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Abstract-
Many multi-objective evolutionary algorithms

(MOEAs) have been proposed over the years. Main
part of the most successful algorithms such as PESA, or
NSGA-II, are the Pareto based selection strategy that
decide survivors using dominance among individuals.
However, does the Pareto based selection strategy always
succeed in finding the Pareto optimal solutions? This
paper shows a very simple example that can cause
serious troubles on the Pareto based MOEAs. In such an
instance, various solutions, which are apart from the true
Pareto-optimums, are left as hardly-dominated solutions.
We define such solutions as dominance resistant solutions
(DRSs), and show a class of problems which produces
DRSs easily. To cope with this difficulty we propose
�-domination strategy that relaxes the domination
introducing weak trade-off among objectives. With
�-domination strategy, The DRSs are effectively purged
from the population.

1 Introduction

Multi-objective problems have been investigated in many
communities with various motivations and approaches. In
recent days, some modern multi-objective evolutionary algo-
rithms (MOEAs) have shown excellent performance for test
problems proposed by Deb[Deb 1998]. Pareto Archived Evo-
lution Strategy (PAES) [Knowles 1999], Strength Pareto
Evolutionary Algorithm (SPEA)[Zitzler 1999], Pareto
Envelope-based Selection Algorithm (PESA)[Corne 2000],
and (Fast Elitist) Non-dominated Sorting Genetic Algorithm
(NSGA-II)[Deb 2000], are such sophisticated MOEAs.

These MOEAs are based on two common ideas, one is the
non-dominated strategy and the other is the crowding based
diversity maintenance. They consider non-dominated solu-
tions as proper candidate solutions to be kept. If the pop-
ulation or the archive gets full, some of the non-dominated
solutions are killed the based on another criterion. That is,
the solution in the most crowded area is considered to be use-
less. These ideas seems very reasonable. However, if there
exist hardly-dominated but clearly worse solutions, and they
are spreaded in the population, the Pareto-based strategies fail
in purging such solutions. This paper shows a very simple ex-

ample of such a case, and discuss how to treat this difficulty.
The organization of this paper is as follows. Section 2

overviews basic differences between Pareto-based algorithms
and other MOEAs, and show a superiority of the Pareto-based
algorithms. In Section 3, we define a class of solutions that
cause serious trouble on the Pareto-based algorithms, and a
simple example is shown, further the instance is generalized.
In Section 4, we introduce an idea to cope with these diffi-
culty. Finally Section 5 is the conclusion and future work.

2 Comparison of a Pareto-based and Non-
Pareto-based MOEAs

2.1 Pareto-based and Non-Pareto-based MOEAs

The main idea of the Pareto-based MOEAs is that non-
dominated solutions in a population have the advantage of be-
ing survivors. For usual problems, the Pareto-based MOEAs
are considered to be superior to Non-Pareto-based MOEAs at
least to the extent of searching Pareto optimums.

In this paper, we employ a simple Pareto-based MOEA
called PbEA for experiments. PbEA is inspired by PESA,
but it is simplified only to have the population (archive) size
N as a parameter so as to clarify the characteristics of mod-
ern Pareto-based MOEAs. No technique to fasten search is
employed. The algorithm of the PbEA is as follows.

1. Initial population ofN individuals are randomly cre-
ated.

2. A pair of parents are selected randomly, and a candi-
date solution is generated applying the crossover or the
mutation to the parents.

3. If the candidate dominates an individual in the popu-
lation, replace it with the candidate, and return to Step
2.

4. If the candidate is dominated by an individual in the
population, return to Step 2.

5. If an individual in the population is dominated by an-
other, replace it with the candidate, and return to Step
2.



6. (N+1 solutions are on the Pareto front.) Replace the
most crowded solution with the candidate.

7. If the termination criterion is hold stop the algorithm,
otherwise return to Step 2.

There also have been proposed various algorithms which
don’t employ the concept of domination. We call such algo-
rithms Non-Pareto-based MOEAs. The Predator Prey Model
(PPM) approach [Laumanns 1999] is one of such MOEAs.
In the PPM, there areN preys ( solutions ) andM preda-
tors. Each predator has its own preference over a single ob-
jective function, and kills the worst prey it can reach. Clearly,
preys that are on the Pareto front may be killed by a predator,
though its probability will be lower. Thus the PPM searchs
the solutions of the multi-objective optimization problems.

2.2 Comparative Experiments

We show the behavior of the PbEA and two types of the
PPM proposed in [Laumanns 1999]. For fair comparison, the
same configurations of the PPM and the test problem with
[Laumanns 1999] is used. The used test problem is as fol-
lows.
Test-1 :

minimize
x;y

g1; g2

g(x; y) =

�
�10 exp(�0:2

p
x2 + y2 )

jxj4=5 + jyj4=5 + 5 (sin3x+ sin3y)

�

�50 � x � 50; �50 � y � 50:

For the PbEA, the Gaussian mutation with the constant
stepsize same with the PPM and no crossover is used. Popu-
lation sizeN = 100, which is fewer than 900 in the PPM.

Figure 1 shows solutions of a population attained by the
MOEAs. The PPM with the constant stepsize (Figure 1(b))
keeps a number of good solutions, but it also holds many non-
Pareto solutions. Even we extend the maximum generation
this situation doesn’t change. Figure 1(c) shows solutions
of the PPM with the decreasing stepsize. Though solutions
closer to the Pareto front are obtained, solutions are divided
to several clusters, and if we extend generation they converge
to almost same points.

Figure 1(a) shows the solutions of the PbEA. We can see
two advantages of the PbEA over the PPM : 1) the PbEA
holds very few non-Pareto solutions, and 2) the PbEA keeps
wider Pareto front stably. As shown in this example, Pareto-
based MOEAs perform well on usual problems.

3 Dominance Resistant Solutions and Failure of
Pareto-based MOEAs

Researchers of MOEAs often consider that solutions are clas-
sified into two types, i.e.

1. solutions that were/will be dominated by other solu-
tions before too long, and

2. solutions that are hardly dominated, and are (near to)
the Pareto optima.

In other words, we are obsessed with the idea that hardly-
dominated means that they are good solutions.

However, as Kitaet al. have pointed out [Kita 1996],
some solutions in a certain problem survive over very long
generations though they are fairly inferior qualitatively, be-
cause solutions that can dominate these troubling solutions
are scarcely found.

We define such solutions as Dominance Resistant Solu-
tions (DRSs). That is,

� DRSs are extremely inferior to others in at least one
objective, and therefore they are apart from Pareto op-
timums.

� However, solutions that dominate a DRS are scarcely
found.

If DRSs occupy a large area in the search space than that
of the true Pareto optima, the Pareto-based algorithms will
fail in finding the good approximation of the Pareto optima.
That is, all non-dominated solutions are treated as survivor
on these MOEAs, and DRSs spread out over the search space
and remain long. Thus, solutions near to Pareto optima are
never intensively searched.

3.1 A Simple Example of DRSs

DRSs and failure of the Pareto-based MOEAs are observed
in a very simple 2-variable and 3-objective problems,
Test-2 :

minimize
x;y

f1; f2; f3

f(x; y) =

0
@x2

(x� 20)2

y2

1
A

�50 � x � 50; �50 � y � 50:

It is easily confirmed that the true Pareto-optimal variables
are on the line segment,

(x; y) = (x; 0); 0 � x � 20:

In Test-2, for example,(xA; yA) = (8; 40); (f1; f2; f3) =
(64; 144; 1600) is apart from Pareto-optimal.
And (xB ; yB) = (12; 6); (f1; f2; f3) = (144; 64; 36) is
nearer to Pareto-optimal, but never dominate(xA; yA).

In fact, solutions that dominate(8; 40) are restricted to the
points on the line segment(x; y) = (8; y);�40 < y < 40
(Figure 4). In real-coded algorithms with the Gaussian mu-
tation, such solutions on the line will never be found. Binary
coded algorithm with the bit-flip mutation, such solutions can
be found with unilateral alternation of a single variable. How-
ever, given the rotated problem of the Test-2, the binary coded
algorithm also will fail.
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Figure 1: Approximation of the Pareto set of Test-1 with the MOEAs.
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Pareto set

Solutions
that dominate A

Solutions that dominate C

Figure 2: Variable space of Test-2. C is easily dominated, but
A is hardly dominated by other solutions.

Solutions in the area0 < x < 20;�50 � y � 50 are
similarly never dominated. This means that in Test-2, about
20% of the search space are DRSs.

3.2 Behavior of MOEAs on Test-2

So as to show how the failure of the Pareto-based MOEAs in
such problems is serious, we try to solve Test-2 with the PPM
and the PbEA. All configurations are same as the previous
experiments.

Figure 3(a) shows that, all solutions gathers near to the
Pareto optimal variable values,(x; y) = (x; 0); 0 < x < 20,
though some roughness and divisions are observed. By con-
trast, Figure 3(b) shows misery behavior of the PbEA. As is
predicted, solutions spread over the area0 � x � 20;�50 �
y � 50. The PbEA fails in searching good solutions.

3.3 A Class of Problems which Produce DRSs Easily

In this section, we pick up a class of multi-objective optimiza-
tion problems, and show the class is hard for Pareto-based
algorithms because of DRSs.

LetP1 be theK-objective optimization problem defined in
then-dimensional real spaceX = Rn, and letf1; :::; fK be
the objective functions to be minimized. LetX� be the Pareto
optimal set ofP1. We also consider anotherL-objective prob-
lem P2 defined in them-dimensional real spaceY = Rm,
and letg1; :::; gL be the objective functions to be minimized,
andY � be the Pareto optimal set ofP2.

Now, concatinatingP1 and P2, consider the (n + m)-
variables, (K + L)-objective problemP3:

minimize
x1;:::;xn;y1;:::;ym

o1; :::; oK+L

oi :=

�
fi(x1; :::; xn) if 1 � i � K;
gi�K(y1; :::; ym) if K + 1 � i � K + L:

We call multi-objective optimization problem of this type
block-separable problem. Test-2, the previous sample be-
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Figure 3: Behaviors of the MOEAs for Test-2. Shown in variable(decision) space.

longs to this class. Now let us denoteV = X � Y andV � be
the search space and the Pareto optimal set ofP3 respectively.
Prop. The Pareto optimal set ofP3 isX��Y �. ( Proof is in
Appendix )

Next we show a fact which causes DRSs seriously, that
solutions inX� � Y are hardly dominated by other solutions
in P3. Let x� 2 X�, y� 2 Y n Y �, and define two sets
X0 � X andY + � Y as follows.

X0 := fx 2 X j 8i; fi(x) = fi(x
�)g

Y + := fy 2 Y j y � y�g

Theorem(x; y) � (x�; y�), (x; y) 2 X0 � Y +.
Proof
() trivial by definitions.
)) As 8i; oi(x; y) � oi(x

�; y�), 8i; fi(x) � fi(x
�).

On the other hand,8i; fi(x�) � fi(x) becausex� 2 X�.
In consequence,8i; fi(x�) = fi(x), and herex 2 X0.
Now the following equations are obtained,

1 � 8i � K; oi(x; y) = oi(x
�; y�) (1)

1 � 8i � K + L; oi(x; y) � oi(x
�; y�) (2)

1 � 9i � K + L; oi(x; y) < oi(x
�; y�): (3)

From (1) and (3), we can conclude

K + 1 � 9i � K + L; oi(x; y) < oi(x
�; y�): (4)

Consequently from (2) and (4),y � y� because
oi(x; y) = gi�K(y) for K + 1 � i � K + L. Theny 2 Y +,
finally we get(x; y) 2 X0 � Y +.

Usually, the measure ofX0 is zero inX . Therefore the
measure ofX0�Y + is also zero inV . So(x�; y) 2 X��Y
are hardly dominated. Compared withX� � Y , the measure

Pareto set

DRSs

X*

Y*

Y
X

X x Y

Figure 4: WhenX� � X is the Pareto set ofP1, andY � �
Y is of P2, X� � Y � is the Pareto set ofP3. Solutions in
X� � (Y n Y �) and(X nX�)� Y � are hardly dominated.



of X0�Y + � X��Y is usually zero measured inX��Y .
On the other handX� � Y occupies wider area inV . This
fact means that large portion of solutions of block-separable
instances behave as DRSs (Figure 4), as observed in the pre-
vious example. As block-separable problems are easily con-
sidered and not so special, we believe the DRSs is serious
problem for modern MOEAs.

4 �-domination Strategy

4.1 Concept of�-domination

Difficulties of DRSs are raised from the strict definition of
the domination. �-domination is a relaxation of the strict
domination taking weak trade-off among objectives into con-
sideration. Similar extensions has been discussed in, e.g.
[Yu 1974a] [Yu 1974b].

The fundamental idea of�-domination is setting up-
per/lower bounds of tradeoff rates between two objectives.
While it is very difficult to assess exact tradeoff rate between
two objectives, it will not so hard to assess lower(or upper)
bound of substitution between two objectives, i.e. to set
�ij � 0 such thatunit gain in fj is at least worth of�ij
gain in fi.For example, it is diffuicult to assess precise ex-
change rate of two currencies such as U.S. dollars and euro,
but usually 1 dollar has at least the value of 0.1 euro, and 1
euro has at least the value of 0.1 dollar.

Let�ij and�ij be upper and lower bounds of the tradeoff
rate betweenfi andfj respectively, i.e.

�ji � �fi=�fj �
1

�ij
;

where�fi and�fj are equivalent change offi andfj .

4.2 Definition, Corollary and Significance of �-
domination

ConsiderK-objective minimization problem
f1(x); :::; fn(x) x 2 X . Let

gi(x; y) := fi(x)�fi(y)+
1::KX
j 6=i

�ij(fj(x)�fj(y)) x; y 2 X

(N :B : gi(x; y) :=
KX
j=1

�ij(fj(x) � fj(y)) with �ii = 1:)

Def.1. a solutionx �-dominates a solutiony (denoted by

x
�
� y ) , 8i gi(x; y) � 0; and 9i gi(x; y) < 0:
When �ij � 0 8(i 6= j); definition of �-domination

equals to that of domination.�-domination permitsx to dom-
inatey if x is slightly inferior toy in an objective but largely
superior toy in some other objectives.
Def.2. x 2 X is �-Pareto optimal

, fy 2 X j y
�
� xg = ;.

About these new concepts, following proper corollaries
are composed. (Proofs are in Appendix)

Cor.1. x � y ) x
�
� y.

Cor.2. The�-Pareto optimal setX� = f x 2 X j x is �-
Pareto optimalg is a subset of the Pareto optimal setX�.

Objective 2

Objective 1

A

B

Solutions that A alpha-dominates

Solutions that 
      B dominates

Alpha-Pareto set

C

Figure 5:�-domination and strict domination in a minimiza-
tion problem. C is Pareto optimal but is not�-Pareto optimal,
because C is�-dominated by A.

Relacing the strict domination used in Pareto-based
MOEAs with �-domination, we will be able to search the
�-Pareto optimal set instead of the Pareto optimal set.

�-domination will bring two benefits. Firstly, seriously
worse solutions of DRSs can not survive any longer in�-
Pareto based MOEAs. Additionally, we can gain fine-drawn
candidates for decision making. Solutions that alpha-Pareto
based MOEAs exclude, Pareto optimal but not�-Pareto op-
timal solutions, are extreme solutions which may not be se-
lected by human as afinal solution.

4.3 Numerical Experiments

To show�-domination can cope with DRS-problems, we
carried out an experiment on Test-2 by the PbEA with�-
domination. Parameters�ij were set to constc in all i 6= j.
c = 1

3
; 1
9
; 1

100
are used.

In Figure 6, we can see the sound behavior of the PbEA
with �-domination. We observe some tradeoff in perfor-
mance of the MOEA with the parameter�. If we use larger
� (Figure 6(a)), solutions gathers closer to the Pareto front,
but some region of the Pareto front are not covered. If we use
the smaller� (Figure 6(c)), the wider Pareto front is found,
however, solutions far from the Pareto front remains more be-
cause to dominate the DRSs gets difficult.
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5 Conclusion and Future work

In this paper failure of modern Pareto-based multi-objective
evolutionary algorithms (MOEAs) caused by dominance re-
sistant solutions (DRSs) is shown. And�-domination strat-
egy is proposed as an idea to cope with DRSs. The following
two subjects should be studied as future work to show im-
portance of the DRSs: 1) Do other/bigger classes of DRSs-
problem exist? 2) Does DRSs really occurs and are serious in
real world problems?

Appendix: Proof of Proposition and Corollaries

Prop. The Pareto optimal set ofP3 isX� � Y �.
Proof

Let x� 2 X nX� and y0 2 Y:
As x� =2 X�, 9x+ 2 X s.t. x+ � x�:
That is, 8i; fi(x

+) � fi(x
�); and 9i; fi(x

+) <
fi(x

�); 1 � i � K:
Herex�; y0 =2 V �; to be dominated byx+; y0 2 V be-

cause
1 � 8i � K; oi(x

+; y0) � oi(x
�; y0)

1 � 9i � K; oi(x
+; y0) < oi(x

�; y0)

K + 1 � 8i � K + L; oi(x
+; y0) = oi(x

�; y0):

Therefore,((X n X�) � Y ) \ V � = ;. In the same way,
we obtain(X � (Y n Y �)) \ V � = ;.

Next we show(x�; y�) 2 V � wherex� 2 X�; y� 2 Y �.
Assuming(x�; y�) =2 V �,

9(x+; y+) 2 V; (x+; y+) � (x�; y�):

In this time,1 � 9i � K + L; oi(x
+; y+) < oi(x

�; y�).
However, if 1 � i � K, it meansfi(x+) < fi(x

�), this
contradicts tox� 2 X�. Similarly if K + 1 � i � K + L,
this contradicts toy� 2 Y �. Now the assumption is rejected.

By these arguments,V � = X� � Y � is shown.

Cor.1. x � y ) x
�
� y.

Proof
From definition of domination,8i fi(x) � fi(y) �
0; 9i fi(x)� fi(y) < 0:
As 8i; j �ij � 0 andfj(x)� fj(y) � 0;

8i
1::KX
j 6=i

�ij(fj(x)� fj(y)) � 0:

Therefore,8i gi(x; y) � 0; 9i gi(x; y) < 0 whenfi(x) �

fi(y) < 0: Thusx
�
� y:

Cor.2. The�-Pareto optimal setX� = f x 2 X j x is �-
Pareto optimalg is a subset of the Pareto optimal setX�.
Proof

Let x be an�-Pareto optimal.

Thenf y 2 X j y
�
� xg = ;:

If w(2 X) � x, w
�
� x ( Cor.1. ).

Sof w 2 X j w � xg � fw 2 X j w
�
� xg = ;, i.e. x

is a Pareto optimal.
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