (5.2-1), we will show the cases below:

∀s ∈ s̃1−α(i), s′ ∈ s̃loop(i) ∩ s̃fetch1(i).(INV (s) ∧ s→ s′ =⇒ INV (s′)) (5.2-1-1)

∀s ∈ s̃1−α(i), s′ ∈ s̃loop(i) ∩ s̃fetch2(i).(INV (s) ∧ s→ s′ =⇒ INV (s′)) (5.2-1-2)

As for the case (5.2-2), we have to consider all possible rules, 18 rules for our semantics,
to produce the possible next states like s̃fetch1(i) and s̃fetch2(i).

By intuition, the states in the sets s̃fetch1(i) and s̃fetch2(i) is obviously hold the invariant.
Because, in this induction proof, we consider only 2 processors and this processor i is not
enter the critical section, yet.
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Sketch proof for case (5.5)

∀s ∈ s̃branch, s′.(INV (s) ∧ s→ s′ =⇒ INV (s′))

Firstly, we will define s̃branch as

ts̃branch(i) = {〈hw,Φ, locked,N, 〈i, σ, B, L, exec,Pmutex〉〉 |
(σ(pc) = β)} ∩ (s̃cRule1(i) ∪ s̃cRule2(i))

This set will represent the states that are ready to fetch the next instruction in the next
step. Then, we will consider the possible states as s′, where s ∈ s̃branch(i) and s→ s′. The
next states of s ∈ s̃branch(i) will be a state in the set either s̃branch(i), s̃crit(i), or s̃loop(i).
So, we have to show that

∀s ∈ s̃branch(i), s′ ∈ s̃branch(i).(INV (s) ∧ s→ s′ =⇒ INV (s′)) (5.5-1)

∀s ∈ s̃branch(i), s′ ∈ s̃crit(i).(INV (s) ∧ s→ s′ =⇒ INV (s′)) (5.5-2)

∀s ∈ s̃branch(i), s′ ∈ s̃loop(i).(INV (s) ∧ s→ s′ =⇒ INV (s′)) (5.5-3)

As for (5.5-2) and (5.5-3), they allow only fetching rules to be applied to be either
s′ ∈ s̃crit(i) or s′ ∈ s̃loop(i). In addition, to show (5.5-2) and (5.5-3), we need some
atomicity properties of the systems. Since we need to ensure that only one processor can
enter the critical region, the ‘SWP’ instruction at line α + 1 should be able to keep the
atomicity requirement, Condition 3.4, of the read and write operations. As we provide
the condition atomicCond for the rule 6, we can ensure that the systems will hold the
atomicity properties. Then, for cases (5.5-2) and (5.5-3), we will provide that set of states
that satisfy the Rule 1 and Rule 2 as

s̃fetch1(i) = {〈hw,Φ′, locked,N, {〈i, σ[pc 7→ σ(pc) + 1], B, L, exec · opst, Pmutex〉} ] C〉 |
Φ′ = 〈to⊕ ({t}, ∅), po′, xo〉 and ops = ISA(Pmutex(i))}

s̃fetch2(i) = {〈hw,Φ′, locked,N, {〈i, σ[pc 7→ σ(pc) + 1], B, L ∪ {(t, ops)}, exec, Pmutex〉} ] C〉 |
Φ′ = 〈to⊕ ({t}, ∅), po′, xo〉 and ops = ISA(Pmutex(i))}

Then, to show the case (5.5-2) and (5.5-3), we need more 4 cases as

∀s ∈ s̃branch(i), s′ ∈ s̃crit(i) ∩ s̃fetch1(i).(INV (s) ∧ s→ s′ =⇒ INV (s′)) (5.5-2-1)

∀s ∈ s̃branch(i), s′ ∈ s̃crit(i) ∩ s̃fetch2(i).(INV (s) ∧ s→ s′ =⇒ INV (s′)) (5.5-2-2)

∀s ∈ s̃branch(i), s′ ∈ s̃loop(i) ∩ s̃fetch1(i).(INV (s) ∧ s→ s′ =⇒ INV (s′)) (5.5-3-1)

∀s ∈ s̃branch(i), s′ ∈ s̃loop(i) ∩ s̃fetch2(i).(INV (s) ∧ s→ s′ =⇒ INV (s′)) (5.5-3-2)

To show these cases, we consider any arbitrary s′ in the specific sets. So, we can conclude
the cases (5.5-2) and (5.5-3).

As for cases (5.5-1), this cases can apply all rules to consider the next state s′. So,
we also need to verify all rules that can apply to s̃branch(i). So, we have to show more 18
cases to verify the case (5.5-1). By intuition, this case can be verified, because the next
arbitrary state of this case is the element the same set which already hold invariant.
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Chapter 6

Evaluation

This chapter will evaluate our proposed formal model and verification method. Since
this research focuses on multi-core behavior issues, the verification of programs for multi-
core systems will become complex. As we have proposed the formal model to represent
multi-core systems in chapter 3, we also need evidences that the proposed formal model
is applicable to capture the multi-core behaviors. Moreover, the verification of the pro-
grams for multi-core systems also need the method to ensure the correctness based on
the proposed formal model. In the chapter 4, we have proposed the verification method
as a way to verify the correctness based on our semantics. This method also need some
evidences to convince that the method is applicable for verification.

6.1 Evaluation of our formal model

The formal model defined in section 3.2.3 has abstracted the behaviors of the multi-
core systems for executing the programs. The formal model is represented as operational
semantics which are appropriate to describe the behaviors of defined operations.

The significant behavior considered in this research is out-of-order execution. Since
this behavior affects the possible results of programs among cores, we have provided
an abstract model to represent this behaviors. In addition, the optimization mechanisms
cause the changing order of memory operation. Thus, our formal model provides the rules
to capture such optimization mechanisms and out-of-order execution. In addition, the
memory consistency models are captured in the model by providing conditions to restrict
execution behaviors for the rules. Therefore, we have proposed 18 rules to represent the
behaviors for executing programs on multi-core systems.

The section 3.3 have show the execution of programs which are placed on each core
separately. That section shows only one path of executions because our semantics pro-
vide non-determinism executions. Moreover, the degree of non-determinism is more than
we consider the programs as an interleaving way. Thus, the execution of the programs
becomes complicated. Nevertheless, such execution show that our formal model is able to
capture the out-of-order execution of the programs on multi-core systems.
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6.2 Evaluation of our verification method

The verification method proposed in chapter 4 is provided to capture the execution states
of the programs. The proof of this method uses the induction to provide the proof. The
proof will consider each arbitrary step of executions from the initial state. To ensure the
correctness of the programs, we consider the requirements or properties of the programs as
usual. Such requirements or properties will be formalized as invariant to hold for every
arbitrary states that can be reached by the initial state. Thus, the proposed method
provides a way to verify the invariant to hold on every execution steps of programs which
can be reached from initial states.

The characteristic of the method considers the execution of a single program to split
the cases in the induction steps for verification. We assume that the properties to be
verified usually consider the some significant states during the execution of the program.
In the method, we assume that those significant states can be group as a set of states.
Moreover, the intermediate states also can be group as a set of states. Hence, this method
will consider the induction on groups of states based on the execution of the program.

As we show in chapter 5, the verification method can be applied to a mutex lock
verification. In the verification, we proposed the way to verify the safety properties of
the programs. Since the complexity of our formal model, we didn’t show all the proofs
to cover the all executions of the program. As we consider the cases provided in the
case study, in the induction step, we have to show about 10 cases in the verification. In
addition, for each case, we have to take the rules which are proposed in the semantics, 18
rules, into account. For the simple cases, case (5.1), we provide about 10 lines to show
the proof. The whole proof might be at least 1800 lines in the verification. Hence, we
decide to provide some proofs to show the idea to apply the formal model to capture the
behaviors of execution on the multi-core system. Although the proof is quite complex
even if the programs contains a few instructions, the verification is able to capture the
states which are not appeared explicitly in the programs. That means we can realize the
behaviors of hardware in the verification.
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Chapter 7

Related works

This section will consider the related works that we consider in this research. Since
our target verification is the operating system, there are another OS verification which
provide another approaches for ensure their correctness. In addition, as we have proposed
the formal model to represent the execution of programs for multi-core system, there are
another approaches to represent the multi-core system which also take the out-of-order
execution into account. Moreover, there are verification methods which can be used for
program verification. This section will explain their approach and provide originality of
this research.

7.1 OS Verification

In the field of verification, there are related works that also take the operating systems
into account. As the [Kle09] has survey operating system verification which use the formal
verification, obviously the operating system is a complex systems and there are different
level of the proof to ensure the correctness of the operating system. As for our work,
we consider the low-level implementation to capture the out-of-order execution inside the
hardware.

As our motivation come from verification of automotive systems, there are related
works that also verify the automotive operation systems. In each work also provide the
different approach to deal with its own system, such as [Cho, KAE+14, Cho13, YH11].

The [Cho, Cho13, YH11] use model checking approach to ensure the correctness of
TramplineOS which is implemented based on OSEK/VDX OS specification. That work
formalizes the kernel code of operating systems as a model, then the model checking tool is
applied to ensure the properties based on that model. This approach automatically check
all of the possible states which can be produced from the formal model. Nevertheless, it
might have the state explosion problem as a limitation of this approach.

The [KAE+14] provides the verification of its own micro-kernel, named seL4. This work
uses theorem prover assistances to deduction proofs as formal verification. Although this
techniques require users to understand the underlying of the systems, it has no limitation
of the verification like model checking.
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7.2 Formalization

As the formal model is necessary to capture the behaviors of program execution, there are
related works that formalize their target system which take memory consistency models
into account, such as [AAS03, BP09, FM10, AFI+09].

The [BP09] has proposed the model that represent weakly ordering model. This model
is proposed for high-level language such as java language. The model is used to capture
the memory model provided by its language, such as java memory model (JMM).

The [FM10] formalizes the Instruction Set Architecture(ISA) of ARM processors as a
formal model. This model is described followed the ARM manual document, [Lim08]. This
model is quite concrete to represent the execution of each instruction in ARM processor.
Since this model is validated by using Random testing approach with the practical system
to conform their model do represent the real behaviors of instructions.

The [AAS03, AFI+09] have captured the out-of-execution behaviors by events. The
related work [AAS03] have propose the model for PowerPC shared-memory architecture
by using in-out operations. Such operations are used to capture the behaviors of infor-
mation that flow in the systems. In contrast, the related work [AFI+09] has proposed the
axiomatic model to consider the valid execution of the events. In this work, they map
the program as events to consider by extend the instruction semantics from the [FM10]
to capture the micro-operation inside the hardware.

7.3 Formal Verification

In order to ensure the correctness of the programs by using formal verification, there are
related works that proposed method to verify the program, such as [Moo03].

As chapter 3 in the book [Man03] proposes an approach to verify the partial correctness
of the program. In this method simply consider the program as flow-chart. Each step of
execution will have pre and post-conditions. However, this approach is not appropriate
for verify programs in multi-core systems because of out-of-order executions.

The [Moo03] has proposed a method to verify the programs which executing on oper-
ational semantics. This method will attach the assertions to the each cut-point, which
are considered by loops. In addition, this method also consider the induction proof to
consider the induction step of execution based on provided operational semantics. This
method will extend the initial states as symbolic state produced by the rules in semantics.
Once the state is match to the significant state that attach the assertion, such assertion
should hold to ensure the correctness during execution.

7.4 Originality

This research focuses on the verification of operating systems for multi-core systems.
The motivation of our research focus specifically on multi-core operating systems.The
related works [Cho13, Cho] have provide the formal verification by using Model checking.
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Nevertheless, those works didn’t take the out-of-order execution into account because the
multi-core systems is not taken into account in those operating systems, yet. Since the
multi-core systems is taken into account in this research, Model checking approach might
not be appropriate to ensure the correctness of the system. Thus, we focus on theorem
proving to ensure the correctness of the programs for multi-core systems.

As for the proposed formal model, we use the operational semantics to describe the
behaviors of program execution on the multi-core system. Our formal model is an ab-
straction of the multi-core system. We do capture only essences of program execution
to eliminate the unnecessary behaviors for program verification, such as cache behaviors.
Although the [FM10] is quite useful model to represent the ISA of ARMv7 architectures,
in our research we focus to abstract such behaviors, not in detail, to provide program
verification for multi-core system. In contrast to the [BP09] that provides the model to
represent the weakly model to consider program in the high-level, this research consid-
ers the programs in low-level which memory consistency model affect the behaviors of
hardware architecture.

The most similar works that propose the formal model for multi-core system are
[AFI+09, AAS03]. [AFI+09] describes an instruction inside a program as events. The ex-
ecutions of programs are the paths of the events, which are produced form the programs.
They consider the valid executions for the ARM processor and PowerPC processor by
providing the axiomatic models. As for [AAS03], they have introduce the view orders ap-
peared to each processor. They also provide the definition to constraints the view orders
of each core to follow the memory consistency model of target system. In contrast, our
formal model capture the behavior of program execution step by step. In each step of fetch-
ing instruction, they also produced micro-operations and memory operations to complete
the instruction. Then, the semantics will control the execution by using conditions which
adopt from [Gha95].

The related work [Moo03] has provided an appropriate method to verify the correctness
of programs based on proposed operational semantics. The approach will construct the
arbitrary state by extend the initial state based on operational semantics. However, the
degree of non-determinism of program execution on multi-core might cause the arbitrary
state become complicate to consider. Our verification method will consider the group of
arbitrary states to be hold for proposed invariant. Such groups will be considered from
the significant states as we have explained in chapter 4.
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Chapter 8

Conclusions and Future works

In this research, we have proposed the formal model which represent the hardware behav-
iors to capture the program execution for the multi-core system. As we show in chapter
3, the proposed formal model as operational semantics is able to provide the execution
of programs which can capture the out-of-order execution of memory operation. As for
memory consistency models, we capture just only sequential consistency model and par-
tial consistency model. Such models are adopt the constraints from [Gha95] to provide
conditions in operational semantics.

Moreover, as we need to ensure the correctness of programs on the multi-core system,
we proposed the verification method, as described in chapter 4, based on our formal model.
As we have shown in section 5, we can use this method to verify the safety properties of
the programs executing on multi-core system.

8.1 Discussion

8.1.1 Formal model

As the formal model has been proposed, we still have to consider whether the formal model
really represent the multi-core behaviors. Although we abstract the behaviors from the
related works and the execution of program can be produced as we show in section 3.3,
the model still need another evidences to convince that it can correctly represent the
program execution in multi-core behaviors.

8.1.2 Verification method

As the verification method has been proposed, we have shown our idea to verify the partial
correctness of safety properties. However, we didn’t finish the proof, yet, because of there
are many cases which are generated based on the formal model. Thus, the automate tools
are needed to help us in verification.

In addition, there are another requirements of the programs to be ensure, such as
starvation problems. That means another properties should be taken into account, such as
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liveness properties. The another formal verification, such as model checking, use temporal
logics to represent the liveness properties and check them in the execution.

8.2 Future works

As we have discussed, the formal model and verification method, which we have proposed,
should be improved to convince that our method is appropriate for program verification
on multi-core systems.

8.2.1 Ensuring the proposed formal model

In order to ensure, first of all, we should adopt our approach to proof assistance tool.
Although the formal model have been proposed, we also need the tools to check that our
formal model is really correct implement.

In addition, to provide the evidences for the formal model, we should validate our
model. As the related works [FM10] use the practical hardware to ensure their formal
model of instruction set architecture by using random testing techniques. Therefore, we
also need the validation techniques to ensure that our abstract model can realize the
program execution behaviors on multi-core systems.

8.2.2 Improving the verification method

As we discuss about the verification method, we should provide a way to support another
properties. As model checking is able to adopt the temporal logic for checking the correct-
ness. In theorem proving, there are related work [OF99] that adapt the idea of liveness
verification. Thus, such approach might be adopt to improve the verification method for
program execution in multi-core system. Moreover, since the proof became large even if
we consider the few instructions, it’s better to apply the automate tools to provide proofs.
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