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Abstract—The goal of this paper is to provide analytical
assessment that justifies the performance tendencies of
practical encoding/decoding techniques for a binary data
gathering wireless sensor network (WSN). The theoretical
rate region of the WSN is approximately analyzed based
on the Slepian-Wolf theorem. We also derive the bit error
rate (BER) floor given the observation error probability
by using the Poisson-binomial distribution approximation.
The simulation results show that the BER performance
of our proposed technique is close to theoretical limits
supported by the Slepian-Wolf theorem. The extrinsic
information transfer chart analysis is also used to verify
the BER performance. Moreover, the simulation results
show that the bit error probability floor is matched with
the Poisson-binomial approximation.

I. INTRODUCTION

Wireless sensor networks (WSNs) have attracted sig-
nificant attention by the sensing and wireless commu-
nication research communities, and their practical de-
ployment is also gaining momentum. The applications
of WSNs are numerous, and they can be deployed in un-
predictable environments to perform various distributed
sensing tasks, for which it is extraordinarily important to
design good transmission and scheduling techniques in
order to make the sensor network highly energy efficient.
The information gathered by different sensors is often
correlated. Therefore, distributed source coding (DSC)
techniques inspired, e.g., by the Slepian-Wolf theorem
[1], can provide an effective framework to optimize the
network. This can be used to decrease the transmission
rate or to reduce the transmit power. A tutorial paper by
Xiong et al. [2] discussed the DSC schemes for WSNs
in the framework of the Slepian-Wolf theorem.

We consider a binary data gathering WSN, where
multiple sensors observe a single binary source to

produce erroneous observations. A fusion center (FC)
reconstructs the binary source using multiple versions
of observations. In the network information theory, the
problem of estimating a single source by deploying
multiple unreliable sensors (agents) over rate limited
noiseless links is called the chief executive officer (CEO)
problem [3], the goal of which is to derive the rate-
distortion function for a temporally memoryless source.

Numerous encoding/decoding algorithms have been
proposed for the binary data gathering WSN. In [4],
authors proposed an encoding scheme using parallel
concatenated convolutional codes and a joint decoding
method using weighted extrinsic log-likelihood ratio
(LLR) to utilize the correlation knowledge. An adaptive
bi-modal decoder for the binary data gathering WSN
having two sensors was proposed in [5]. In [6], the
convergence properties of the iterative decoding process
were evaluated. We studied the binary data gathering
WSN in [7] and [8]. A very simple encoding and joint
decoding algorithm using LLR updating function [9] was
proposed, the bit error rate (BER) performance of which
is significantly improved [7]. We further proposed an
algorithm for estimating the correlation parameters in
[8].

In additive white Gaussian noise (AWGN) channels,
the BER curve of the technique presented in [7] and [8]
exhibits a sharp turbo cliff at a certain threshold signal-
to-noise ratio (SNR) like the standard turbo codes do.
However, the BER curve exhibits an error floor. It is
clearly understood that the floor is due to the fact that
the observations suffer from errors before being channel-
encoded for transmission. Then, there arises a question:
how the values of the threshold SNR and the error floor
should/could be justified, and what the reference values
are to be compared with?

The major contribution of this work is threefold:



...

Fig. 1. An abstract model of a binary CEO problem.

(1) the theoretical threshold SNR of the data gathering
WSN is derived based on the Slepian-Wolf theorem;
(2) the error floor of the BER curve is analytically
calculated from the probabilities of several events in a
Poisson binomial process; (3) the threshold SNR in the
BER curve is verified through the extrinsic information
transfer (EXIT) chart analysis.

II. THEORETICAL RATE REGION ANALYSIS

In this section, the theoretical rate region of the binary
data gathering sensor network is approximated by the
Slepian-Wolf source coding, where account is taken of
the observation error probability.

A. Problem Definition

The abstract model of the binary data gathering WSN
is depicted in Fig. 1. An independently, identically
distributed random data sequence u taking values from
a set {0, 1} with equal probability is observed by K
sensors. Let uk, k = 1, · · · ,K, be the output random
data sequence of a binary symmetric channel (BSC)
with associated crossover probability pk and u being the
input. Each sensor independently encodes its observation
uk by a joint source channel (JSC) encoder and send the
encoded version sk over AWGN channel to a common
decoder. It jointly reconstructs uk with an arbitrarily
small error probability. Finally, the estimate û of u is
obtained by using the majority logic decision.

In network information theory, the binary data gather-
ing WSN is modeled by a binary CEO problem, the rate-
distortion region of which is still not known. Therefore,
we use the Slepian-Wolf theorem to evaluate the core
part of the main problem, which is illustrated in Fig. 2.

B. Threshold for K Users

Slepian and Wolf [1] characterized the rate region for
the lossless source coding of two correlated sources.
It can be extended to the case having an arbitrary
number of correlated sources [10]. The Slepian-Wolf

Fig. 2. The source coding model of the binary data gathering WSN.

theorem of this case is summarized in Theorem 1. Let
Λ = {1, · · · ,K} and S ⊆ Λ.

Theorem 1 (Slepian-Wolf [10]): In order to achieve
lossless transmission of multiple correlated sources, the
source coding rate Rs

k should satisfy the following con-
ditions ∑

k∈S
Rs

k ≥ H(US |USC), (1)

where SC = Λ \ S represents the complementary set of
S and US = [ui;uj ;uk] when i, j, k ∈ S .

Since the channels between the sensors and the FC
are assumed to be orthogonal with each other, source-
channel separation is hold in this case. Therefore, ac-
cording to the source-channel separation theorem [9],
the threshold SNR is then calculated by

SNRlim = 10 log10

(
2

∑
k Rs

k∑
k 1/Rc

k − 1

)
, (2)

where Rc
k represents the rate of the channel code used

at the k-th sensor node. It should be emphasized here
that SNRlim corresponds to the threshold SNR when the
minimal distortion is achieved. The minimal distortion
is equivalent to the error floor of the BER performance,
which is analyzed in the next section. Now we need to
calculate Rs

sum =
∑

k∈ΛRs
k.

Given the fact that uk, k = 1, · · · ,K, is the result of
passing u through a BSC with crossover probability pk,
where uk and u represent the realizations of uk and u,
respectively, the joint probability Pr(u1, u2, · · · , uK) is
formulated as

Pr(u1, u2, · · · , uK)

=
1

2

∏
i∈A

(1− pi)
∏
j∈AC

pj +
1

2

∏
i∈A

pi
∏
j∈AC

(1− pj), (3)

where A = {k ∈ Λ|uk = 0} and AC = Λ \ A is the
complement set of A. For example, setting K = 3 with
u1 = 0, u2 = 1 and u3 = 0, the set A is equal to {1, 3}
and AC = {2}.



Therefore, the joint entropy H(U) with U =
[u1; · · · ;uK ], which is equivalent to Rs

sum, is calculated
as

H(U) = (4)

−
∑

uk∈{0,1}

Pr(u1, u2, · · · , uK) log2(Pr(u1, u2, · · · , uK)).

III. BEP FLOOR ANALYSIS

To analyze the error floor that appears in the BER
performance curve of the encoding/decoding technique
proposed in [7] and [8], we assume the channels between
the sensors and the FC are noiseless since the BEP floor
appears in the high SNR regime and it is only determined
by the observation error probabilities.

A. Poisson-Binomial Approximation

Without loss of generality, we assume the source u is
an all zero sequence with n bits. The majority decision
rule to generate û(i) is

û(i) =

{
1, if 1(Ui) > 0(Ui),
0, otherwise,

(5)

where 1(Ui) and 0(Ui) represent the number of 1’s and
0’s in the i-th column of U, respectively.

The decision error occurs when û(i) is decided to be
1. Hence, the error floor is analyzed by determining the
probability of the number of 1’s from K independent
Bernoulli sequences having different probabilities of ”1”.
In the statistics, the Poisson-binomial distribution is
the probability distribution of the sum of independent
Bernoulli trials that are not necessarily identically dis-
tributed. The probability of J-times occurrence of the
error in K-times repeated binary trials with different
crossover probabilities is [11]

Pr(J = j)

=


K∏
k=1

(1− pk), j = 0,

1
j

j∑
k=1

(−1)(k−1) Pr(J = j − k)L(k), j > 0,

(6)

where L(k) =
K∑
l=1

(
pl

1−pl

)k
and 0 ≤ j ≤ K.

Hence, the error floor with different observation noise
probabilities is calculated by

Pr(û(i) ̸= u(i)) =
K∑

j=K+1

2

Pr(J = j), if K is odd,

1
2 Pr(J = K

2 ) +
K∑

j=K

2
+1

Pr(J = j), if K is even.

(7)

B. Theoretical Lower Bound

The BEP floor analysis provided in the previous sub-
section is based only on the generalized majority logic
(Poisson-binomial) analysis. However, it does not take
into account the impact of soft-combining of the LLRs.
The exact BEP floor analysis taking soft-combining into
account is left as a future study. Instead, we further
provide a theoretical lower bound of the BEP floor plb.

According to the rate-distortion theory for binary
source [12], the theoretical lower bound of the BEP floor
is given by [13]

plb = H−1
b [1 +

K∑
k=1

Hb(pk)−H(U)], (8)

where Hb(x) : [0, 0.5] → [0, 1] and H−1
b (x) : [0, 1] →

[0, 0.5] represents the binary entropy function and its
inverse function, respectively.

IV. SIMULATIONS FOR VERIFICATION

A series of simulations have been conducted to verify
the results presented in this work. This section provides
the results of the simulations.

A. BER Evaluation

The encoding/decoding algorithm [8] is used to obtain
the BER performance. The decoding process is divided
into two parts: 1)the local iteration (LI) decodes the
error correcting coding chains applied at the sensor
nodes; 2)the global iteration (GI) combines the extrinsic
LLRs output from each LI and feedbacks the updated
LLRs to the LI. The common parameters assumed in
the simulations were set as follows

• Block length n = 10000 bits.
• Interleavers: random.
• Encoder: rate Rc

k = 1
2 nonrecursive systematic

convolutional code with generator polynomial G =
[03, 02]8, where [·]8 represents the argument is an
octal number.

• Doping ratio of the ACC: 1.
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Fig. 3. BER performance of our proposed technique with the number
of sensors K = {2, 4, 6, 8}. pk are set at 0.01. The corresponding
SNRlim are plotted in vertical dash-dot lines. The approximated error
floors and the lower bounds plb of the error floors are presented in
horizontal dashed and dash-dot lines, respectively.

• Decoding algorithm: log-maximum a posteriori.
• The number of iterations: 50 times1.
• The SNR of each sensor node is assumed to be the

same.

Fig. 3 illustrates the BER performance of the technique
presented in [7] and [8] with the number of sensors
K = {2, 4, 6, 8}. The results of the theoretical analysis
presented in the previous sections are also shown. In
the simulations, the error probabilities pk were all set to
0.01. It can be clearly seen that in all the cases, the BER
curves exhibit a sharp drop in the values at their corre-
sponding threshold SNR values, like turbo-cliff of the
turbo-codes. The difference between the threshold SNR
obtained by the simulations and the theoretical analysis
presented in Section II-B are {1.61, 1.65, 1.88, 1.92} dB
for K = {2, 4, 6, 8}. Furthermore, such sharp a decrease
in BER suddenly plateaus at a value, however, the
appearance of the error floor is different from that with
the turbo codes; the floor is flat with the techniques
shown in [7] and [8], while that with the turbo codes
it still has a decay which is due to the property of the
consistent codes.

Fig. 4 shows the BER performance with K =
{3, 5, 7}, where the observation error probability pk of
each sensor was randomly set as those values shown
in the caption of Fig. 4. Even in these cases, the

1In [7], [8], we just set the number of iterations empirically,
however, in this paper, we set this number according to the EXIT
analysis, which results in a better convergence performance.
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Fig. 4. BER performance comparison with the number of
sensors K = {3, 5, 7}. The observation error probabilities
are random distributed as pk = {0.025, 0.075, 0.002},
pk = {0.0145, 0.005, 0.025, 0.015, 0.03} and pk =
{0.01, 0.015, 0.02, 0.05, 0.005, 0.0003, 0.02}.

BER performance gap to the theoretical limits are about
{1.52, 1.73, 1.8} dB.

It is also found that the BEP floors shown in Figs. 3
and 4 are placed between the results of the Poisson-
binomial approximation and the rate-distortion lower
bound. From the simulation results, it is clearly found
that, the BEP floors are well matched with the values
obtained in Poisson-binomial approximation.

B. Verification by EXIT Analysis

The convergence behavior of the k-th LI is evaluated
by the EXIT chart analysis [14], [15]. The three dimen-
sional (3D) EXIT chart analysis is used to verify the
convergence of LI, taking into the account of the helper
information of GI.

For obtaining the 3D EXIT chart, the a priori input
LLR fed back to ACC−1 was first artificially generated
for different values of IaACC−1 , 0 ≤ IaACC−1 ≤ 1. The
mutual information IeACC−1 was then calculated by eval-
uating the histogram of the output extrinsic LLR output
from ACC−1. Furthermore, the EXIT function for Dk is
determined by evaluating the histogram of LLR Le

ck
in

the form of
Ieck

= Tk(L
a
ck
,La

uk
), (9)

where Ieck
is the mutual information between the ex-

trinsic LLR Le
ck

and the coded bits ck, indicating that
Ieck

= I(Le
ck
; ck). Since Ieck

is the output of a function
with two inputs, La

ck
and La

uk
, they were artificially

generated for different values of Iack
, 0 ≤ Iack

≤ 1, and
Iauk

= I(La
uk
;uk), 0 ≤ Iauk

≤ I(UΛ\k;uk), respectively.
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Fig. 5. 3D EXIT curves of ACC−1 and Dk at SNR = −7.5 dB
and K = 4.

The mutual information Ieck
was then calculated by

evaluating the histogram of Le
ck

output from Dk. Finally,
the 3D EXIT chart is plotted based on the values of the
mutual information.

The 3D EXIT chart shown in Fig. 5 was obtained by
setting pk = 0.01, k = 1, · · · , 4, SNR = −7.5 dB.
From Fig. 5, it is found that the effectiveness of GI
is significant. The two EXIT planes are stuck at the
initial stage, however, the tunnel between two EXIT
planes opens as Iauk

becomes large. The 3D trajectory
obtained by evaluating Iauk

, IeACC−1 and Ieck
in the real

simulations is also presented in Fig. 5. As we can see,
the trajectory asymptotically reaches a point very close
to (1.0, I(uk;UΛ\k), 1.0) mutual information point, in-
dicating that the information uk transmitted from the
k-th sensor node can be recovered with an arbitrary low
error probability.

V. CONCLUSION

We investigated the transmission techniques for the
binary data gathering sensor network, where multiple
sensors observe a common binary source and trans-
mit their erroneous observations to the fusion center.
The theoretical limit was analyzed based on the frame
work of the Slepian-Wolf theorem in lossless distributed
source coding problem. Numerical results shown that the
SNR values where turbo cliffs happened in the BER
curves are only around 1.5 ∼ 2 dB to the corresponding
threshold SNRs. Furthermore, the EXIT chart analysis
clearly verified the threshold SNR values in the BER
performance. The BEP floor, which is common to the
CEO problem, was also approximated by evaluating
the Poisson-binomial distribution. The simulation results
were very close to the approximated BEP floor. In

addition, the lower bound of the BEP floor was derived
by the rate-distortion function of binary sources.
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