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Abstract 

 
    OSEK/VDX, a standard of automobile OS promulgated by the alliance of German and French automotive manufacturers 

in 1994, has been widely adopted by many automobile manufacturers to design and implement a vehicle-mounted OS, such 

as BMW, Opel and TOYOTA. Based on the OSEK/VDX OS, more and more applications are developed and deployed in 

vehicles to assist drivers to control vehicles, such as the cruise control system and temperature control system. However, 

with the growing functionalities in vehicles and increasing complexity in the development, how to straitly ensure the 

reliability of the developed OSEK/VDX applications is becoming a challenge for developers. 

  An application developed on OSEK/VDX OS consists of multiple tasks. To concurrently executing multiple tasks on 

one CPU, a scheduler within OSEK/VDX OS is used to dispatch tasks. Moreover, OSEK/VDX OS provides a standardized 

application interfaces (APIs) for its applications, and tasks within the applications can invoke the provided APIs to 

dynamically change the scheduling of tasks. To ensure the reliability of OSEK/VDX applications, model checking, which 

is an efficient and exhaustive verification technique for concurrent software, can be applied to verify OSEK/VDX 

applications for detecting subtle and logic errors. 

    There exist many model checking methods that have been applied to verify concurrent software such as the ANSI-C 

multi-threaded software and SystemC multi-threaded software. In the existing methods, due to the concurrency of target 

software, all of the interleavings of threads are checked in the verification process in order to exhaustively verify the given 

software. Although the existing methods can exhaustively check concurrent software, these methods usually perform an 

approximate verification since the behaviours of scheduler are not taken into account in verification process. If we apply 

these existing model checking methods to verify OSEK/VDX applications, it is too imprecise since a lot of unnecessary 

interleavings of tasks will be superfluously checked in the verification stage, especially these unnecessary interleavings will 

usually result in a spurious bug. Furthermore, as a result of the spurious bug, developers have to spend extra costs judging 

whether the detected bug is real one or not after completing verification. As to reduce the checking costs, a more accurate 

model checking approach should be used in the verification of OSEK/VDX applications. 

  Recently, to accurately check concurrent software such as ANSI-C multi-threaded software and SystemC multi-threaded 

software, several prominent model checking methods have been proposed by some senior researchers. In these methods, as 

to seek a more accurate verification result, the behaviours of scheduler are taken into account in the verification process. 

Even so, these prominent model checking methods are still unsuitable to accurately verify OSEK/VDX applications 

because of different scheduling policy. In the existing methods, the running thread within the concurrent software is 

arbitrarily determined by scheduler (non-deterministic scheduler is used to dispatch threads). However, compared with the 

non-deterministic scheduler, in OSEK/VDX applications which task is to be run is explicitly determined by OSEK/VDX 

scheduler — a deterministic scheduler is used to dispatch tasks.     

    The purpose of this thesis is to make model checking technique more accurate in the verification of OSEK/VDX 

applications. In order to achieve this purpose, in this thesis we describe and develop three approaches that can accurately 

and automatically verify the safety property of OSEK/VDX applications using model checking technique. To the best of 

our knowledge, our work is first to apply model checking technique to accurately verify the multi-tasks/threads software 

which is dispatched by a deterministic scheduler. 

    To accurately verify OSEK/VDX applications using model checking technique, the behaviours of OSEK/VDX OS such 

as scheduler behaviours should be taken into account in the checking process since the running task is explicitly determined 
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by OSEK/VDX scheduler and the APIs invoked from tasks will haphazardly change the scheduling of tasks. In our first 

approach, we investigate a checking method based on the existing model checker Spin. In the approach, as to employ Spin 

model checker to accurately verify OSEK/VDX applications, we propose a checking model which is a combination model 

of application model and OSEK/VDX OS model to precisely simulate the executions of the OSEK/VDX applications in 

real OSEK/VDX OS. Compared with our first approach (Spin-based checking approach), in our second approach we 

develop a new technique named execution path generator (EPG) to verify the OSEK/VDX applications based on the SMT-

based bounded model checking. In the approach, as to avoid the behaviours of OSEK/VDX OS to be explored in the 

verification stage, the OSEK/VDX OS model is embedded in EPG (constructing model algorithm flat) to dispatch tasks and 

respond to the APIs invoked from tasks in the process of constructing checking model of application. Furthermore, based 

on the sequentialization idea, in our last approach we present a novel method to translate OSEK/VDX applications into 

sequential models in order to efficiently apply existing model checkers such as Spin and cbmc to directly check 

OSEK/VDX applications. In particular, as to avoid the behaviours of OSEK/VDX OS to be poured into the sequential 

models, like our second approach (EPG technique), in the approach the OSEK/VDX OS model is embedded in translation 

algorithm flat to dispatch tasks and respond to the APIs invoked from tasks in the sequentialization process.   

    We have implemented our approaches and conducted two types of experiments to evaluate the proposed approaches. In 

the first experiments, as to show the accuracy of our approaches, the sequentialization-based checking approach is selected 

as candidate from our checking approaches, and we compared the checking approach with the existing model checking 

methods for concurrent software. The experiment results denote that our approach is an accurate checking method for 

OSEK/VDX applications in contrast with the existing model checking methods for concurrent software. In the second 

experiments, we evaluated the efficiency and scalability of our approaches based on a series of experiments. According to 

the conducted experiment results, we find the following results,  

 The Spin-based checking approach can accurately verify the OSEK/VDX applications, but the scalability of this 

approach is limited because too many details about OSEK/VDX OS model are explored in the verification stage, 

especially the state space explosion will happen if the checked applications hold a lot of tasks and APIs.  

 EPG technique is more scalable than Spin-based checking approach in checking the applications which hold a lot 

of tasks and APIs. However, it is not efficient to check the applications which hold a large number of branches, 

since the checking model of application is constructed based on the execution paths in EPG technique. If an 

application hold a lot of branches, it will spend a lot of time exploring execution paths in the verification process, 

which will slow down the performance of EPG technique.   

 Based on the sequentialization process of our approach, the selected model checker Spin can efficiently verify the 

applications which hold a lot of tasks, branches and APIs with the less cost in terms of states, time and memory 

compared with the Spin-based checking approach and EPG technique. 

Furthermore, we have used our sequentialization-based approach to sequentialize many experimental OSEK/VDX 

applications which hold about 1000 lines of C code, and verified the sequentialized applications with the well-known 

bounded model checker cbmc. The performances indicate that the sequentialization-based approach and cbmc can be 

considered as a practical method to verify the OSEK/VDX applications with industrial complexity. 

 

keywords:  
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Chapter 1

Introduction

OSEK/VDX [34][43] is a standard of automobile OS, developed by a consortium of European

automobile manufacturers and suppliers in conjunction with the University of Karlsruhe

in 1994. The primary motivation of OSEK/VDX standard is to resolve the problem of

increasing software content in vehicles and desire high-quality products. Currently, it has

been widely adopted by many automobile manufacturers to design and develop a vehicle-

mounted OS, such as BMW, Opel and TOYOTA. Based on the OSEK/VDX OS, more and

more applications are developed and deployed in vehicles to assist drivers to control vehi-

cles, such as the cruise control system and temperature control system. To an application

which runs on the OSEK/VDX OS, the reliability is very important, since a nonreliance

application will threaten our life. However, with the growing functionalities in vehicles

and increasing complexity in the development, how to straitly ensure the reliability of the

developed OSEK/VDX applications is becoming a challenge for developers.

1.1 OSEK/VDX Applications and Model Checking

An application developed on OSEK/VDX OS consists of multiple tasks (OSEK/VDX ap-

plication is multi-tasks software). To concurrently execute multiple tasks on one CPU, the

static priority scheduling policy with non-preemptive strategy and full-preemptive strategy

is adopted by OSEK/VDX scheduler to dispatch tasks. Particularly, as shown in Fig. 1.1,

1
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Figure 1.1: OSEK/VDX scheduler

a ready queue is used to lay out the execution order of tasks. Based on the ready queue,

the running task is explicitly determined by scheduler (deterministic scheduler is used to

dispatch tasks). OSEK/VDX OS can process two types of tasks, basic task and extended

task. The states of a basic task consist of running state, ready state and suspended

state. Compared with the basic task, the extended task can hold synchronization events

and has a unique state called waiting state. Furthermore, OSEK/VDX OS provides a

standardized application interfaces (APIs) for its applications (such as ActivateTask(tk),

TerminateTask(), WaitEvent(eid) and GetResource(rid)), and tasks within the application

can invokes these APIs to dynamically change the states of tasks, synchronization events

and shared resources, e.g., invoke the API ActivateTask(tk) to activate a suspended task.

To ensure the reliability of OSEK/VDX applications, testing as an important checking

technique is being used in industry. However, there are several disadvantages when we

apply testing technique to check the developed OSEK/VDX applications, e.g., as we know,

it is difficult to exhaustively check an OSEK/VDX application using testing technique,

especially when the tested OSEK/VDX application holds non-deterministic behaviours,

because of the incomplete test-cases. In addition, it is hard to reproduce an error trace

when we detect the error using testing technique, due to the concurrency of OSEK/VDX

applications.

Model checking [2][3], an efficient and exhaustive verification technique for concurrent

software, can be applied to verify OSEK/VDX applications instead of testing technique. In

contrast with testing technique, there are several advantages in model checking technique,
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e.g., it is usually an exhaustive and automatic checking technique. Particularly, it will

return a counterexample when detecting an error. Based on the returned counterexample,

developers can easily find the error trace and reproduce the erroneous behaviours.

1.2 Shortcomings of Existing Model Checking for

OSEK/VDX Applications

There exist many model checking methods [26][50][51] that have been applied to verify

concurrent software such as the ANSI-C multi-threaded software and SystemC multi-

threaded software. In the existing methods, due to the concurrency of target software, all

of the interleavings of threads are checked in the verification process in order to exhaus-

tively verify the given software. Although the existing methods can exhaustively check

concurrent software, these methods usually perform an approximate verification since the

behaviours of scheduler are not taken into account in verification process. If we apply

these existing model checking methods to verify OSEK/VDX applications, it is too im-

precise since a lot of unnecessary interleavings of tasks will be superfluously checked in

the verification stage, especially these unnecessary interleavings will usually result in a

spurious bug. Furthermore, as a result of the spurious bug, developers have to spend extra

costs judging whether the detected bug is real one or not after completing verification.

As to reduce the checking costs, a more accurate model checking approach should be used

in the verification of OSEK/VDX applications.

Recently, to accurately check concurrent software such as ANSI-C multi-threaded soft-

ware and SystemC multi-threaded software, several prominent model checking methods

[13][37] have been proposed by some senior researchers. In these methods, as to seek a

more accurate verification result, the behaviours of scheduler are taken into account in the

verification process. Even so, these prominent model checking methods are still unsuit-

able to accurately verify OSEK/VDX applications because of different scheduling policy.

In the existing methods, the running thread within the concurrent software is arbitrarily
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determined by scheduler (non-deterministic scheduler is used to dispatch threads). E.g.,

there are two threads t1 and t2 in Fig. 1.2. If SystemC scheduler is used to dispatch these

two threads, there are two possible thread execution orders (t1, t2) and (t2, t1). However,

compared with the non-deterministic scheduler, in OSEK/VDX applications which task is

to be run is explicitly determined by OSEK/VDX scheduler—a deterministic scheduler is

used to dispatch tasks. E.g., for the same example shown in Fig. 1.2, if the OSEK/VDX

scheduler is used to dispatch tasks t1 and t2, there is just one task execution order (t1, t2),

where we assume that the priority of task t1 is higher than task t2 and these two tasks

are currently in the ready state.

1.3 Thesis Purpose

The purpose of this thesis is to make model checking technique more accurate in the

verification of OSEK/VDX applications. In order to achieve this purpose, in this thesis we

describe and develop three approaches that can accurately and automatically verify the

safety property of OSEK/VDX applications using model checking technique. To the best

of our knowledge, our work is first to apply model checking technique to accurately verify

the multi-tasks/threads software which is dispatched by a deterministic scheduler. There

are two objects in this thesis, one is to show the details of our approaches, and the other

is to investigate the accuracy, efficiency and scalability of proposed approaches based on
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the experiments.

1.4 Checking Approaches for OSEK/VDX Applica-

tions

In OSEK/VDX application, the running task is explicitly determined by OSEK/VDX sched-

uler and the APIs invoked from tasks will haphazardly change the scheduling of tasks.

There are several challenges that should be addressed when we apply model checking

technique to accurately verify OSEK/VDX applications, e.g.,

• How to construct an accurate checking model for OSEK/VDX applications.

• How to handle the behaviours of OSEK/VDX OS, i.e., how to deal with the APIs

invoked from tasks, and how to explicitly perform the scheduling behaviours.

In our first approach, as to apply existing model checkers to accurately verify OSEK/-

VDX applications, we investigate a method based on the well-known Spin model checker

[26]. To accurately verify OSEK/VDX applications using Spin, the key work is how to

construct a checking model to describe the executions of an application. In our Spin-

based checking approach, a combination model of application model and OSEK/VDX OS

model is used to precisely simulate the executions of the OSEK/VDX applications in real

OSEK/VDX OS, where all of the tasks within application are designed as processes, and

the OS model that conforms to OSEK/VDX specification as a cooperative process is

used to dispatch tasks and respond to the APIs invoked from tasks. We have conducted

many experiments using this approach. The experiment results indicate that the Spin-

based checking approach can accurately verify OSEK/VDX applications. However, the

scalability of the approach is limited, because too many details about OS model are

explored in the verification stage, especially the state space explosion [4] may happen if

the checked application invokes a lot of service APIs.

In order to avoid the behaviors of OSEK/VDX OS model to be explored in the verifi-

cation stage and intend to handle a complex OSEK/VDX application which holds a large
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number of states, in our second approach we propose a new technique named execution

path generator (EPG) based on the advanced SMT-based bounded model checking (BMC)

[11][14]. The core work of verifying a system using BMC is how to construct a transition

system (checking model) to reflect the executions of given system. As shown in Fig. 1.3,

we can use the transition system to reflect the executions of the example. However,

compared with the simple example shown in Fig. 1.3, an OSEK/VDX application holds

multiple tasks and a scheduler is used to dispatch tasks. Moreover, the APIs invoked from

tasks will haphazardly change the scheduling of tasks, e.g., the different APIs locating at

different branches will lead to the different task execution orders. In contrast with the

shown example, it is difficult to construct a transition system for OSEK/VDX application.

In our EPG technique, like other BMC methods for concurrent software (e.g., the

method [37] for ANSI-C multi-threaded software), we explore all of the execution paths

for constructing the transition system in order to successfully apply BMC technique to

verify OSEK/VDX applications. Particularly, as to avoid the behaviors of OSEK/VDX

OS model to be explored in the verification stage and construct an accurate transition

system, the OSEK/VDX OS model is embedded in EPG (the algorithm of constructing

model flat) to dispatch tasks and respond to the APIs invoked from tasks. There are two

advantages in our EPG technique, e.g., (i) EPG: we can construct an accurate transition

system without the behaviors of OSEK/VDX OS model for OSEK/VDX application based

on the generated execution paths, since OSEK/VDX OS model is embedded in EPG to

dispatch tasks and respond to the APIs invoked from tasks. (ii) SMT-based BMC: it can
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make our approach more efficient and scalable in checking the complex applications which

hold a large number of states, because the state-of-the-art SMT solver [10][17] is used to

carry out the verification.

We have developed a corresponding tool named osek-bmc according to the proposed

approach, and conducted many experiments using the developed tool. The experiment re-

sults show that, our EPG technique is more efficient and scalable than Spin-based checking

approach in checking the OSEK/VDX applications which hold a lot of tasks and APIs, but

it is not efficient to handle the applications which hold a lot of branches. This is because,

in our EPG technique the transition system of an OSEK/VDX application is constructed

based on the execution paths. If the application holds a lot of branches, it will spend a

lot of time exploring execution paths for constructing transition system, which will slow

down the performance of our EPG technique.

As to efficiently check the large-scale applications which hold a lot of tasks, APIs and

branches, and moreover, enable existing model checkers such as spin [26] and cbmc [16] to

directly verify OSEK/VDX applications, in our third approach we propose a novel method

to translate OSEK/VDX applications into sequential models based on the sequentialization

idea. In order to efficiently and accurately sequentialize OSEK/VDX applications, There

are several challenges that should be addressed, e.g.,

• How to explicitly perform the scheduling behaviours of OSEK/VDX OS and deal

with the invoked APIs.

• How to efficiently construct a sequential model to describe the behaviours of an

OSEK/VDX application, e.g., how to efficiently handle branches and the same exe-

cution behaviours of application.

In our sequentialization-based approach, like our EPG technique, we embed OSEK/VDX

OS model in the translation algorithm flat to explicitly perform the scheduling behaviours

and respond to the APIs invoked from tasks. In addition, as to efficiently construct a se-

quential model, an extended directed graph is used to implement the sequentialization

process of OSEK/VDX application. The key idea of sequentialization-based approach is
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that, we symbolically execute application using the extended directed graph and explicitly

perform the scheduling behaviours. In other words, in the sequentialization process task

statements such as condition statements and assignment statements are not computed,

instead, the extended directed graph is used to describe the executions of application

under the dispatch of embedded OSEK/VDX OS model. There are several advantages in

our sequentialization-based approach, e.g.,

• It can efficiently construct a sequential model for OSEK/VDX applications based on

the directed graph, e.g., we can employ the combination states in directed graph to

avoid the process of exploring execution paths, and use cycles to represent the same

execution behaviours such as loops in application.

• The constructed sequential model does not hold the behaviours of OSEK/VDX OS

model, because OSEK/VDX OS model is embedded in translation algorithm flat to

dispatch tasks and respond to the invoked APIs.

• Based on the sequentialization process, the existing model checkers can be directly

applied to verify OSEK/VDX applications.

We have implemented a tool named autoC according to the sequentialization approach,

and conducted many experiments using the implemented tool. In the experiments, to

comprehensively investigate the effectiveness of our sequentialization-based approach, the

OSEK/VDX applications which hold different task number, API number, loop number

and different scheduling behaviours are selected as our benchmarks. In addition, in the

experiments, the well-known Spin is selected as the back-end model checker, and we

compared our sequentialization-based approach with Spin-based checking approach and

EPG technique. According to the conducted experiment results, we find the following

results,

(i) The Spin-based checking approach can accurately verify the OSEK/VDX applica-

tions, but the scalability of this approach is limited because too many details about
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OSEK/VDX OS model are explored in the verification stage, especially the state

space explosion will happen if the checked applications hold a lot of tasks and APIs.

(ii) EPG technique is more efficient and scalable than Spin-based checking approach in

checking the applications which hold a lot of tasks and APIs. However, it is not

efficient to check the applications which hold a large number of branches, since the

transition system of application is constructed based on the execution paths in EPG

technique. If the application holds a lot of branches, it will spend a lot of time

exploring execution paths for constructing transition system, which will slow down

the performance of our EPG technique.

(iii) Based on the sequentialization process of our approach, the selected back-end model

checker Spin can efficiently verify the applications which hold a lot of tasks, loops

and APIs with the less cost in terms of states, time and memory compared with the

Spin-based checking approach and EPG technique.

Furthermore, we have used our sequentialization-based approach to sequentialize many

experimental OSEK/VDX applications which hold about 1000 lines of C code, and ver-

ified the sequentialized applications with the well-known bounded model checker cbmc.

The performances indicate that the sequentialization-based approach and cbmc can be

considered as a practical method to verify the OSEK/VDX applications with industrial

complexity.

1.5 Thesis Contribution

With the growing functionalities in vehicles and increasing complexity in the develop-

ment, how to straitly ensure the reliability of the developed OSEK/VDX applications is

becoming a challenge for developers. The approaches presented in this thesis can help

developers to accurately check the developed OSEK/VDX applications. There are two

main contributions in this thesis. The first contribution is, our approaches can reduce the
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costs on the verification of OSEK/VDX applications, which benefits from the following

superiorities,

1. Developers can easily use our approaches to verify an OSEK/VDX application, since

our approaches support all of the OSEK/VDX OS modules and related APIs. Par-

ticularly, the corresponding tools support a subset of C programming language as

input, developers can use the corresponding tools to automatically carry out the

verification.

2. In the verification process, developers do not need to judge whether the detected

bug is a real one or not after completing verification. This is because, the be-

haviours of OSEK/VDX scheduler are taken into account in our approaches. Based

on the scheduling of OSEK/VDX scheduler, our approaches can perform an accurate

verification.

3. Our approaches make the checking process of OSEK/VDX applications more trust-

worthy, since our approaches are based on the model checking that is an exhaustive

checking technique.

4. Our approaches will return a counterexample when finding a bug. Based on the

returned counterexample, developers can easily understand the bug and correct the

bug.

The second contribution comes from our sequentialization-based checking approach.

Based on the sequentialization process of our approach,

1. Developers can verify a large-scale application using existing model checkers, since

the existing model checkers just verify a sequential model instead of a concurrent

model.

2. Developers can conveniently select suitable model checkers to verify OSEK/VDX

applications, e.g., use cbmc to efficiently find subtle bugs, and use esbmc [31] to

verify the applications which hold unbounded loops.
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1.6 Thesis Outline

The rest of the thesis is structured as follows. The background for model checking tech-

nique is presented in chapter 2. As to easily understand our checking approaches, the

preliminaries for OSEK/VDX OS and applications are discussed in chapter 3. Based on the

discussion about the execution characteristics of OSEK/VDX applications, the overviews

of our three checking approaches are stated in chapter 4. Then, the details of our ap-

proaches are presented in chapter 5 to chapter 7. As to show the accuracy, efficiency and

scalability of our approaches, the experiments are carried out in chapter 8. Related work

is discussed in chapter 9. Conclusion of thesis is placed in the last chapter.
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Chapter 2

Background

To improve the reliability of developed software, testing technique is widely used in the

industry of software. However, there is an important problem that need to be solved in the

verification of software, namely concurrent program verification. As we know, concurrency

errors are particularly hard to find by testing technique, because the errors are difficult to

reproduce. Model checking technique, an efficient and exhaustive verification technique,

can solve the problem. As shown in Fig. 2.1, the key principle of model checking is: let

M be a state transition graph of a system (i.e., Kripke structure or finite state machine),

let f be a given property (i.e., assertion or temporal logic formula), explore all states s

of M to determine whether the given property f is true in the state transition graph M

(i.e., M, s |= f). If the given property f is false in the state transition graph M , the trace

in the state transition graph M can be considered as a witness for revealing the given

f

Figure 2.1: The principle of model checking
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Figure 2.2: The model for a SystemC multi-threaded software

property f . In model checking, the trace is usually named counterexample. Based on the

counterexample, the errors can be easily reproduced.

In this chapter, the model checking for concurrent software and linear temporal logic

(LTL) will be firstly introduced, and then the advanced bounded model checking (BMC)

technique will be discussed based on several examples.

2.1 Model Checking

2.1.1 Model Checking for Concurrent Software

Concurrent software usually consists of multiple threads. To concurrently execute mul-

tiple threads on one CPU, a scheduler is used to dispatch threads. There have been

many concurrent software standards such SystemC standard, POSIX standard and ANSI-

C standard that have been widely used in the industry of software. In these concurrent

software standards, which thread within software is to be run is arbitrarily determined

by scheduler. In other words, the running thread is stochastic when the multi-threaded

software runs on the machine. If testing technique is used to check such software, it is

difficult to reproduce an error track because of the non-deterministic scheduling. In con-

trast to testing technique, model checking can solve the problem based on the reported

counterexample.

The key idea of model checking is: firstly construct a model to describe the executions

of a target system, and then search the constructed model with given property. To verify

concurrent software, a tree as a model is usually constructed for demonstrating all of the
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possible interleavings of threads. E.g., as shown in Fig. 2.2, there is a SystemC multi-

threaded software, and the multi-threaded software consists of three threads. In model

checking, a tree shown in the right side of Fig. 2.2 as a model will be constructed to

exhaustively describe all of the possible executions of the multi-threaded software. When

the model of concurrent software is constructed, there existing many checking techniques

that can be applied to search the constructed model for checking whether the constructed

model satisfies the given property or not, such as explicit state checking technique [23],

binary decision diagrams (BDD) technique [6][45], symbolic checking technique [21] and

bounded model checking technique [24].

Currently, based on the model checking technique, there are many model checkers

that have been established based on the different model checking techniques, and these

established model checkers have been successfully applied to verify multi-threaded soft-

ware that conforms to different concurrent software standards. E.g., Bell Labs developed

a model checker named spin [26] based on the explicit state model checking technique.

For the ANSI-C standard, a bounded model checking based model checker named esbmc

[31] has been implemented in the university of Southampton. In addition, in the group

of Cimatti, a model checker named kratos [12] has been established for SystemC multi-

threaded software. There are also several famous model checkers, such as symbolic model

checker SMV [7], bounded model checker cbmc [16], etc.

2.1.2 Liner Temporal Logic (LTL) Specification

In the verification of software, assertion as a common artifice is usually inserted into the

model of target software to judge whether the target software models the specification.

However, it is hard to use assertion to exhaustively check whole model of concurrent

software, because the insertion position of assertion is confoundedly difficult to be deter-

mined, caused by concurrency. Linear Temporary Logic (LTL) is an instance of modal

logic, instead of assertion, often used to specify properties in the verification of concurrent

software, e.g., it can be used to specify a property for judging whether the value of a vari-
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able will become a specified value in the future. In this part, based on Kripke structure

[14] and paths of Kripke structure, we will firstly introduce the semantics of LTL, and

then show several examples to explain some general properties specified in LTL.

Definition 1 A Kripke structure M is a tuple M = (S, I, R, L). S = {s1, s2, ..., sn} is the

finite set of states. I ⊆S is the set of initial states. R ⊆S×S is the transition relation,

where ∀s∈S,∃s′∈S such that (s, s′) ∈R. L :S→2AP is labelling function from states to

the power set of atomic propositions AP , where for a state s ∈S, the set L(s) is made of

the atomic propositions that hold in s.

For example, a kripke structure is shown in Fig. 2.1. In the shown example, S =

{s0, s1, s2}, and p, q, r are the atomic propositions.

Definition 2 A path π of a Kripke structure M is an infinite sequence s0, s1, · · · of states,

where ∀i,〈si, si+1〉 ∈R. πi = si, si+1, · · · is the subpath of π starting from state si, and

π(i) denotes the i-th state si of path π. If the starting state π(0) of a path π is an initial

state (i.e., π(0)∈I), then we say that the path π is initialized.

For example, as shown in Fig. 2.3, the path π = (s0, s1, s2, s2, · · · ) is an initialized path in

the shown Kripke structure, where π(0) is the initial state s0.

In general, LTL inherits propositional variables (in mathematical logic, a proposi-

tional variable is the variable which can either be true or false) and logic operators such
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as negation ¬, conjunction ∧, disjunction ∨ and implication →, etc. In addition to the

propositional variables and logic connectives, LTL formula holds several temporal oper-

ators, such as the next time operator X, the global operator G, the liveness operator F,

the binary temporal operators Until (U) and Release (R). The syntax of LTL over atomic

propositions AP with p ∈AP is stated below,

ϕ ::= true|false|p|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|ϕ→ ϕ|¬ϕ|Xϕ|Fϕ|Gϕ|ϕUϕ|ϕRϕ

For example, for the given example shown in Fig. 2.3, we can specify a LTL formula

ϕ = F(p ∧ q) to verify the system.

Definition 3 Let π be a path in Kripke structure M , ϕ be a LTL formula. The LTL

formula ϕ is held by the path π iff M,π |= ϕ, where

M,π |= true M, π 6|= false

M, π |= p iff p ∈ L(π(0))

M,π |= ¬ϕ iff M,π 6|= ϕ

M, π |= ϕ1 ∧ ϕ2 iff M,π |= ϕ1 and M,π |= ϕ2

M,π |= ϕ1 ∨ ϕ2 iff M,π |= ϕ1 or M,π |= ϕ2

M,π |= ϕ1 → ϕ2 iff M,π 6|= ϕ1 or M,π |= ϕ2

M,π |= Gϕ iff for all paths πi for all i ≥0, M,πi |= ϕ

M, π |= Fϕ iff for some path πi for some i ≥0, M,πi |= ϕ

M, π |= Xϕ iff M,π1 |= ϕ

M, π |= ϕ1Uϕ2 iff exists i ≥0 such that M,πi |= ϕ2 and for all j < i, M,πj |= ϕ1

M,π |= ϕ1Rϕ2 iff exists i ≥0 such that M,πi |= ϕ1 and for all j ≤ i, M,πj |= ϕ2 or

for all i ≥0 M,πi |= ϕ2

For the example shown in Fig. 2.3, according to the semantics of LTL stated in definition

3, we can easily find that the system holds the LTL formula ϕ = F(p ∧ q).
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2.2 Bounded Model Checking

The original motivation of bounded model checking was to leverage the success of satisfia-

bility (SAT) [39][41] in solving Boolean formulas to model checking. Compared to explicit

state model checking technique and BDD-based model checking technique [6][45], it offers

the advantage of handling the verification of large state spaces. The main idea of BMC is

to avoid the full state space generation and look for witnesses of an existential specifica-

tion on the suitable subsets of the full model under the given bound. Once a sub-model is

selected, the considered sub-model will be translated into propositional formulae. Then,

the propositional formulae and the negative form of given specification (given property)

will be solved by a specialized SAT solver. If the verification result is true, it means that

the sub-model does not satisfy the given specification, a counterexample will be report by

the SAT solver. Otherwise, a larger sub-model will be selected and the whole procedure

will be run again until the whole model is verified.

2.2.1 Transition system with Bound

Bounded model checking consists of a transition system M , a given property f and a

user-supplied bound k (k ≥ 0). The transition system M is a conjunctive normal formula

(CNF), used to model the target system. The given property can be stated as a LTL

formula. The user-supplied bound k is used to limit the verification space. If given a

system M , a bound k and a property f , we can use the propositional formula shown in

definition 4 to carry out verification based on the SAT solver.

Definition 4 [[M,¬f ]]k := I(s0) ∧ (
∧
T (sk, sk+1)) ∧ [[¬f ]]k

Where, I(s0) is the initial function used to initialize the values of variables declared in

the system, T (sk, sk+1) is the transition relation.

For example, as shown in Fig. 2.4, for a 2-bit counter which is taken from paper [24],

if the bound k is set to 2, we can use the following transition system [[M ]]2 to model the
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system, where the initial function I(s0) is (a0 = 0 ∧ b0 = 0).

[[M ]]2 := I(s0) ∧ (a0 = 0 ∧ b0 = 0) ∧ (a1 = 0 ∧ b1 = 1) ∧ (a2 = 1 ∧ b2 = 0)

2.2.2 LTL Property in Bounded Model Checking

Bounded model checking supports the property specified in LTL formula in the verification.

The semantics of LTL property f in bounded model checking are shown in definition 5.

Definition 5 Let k ≥ 0, and let π be a path in transition system M . Then a LTL formula

f is valid along π with bound k (π |=k f) iff π |=0
k f , where

π |=i
k p iff p ∈L(π(i))

π |=i
k ¬p iff p 6∈L(π(i))

π |=i
k f ∧ g iff π |=i

k f and π |=i
k g

π |=i
k f ∨ g iff π |=i

k f or π |=i
k g

π |=i
k Gf is always false

π |=i
k Ff iff ∃j, i ≤ j ≤ k.π |=i

k f

π |=i
k Xf iff i ≤ k and π |=i+1

k f

π |=i
k fUg iff ∃j, i ≤ j ≤ k.π |=j

k g and ∀n, i ≤ n ≤ j.π |=n
k f

π |=i
k fRg iff ∃j, i ≤ j ≤ k.π |=j

k f and ∀n, i ≤ n ≤ j.π |=n
k g
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Based on the semantics shown in definition 5, the following functions can be used to

translate a LTL property f into the verification expression with bound k, which have been

stated in paper [14]. In the translation function, i ≤ k, succ(i) := i+ 1 and [[f ]]k+1
k := 0.

[[p]]ik := p(si)

[[¬p]]ik := ¬p(si)

[[f ∧ g]]ik := [[f ]]ik ∧ [[g]]ik

[[f ∨ g]]ik := [[f ]]ik ∨ [[g]]ik

[[Gh]]ik := [[h]]ik ∧ [[Gh]]
succ(i)
k

[[Fh]]ik := [[h]]ik ∨ [[Fh]]
succ(i)
k

[[Xh]]ik := [[Xh]]
succ(i)
k

[[hUg]]ik := [[g]]ik ∨ ([[h]]ik ∧ [[hUg]]
succ(i)
k )

[[hRg]]ik := [[g]]ik ∧ ([[h]]ik ∨ [[hRg]]
succ(i)
k )

For example, for the given example shown in Fig. 2.4, if we given a LTL property

f = F(a = 1) and set bound k to 2, the below expression can be used to verify the system

with the given LTL property f .

[[M,¬f ]]2 := (a0 = 0 ∧ b0 = 0) ∧ (a1 = 0 ∧ b1 = 1) ∧ (a2 = 1 ∧ b2 = 0)∧

(¬(a0 = 1 ∨ a1 = 1 ∨ a2 = 1))

2.2.3 Satisfiability Modulo Theories (SMT)

In bounded model checking, a SAT solver [8][28][40] is usually employed to check whether

the constructed transition system M satisfies the given property f (i.e., M |=k f). Al-

though the SAT-based BMC [38] is more efficient and scalable than explicit state model

checking technique and BDD model checking technique, the checking ability of SAT-based

BMC is still limited by the solving performance of SAT solver when checking a complex
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z=0;
if(x >= y) z=x;
else z=y;
assert(z >= x && z >= y); 

sequential system

Figure 2.5: A sequential C system

z0=0;
z1=(x >= y) ? x : y;
assert(z1 >= x && z1 >= y); 

z0=0∧
( ((x >= y)∧(z1=x))∨
  (  (x >= y)∧(z1=y))
)∧
(  (z1 >= x)∧(z1 >= y)) ┐

┐

transition system

BMC

Figure 2.6: The transition system for the given sequential C system

system which holds a large number of states. Fortunately, an important research [11] of

checking a transition system with satisfiability modulo theory (SMT) solver [17] instead of

SAT solver shows that SMT not only can check more conditions of the transition system

within shorter time than SAT solver, but also supports arithmetic, bitvectors, tuples, ar-

rays, and other decidable first-order theories which allow us to more conveniently translate

the transition system M into SMT solver.

Currently, based on the satisfiability modulo theory, there exist many SMT solvers that

have been implemented by researchers and software company. E.g., Microsoft Research

group has developed a SMT solver named Z3 [35], which has been widely used in the

research field and industry of software. Yices [20] developed by SRI is also a famous

and efficient SMT solver. In addition, there are other SMT solvers that are using in the

academic institution, such as MiniSmt [27], Mistral [29] and OpenSMT [15].

2.2.4 SMT-based BMC for Sequential Software and Concurrent

Software

SMT-based BMC has been widely applied in the verification of sequential software and

concurrent software. The key work of using BMC to verify a system is how to construct
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while(x < y) {
   x++;
}

if(x < y) {
   x++;
}
if(x < y) {
   x++;
}
assert(!(x < y));loop bound = 2

unfold loop

Figure 2.7: BMC for loop

a transition system M . Firstly, let us consider a sequential C system which is shown

in Fig. 2.5. In the system, there is a branch that is used to return the maximum value

of variables x and y to variable z. To construct a transition system M for the system,

an easy idea is to explore execution paths, and then construction the transition system

M based on the explored paths. However, there is a shortcoming, that is, if a system

consists of a lot of branches, a large number of execution paths will be explored, which

will significantly slow down the performance of BMC. To efficiently verify a sequential

system which holds a lot of branches, in BMC the single static assignment (SSA) technique

[18] is employed to combine branches before applying BMC to carry out verification. This idea

has been stated in paper [11]. E.g, as shown in Fig. 2.6, for the system shown in Fig. 2.5, we

can firstly applied SSA technique to eliminate the branch, and then use the principle of BMC

to construct a transition system M for the system.

In addition to the branches, a sequential system usually consists of loops. Unfortunately, the

satisfiability modulo theory based SMT solver does not support the repetition structure (SAT

solver also does not support repetition structure). As to successfully employ SMT solver to

verify the system which holds loops, in BMC the loop within the system will be firstly unfolded

as branch structure according to a loop bound. Particularly, in order to judge whether the loop

is unfolded enough or not, an assertion which hold the negative condition of the loop is inserted

into the end of the unfolding loop. E.g., for the given example shown in Fig. 2.7, the loop has

been unfolded as branch structure when the loop bound is set to 2. Based on the unfolding

process, BMC then can verify the system. Actually, in general BMC, there exist two types of

bounds, one is the depth bound which is used to limit the search space, and the other is loop

bound which is used to unfold loops. Based on the SMT-based BMC technique, a tool named
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t1() {
   x=y;
   x++;
}

threads

t2() {
   y=x;
   y--;
}

x=y y=x

x++

y=x

y--

y=x

y--

x++

x++

y--

y--

y--

x++

x=y

x++

x=y

x++

y--

Figure 2.8: A concurrent ANSI-C system and its reachability tree

cbmc [16] has been established for the sequential C software.

In contrast with sequential software, the checking process of applying BMC to verify a

concurrent system is more complex because of the scheduling behaviours. E.g., there is a ANSI-

C concurrent system in Fig. 2.8. According to the ANSI-C standard, which thread is to be run is

arbitrarily determined by ANSI-C scheduler. Usually, we named this type of scheduler as non-

deterministic scheduler. Due to the non-deterministic scheduling behaviours, the running thread

cannot be explicitly determined in the verification. In BMC, as to completely verify such system,

all of the possible interleavings of threads will be taken into account in the checking process. In

general, a tree named reachability tree is first constructed to demonstrate all of the interleavings,

and then the constructed reachability tree is translated into the corresponding transition system

M . E.g., for the given example shown in Fig. 2.8, the reachability tree illustrated in the right side

of Fig. 2.8 can be used to demonstrate all of the interleavings of threads t1 and t2. According

to the above presentation, BMC can exhaustively verify a concurrent system. Based on the

SMT-based BMC technique, a tool named esbmc has been established for the multi-threaded

software that conforms to ANSI-C standard.

2.3 Advantage and Disadvantage of Model Checking

Currently, model checking as an efficient checking technique has been widely applied to verify

concurrent software. Moreover, with the development of model checking such as the improvement

of automatization and application of advanced searching techniques, it has become an important

checking technique in the verification of software. Compared with other checking techniques

such as testing technique and theorem proving technique, model checking technique holds the
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following advantages and disadvantages.

2.3.1 Advantages of Model Checking

Compared with testing technique, there are several advantages in model checking technique.

• If we apply testing technique to check a concurrent software, it is difficult to reproduce the

error track although it can successfully find the error. However, based on the counterex-

ample that is reported by model checking technique, we can easily constructed an error

track for the detected bug and the counterexample clearly shows why the specification

does not hold.

• Compared with testing technique, model checking supports temporal logical such as LTL

in the verification of software, it can easily express many of the properties that are needed

for reasoning about concurrent systems.

• If we apply testing technique to check a software which holds non-deterministic behaviours,

it is difficult to completely check the software because of incomplete test-case set. As

Edsger Dijkstra said: program testing can at best show the presence of errors but never

their absence. However, based on the advanced satisfiability modulo theories (SMT), the

SMT-based model checking can efficiently and completely verify the software which holds

non-deterministic behaviours.

• If we apply testing technique to check a software which holds unbounded loops, it is

difficult to judge whether the software satisfies a given property or not because of infi-

nite states. However, based on the advanced k-induction and invariants method, model

checking technique can successfully verify the software which holds unbounded loops.

In addition, compared with other formal verification techniques such as theorem proving,

there are several advantages in model checking technique.

• Model checking is usually an automatic verification technique. Based on the different

model checking techniques, there are many corresponding tools have been implemented

such as spin, cbmc and SMV. Compared with theorem proving, in the verification process

user does not need to construct a correctness proof.
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• Compared with theorem proving, model checking technique is more efficient and scalable.

In practice, as Clarke said in book titled “25 years of model checking”: the other formal

verification techniques may require months of time to prove a system.

2.3.2 Disadvantages of Model Checking

However, there is an important disadvantage that need to be solved or overcome in model

checking technique, namely state space explosion problem. This is because, for a complex

software, as to describe the all of the possible executions of the software, in model checking

a huge checking model will be constructed in the verification process, which can easily make

verification failed because of the memory or time limitations, although the advanced hardware

has been used in our machines.

However, model checking still holds its own advantages in the development of software. E.g.,

for a complex software, we can firstly abstract a prototype model that holds the important

behaviours of the target software rather than all of the details, and then apply model checking

to verify the abstracted model with specification. Based on the verified model, developers can

easily implement a more correct system. In addition, in the checking process we can applied

model checking technique to check some key parts rather than whole software, e.g., the parts

which hold non-deterministic behaviours.
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Chapter 3

OSEK/VDX

OSEK/VDX, a standard of automobile OS promulgated by the alliance of German and French

automotive manufacturers in 1994. The primary motivation of OSEK/VDX standard is to

resolve the problem of increasing software content in vehicles and desire high-quality products.

Currently, it has been widely adopted by many automobile manufacturers to design and develop

a vehicle-mounted OS, such as BMW, Opel and TOYOTA. Based on the OSEK/VDX OS, more

and more applications are developed and deployed in vehicles to assist drivers to control vehicles,

such as the cruise control system and temperature control system. In this chapter, based on the

specification of OSEK/VDX, we will briefly introduce OSEK/VDX OS and its applications.

3.1 OSEK/VDX OS

A general OSEK/VDX OS consists of a scheduler module, synchronization event process module,

shared resource process module, alarm process module and interruption process module. Based

on these system modules, OSEK/VDX OS supports a standardized application interfaces (APIs)

for user to develop customized applications. In our research, we focus on the applications that

communicate with scheduler module, synchronization event process module and resource process

module. The structure of OSEK/VDX OS with an application is shown in Fig. 3.1.
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APPLICATION

evt2

evt1 evt2 evt3

tk1
evt3

tk3

Basic task

Extended task

EVENT
PROCESS MODULE

API

tk1 tk2

tk2

res2

res1

RESOURCE
PROCESS MODULE

priority

priority

tk2

wait

SCHEDULER
MODULE

terminate

pree-
mpt

start

activate Running

SuspendedReady

Waiting

tk1 tk2

ready queue

API API

GetResource

ReleaseResource

priority priority

FIFO

tk3

TASK t1{

  TYPE=basic;

  PRIORITY=3;

  AUTOSTART=true;

  SCHEDULE=full;

};

release

Figure 3.1: The structure of OSEK/VDX OS with an application

3.1.1 Scheduler Module

OSEK/VDX OS can process two types of tasks, basic task and extended task. The states of a

basic task consist of running state, suspended state, and ready state. Compared with the basic

task, the extended task can hold synchronization events and has a unique state called waiting

state. In the scheduling process, the static priority scheduling policy with non-preemptive and

full-preemptive strategies is adopted by the scheduler to conduct the executions of tasks. Par-

ticularly, in OSEK/VDX OS, scheduler manages a ready queue to lay out the execution order

of tasks. Based on the ready queue, the running task is explicitly determined by OSEK/VDX

scheduler.

In addition, scheduler module provides several APIs for applications, such as Terminate-

Task , ActivateTask and ChainTask. Tasks within the application can invoke these APIs to

dynamically change the states of tasks, and the changed states will affect the scheduling of tasks,

e.g., the context switch of tasks will happen when a suspended task is activated by running task

using API ActivateTask or ChainTask. For instance, as shown in Fig. 3.2, there are two tasks

t1 and t2, and the priority of task t1 is lesser than t2. Currently, task t1 is running task. When

the API ActivateTask(tk2) is invoked by t1, scheduler will move task t2 from suspended state

to ready state. At this moment, the context switch of tasks will happen, because the priority
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priority

t1

t2

suspended
ready
runningActivateTask(t2)

Figure 3.2: The context switch of tasks and API ActivateTask

priority

t2

t1

waiting
ready
runningWaitEvent(evt1)

SetEvent(t1,evt1)

Figure 3.3: The synchronous behaviours between tasks

of task t2 is higher than t1.

3.1.2 Event Process Module

In the synchronization event process module, OSEK/VDX OS provides a synchronization mech-

anism for implementing synchronous executions between tasks. Particularly, only extended

tasks can hold a definite number of events, and events are the criteria for the switching of task

states from running state to waiting state or from waiting state to ready state. There are

three APIs SetEvent, WaitEvent and ClearEvent that can be responded by event process

module, and tasks within application can invoke these APIs to implement the synchronous be-

haviours. E.g., as shown in Fig. 3.3, when the running task t1 waits for the event evt1 using

API WaitEvent(evt1), task t1 cannot continue until the event evt1 is set by other tasks (basic

tasks or extended tasks) using API SetEvent(t1,evt1).
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priority

t1

res1

GetResource(res1)
ReleaseResource(res1)

critical section

Figure 3.4: The priority ceiling protocol

3.1.3 Resource Process Module

OSEK/VDX OS adopts the Priority Ceiling Protocol [9] to coordinate the behaviors of task

accessing shared resources in the resource process module. The resource process module supports

two APIs (GetResource and ReleaseResource) that can be invoked by tasks to access shared

resources. E.g., as shown in Fig. 3.4, if the API GetResource(res1) is invoked by running task

t1, and the priority of the task is lower than the ceiling priority of the resource res1, the priority

of the task will be raised to the ceiling priority of the resource res1, and the priority of the task

will be reset to the priority before requiring the resource res1 when ReleaseResource(res1) is

invoked by the task. Note that, the ceiling priority of a shared resource is lower than the lowest

priority of all tasks that do not access the resource, and it is higher than the priorities of all

tasks that access the resource.

3.2 OSEK/VDX Application and Execution Charac-

teristics

3.2.1 OSEK/VDX Application

An application developed based on OSEK/VDX OS consists of two files, one is the source file,

and the other is the configuration file. The source file which can be developed by C language

is used to present the concrete behaviors of the application. The configuration file is used to

define tasks, synchronization events and shared resources.

In the configuration file, the attribute AUTOSTART is used to set the initial state of tasks.
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int a, b, c, h;

TASK t1(){
  if(b >= a){
    a++;
    ActivateTask(t2);
  }
  else{
    b++;
    ActivateTask(t3);
  }
  ActivateTask(t4);
  TerminateTask();
}
TASK t2(){
  if(h > 0)
    h--;
  else
    h++;
  TerminateTask();
}
TASK t3(){
  c=b;
  c=(c+b)/b;
  TerminateTask();
}
TASK t4(){
  assert(a > b);
  TerminateTask();
}

TASK t1{
  TYPE=BASIC;
  SCHEDULE=FULL;
  PRIORITY=5;
  AUTOSTART=TRUE;
};

TASK t2
{
  TYPE=BASIC;
  SCHEDULE=NON;
  PRIORITY=6;
  AUTOSTART=FALSE;
};

TASK t3
{
  TYPE=BASIC;
  SCHEDULE=NON;
  PRIORITY=4;
  AUTOSTART=FALSE;
};

TASK t4
{
  TYPE=BASIC;
  SCHEDULE=NON;
  PRIORITY=4;
  AUTOSTART=FALSE;
};

Source file (.cpp) Configuration file (.oil)

Figure 3.5: An OSEK/VDX application

If the attribute AUTOSTART of a task is set to be TRUE, the task starts from ready state in

the initial state (it will be inserted into ready queue according to the priority of the task).

Otherwise, the task starts from suspended state. The attribute SCHEDULE is used to indicate the

scheduling type. If the attribute SCHEDUL of a task is set to be FULL, the task can be preempted

by higher priority tasks. Otherwise, the task cannot be preempted by higher priority tasks. A

simple OSEK/VDX application without synchronization events and shared resources is shown

in Fig. 3.5. As to clearly comprehend the execution characteristics of OSEK/VDX applications,

an example is symbolically executed in this part.

In the application shown in Fig. 3.5, only the attribute AUTOSTART of t1 is set to be TRUE.

Thus, t1 will be firstly moved to running state by scheduler and then executed in the initial
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b>=a !(b>=a)

a++;

c=b;

b++;

ActivateTask(t3);

ActivateTask(t4);

TerminateTask();

TerminateTask();

assert(a > b);

TerminateTask();

h>0 !(h>0)

h--; h++;

TerminateTask(); TerminateTask();

ActivateTask(t4);
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assert(a > b);
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Figure 3.6: The execution tree for the application shown in Fig. 3.5

state. As shown in Fig. 3.6, when the API ActivateTask(t2) is invoked by t1 (the branch

“(b >= a)” is chosen to symbolically execute), scheduler will be loaded to respond to the API

(task t2 is moved from suspended state to ready state). At this moment, the running task t1

will be preempted by t2 since the priority of t2 is higher than t1 and the attribute SCHEDUL of t1

is set to be FULL (the context switch happens after the API ActivateTask(t2)). Currently, task

t2 gets run-unit to run, and goes to suspended state when the API TerminateTask() is invoked

(TerminateTask() is used to terminate the executions of a task, and the terminated task will be

moved from running state to suspended state by scheduler. If the running task is terminated,

scheduler then dispatches the head task in the ready queue to run when ready queue is not

empty). When task t2 terminates itself using API TerminateTask(), scheduler will dispatch

task t1 to running state. Then, t1 continues its executions from the preempted point, and task
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t4 is activated by t1 using API ActivateTask(t4) (the context switch will not happen, since the

priority of task t4 is less than t1). Finally, task t4 will be executed when the running task

t1 terminates itself using API TerminateTask(). Thus, according to the conducted symbolic

executions, we can get a task execution sequence 〈t1, t2, t1, t4〉 in the execution path π1 and π2.

However, if the API ActivateTask(t3) is invoked by task t1 (the “branch !(b >= a)” is chosen to

symbolically execute), we will get a different task execution sequence 〈t1, t3, t4〉 in the execution

path π3.

3.2.2 Execution Characteristics of OSEK/VDX Application

Based on the execution tree of the application shown in Fig. 3.5, we can easily find the following

execution characteristics of OSEK/VDX applications,

• Which task is to be run is explicitly determined by OSEK/VDX scheduler according to

the ready queue and configuration data of application.

• The APIs invoked from tasks will haphazardly change the scheduling of tasks, e.g., the

different service APIs locating at different branches will lead to different task execution

sequences, and the context switch of tasks may happen when an API is invoked by running

task.

According to the listed execution characteristics, there are several challenges that should be

addressed when we apply model checking technique to verify an OSEK/VDX application, e.g.,

• How to precisely construct a model to represent the executions of the application.

• How to deal with OSEK/VDX OS, e.g., how to explicitly perform the scheduling be-

haviours of OSEK/VDX OS, and how to handle the APIs invoked from tasks.

We have proposed three approaches to verify OSEK/VDX applications in this thesis. The

overview of the proposed approaches will be demonstrated in the next chapter.
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Chapter 4

Overview of Checking Approaches

Based on the execution characteristics of OSEK/VDX applications, we have found, the running

task within application is explicitly determined by OSEK/VDX scheduler (deterministic schedul-

ing policy is used to dispatch tasks), and the APIs invoked from tasks will haphazardly affect

the scheduling of tasks, e.g., (i) the context switch of tasks may happen when an API is invoked,

(ii) the different APIs locating at different branches will lead to different task execution order.

Although there exist many model checking methods [26][50][51] that have been applied to verify

concurrent software such as the ANSI-C multi-threaded software and SystemC multi-threaded

software, these methods usually perform an approximate verification because the behaviours of

scheduler are not taken into account in verification process. If we apply these existing model

checking methods to verify OSEK/VDX applications, a lot of unnecessary interleavings of tasks

will be superfluously checked in the verification stage, especially these unnecessary interleavings

will usually result in a spurious bug. Due to the spurious bug, developers have to spend extra

costs judging whether the detected bug is real one or not after completing verification.

In addition, to accurately check concurrent software such as ANSI-C multi-threaded soft-

ware and SystemC multi-threaded software, several prominent model checking methods [13][37]

have been proposed by some senior researchers. In these methods, as to seek a more accurate

verification result, the behaviours of scheduler are taken into account in the verification pro-

cess. Even so, these prominent model checking methods are still unsuitable to accurately verify

OSEK/VDX applications because these methods focus on the non-deterministic scheduler based

multi-threaded software. In contrast with non-deterministic scheduler, in OSEK/VDX applica-
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tions a deterministic scheduler is used to dispatch tasks. As to reduce the checking costs on the

OSEK/VDX applications, a more accurate model checking approach should be proposed and

applied in the verification process. In this thesis, we describe and develop three approaches that

can accurately and automatically verify the safety property of OSEK/VDX applications using

model checking technique.

4.1 Key Idea of Checking Approaches

The core of model checking consists of two processes, one is to construct a model for target

system, and the other is to search the constructed model with given property. As to make

model checking accurately verify OSEK/VDX applications, there are two ways that can be

considered in the verification of OSEK/VDX applications, e.g.,

1. We can construct an accurate model for target OSEK/VDX application, and then apply

existing searching algorithm to check the constructed checking model.

2. We do not desire an accurate model, but reform the existing searching algorithms to make

the existing searching algorithms perform an accurate search in the verification process.

In our approaches, we will construct an accurate checking model to achieve the accurate ver-

ification based on the model checking technique. Compared with the method for reforming

searching algorithms, there is an advantage in this method, e.g., once an accurate model is

constructed, we can directly use different searching algorithms to accurately verify OSEK/VDX

applications. As we know, in the verification of software, we usually should use different model

checking techniques to exhaustively find bugs. Compared with the method for constructing

accurate model, the method for reforming the existing searching algorithms will usually spend

more costs reforming the different searching algorithms.

To construct an accurate model for a target OSEK/VDX application, the behaviours of

OSEK/VDX OS such as scheduler behaviours should be taken into account in the constructing

model process. This is because, when an OSEK/VDX application runs on the OSEK/VDX OS,

the running task is explicitly determined by OSEK/VDX scheduler and the APIs invoked from

tasks will haphazardly affect the scheduling of tasks. Based on this idea, we have proposed three

33



checking model

application OS model+

Figure 4.1: The key idea of Spin-based checking approach

approaches that can accurately and automatically verify the developed OSEK/VDX applications

using model checking techniques.

4.2 Overview of Checking Approaches

In our first approach, we investigate a method based on the existing model checker Spin. In the

method, as to make Spin model checker accurately verify OSEK/VDX applications, a checking

model which is a combination model of application model and OSEK/VDX OS model is em-

ployed to precisely simulate the executions of the OSEK/VDX applications in real OSEK/VDX

OS. In the second approach, as to verify a complex application which holds a large number of

states, we develop a new technique named execution path generator (EPG) to verify OSEK/VDX

applications based on the advanced SMT-based bounded model checking technique. Particularly,

in the approach the OSEK/VDX OS model is embedded in EPG (the algorithm of construct-

ing model flat) to respond to the invoked APIs and determine running task in the process of

constructing application model. In the last approach, we present a novel method to translate

OSEK/VDX applications into sequential models in order to apply the existing model checkers

such as spin and cbmc to efficiently verify OSEK/VDX applications.

4.2.1 Spin-based Checking Approach

To accurately verify OSEK/VDX applications using model checking technique, a cheap method

is based on the existing model checker, because we do not need to establish a new model

checker. As we know, it is too difficult and impractical to establish a new model checker within

a short time, since a basic model checker usually consists of several complex modules such as

the language parsing, simulation, verification, counterexample generation and display. To finish
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all of these modules with reasonable soundness guarantee often takes years of effort, e.g., the

established model checkers spin and cbmc are the result of decades of development. As to

apply existing model checkers to accurately verify OSEK/VDX applications, we investigate an

approach based on the well-know Spin model checker.

To accurately verify OSEK/VDX applications using Spin model checker, the key work is how

to construct an accurate checking model to feed Spin. In our Spin-based checking approach,

as shown in Fig. 4.1, we design a checking model which is a combination model of application

model and OSEK/VDX OS model to precisely simulate the executions of the target application.

In the combination model, all of the tasks within application are designed as processes, and

the OSEK/VDX OS model as a cooperative process is used to dispatch tasks and respond to

the APIs invoked from tasks. In particular, the application model and OSEK/VDX OS model

are synchronously executed based on the invoked APIs for simulating the executions of the

application in real OSEK/VDX OS.

The advantage of the approach is that, it can accurately verify OSEK/VDX applications

based on the existing model checker Spin. However, the scalability of this approach is limited,

because too many details of OSEK/VDX OS model will be explored in the verification stage,

especially the state space explosion may happen if application invokes a lot of APIs (when an

API is invoked by running task, OSEK/VDX OS model will be checked once by Spin in the

verification process). Based on the shortcoming of the approach, we can easily find that the

approach cannot be applied to verify the complex OSEK/VDX applications which will invokes

a lot of APIs. In order to efficiently check a complex OSEK/VDX application which holds a lot

of states and APIs, we develop a new technique named execution path generator (EPG) based

on the advanced SMT-based bounded model checking.

4.2.2 SMT-based Bounded Model Checking Approach

The core of our SMT-based bounded model checking approach is execution path generator

(EPG), which is a new technique to verify OSEK/VDX applications using bounded model check-

ing technique. In our EPG technique, as to efficiently handle a complex application which holds

a large number of states, the advanced SMT-based bounded model checking is adopted to per-

form the verification. Particularly, in order to avoid OSEK/VDX OS model to be explored in the

35



EPG
application  OS model 

tree

Figure 4.2: The key idea of SMT-based BMC approach

verification stage, as shown in Fig. 4.2, we embed OSEK/VDX OS model in EPG (the algorithm

of constructing model flat) to dispatch task and respond to the APIs invoked from tasks.

To verify an OSEK/VDX application using bounded model checking technique, the key work

is how to construct a transition system for the application. In OSEK/VDX applications, the

APIs invoked from tasks will haphazardly affect the scheduling of tasks, e.g., the context switch of

tasks may happen when an API is invoked, and the different APIs location at different branches

will lead to different task execution orders. In our EPG technique, like other bounded model

checking for concurrent software (e.g., Lucas’ method [37] for ANSI-C multi-threaded software),

a reachability tree as an intermediate form is constructed for establishing the transition system

of application.

The advantage of the approach is that, it is more efficient and scalability than the Spin-

based checking approach. This is because, in EPG technique the state-of-the-art SMT-based

bounded model checking is employed to perform the verification, which make EPG technique

more efficient. Moreover, in EPG technique the OSEK/VDX OS model will not be explored in

the verification stage since the OSEK/VDX OS model is embedded in EPG to dispatch tasks and

respond to the APIs invoked from tasks, which make EPG technique more scalable. However,

we can easily find that the approach is not efficient to check the large-scale applications which

hold a lot of branches, because EPG will spend a lot of time exploring execution paths for

constructing the reachability tree in the checking process, which will slow down the efficiency of

the approach. As to efficiently handle the applications which hold a large number of branches,

we propose a novel approach based on the sequentialization idea.

4.2.3 Sequentialization-based Checking Approach

The key idea of our sequentialization-based checking approach is that, we firstly translate a

given OSEK/VDX application into a corresponding sequential model, and then employ the
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Figure 4.3: The key idea of sequentialization-based checking approach

existing model checker such as spin and cbmc to verify the sequential model. According to the

shortcoming of EPG technique, we have found that EPG technique is not efficient to verify the

large-scale applications which hold a lot of branches, because it will spend a lot of time exploring

execution paths for establishing transition system. As to efficiently verify the applications which

hold a lot of branches, the core work is how to efficiently construct a sequential model for

the target application. In our sequentialization-based checking approach, we use an extended

directed graph instead of reachability tree to construct the sequential model of OSEK/VDX

application. Particularly, as to avoid the behaviours of OSEK/VDX OS to be poured into the

sequential model, as shown in Fig. 4.3, like EPG technique we embed OSEK/VDX OS model in

translation algorithm flat to dispatch tasks and respond to the invoked APIs. The main process

of our sequentialization-based checking approach is that, we symbolically execute application

using an extended directed graph and explicitly perform the scheduling behaviours when meeting

an API in the sequentialization process.

There are several strengths from extended directed graph that can make our sequentialization-

based checking approach more efficient than EPG technique in checking the applications which

hold a lot of branches, e.g.,

• Based on the directed graph, we do not need to explore execution paths when meeting

branches in the sequentialization process, instead, we can use the combination states to

reduce the computation times. E.g., for the example shown in Fig. 4.4, if we use tree to

describe the executions of the given example, we have to compute 12 times to construct

the tree. However, compared with tree, we just compute 8 times when directed graph is

used to describe the executions of the example.

• Based on the directed graph, we do not need to repeatedly compute the same execution

behaviours of application in the sequentialization process, instead, we can construct a

cycle in directed graph to represent the same execution behaviours. E.g., as shown Fig. 4.5,
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if(c1) {   statement s1;} else {
   statement s2;}
if(c2) {   statement s3;} else {
   statement s4;}

s1

┐c1 c1

s2

c2 c2┐

s3 s4

c2 c2┐

s3 s4

reachability tree

computation times = 12

c1 ┐c1

s1 s2

c2 c2┐

s3 s4

computation times = 8

directed graph

Figure 4.4: An example for tree and directed graph (branch)

if(c1) {   statement s1;} else {
   statement s2;}
ChainTask(t2);

s1

┐c1 c1

s2

c2 c2┐

s3 s4

c2 c2┐

s3 s4

need a depth bound to stop

c1 ┐c1

s1 s2

c2 c2┐

s3 s4

directed graph

if(c2) {   statement s3;} else {
   statement s4;}
ChainTask(t1);

TASK t1

TASK t2

ChainTask(t2) ChainTask(t2)

ChainTask(t1)

reachability tree

ChainTask(t2) ChainTask(t1)

cycle

Figure 4.5: An example for tree and directed graph (loop)

there are two tasks t1 and t2 that will activate each other using API ChainTask(tk). The

example holds an infinite execution sequence t1, t2, · · · , t1, t2. If we use tree to describe

the executions of the example, we not only need a depth bound to stop the process of

constructing tree, but also will spend a lot of computation times to construct the tree

under the set depth bound. However, compared with tree, in directed graph we can use a

cycle to represent the the same execution behaviours.

Furthermore, based on the sequentialization process of our approach, the existing model

checker such as spin and cbmc can efficiently verify OSEK/VDX applications, because existing

model checker just check a sequential model instead of a concurrent model.

38



Chapter 5

Spin-based Checking Approach

As to make model checking more accurate in checking OSEK/VDX applications, in this chapter

we will investigate an approach based on the well-known Spin model checker. The key idea of

the approach is that a combination model of application model and OSEK/VDX OS model is

used to precisely simulate the executions of OSEK/VDX application in real OSEK/VDX OS,

and then employ Spin to verify the combination model.

5.1 Overview of Spin-based Checking Approach

To accurately check OSEK/VDX applications using Spin model checker, the key work is how

to construct a checking model. Based on the execution characteristics of OSEK/VDX applica-

tions, we have found that, (i) the running task within the application is explicitly determined by

OSEK/VDX scheduler according to the ready queue and task configuration data; (ii) the APIs

invoked from tasks will haphazardly change the scheduling of tasks. As shown in Fig. 5.1, in our

approach, we firstly construct a combination model of application model and OSEK/VDX OS

model with Promela language to precisely simulate the executions of the OSEK/VDX applica-

tions. In the combination model, all of the tasks within application are designed as processes,

and the OS model that conforms to OSEK/VDX specification as a process is used to determine

the running task and respond to the APIs invoked from tasks. Then, Spin model checker is

employed to verify the constructed combination model for obtaining the checking results.
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Figure 5.1: The structure of Spin-based checking approach

5.2 Combination Model

In our approach, a combination model of application model and OSEK/VDX OS model is estab-

lished to precisely simulate the executions of the OSEK/VDX applications in real OSEK/VDX

OS. The definition of the combination model is as follows,

Definition 6 The combination model is a tuple Ψ = (OS,App), where OS is the OSEK/VDX

OS model, App is the application model.

In the combination model Ψ, OS is used to conduct the executions of application and

respond to the APIs invoked from tasks within application. App is a set consisted of two

elements App={∆, T}, where ∆ is the configuration file of application, T={t1, t2, · · · } is the

finite set of tasks declared in application. To precisely simulate the executions of application,

in the combination model Ψ, each element t ∈ T and OS are design as process in promela

script, and application model App and OS model OS are synchronously executed via APIs. The

execution characteristics of combination model are stated in the following.

When an application runs on the OSEK/VDX OS, the head task in the ready queue will

be dispatched to run if the run-unit is idle. The other tasks in the ready state, suspended state

and waiting state will not be run until the running chance is given by scheduler. Thus, the first

execution characteristic of combination model is as follows.

• a task t ∈ T can be run iff its ID equals to the running task ID that is computed by OS

model OS, and the remanent tasks A′ = T \{t} are restrained to execute.

Once an API is invoked by the application, the OSEK/VDX OS will be loaded to run for

responding to the invoked API (at this moment, the executions of the application will be pre-

empted by OSEK/VDX OS). When OSEK/VDX OS has already completed its executions, the
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run-unit is released, and then the application will be continued again. According to the described

execution characteristics, the following three execution characteristics are held by combination

model for simulating the interactive executions between OS model OS and application model

App.

• application model App and OS model OS are synchronously executed via APIs.

• when an API is invoked by running task t, the task t will stop its execution to wait for the

executions of OS model OS.

• once OS model OS receives an invoked API from App, OS model OS will be executed

for responding to the invoked API and computing the running task ID. If OS model has

completed its executions, application model App will be executed from the stopped point,

and then OS model OS waits for the next API from application model.

5.3 Promela Model of Combination Model

According to the combination model, we can easily simulate the executions of an OSEK/-

VDX application. As to conveniently use Spin to check OSEK/VDX applications based on the

combination model, we have constructed an OSEK/VDX OS model OS using promela language

according to the OSEK/VDX specification. Furthermore, the constructed OS model provides

two interface functions for easily constructing the application model. The OS model OS and

the provided interface functions are stated in the following.

5.3.1 OS Model

As shown in Fig.5.2, we have developed an OS model based on the OSEK/VDX OS model

presented in paper [32], which is a combination of scheduler model, event process model and

shared resource process model. The definition of OS model OS is as follows,

Definition 7 The OS model is a tuple OS = (S, s0, D, F , Σ), where S is the finite set of states

(s0 ∈ S is the initial state), D={runTask, readyQueue, suspendList, waitList, evtBitArray,

resAccessList} is the set of data structures, F is the set of functions, Σ ⊆S×F×S is the set of

transition relations.
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Figure 5.2: OSEK/VDX OS model

In the OS model, D is the set of data structures used to record the states of tasks, synchro-

nization events and shared resources. Where, runTask is a variable used to store the running

task tid (tid ∈ IN is the identifier of tasks). In OSEK/VDX applications, several tasks can

share a same priority in the OSEK/VDX OS. The readyQueue is composed of queues with

different priorities used to store the tid of ready tasks. The data structures suspendList and

waitList are used to store the tid of tasks in the suspended state and waiting state, respectively.

evtBitArray is a matrix used to store the event states of extended tasks (eid ∈ IN is the identifier

of events). resAccessList is a set of lists used to indicate the state of resources accessed by

tasks (rid ∈ IN is the identifier of resources). In the function set F , API ? APIName(para1, para2)

and notifyApp ! finishMessage are the synchronization functions used to simulate APIs, the
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mtype {TerminateTask, ActivateTask,  ChainTask, 
       Schedule, SetEvent, GetEvent, ClearEvent, 
       WaitEvent, GetResource, ReleaseResource, 
       GetTaskState, GetTaskID
};
mtype APIName;
int   para1, para2;
bool  finishMessage;
chan  API = [0] of {mtype, int, int};
chan  notifyApp = [0] of {bool};

Figure 5.3: The API functions

inline waitForRun(_tid){
  (runTask == _tid);
} 

Figure 5.4: The interface function waitForRun()

inline taskAPI(_tid,_APIName,_para1,_para2){     
  API ! _APIName(_para1,_para2);
  notifyAPP ? finishMessage;
  (_tid == runTask);
}

Figure 5.5: The interface function taskAPI()

promela scripts for these two functions are shown in Fig. 5.3. Here, API ? APIName(para1, para2)

is used to receive the invoked APIs from application model (APIName is the name of invoked

API, para1 and para2 are the parameters in APIs). notifyApp ! finishMessage is used to

notify the application model that OS model has already completed its executions. In addition,

the assertion assert(runTask != −1) is used to terminate the checking process if there is no

running task (where, “−1” represents that running task is idle). The other functions in F such

as ChainTask(tid) and TerminateTask() are the standardized functions defined in OSEK/VDX

specification, used to operate the system data D according to the invoked APIs.

5.3.2 Interface Functions of OS Model

To conveniently use the constructed OS model to check OSEK/VDX applications, we design

two interfaces functions for the application model. The first interface function waitForRun()
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int buffer = 0;

TASK t1(){
    ActivateTask(t2);
    ActivateTask(t3);
    TerminateTask();
}

TASK t2(){
    buffer++;
    TerminateTask();
}

TASK t3(){
    buffer--;
    TerminateTask();
}

TASK t1{
    TYPE=BASIC;
    SCHEDULE=FULL;
    PRIORITY=5;
    AUTOSTART=TRUE;
 };

TASK t3{
    TYPE=BASIC;
    SCHEDULE=NON;
    PRIORITY=4;
    AUTOSTART=FALSE;
  };

TASK t2{
    TYPE=BASIC;
    SCHEDULE=NON; 
    PRIORITY=6;
    AUTOSTART=FALSE;
  };

Source file (.cpp) Configuration file (.oil)

Figure 5.6: Motivating example for Spin-based checking approach

shown in Fig. 5.4 is used to restrain the executions of the tasks whose tid are not equal to

runTask . The second interface function taskAPI() shown in Fig. 5.5, which can be invoked by

tasks, is used to simulate the behaviors of APIs, in which API ! APIName( para1, para2) and

notifyAPP ? finishMessage are used to implement the interactive executions between OS model

and tasks, ( tid == runTask) is employed to simulate the context switch of tasks caused by the

invoked API (the parameter tid is the host task ID).

5.3.3 Example

In this part, we will use an example to show how to use Spin model checker to accurately verify

OSEK/VDX applications based on the constructed OSEK/VDX OS model.

As shown in Fig. 5.6, the application holds three tasks, t1, t2 and t3. In the application,

only the attribute AUTOSTART of t1 is set to be TRUE, t1 thus is firstly moved to running state

by scheduler and then t1 is executed. As shown in Fig. 5.7, when the API ActivateTask(t2) is

invoked by t1, scheduler will be loaded to respond to the API. At this moment, the running task

t1 will be preempted by t2, since the priority of t2 is higher than t1 and the attribute SCHEDUL of

t1 is set to be FULL. Currently, task t2 gets run-unit to run, and goes to suspended state when

the API TerminateTask() is invoked. When t2 is terminated, t1 will be moved to running state
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TerminateTask()
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Figure 5.7: The executions of motivating example

again and continue its executions from preempted point. Then, t3 is activated by t1, and will be

run when the API TerminateTask() is invoked by t1 (t1 cannot be preempted by t3, because

the priority of t3 is lesser than t1). Finally, task t3 is executed when task t1 terminates itself

using API TerminateTask().

Based on the constructed OS model and provided interface functions, we can easily construct

a combination model to simulate the executions of the motivating example shown in Fig. 5.6.

The promela model of the motivating example has been presented in Fig. 5.8. Note that, for

the configuration file, the constructed OS model uses an inline function configData() to get

the configuration data of tasks, which is shown in Fig. 5.9.

5.4 Supported Checking Properties

In our approach, we can use a combination model to precisely simulate the executions of an

OSEK/VDX application in real OSEK/VDX OS. Moreover, based on the combination model,

Spin can accurately verify the application in the verification process. In this part, we will talk

about what kinds of given properties can be checked by our approach in the practical checking

process.

Variable property: In the practical checking process, we usually want to check whether

the executions of an application have already reached a specified state via assertion statements.

Based on the combination model, all of the possible executions of application are taken into
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#include "OSmodel.h"
proctype t1() {
    start:
    waitForRun(t1.tid);
          taskAPI(t1.tid, ActivateTask, t2.tid, -1);
          taskAPI(t1.tid, ActivateTask, t3.tid, -1);
          taskAPI(t1.tid, TerminateTask, -1, -1);
    goto start;
}
proctype t2() {
    start:
    waitForRun(t2.tid);
          buffer=buffer+1;
          taskAPI(t2.tid, TerminateTask, -1, -1);
    goto start;
}
proctype t3() {
    start:
    waitForRun(t3.tid);
          buffer=buffer-1;
          taskAPI(t3.tid, TerminateTask, -1, -1);
    goto start;
}
init { 
    run OSModel();  run t1();  run t2(); run t3();
}

Figure 5.8: The promela model for the motivating example

inline configData(){
  task[1].tid=1;
  task[1].priority=5;
  task[1].schedule=true;
  task[1].autostart=true;

  ...
} 

Figure 5.9: The inline function for configuration data

account, and Spin model checker supports the assertions. Thus, our approach can be used to

check variable property using assertion statements.

LTL property: In addition to assertions, the given property which holds temporal operators

is frequently used to check an application in the practical checking process. For instance, we

want to check whether the value of a variable will be changed to be zero in the future. Since

Spin model checker can accept the given property specified in Linear Temporal Logic (LTL),

46



our approach can be used to check the LTL property.

API property: The API is also an interesting checking point for the OSEK/VDX ap-

plications, since APIs perform an important part in the interaction between application and

OSEK/VDX OS. In the checking process, we usually want to check whether an API will be

invoked by tasks. In our approach, the API is represented as a set {APIName,para1,para2} of

variables in promela. Therefore, our approach can check the API property.

OS data property: When an application runs on the OSEK/VDX OS, it is difficult to judge

the execution situations of the application, since the executions of OSEK/VDX applications are

conducted by scheduler, and tasks within application can invoke APIs to synchronously execute

and access shared resources. As to clearly detect the execution situations of an application,

the states of tasks, events and shared resources are often considered as a checking point. To

check this type of property (which is named as OS data property in our paper), the data in

data structure D of OS model can be accessed by the given property. E.g., we can use the LTL

property shown in formula (5.1) to check whether the task tid will be run after ActivateTask(tid)

is invoked.

<> ((APIName == ActivateTask & & para1 == tid)

& & X(runTask == tid))
(5.1)

Mutual exclusion property: Furthermore, the checking process on mutual exclusion

property also will be carried out in the practical checking process, since tasks within applica-

tion can enter a critical section for accessing a shared resource using APIs GetResource(rid)

and ReleaseResource(rid). Informally, mutual exclusion contains of two properties, one is

exclusiveness, and the other is liveness. In our approach, the task tids of accessing shared re-

sources are recorded in the shared resource lists resAccessList within the OS model. Thus, our

approach can be used to check these two properties. For instance, we can use the LTL proper-

ties shown in formulae (5.2) and (5.3) to check the exclusiveness property and liveness property

respectively, where we suppose that task tk1 and task tk2 will access the same shared resource

rid. In the formulae (5.2) and (5.3), IN represents matching task tid in the corresponding shared

resource list, n is the number of tasks defined in the application.

!<>(tk1.tid IN resAccessList[rid].list[0 : n] &&

tk2.tid IN resAccessList[rid].list[0 : n])
(5.2)
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Figure 5.10: The structure of osek2spin

<>(tk1.tid IN resAccessList[rid].list[0 : n]) (5.3)

5.5 Implementation

To easily use our Spin-based checking approach to verify an OSEK/VDX application, we develop

a tool named osek2spin1 to automatically translate the OSEK/VDX application into promela

model based on the visual studio 2010. Currently, osek2spin supports the C programming

language without pointer, struct and function calls as input language. The key processes

of osek2spin are shown in Fig. 5.10. In the fist step, the task behaviours described in C

programming language are interpreted into goto programs based on the C intermediate language

(CIL) [25], where complex structures in C programming language such as for loop, while loop

and switch are replaced with goto statements. In the second step, the obtained goto program

is translated into the corresponding promela model. The data in the configuration will also be

automatically passed to the inline function configData() of OSEK/VDX OS model.

1http://www.jaist.ac.jp/~s1220209/osek-spin.htm
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5.6 Advantage and Disadvantage

In the Spin-based checking approach, the checking model is a combination model, consisted of

two models, one is application model, and the other is OSEK/VDX OS model. Where, the ap-

plication model is used to simulate the executions of tasks within application (tasks are designed

as processes), the OSEK/VDX OS model as a process is used to respond to the APIs invoked

from tasks and determine the running task. Based on the combination model, the practical

execution behaviours of OSEK/VDX application are accurately simulated in the verification

process. Thus, the approach is an accurate checking method for OSEK/VDX applications.

However, in the approach, the behaviour of OSEK/VDX OS model will be explored in the

verification stage, because the OSEK/VDX OS model is inside the checking model. When an

application invokes an API, the OSEK/VDX OS model within the combination model will be

loaded to respond to the API. Sequentially, the states of OSEK/VDX OS model will be explored

by Spin in the verification stage. If an application invokes a lot of APIs, a large number of

states of OSEK/VDX OS model will be explored in the verification stage. The scalability of

the approach is limited, since too many details of OSEK/VDX OS model are explored in the

verification process, especially the state space explosion will happen if a large number of APIs

are invoked by application.
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Chapter 6

SMT-based Bounded Model

Checking Approach

According to the disadvantage of Spin-based checking approach, we find that the approach

cannot be used to verify the large-scale OSEK/VDX applications which hold a lot of tasks and

APIs, since too many details of OSEK/VDX OS model will be explored in the verification stage.

In order to avoid OSEK/VDX OS model to be explored in the verification stage and intend

to handle the complex OSEK/VDX applications which hold a large number of states, in this

chapter we will show a new approach based on the SMT-based bounded model checking (BMC).

In the approach, we develop a constructing model algorithm named execution path generator

(EPG) in order to successfully apply BMC to verify OSEK/VDX applications. Particularly, as

to put the OSEK/VDX OS model outside the checking model, the OSEK/VDX OS model is

embedded in EPG (constructing model algorithm flat) to respond to the APIs invoked from

tasks and determine running task in the process of constructing transition system.

6.1 Overview of SMT-based Bounded Model Check-

ing Approach

The main processes of SMT-based bounded model checking approach are shown in Fig. 6.1. As

to easily check an application, in the first step we use control flow graphs (CFGs) to describe the
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Figure 6.1: The structure of SMT-based bounded model checking approach

behaviors of tasks within the application. Since the APIs invoked from tasks will haphazardly

change the scheduling of tasks, e.g., the different APIs locating at different branches will lead to

different task execution sequences and the context switch of tasks may happen when an API is

invoked by running task, in the second step we develop an execution path generator (EPG) as an

intermediate simulator to generate all of the possible execution paths for the target application.

In particular, the OSEK/VDX OS model is embedded in the EPG to respond to invoked APIs

and determine the running task in the process of constructing execution paths. In the third

step, the transition system of the target application will be established based on the generated

execution paths. Finally, the SMT solver Z3 [35] is employed to perform the verification for

judging whether the constructed transition system satisfies a given property or not, if not, our

approach will return a counterexample. Note that, the behaviors of OSEK/VDX OS model

will not be explored in the verification stage, since the OS model is embedded in the EPG

(constructing model algorithm flat) to respond to invoked APIs and conduct the executions of

tasks. In addition, like other bounded model checkers such as cbmc [16], the depth bound and

loop bound are also supported by our approach.

6.2 CFG of Task

To easily check an application, in our approach we use control flow graphs (CFGs) to describe

the behaviors of tasks within the application. The definition of CFG of task is as follows,

Definition 8 The CFG of a task is a tuple Ωtid = (N tid, ntid0 , ntide , Σtid, Rtid).
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int x, y;

TASK t1(){
    if(!(x < 0))
        ActivateTask(t2);
    TerminateTask();
}

TASK t2(){
    if(y > x)
         x=y;
    TerminateTask();
}

TASK t1{
    TYPE=BASIC;
    SCHEDULE=FULL;
    PRIORITY=5;
    AUTOSTART=TRUE;
 };

TASK t2{
    TYPE=BASIC;
    SCHEDULE=NON; 
    PRIORITY=6;
    AUTOSTART=FALSE;
  };

Source file (.cpp) Configuration file (.oil)

Figure 6.2: The motivating example for EPG
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goto ActivateTask(t2);

ne

TerminateTask();

(a) task t1

n3

n0

n1 n2

y>x !(y>x)

goto

ne

TerminateTask();

(b) task t2

n3
x=y;

Figure 6.3: The CFGs of tasks

Where, tid is the identifier of tasks. N tid is the set of locations, ntid0 ∈N is the start location,

ntide ∈N is the end location. Σtid is the set of statements of task tid, the expression of a statement

α∈Σ is as follows:

α ::= condition | assignment | goto | assertion | API

R⊆N tid×Σtid×N tid is the set of directed edges labelled by task statements. E.g, for the example

shown in Fig. 6.2, we can use the CFGs shown in Fig. 6.3 to describe the behaviours of tasks t1

and t2.
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6.3 OSEK/VDX OS Model

In OSEK/VDX OS standard, as to let developers easily and confidently implement an OSEK/VDX

OS, all of the functions for responding to APIs are specifically stated in the OSEK/VDX OS

specification. In our approach, based on the stated functions, as shown in Fig. 6.4, we construct

an abstract OS model which is a combination model of scheduler module, synchronization event

process module and shared resource process module in EPG to respond to the APIs invoked from

application and conduct the executions of tasks within application. The definition of abstract

OS model is as follows,

Definition 9 The abstract OS model is a tuple OS = (N , n0, nς , F , R, D), where N is the set

of nodes, n0 is the start node, nς is the end node. F is the set of APIs responding functions.

R ⊆N×F ×N is the set of transitions. D={runTask, readyQueue, suspendList, waitList,

evtBitArray, resAccessList} is the set of data structures.

In the the set of data structures D, runTask is a variable used to store the tid of running

task (tid is the identifier of tasks). In the OSEK/VDX OS several tasks can share a same priority,

the readyQueue is composed of queues with different priorities used to store the tids of tasks

in the ready state. The data structures suspendList and waitList are used to store the tids of

tasks in the suspended state and waiting state, respectively. In OSEK/VDX application the

extended tasks can hold synchronization events, evtBitArray is a matrix used to store the event

states of extended tasks (eid is the identifier of events). Moreover, tasks within the OSEK/VDX

application can access shared resources according to the priority ceiling protocol, resAccessList

is composed of lists used to indicate the state of resources accessed by tasks (rid is the identifier

of resources). In addition, in the constructed OS model, the trace $ which starts from node n0

and ends at node nς represents the responding behaviors of the OS model for an invoked API.

In order to call the constructed OS model to respond to the invoked APIs and compute

running task in the process of generating execution paths, we define two interface functions

StartTask() and RespondAPI(API) for the constructed OS model. Where, the interface function

StartTask() is used to request OS model to dispatch the head task in readyQueue to running

state, the interface function RespondAPI(API) is used to call the corresponding trace $ to

respond to the invoked APIs and compute the data within D of OS model. For instance, if the

interface function RespondAPI(API) is called to respond to the invoked API ActivateTask(t1),
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Preempt()

Start()

SetEvent(tid,eid) ReleaseResource(rid)
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tk3
evt1evt2evt3

evtBitArray
(rid,prio) tid tid

resAccessList (rid,prio) tid
Interface functions

StartTask()
RespondAPI(API)

Figure 6.4: OSEK/VDX OS model in EPG

the function ActivateTask(t1) of OS model is firstly called to active task t1, and then the

function Preempt() is called to judge whether the rescheduling point happens (if the rescheduling

point happens, the currently running task will be moved to readyQueue, and runTask will be

set to null by the Preempt() function). Finally, the function Start() is called to dispatch the

head task in readyQueue to run if runTask is null.

6.4 EPG and Transition System

The challenge of verifying a target system using BMC is how to construct a transition system to

reflect the executions of the target system. Based on the execution characteristics of OSEK/VDX

applications, we found that the APIs invoked from tasks will haphazardly change the scheduling

of tasks, e.g., the different APIs locating at different branches will lead to different task execution

sequences and the context switch of tasks may happen when an API is invoked by running task.

54



In our approach, as to precisely construct a transition system for an OSEK/VDX application

and avoid the behaviors of OS model to be poured in the transition system, we explore all of the

execution paths of the application and embed OS model in the algorithm flat to compute running

task and respond to the APIs invoked from application. We have developed constructing model

algorithm named execution path generator (EPG) to implement this idea.

6.4.1 EPG

The key process of EPG is to symbolically execute OSEK/VDX application based on the schedul-

ing of the embedded OSEK/OSEK OS model. EPG consists of two modules, one is execution

path constructor, and the other is OS model. The execution path constructor is used to con-

struct the execution paths according to the executions of currently running task. The OS model

is employed by the EPG to respond to invoked APIs and compute the running task when exe-

cution path constructor meets an API in the process of constructing execution paths. The main

processes of EPG are as follow,

1. Execute the interface function StartTask() of OS model to compute the running task.

2. Construct an execution path along the trace of running task CFG, and map the explored

statements in the execution path.

3. If meet branches, select one branch to continue, and push the other branches and the

current data in D of OS model into stack.

4. If the explored statement is an API, execute the interface function RespondAPI(API) of

OS model to respond to the API and compute the data in D of OS model.

5. If running task is null, pop an element from stack. Then, map the popped OS data to

D of OS model, and construct the next execution path according to the popped branch

position.

6. Repeat 2, 3, 4 and 5 until stack is empty.

The details of EPG are shown in Algorithm 1. In Algorithm 1, an element of stack is a tuple

elem=(pcs, osd, i, (n, n′)). Where, pcs which is an array is used to record the current positions

55



Algorithm 1 : Execution Paths Generator

Input: task CFGs Ω1,Ω2,· · · , and configuration file
Output: Execution paths π1, π2, · · ·
1: pcs := [n10, . . . , n

m
0 ], where m is the number of tasks

2: i :=0, where i is the index of state of execution path
3: j :=1, where j is the index of execution paths
4: initialize a stack
5: initialize D within OS model according to application config. file
6: call the interface function of OS model StartTask()
7: while runTask of D != null do
8: tid := runTask of D within OS model
9: ∆ := {(n, n′) ∈ Ωtid|n = pcs[tid]}

10: (n, n′):= one of the element of ∆
11: ∆:=∆ \ {(n, n′)}
12: if |∆| > 0 then
13: D →osd, the operator “→” represents mapping the data within D into osd
14: for all (n, n′) ∈ ∆ do
15: elem:=(pcs, osd, i, (n, n′)), stack.push(elem)
16: end for
17: end if
18: if the statement α mapped in edge (n, n′) is an API then
19: if α is TerminateTask() or ChainTask(tid′) then
20: pcs[tid′]:=the start node n0 of task tid′

21: end if
22: call the interface function of OS model RespondAPI(a) to respond to the invoked API

and compute D
23: end if
24: create a new state si+1 for the execution path πj , and map the task statement α in the

edge 〈si, si+1〉
25: i++
26: update pcs[tid] with target node n′ of edge (n, n′)
27: if runTask = null then
28: output(πj)
29: if stack.empty() = true then
30: break
31: end if
32: (pcs, osd, i, (n, n′)):=stack.pop()
33: osd →D, the operator “→” represents mapping the values within osd into D of OS

model
34: πsub:=GetSubpath(πj ,i)
35: j++
36: πj :=πsub
37: end if
38: end while
39: return
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x<0 !(x<0)

goto ActivateTask(t2);

TerminateTask();

TerminateTask();

x=y;

y>x !(y>x)

goto

TerminateTask();

TerminateTask();

TerminateTask();

Figure 6.5: The execution paths for motivating example

of task CFGs, osd which is the set of values is used to record the data within D, i which is

variable is used to record the position of branches, (n, n′) is one of the branches. Since stack is

used to construct the execution paths, the execution path πj and the next execution path πj+1

will hold the same sub-path which starts from initial state and ends at the position of branch

popped from stack. The function GetSubpath(πj , i) is used to extract the same sub-path from

the execution path πj for constructing the next execution path πj+1. ∆ which is a set is used

to store the edges whose previous node n is equal to current position of running task.

Based on the EPG, all of the execution paths with respect to the target application can be

generated. The definition of generated execution path π is as follows,

Definition 10 An execution path π is the task statement sequence π=s0
a−→s1

a−→s2
a−→s3

a−→

· · · , s is the state of execution path, α∈
⋃

Σtid is the statement of tasks.

E.g., for the example shown in Fig. 6.2, EPG will generate three execution paths, which have

been illustrated in Fig. 6.5.

6.4.2 Transition System

When all of the possible execution paths of an OSEK/VDX application are generated by EPG,

we then can construct a corresponding transition system for the application. Here, we use

function [[πj ]] to convert an outputted execution path πj into the conjunctive normal form (CNF)
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( (x0 < 0) ∧
  (APIName1 = TerminateTask) ∧ (parameter = null)
)
∨
( (!(x0 < 0)) ∧
  (APIName1 = ActivateTask) ∧ (parameter1 = t2)∧
  (y0 > x0) ∧ (x1 = y0) ∧
  (APIName2 = TerminateTask) ∧ (parameter2 = null) ∧
  (APIName3 = TerminateTask) ∧ (parameter3 = null)
)
∨
( (!(x0 < 0))  ∧
  (APIName1 = ActivateTask) ∧ (parameter1 = t2) ∧
  (!(y0 > x0)) ∧
  (APIName2 = TerminateTask) ∧ (parameter2 = null) ∧
  (APIName3 = TerminateTask) ∧ (parameter3 = null)
) 

Figure 6.6: The transition system for motivating example

expression in SMT-LIB format. The CNF expression for an execution path πj is defined in the

formula (6.1), where L(si,si+1) represents a task statement α mapped in the edge (si,si+1) of

execution path πj . The conversion processes of function [[πj ]] are as follow,

• if L(n, n′) is a condition statement, such as “x > y”, then

[[L(s, s′)]] ⇒ (x>y)

• if L(n, n′) is an assignment statement, such as “x= y + z”, then

[[L(s, s′)]] ⇒ (x′= y + z)

• if L(n, n′) is an API, such as ChainTask(tk), then

[[L(s, s′)]] ⇒ ((APIName′ = ChainTask) ∧ (parameter′ = tid)), where APIName and

parameter are the variables used to record the name and parameter of invoked API.

• if L(n, n′) is goto statement, then

[[L(s, s′)]] ⇒

• if L(n, n′) is a assertion statement, such as “assert(x > y)”, then

[[L(s, s′)]] ⇒ (assert(!(x>y))
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According to the formula (6.1), we can obtain the transition system when we translate all of

the generated execution paths into CNF expression. The expression of transition system [[M ]] is

defined in the formula (6.2), where I(s0) which is the initial function is used to initialize each

global variable and local variable declared in the target application, w is the number of execution

paths. E.g., the transition system of the motivating example is shown in Fig. 6.6. Finally, we

can pass the constructed transition system and a given property to SMT solver for checking

whether the transition system holds the given property.

[[πj ]] :=

|πj |−1∧
i=0

[[L(si,si+1)]] (6.1)

[[M ]] := I(s0) ∧ (
w∨
j=1

[[πj ]]) (6.2)

6.5 Bounds

6.5.1 Depth Bound

In OSEK/VDX applications, tasks can invoke the API ActivateTask(tid) or ChainTask(tid)

to activate a suspended task. This activation process will possibly result in an infinite task

execution sequence in an application. As shown in Fig. 6.7, task tka invokes API ChainTask(tkb)

to terminate itself and activate task tkb. Similarly, task tkb invokes ChainTask(tka) to terminate

itself and activate task tka. We can find that the application holds an infinite task execution

sequence tka, tkb, tka, · · · , tka, tkb, which means, the application holds an infinite execution

path. For this type of applications, EPG cannot stop itself when we use it to generate execution

paths. In order to terminate the executions of EPG, a bound for limiting the depth of infinite

execution paths is supported by our approach. In the process of generating execution paths

using EPG, when EPG meets the bound, it will stop to construct the current execution path

and then go to construct the next execution path.

6.5.2 Loop Bound

Like other bounded model checker such as cbmc, in our approach, the computation of variables

is performed by the back-end solver Z3 rather than EPG. Thus, the break-conditions of loops
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Figure 6.7: Infinite execution path
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Figure 6.8: Unfolding loop according to loop bound

cannot be determined in the process of constructing execution paths. Although the bound for

limiting the depth of execution paths can terminate the executions of EPG when the given

application holds loops, a lot of redundant behaviors within loop body will be continuously

translated into transition system. In order to eliminate the redundant transitions of loops from

transition system, a bound for limiting the execution times of loops is considered in our approach.

According to the set bound, loops will be unfolded in the host task CFG before using EPG to

generate execution paths. As shown in Fig. 6.8, the loop will be unfolded two times when we set

the loop bound to be 2. Especially, as to judge whether a loop has been unfolded enough, the

assertion which holds the negative break-condition will be inserted into the end of loop body.

In the process of unfolding loops, the Tarjan algorithm [5] is used to find loops from tasks in

our approach.

6.6 Supported Checking Properties

Based on the EPG and bounds, we can construct a transition system under bounds for OSEK/VDX

application. In this part, we will talk about what kinds of given properties can be checked by
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OS data

OS data

OS data

Figure 6.9: Mapping OS data of OS model to nodes of execution path

our approach.

Variable property: In the practical checking process, we usually use assertions to check

whether the executions of target application have already reached a specified state. Based on the

expression of transition system, we can find that all of the executions of application have been

translated into the corresponding transition system. Thus, our approach can be used to check

variable property using assertion statement. In addition to assertions, the given property which

holds temporal operators is frequently used to check an application in the practical checking

process. For instance, we want to check whether the value of a variable will be changed to be

zero in the future. To check such type of property, the property specified in Linear Temporal

Logic (LTL) can be accepted by our approach. The conjunctive expression ψ of transition system

and given property f specified in LTL is defined in the formula (6.3), where k is the state number

of the longest execution path. The process about how to unfold the given property f specified

in LTL has been stated in paper [14].

[[ψk]] := I(s0) ∧
w∨
j=1

(

|πj |−1∧
i=0

[[L(si, si+1)]]) ∧ ¬fk (6.3)

API property: The API is also an interesting checking property for the OSEK/VDX

applications, since APIs perform an important part in the interaction between application and

OSEK/VDX OS. In the checking process, we usually want to check whether an API will be

invoked by tasks. In our approach, the API statements within tasks are mapped in the execution

paths by EPG. Therefore, our approach can be used to check API property.

OS data property: When an application runs on the OSEK/VDX OS, it is difficult to judge

the execution situations of the application, since the executions of OSEK/VDX applications are

conducted by scheduler, and tasks within application can invoke APIs to synchronously execute
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and access shared resources. As to clearly detect the execution situations of an application, the

states of tasks are often considered as a checking point. To check this type of property (which

is named as OS data property in our paper), the transition system should hold the data within

D of OS model. However, in the process of constructing transition system, only executions of

application are translated into transition system. In order to improve our approach to check OS

data property, as shown in Fig.6.9, the OS data of OSEK/VDX OS model is mapped into each

state of execution paths by EPG when constructing execution paths. Based on the mapping

process, the OS data property can be checked by our approach, e.g., we can check whether the

running task will be moved into ready queue after ActivateTask(tid) is invoked.

Mutual exclusion property: In addition, the checking process on mutual exclusion prop-

erty also will be carried out in the practical checking process, since tasks within application

can enter a critical section for accessing a shared resource using APIs GetResource(rid) and

ReleaseResou-rce(rid). Informally, mutual exclusion contains two properties, one is exclusiveness,

the other is liveness. In our approach, as to check these two properties, the task tid of ac-

cessing shared resources is recorded in resAccessList of OS model, and the recorded data is

mapped in the states of execution paths by EPG. For instance, we can use the given properties

f = !F(tk1@Res1 ∧ tk2@Res1) and f = F(tk1@Res1) to check the exclusiveness property and

liveness property of target application respectively, where we suppose that task tk1 and task

tk2 will access the same shared resource Res1. In the given properties, @ represents matching

task ID in the corresponding shared resource list, F is the Liveness temporal operator in LTL.

6.7 Verification of Transition System using Z3

Z3, a high-performance theorem prover, has been widely applied in the SMT-based bounded

model checking. In our approach, Z3 as the back-end solver is employed to check whether the

constructed transition system holds the given property, if not, to provide a counter-example.

There are two strategies for checking constructed transition system using Z3, first one is just

invoking Z3 one time to check whole transition system, the second is invoking Z3 many times

to check. In our approach, we use second strategy to perform the checking process. When EPG

outputs an execution path, we will invoke Z3 to check the transition system which is built on

the one execution path, and we stop the checking process when Z3 has found a bug, or has
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if(x > y)
  x--;
else 
  x++;

SSA

x1=x0 – 1;
x2=x0 +1;
x3=(x0>y ? x1:x2);

Figure 6.10: Static single assignment (SSA)

systematically checked all of execution paths.

On the face of this strategy, it seems to be naive: (i) a lot of iterative transitions will be

checked by Z3, since the generated execution paths probably hold many same sub-paths. (ii)

We need to invoke Z3 several times to check the obtained transition system, which might slow

down the checking process. However, there are several advantages that can make this strategy

worthwhile. First, if the target application contains errors in the preceding execution paths, the

errors will often be found within a shorter time compared with first strategy, since only a small

part of the whole transition system is checked in the practical checking process (the experience

on the real application can be found in the paper [47]). Second, we do not need to construct

all of the execution paths in advance, instead, we only store one execution path in the memory

when we check an target application. Third, and most important, this strategy can improve the

checking ability of our approach to handle highly complex application, since just the small parts

of the target application are checked by our approach in each checking process.

6.8 Reduction of Execution Paths

In bounded model checking, static single assignment (SSA) [18] as an efficient and important

technique is usually employed to combine the branches in the process of constructing transition

system, as shown in Fig. 6.10. In OSEK/VDX applications, since APIs invoked from tasks

will dynamically change the scheduling of tasks, e.g., the different APIs locating at different

branches will result in different task execution orders and the invoked APIs may lead to the

context switch of tasks. Thus, in our EPG technique, we explore all of the possible execution

paths to construct the corresponding transition system. However, if the given application holds

a lot of branches, our approach will check a large number of execution paths, which will slow
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x1=x0 – 1;
x2=x0 +1;
x3=(x0>y0 ? x1:x2);  

ActivateTask(t1);

x3==y

if(x > y)
  x--;
else 
  x++;
if(x == y)

  ActivateTask(t1);
else

  ActivateTask(t2);

SSA

x1=x0 – 1;
x2=x0 +1;
x3=(x0>y ? x1:x2);
 
if(x3 == y)

  ActivateTask(t1);
else

  ActivateTask(t2);

EPG

ActivateTask(t2);

!(x3==y)

Figure 6.11: Example for reducing execution paths

down the performance of our approach.

In order to improve the performance of our approach, we propose an optimization strategy

to combine the branches which do not hold APIs for reducing execution paths based on the SSA

technique. In the checking process, we firstly carry out the optimization strategy to combine the

branches which do not hold APIs, and then use EPG to generate execution paths. As shown in

Fig. 6.11, if the SSA technique is used in the checking process, EPG will generate two execution

paths for the example; otherwise, EPG will generate four execution paths for the example.

6.9 Implementation

We have implemented a corresponding tool named osek-bmc1 according to the proposed ap-

proach. osek-bmc consists of five modules, implemented on the Visual Studio 2010 with 9400

lines of C++ code. The structure of osek-bmc is shown in Fig. 6.12. In the first module, as to

conveniently applied our approach to verify an OSEK/VDX application, we develop a front-end

interpreter to interpret the behaviors of tasks within the application into the corresponding

CFGs based on the C intermediate language (CIL) [25] (the interpreter for now can accept the

main characteristics of C programming language except pointer, struct and function calls).

The second module is to unfold loops within tasks according to the set loop bound. The third

module is used to combine the branches without APIs based on the SSA technique. The fourth

module is to implement the functionality of EPG. The last module is to invoke SMT solver Z3

1http://www.jaist.ac.jp/~s1220209/osek-bmc.htm
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Figure 6.12: The structure of osek-bmc

to check whether the constructed transition system satisfies a given property or not, if not, a

counterexample will be reported.

Furthermore, in OSEK/VDX applications, tasks often get a value from a sensor. However, it

is difficult to determine the value of a sensor in the verification, since the value of sensors is usu-

ally in a range. As to conveniently simulate the values of a sensor, a function random(low,high)

is supported by osek-bmc to implement the non-deterministic behaviours.
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6.10 Advantage and Disadvantage

In our SMT-based checking approach, we present a new method named EPG to accurately and

efficiently verify the OSEK/VDX applications which hold a lot of tasks, APIs and states. In

the approach, as to avoid OSEK/VDX OS model to be explored in the verification stage, we

embed OSEK/VDX OS model in EPG (constructing model algorithm flat) to respond to the

APIs invoked from tasks and determine the running task. Moreover, as to handle the complex

applications which hold a large number of states, the state-of-art SMT solver Z3 is used to carry

out the verification. The approach holds the following advantages,

• EPG: we can construct a transition system without the behaviors of OSEK/VDX OS

model for the target OSEK/VDX application based on the generated execution paths,

since OSEK/VDX OS model is embedded in EPG to determine the running task and

respond to the APIs invoked from tasks.

• SMT-based BMC: it can make our approach more efficient and scalable in checking the

complex applications which hold a large number of states, because the state-of-the-art

SMT solver Z3 is used to carry out the verification.

However, the approach is not efficient to handle the applications which hold a lot of loops

and branches with APIs. This is because, in our EPG technique the transition system of an

OSEK/VDX application is constructed based on the execution paths. If the application holds

a lot of loops with APIs, it will spend a lot of time exploring execution paths for constructing

transition system under the set loop bound, which will slow down the performance of our EPG

technique.
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Chapter 7

Sequentialization-based Checking

Approach

According to the disadvantages of EPG technique, we found that the approach will spend a

lot of time verifying the OSEK/VDX applications which hold a lot of loops and branches with

APIs, since in EPG technique the transition system of application is constructed based on the

execution paths. If an application holds many loops with APIs, EPG technique will spend a lot

of time exploring execution paths for constructing transition system under the set loop bound,

which will slow down the performance of the approach. To efficiently check the applications

which hold a lot of loops with APIs, the key work is how to avoid a large number of execution

paths to be explored in the verification process.

According to the technique characteristics of explicit state model checking and bounded

model checking, we find that these model checking techniques can efficiently check a sequen-

tial software even though the sequential software holds a lot of loops. This is because, these

model checking techniques will not explore execution paths in the verification stage, i.e., in the

explicit state model checking technique sequential software is explicitly executed, and in the

bounded model checking technique SSA technique is used to combine branches after the process

of unfolding loops. Based on above discussions, if we can efficiently translate OSEK/VDX ap-

plications into sequential models, that means, we can efficiently verify OSEK/VDX applications

using model checking techniques such as explicit state model checking technique and bounded

model checking technique. However, there is a challenge that is how to efficiently translate
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int x=0, y=0;

TASK t1(){
    while(x < 2){
        ActivateTask(t2);
        x++;
    }
    TerminateTask();
}

TASK t2(){
    y++;
    TerminateTask();
}

TASK t1
{
    TYPE=BASIC;
    SCHEDULE=FULL;
    PRIORITY=5;
    AUTOSTART=TRUE;
 };
TASK t2
{
    TYPE=BASIC;
    SCHEDULE=NON; 
    PRIORITY=6;
    AUTOSTART=FALSE;
  };

Source file (.cpp) Configuration file (.oil)

Figure 7.1: The motivating example for DGC

OSEK/VDX applications into the corresponding sequential models.

Actually, we have sequentialized OSEK/VDX applications in our EPG technique. E.g., for

the motivating example shown in Fig. 7.1, based on the the execution paths which are generated

by EPG, we can construct an execution tree illustrated in Fig. 7.2 to represent the sequential

model of the application (where, we set the loop bound to 2). There are two advantages in the

execution tree method, (i) the execution tree does not hold the behaviours of OSEK/VDX OS,

since the OSEK/VDX OS model is embedded in the constructing algorithm to dispatch tasks

and respond to the APIs invoked from tasks; (ii) the constructed execution tree can accurately

represent the sequential executions of the OSEK/VDX application, since the execution paths of

the execution tree can accurately reflect all of the different task execution orders caused by the

APIs locating at different branches. However, there are some disadvantages in the execution

tree method, e.g., first, the constructed execution tree holds a lot of the same sub-paths (as

shown in Fig. 7.2, the sub-path from 1© to 2© is held by the both execution path π2 and π3);

second, the method cannot stop its execution if the given application holds loops, because it just

symbolically executes the application, the computation on variables are not computed in the

process of constructing execution tree. third, and most important, this method is not efficient

because in the sequentialization process this method will spend lot of time exploring execution

paths.

As to efficiently sequentialize OSEK/VDX applications which hold a lot of branches and same

68



1

!(x<2) x<2

TerminateTask(); ActivateTask(t2);

y++;

TerminateTask();

x++;

1π

2!(x<2) x<2

TerminateTask(); ActivateTask(t2);

y++;

TerminateTask();

x++;

TerminateTask();

2π

3π

Figure 7.2: The executive tree for motivating example

execution behaviours such as loops into sequential models, we propose a novel approach in this

chapter based on the advantages of execution tree. In the approach, we use an extended directed

graph instead of execution tree to compute the sequential model of OSEK/VDX application.

There are several strengths that can make directed graph more efficient than execution tree to

compute the sequential model of OSEK/VDX application, e.g., (i) based on the directed graph,

we do not need to explore execution paths when meeting branches in the sequentialization

process, instead, we can use the combination states to reduce the computation times; (i) based

on the directed graph, we do not need to repeatedly compute the same execution behaviours of

application in the sequentialization process, instead, we can construct a cycle in directed graph
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!(x<2) x<2

TerminateTask(); ActivateTask(t2);

y++;

TerminateTask();

x++;

Figure 7.3: The extended directed graph for motivating example

to represent the same execution behaviours.

The key idea of the approach is to symbolically execute the application using extended

directed graph and explicitly perform the scheduling behaviours of OSEK/VDX OS in the

sequentialization process. E.g., for the motivating example shown in Fig. 7.1, we can use the

extended directed graph illustrated in Fig. 7.3 to represent the corresponding sequential model.

Based on the constructed execution tree and extended directed graph, we can easily find that

the extended directed graph is more efficient than execution tree to represent the sequential

model of OSEK/VDX application, since we compute 16 times to construct the execution tree

(where, we suppose that one state spends once computation). Compared with execution tree, we

just spend 8 times constructing the extended directed graph. Moreover, based on this idea, in

our approach we have developed a directed graph constructor (DGC) to efficiently sequentialize

OSEK/VDX applications.

7.1 Overview of Sequentialization Approach

The structure of our approach is shown in Fig. 7.4. As to automatically translate an OSEK/VDX

application into the corresponding sequential program, in the first step we develop a front-end

interpreter to interpret the behaviors of tasks within the application into corresponding control
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source file
Directed Graph ConstructorC

format input
CIL model checker 

Spin/cbmc
config. file

task
CFGs

directed graph generator

OSEK/VDX OS model
APIs

sequential model
(directed graph)

Figure 7.4: The structure of DGC

flow graphs (CFGs) based on the C intermediate language (CIL) [25]. In the second step, the

directed graph constructor (DGC) is employed to construct a directed graph for representing

the sequential program of OSEK/VDX application. Particularly, the constructed OSEK/VDX

OS model shown in SMT-based bounded model checking approach is embedded in the DGC

(translation algorithm flat) to respond to the APIs invoked from tasks and determine the running

task when the directed graph generator meets an API in the process of constructing directed

graph. In the last step, the model checker such as Spin and cbmc will be employed to verify the

obtained sequential model.

7.2 CFG of Task

Like our EPG technique, in our sequentialization-based checking approach, we also use CFG to

describe the behaviours of tasks. The definition of CFG of task is as follows,

Definition 11 The CFG of a task is a tuple Ωtid=(N tid, ntid0 , ntide , Σtid, Rtid).

Where, tid is the identifier of tasks. N tid is the set of locations, ntid0 ∈N is the start location,

ntide ∈N is the end location. Σtid is the set of statements of task tid, the expression of a statement

α∈Σ is as follows:

α ::= condition | assignment | goto | assertion | API

R⊆N tid×Σtid×N tid is the set of directed edges labelled by task statements. For example, the

CFGs for the motivating example illustrated in Fig. 7.1 are shown in Fig. 7.5.
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n0
!(x<2) x<2

(a) task t1

ActivateTask(t2);
n1

ne

TerminateTask();

n2

n4

n5

x++;

goto
n0

n1

ne

TerminateTask();

y++;

(b) task t2

Figure 7.5: The CFGs for motivating example

7.3 DGC and Sequential Model

7.3.1 DGC

The key idea of the approach is to symbolically execute the application using extended directed

graph and explicitly perform the scheduling behaviours of OSEK/VDX OS in the sequentializa-

tion process. In the other words, in the sequentialization process, we do not compute the task

statements such as condition statements and assignment statements, instead, we symbolically

execute application using an extended directed graph under the scheduling of OSEK/VDX OS.

The definition of the extended directed graph is as follows,

Definition 12 The extended directed graph is a tuple G=(V , v0, ve, E). V is the set of nodes,

and a node v∈V is a tuple v = (pcs, osd), where pcs=[n1,...,nm] is an array used to record the

current locations of tasks t1,...,tm (m is the number of tasks), osd which is a set of values used

to store the data within D of OS model. v0 ∈ V is the start node, and ve ∈ V is the end node.

E⊆V ×
⋃

Σtid ×V is the set of directed edges labelled by task statements.

The details about how to construct an extended directed graph for an OSEK/VDX applica-

tion are stated as follow,

Condition and assignment statements: The condition statements and assignment state-

ments are not computed in the sequentialization process. As shown in Fig. 7.6, we just symbol-

ically execute condition statements and assignment statements.
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n0!(x<2) x<2

(a) task

n1 n2
x++;

n3

v0!(x<2) x<2
v1 v2

x++;
v3

(b) directed graph

Figure 7.6: Process: condition and assignment statements

n0

(a) task

n1 n2
ActivateTask(t2)

n3

v0

v1 v2

v3

(b) directed graph

OS model
osd

osd

Figure 7.7: Process: API statement

n0

(a) task

n1 n2

n3

v0

v1 v2

v3

(b) directed graph

Figure 7.8: Process: loop

API statement: In the sequentialization process, when we meets an API, as shown in Fig. 7.7,

we firstly pass the OS data osd of node to the embedded OSEK/VDX OS model; and then call

the OS model to respond to the invoked API; finally, record the OS data of OS model in osd of

node.

loop: In the sequentialization process, when we meets a loop, as shown in Fig. 7.8, we just

use a cycle in directed graph to represent the loop in tasks (note that, loops in tasks are only

computed on time in the sequentialization process).

73



b>=a
v1

v2

v4

v6

v8

v11

v9

v12

v3

v5

v7

v10

v13

v15

v17

v18

v20ve

!(b>=a)

a++; b++;

goto

h<10
!(h<10)

h++;goto

goto

goto

c=b;

goto

goto

goto

c=(c+b)/b;

goto

assert(a>b);
goto

v0

ve

start
int a, b, c, h;

TASK t1(){
  if(b >= a){
    a++;
    ActivateTask(t2);
  }
  else{
    b++;
    ActivateTask(t3);
  }
  ActivateTask(t4);
  TerminateTask();
}
TASK t2(){
  while(h < 10){
    h++;
  }
  TerminateTask();
}
TASK t3(){
  c=b;
  c=(c+b)/b;
  TerminateTask();
}
TASK t4(){
  assert(a > b);
  TerminateTask();
}

TASK t1{
  TYPE=BASIC;
  SCHEDULE=FULL;
  PRIORITY=5;
  AUTOSTART=TRUE;
};

TASK t2
{
  TYPE=BASIC;
  SCHEDULE=NON;
  PRIORITY=6;
  AUTOSTART=FALSE;
};

TASK t3
{
  TYPE=BASIC;
  SCHEDULE=NON;
  PRIORITY=4;
  AUTOSTART=FALSE;
};

TASK t4
{
  TYPE=BASIC;
  SCHEDULE=NON;
  PRIORITY=4;
  AUTOSTART=FALSE;
};

(a) OSEK/VDX application (b) extended directed graph

Figure 7.9: Example for extended directed graph

Based on the above ideas, we develop a directed graph constructor (DGC) to construct a

directed graph for representing the sequential model of OSEK/VDX application. The details

about how to construct extended directed graph are stated in Alg. 2.

In Alg. 2, Θ which is a set is employed to store the transitions of directed graph, where an

element γ of Θ is a tuple γ=(v, α, v′) (here, v′∈V is the successor node of node v∈V , α∈
⋃

Σtid

is the task statement). Moreover, for two elements γi=(vi, αi, v
′
i) and γj=(vj , αj , v

′
j), if and only

if vi = vj and αi = αj and v′i = v′j , γi is equal to γj . Note that, the API statement is replaced

with goto statement in the process of constructing directed graph. The structure of Alg. 2 is as

follows,

• The fragment (1-3) is the initial part.

• The fragment (5-10) is used to construct the start transition of directed graph.
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Algorithm 2 : Directed Graph Constructor

Input: task CFGs, configuration file of application
Output: directed graph
1: initialize D of OS model with application config. file
2: initialize pcs := [n10, . . . , n

m
0 ] with task start locations

3: i := 1, j := 0, where i and j are the index of nodes
4:

5: call the interface function StartTask() of OS model to compute the running task
6: D→osd, where the operator “→” represents mapping the data within D into osd
7: v0 := (pcs, osd)
8: v1 := v0
9: γ := (v0, start, v1) and set γ as unexplored element

10: Θ := Θ ∪γ
11:

12: while ∃γ ∈ Θ is an unexplored element do
13: (v, α, v′) := γ and set γ as explored element
14: osd := osd within node v′

15: pcs := pcs within node v′

16: j := the index of node v′

17: tid := runTask within osd
18: if tid = null then
19: update the index of v′ of γ with e, goto 12
20: end if
21: ∆ := {(n, n′) ∈ Ωtid|n = pcs[tid]}
22:

23: for all (n, n′) ∈ ∆ do
24: i ++
25: vj := v′

26: α := the task statement mapped in (n, n′)
27: pcs[tid] := the target location n′ of (n, n′)
28:

29: if α is an API then
30: if a is TerminateTask() or ChainTask() then
31: pcs[tid] := the start location n0 of task tid
32: end if
33: osd→D, where the operator “→” represents mapping the data within osd into D of

OS model
34: call the interface function ResponseAPI(α) of OS model to respond to the

service API α and compute the data within D of OS model
35: D→osd
36: α := goto
37: end if
38:

39: vi := (pcs, osd)
40: γ′ := (vj , α, vi)
41:

42: if ∃γ′′∈Θ = γ′ then
43: j := the index of node v within γ′′

44: update the index of v′ of γ with j
45: goto 12
46: end if
47:

48: set γ′ as unexplored element, Θ := Θ ∪γ′
49: end for
50: end while
51: return
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if(b >= a)  
if(!(b >= a) 
a++;       
if(h < 10)   
if(!(h < 10)) 
h++;   
b++; 
c=b; 
c=(c+b)/b;
assert(a > b);

v0:

v2:
v6:

v8:
v3:
v13:
v15:
v18: 

goto v2;
goto v3;
goto v6;
goto v8;
goto v18;
goto v6;
goto v13;
goto v15;
goto v18;

Figure 7.10: C model for OSEK/VDX application sequential model

• The fragment (13-21) is used to compute the new transitions of directed graph.

• The fragment (29-37) is used to call the interface function RespondAPI(API) of OS model

to respond to the invoked service API and compute the data within D of OS model.

• The fragment (42-46) is used to avoid redundant transitions to be inserted into the directed

graph.

7.3.2 Sequential Model

Based on the DGC, we can easily construct an extended directed graph to represent the se-

quential model of an OSEK/VDX application, e.g., as shown in Fig. 7.9, DCG will construct

an extended directed graph for the shown application. Note that, int the constructed extended

directed graph, the APIs in the original application are replaced with goto statements.

In the extended directed graph, the relationships between task statements are clearly spec-

ified by directed edges, we thus can easily compile the directed graph into the input language

of beck-end model checker using goto statement, such as the input language promela of Spin

and C language of cbmc. E.g., for the the extended directed graph shown in Fig. 7.9, we can

use goto statements to compile the extended directed graph into the C language model which

is illustrated in Fig. 7.10. A similar work for translated finite state machine into systemC has

been presented in paper [49].
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running task (priority=4)

int x=0;

TASK t1(){
    while(x < 2){
        ActivateTask(t2);
        x++;
    }
    TerminateTask();
}

suspended task (priority=1)

TASK t2(){
    x--;
    TerminateTask();
}

Figure 7.11: Example for multi-activations of tasks

TASK t1(){
    if(x < 2){
        ActivateTask(t2);
        x++;
    }
    if(x < 2){
        ActivateTask(t2);
        x++;
    }
    assert(!(x<2));    
    TerminateTask();
}

unfolding loop according 

to the loop bound

Figure 7.12: Unfolding loop for multi-activations of tasks

7.4 Multi-activations of Tasks

In OSEK/VDX applications, if a task is multiply activated by running task, the task will be

directly moved to ready state after finished its executions until the activation times of the task

have been used up. E.g., as shown in Fig. 7.11, task t2 is multiply activated 2 times by the

currently running task t1 using a loop. In the example, since the priority of task t2 is lesser

than task t1, t2 will not be executed although t2 has been activated. When running task t1 is

terminated by scheduler, task t2 will be executed 2 times.

In our sequentialization approach, if a task is multiply activated by a loop of running task

and the currently running task will be preempted by the activated task, our approach can

precisely handle the multi-activations, because the multi-activations of tasks are like function

calls. However, there is a limitation in our sequentialization approach, that is, our approach

does not support the multi-activations of tasks shown in Fig. 7.11. E.g., for the example, in

77



our approach the task t2 will be activated only once rather than two times. This is because, in

our approach we do not judge the execution times of loops, instead, loops are just symbolically

executed on time, that is, we do not know how many times the task is activated by the loop.

As to solve this limitation, before using DGC to generate extended directed graph, we can set

a bound for the loop, and unfold the loop according to the set bound. The idea benefits from

bounded model checking [11][14]. For instance, as shown in Fig. 7.12, for the loop shown in

Fig. 7.11, we can unfold the loop two times according to the loop bound. In particular, in order

to judge whether the loop is unfolded enough or not, we can insert an assertion which holds the

negative condition of the loop in the end of unfolded loop body.

7.5 Implementation

We have developed a corresponding tool named autoC1 according to the proposed approach.

Currently, autoC support C programming language without pointer, struct as input language.

Furthermore, autoC can output two types of sequential model, C sequential model and promela

sequential model. The structure of autoC is shown in Fig. 7.13. autoC consists of four modules,

implemented on the Visual Studio 2010 with 4000 lines of C++ code. The first module is to

automatically interpret the behaviors of tasks into the corresponding CFGs. The second module

is to extract the configuration data from configuration file of application. The third module is

to implement the functionality of DGC. The last module is to compile the constructed extended

directed graph into the C sequential model and promela sequential model.

7.6 Advantage and Disadvantage

As to efficiently verify OSEK/VDX applications using the existing model checkers such as Spin

and cbmc, in our sequentialization-based checking approach, we present a novel method that

can accurately and efficiently translate OSEK/VDX applications into sequential models. In

the approach, we symbolically execute application using an extended directed graph under the

scheduling of OSEK/VDX OS. There are several advantages in our approach, e.g.,

1http://www.jaist.ac.jp/~s1220209/autoC.htm
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Figure 7.13: The structure of autoC

• The constructed sequential model (extended directed graph) can accurately reflect the

executions of the OSEK/VDX application, since the embedded OSEK/VDX OS model is

employed to respond to the invoked APIs and determine the running task in the sequen-

tialization process.

• The sequential model does hold the behaviours of OSEK/VDX OS, because OSEK/VDX

OS model is embedded in the DGC (translation algorithm flat).

• The same execution behaviours of application such as loops will not be repeatedly com-

puted in the sequentialization process, since an extended graph is used to symbolically

execute application.

• Our sequentialization-based approach can efficiently improve the efficiency and scalability

of existing model checkers in checking OSEK/VDX applications, because the existing

model checkers just verify a sequential model instead of a concurrent model.
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However, there is a shortcoming in our approach, that is, our approach is not efficient to

sequentialize the applications in which the APIs locating at branches will always lead to the

different task execution orders. This is because, in our approach, as to accurately sequentialize

an OSEK/VDX application, all of the different task execution orders are represented by the

different sub-paths in the extended directed graph. For this type of applications, our approach

will spend a lot of time exploring execution paths in the sequentialization process and finally

construct a tree structure, which will slow down the performance of our approach.
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Chapter 8

Experiment and Discussion

In this thesis, based on the model checking technique, we have presented three approaches to

automatically verify OSEK/VDX applications. In this chapter, we will carry out two types

of experiments to comprehensively evaluate the proposed checking approaches. In the first

experiment, we will conduct several experiments to show the accuracy of our approaches. In the

second experiment, we will show the efficiency and scalability of our approaches based on several

experiments. Furthermore, based on the experiment results, the advantage and disadvantage of

our approaches will be also discussed in this chapter.

8.1 Accuracy

As we know, accuracy is an very important criterion in the verification of software, since an

inaccurate checking result will usually result in the extra costs, i.e., developers will spend ex-

tra time to judge whether the detected bug is a real one or not after completing verification.

However, in the verification of OSEK/VDX applications, the existing model checking meth-

ods cannot achieve an accurate verification, because a lot of unnecessary interleavings of tasks

within application will be checked in the verification stage. To accurately verify OSEK/VDX

applications, we developed three approaches to construct an accurate model in order to make

model checking techniques perform an accurate verification. Compared with the existing model

checking methods for concurrent software, an accurate OSEK/VDX application model will be

constructed under the explicitly scheduling of OSEK/VDX OS. Based on the constructed accu-
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rate model, the unnecessary interleavings of tasks will not be checked in the verification stage.

That is, our approaches can accurately check the OSEK/VDX applications using model checking

technique, especially the spurious bugs will not be found by our approaches in the verification

process. As to show the accuracy of our approaches, we will demonstrate several experiments

in this section.

8.1.1 Experiment

In experiments, we adopt well-known Spin model checker instead of existing model checking

methods for concurrent software to verify OSEK/VDX applications. In the checking method,

OSEK/VDX scheduler is not taken into account in the verification process, and all of the

tasks within the application are designed processes. In our checking approaches, we select

sequentialization-based checking approach as comparison object, where we firstly use our ap-

proach to sequentialize OSEK/VDX application, and then use Spin to verify the sequentialized

application. Furthermore, in order to show the accuracy of our approaches, the number of

explored states and spurious bug are considered as the investigation points.

As to comprehensively evaluate the accuracy, the OSEK/VDX applications which hold dif-

ferent task number and API number are selected as our benchmarks. Moreover, as to really

represent the execution behaviours of an OSEK/VDX application, the non-preemptive schedul-

ing behaviour (e.g., nonpremt1 safe and nonpremt2 safe shown in Table 1), full-preemptive

scheduling behaviour (e.g., fullpremt1 safe and fullpremt2 safe), mix-preemptive scheduling be-

haviour (e.g., mixpremt1 bug and mixpremt2 bug) are also taken into account in the selected

benchmarks. Note that, the given property as assertion is inserted in the selected benchmarks.

All of the experiments are conducted on the Intel Core(TM)i7-3770 CPU with 32G RAM,

and we set the time limit and memory limit to 600 seconds and 1GB, respectively. In addition,

the “C compiler” of Spin is set to “-DVECTORSZ=16384 -DBITSTATE”, and the max depth is

set to “20,000,000”. The experiment results have been listed in Table 1. In the result table, #t is

the number of tasks, #API is the number of times of invoked APIs, #s is the number of explored

states. According to the experiment results shown in Table 8.1, we can find the following results,

• The checking method Spin without scheduler checks more states than our sequentialization-

based checking approach.
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Table 8.1: Accuracy

Spin without Scheduler autoC+Spin

benchmark #t #API #s result #s result

nonpremt1 safe 2 3 17 spurious 5 true

nonpremt2 safe 3 5 33 spurious 10 true

fullpremt1 safe 2 3 17 spurious 5 true

fullpremt2 safe 3 5 33 spurious 10 true

mixpremt1 bug 3 5 33 spurious 10 false

mixpremt2 bug 4 7 69 spurious 13 false

• The checking method Spin without scheduler will usually find a spurious bug from checked

benchmarks.

• Based on the sequentialization process of our approach, the back-end model checker Spin

can accurately verify all of the benchmarks.

8.1.2 Discussion

Comparison to Spin without Scheduler

In the checking Spin method without scheduler, the checking model of benchmark holds all of

the possible interleavings of tasks, because the running task is arbitrarily determined by Spin

model checker in the verified stage. E.g., for the benchmark “nonpremt1 safe” shown in Fig. 8.1,

Spin will construct a checking model illustrated in Fig. 8.2 to demonstrate all of the possible

interleavings of tasks. According to the practical executions of the benchmark, we can easily

find that there are several unnecessary interleaving of tasks in the constructed checking model.

Moreover, due to the unnecessary interleavings, Spin will usually find a spurious bug in the

verification stage.

However, in contrast with the checking method Spin without scheduler, in our approach the

embedded OSEK/VDX OS model is used to respond to the APIs and determine the running

task in the process of translating a benchmark into sequential model. Thus, the constructed

sequential model in our approach is smaller than the checking method Spin without scheduler.

Substantially, the constructed sequential model is an accurate model for OSEK/VDX applica-
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int cnt = 0;

TASK t1(){
    if(cnt > 0)
         ActivateTask(t2);
    assert(cnt == 0);
    TerminateTask();
}

TASK t2(){
    cnt--;
    TerminateTask();
}

TASK t1{
    TYPE=BASIC;
    SCHEDULE=FULL;
    PRIORITY=5;
    AUTOSTART=TRUE;
 };

TASK t2{
    TYPE=BASIC;
    SCHEDULE=NON; 
    PRIORITY=3;
    AUTOSTART=FALSE;
  };

Source file (.cpp) Configuration file (.oil)

Figure 8.1: Benchmark: nonpremt1 safe

cnt>0

cnt>0 !(cnt>0)

!(cnt>0)

cnt--;

cnt--;

cnt--;

cnt--;

cnt--;

assert

assert assert

assert

assert assert

cnt>0
!(cnt>0)

goto
assert

cnt--;

(a) Spin without scheduler (b) autoC+Spin

Figure 8.2: The checking model for benchmark nonpremt1 safe

tion, since all of the possible executions of application is poured into the sequential model under

the explicitly scheduling of OSEK/VDX OS. Furthermore, the back-end model checker Spin can

accurately verify the benchmark based on the constructed sequential model. E.g., for the same

benchmark “nonpremt1 safe” shown in Fig. 8.1, our sequentialization-based checking approach

will construct a sequential model shown in Fig. 8.2 and verified the sequential model using Spin

model checker.

Advantage and Disadvantage of Our Approaches

To accurately verify OSEK/VDX applications, as shown in Fig. 8.3, in our approaches we firstly

developed an OSEK/VDX OS model according to the OSEK/VDX specification, and then

employ the developed OS model to simulate the executions of target application in order to
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simulating
accurate model

OSEK/VDX 
OS model

Application model 
checking

Figure 8.3: Key idea of our approaches

construct an accurate model. Based on accurate checking model, the explicitly executions of the

application will be checked in the verification process. There is a advantage in our approaches,

that is, we can apply model checking techniques to accurately verify OSEK/VDX applications

based on the accurate checking model constructed by our approach. Moreover, developers do

not need to spend extra costs judging whether the detected bug is a spurious bug or not when

completing verification.

However, there is a disadvantage in our approaches, that is, our approaches deeply rely on the

OSEK/VDX OS model. To accurately verify OSEK/VDX applications using our approaches,

we have to develop an OSEK/VDX OS model according to the specification of OSEK/VDX OS.

Furthermore, as to achieve an accurate checking result, we should spend extra costs ensuring

whether the developed OSEK/VDX OS model straitly conforms to the OSEK/VDX OS spec-

ification. Even so, our approaches still hold the superiority in the verification of OSEK/VDX

applications, e.g., once a reliable OSEK/VDX OS model is implemented, our approaches can be

employed to accurately verify many of developed OSEK/VDX applications, which will signifi-

cantly reduce the costs on the verification of OSEK/VDX applications.

As we know, it is difficult to develop correct OSEK/VDX OS model according to the

OSEK/VDX specification. In our work, we have tested the developed OSEK/VDX OS model

with at least 1000 experimental applications. Moreover, as to exhaustively find bugs from the

developed OSEK/VDX OS model, the different program structures and scheduling behaviours

such as sequential structure, branch structure, loop structure, non-preemptive behaviours, full-

preemptive behaviours, mix-preemptive behaviours, synchronization behaviours and accessing

shared resource behaviours have been carefully taken into account in the testing applications.

Furthermore, we intend to apply the methods stated in papers [32][33][53] to ulteriorly check

the developed OSEK/VDX OS model. We leave it as our future work.
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8.2 Efficiency and State-space

In this experiment, we will make a comparison for our three approaches. In the comparison, we

will investigate three points including explored state number, memory consumption and time

consumption to shown the efficiency and scalability of our approaches.

8.2.1 Experiment

An OSEK/VDX application usually consists of tasks, APIs, loops, synchronization events and

shared resources. In experiment, as to comprehensively evaluate the efficiency and State-space

of our approaches on the realistic applications, the applications which hold different task num-

ber, API number, loop number and different scheduling behaviours are selected as our bench-

marks. Furthermore, the applications which hold the non-preemptive scheduling behaviour

(e.g., msgp1-msgp4 shown in Table 8.2), full-preemptive scheduling behaviour (e.g., token1-

token4), mix-preemptive scheduling behaviour (e.g., rw var1-rw var4), synchronous behaviour

(e.g., sync1-sync4), and accessing shared resource behaviour (e.g., acc res1-acc res4) are selected

as benchmarks. The benchmarks used in the experiments and the prototype tools correspond-

ing to the Spin-based checking approach, EPG technique and sequentialization-based checking

approach are available at http://www.jaist.ac.jp/~s1220209/autoC.htm. All of the experi-

ments are conducted on the Intel Core(TM)i7-3770 CPU with 32G RAM, and we set the time

limit and memory limit to 600 seconds and 1GB, respectively.

In addition, in the experiment assertion as given property is checked by each approach.

Moreover, as to make each approach checks the same state space, in the sequentialization-based

checking approach, the well-known Spin is adopted as back-end model checker, and the max

depth of Spin is set to “20,000,000”. In the EPG technique, the max depth is set to “20,000,000”,

and the loop bound is set to 10. In the Spin-based checking approach, the “C compiler” of Spin

is set to “-DVECTORSZ=16384 -DBITSTATE”, and the max depth is set to “20,000,000”.

The experiment results have been listed in Table 8.2. In the result table, #t is the number of

tasks, #l is the number of loops, #API is the number of times of invoked APIs, #s is the number

of explored states. #ŝ is the number of times of computing states by autoC, “MB” and “time”

are the memory consumption and time consumption, measured in Mbyte and second. M.O. and

T.O. represent that the checking approach runs out of memory and time, respectively.
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According to the experiment results shown in Table 8.2, we can find the following results,

(i) The Spin-based checking approach can accurately verify the OSEK/VDX applications,

but the scalability of this approach is limited, e.g., for the benchmarks (lines 8, 10, 11,

12, 18, 19 and 20), it will run out of memory or time.

(ii) EPG technique is more efficient and scalable than Spin-based checking approach in check-

ing the applications which hold a lot of tasks and APIs, e.g., lines 4 and 18. However, it

is not efficient to check the applications which hold a large number of loops with APIs,

e.g., for the benchmark (lines 8, 11 and 19), it will run out of time.

(iii) The sequentialization approach (autoC) can efficiently sequentialize the given benchmarks.

Moreover, based on the sequentialization process of our approach, the back-end model

checker Spin can successfully verify all of the benchmarks which hold a lot of tasks, loops

and APIs with the less cost in terms of states, time and memory compared with the

Spin-based checking approach and EPG technique.

8.2.2 Discussion

Spin-based checking approach

In the Spin-based checking approach, the checking model is a combination model included

two models, one is application model, and the other is OSEK/VDX OS model. Where, the

application model is used to simulate the executions of tasks within application (tasks are

designed as processes), the OSEK/VDX OS model as a cooperative process is used to dispatch

tasks and respond to the APIs invoked from tasks. Based on the combination model, the practical

execution behaviours of OSEK/VDX application are accurately simulated in the verification

process. Thus, the approach is an accurate checking method for OSEK/VDX applications.

However, in the approach the behaviour of OSEK/VDX OS model will be explored in the

verification stage, because the OSEK/VDX OS model is inside the checking model. When an

application invokes an API, the OSEK/VDX OS model within the combination model will be

loaded to respond to the API. Sequentially, the states of OSEK/VDX OS model will be explored

once by Spin in the verification stage. If an application invokes a lot of APIs, a large number of

states from OSEK/VDX OS model will be explored in the verification stage. The scalability of
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the approach is limited, because too many details of OSEK/VDX OS model are explored in the

verification process, especially the state space explosion will happen if a large number of APIs

are invoked by application.

EPG technique

In the EPG technique, compared with Spin-based checking approach, we embed OSEK/VDX

OS model in EPG (constructing model algorithm flat) to dispatch tasks and respond to the

APIs invoked from tasks in the checking process in order to avoid OSEK/VDX OS model to be

explored in the verification stage. Moreover, as to handle the complex applications which hold a

large number of states, the state-of-art SMT solver Z3 is used to carry out the verification. The

following advantages make EPG technique more efficient and scalable in checking OSEK/VDX

applications in contrast with Spin-based checking approach,

• EPG: we can construct a transition system without the behaviors of OSEK/VDX OS

model for the target OSEK/VDX application based on the generated execution paths,

since OSEK/VDX OS model is embedded in EPG to dispatch tasks and respond to the

APIs invoked from tasks.

• SMT-based BMC: it can make our approach more efficient and scalable in checking the

complex applications which hold a large number of states, because the state-of-the-art

SMT solver Z3 is used to carry out the verification.

However, the approach is not efficient to handle the applications which hold a lot of loops

with APIs. This is because, in our EPG technique the transition system of an OSEK/VDX

application is constructed based on the execution paths. If the application holds a lot of loops

with APIs, it will spend a lot of time exploring execution paths for constructing transition

system under the set loop bound, which will slow down the performance of our EPG technique.

Sequentialization-based checking approach

In the sequentialization-based checking approach, we symbolically execute application using

an extended directed graph under the scheduling of OSEK/VDX OS in order to accurately

and efficiently translate OSEK/VDX applications into sequential models. There are several
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Table 8.3: Scalability and Efficiency of autoC and cbmc

autoC cbmc

benchmark #t #l #API #loc MB time MB time

CCS 21 25 241 969 6.84 0.826 8.43 1.21

WCS 18 5 171 1000 5.04 0.572 6.79 1.22

TCS 25 9 1281 1144 8.76 1.196 7.69 1.28

ABS 25 7 1141 1124 8.84 1.224 9.23 1.34

advantages that make the checking approach more efficient and scalable in checking OSEK/VDX

applications, e.g.,

• The constructed sequential model (extended directed graph) can accurately reflect the

executions of the OSEK/VDX application, since the embedded OSEK/VDX OS model is

employed to respond to the invoked APIs and determine the running task in the sequen-

tialization process.

• The sequential model does hold the behaviours of OSEK/VDX OS, because OSEK/VDX

OS model is embedded in the DGC (translation algorithm flat).

• The same execution behaviours of application such as loops will not be repeatedly com-

puted in the sequentialization process, since an extended graph is used to symbolically

execute application.

• The sequentialization-based approach can efficiently improve the efficiency and scalability

of existing model checkers in checking OSEK/VDX applications, because the existing

model checkers just verify a sequential model instead of a concurrent model.

Compared with Spin-based checking approach, the behaviours of OSEK/VDX OS model

will not be checked in the verification stage. Moreover, in contrast with EPG technique, in the

sequentialization-based checking approach we do not need to explore execution paths, instead,

we use an extended directed graph to symbolically execute an application under the scheduling of

embedded OSEK/VDX OS model in order to avoid the same execution behaviours of application

such as loops to be repeatedly computed in the sequentialization process. These efforts make the

approach more efficient and scalable than the EPG technique and Spin-based checking approach.
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if(c1) {   ActivateTask(t1); //s1
} else {
   ActivateTask(t2); //s2
}
if(c2) {   ActivateTask(t3); //s3
} else {
   ActivateTask(t4); //s4
}

s1

┐c1 c1

s2

c2 c2┐

s3 s4

c2 c2┐

s3 s4

task t0

TASK t0 {
     Priority=2;
     AutoStart=true;
     Schedule=non;
} 

t1,t3

t1,t4

t2,t3

t2,t4

Figure 8.4: The worst-case of sequentialization approach

Furthermore, we have used autoC to sequentialize many large-scale experimental OSEK/VDX

applications, and verified the sequentialized applications with the well-known model checker

cbmc. The performances of autoC and cbmc indicate that autoC+cbmc can be considered as a

practical method to verify the large-scale OSEK/VDX applications. In order to demonstrate

the scalability and efficiency of autoC and cbmc, in the experiments four applications that are

used to model the cruise control system (CCS), windows control system (WCS), temperature

control system (TCS) and antilock brake system (ABS) are selected as benchmarks.

All of the experiments are conducted on the Intel Core(TM)i7-3770 CPU with 32G RAM,

and the max depth and loop bound of cbmc are set to 20,000,000 and 10, respectively. The

experiment results have been listed in Table 8.3. In the result table, #t is the number of tasks,

#l is the number of loops, #API is the number of times of invoked APIs, #loc is the number of

lines of code, “MB” and “time” are consumption on the memory and time, measured in Mbyte

and second. According to the experiment results, it can be seen that the sequentialization-

based approach and cbmc can be considered as a practical method to verify the OSEK/VDX

applications with industrial complexity.

However, compared with EPG technique, there is a disadvantage or worst-case in our se-

quentialization approach. As shown in Fig. 8.4, our approach is not efficient to sequentialize the

applications in which the APIs locating at branches will always lead to the different task exe-
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Figure 8.5: The memory and time consumptions of sequentialization approach

cution orders. This is because, in our approach, as to accurately sequentialize an OSEK/VDX

application, all of the different task execution orders are represented by the different sub-paths

in the extended directed graph. For this type of applications, our approach will spend a lot

of time exploring execution paths in the sequentialization process, and finally construct a tree

structure which is the same as the tree in our EPG technique.

In addition, as shown in Fig. 8.5, in order to indicate the efficiency and scalability of our

sequentialization approach for OSEK/VDX applications, we have evaluated the memory and

time consumptions of our approach based on the experiment results shown in Table 8.2. In our

sequentialization approach, there are two crucial points that can affect the performance of our

approach. First one is the scale of application (i.e., lines of code), since our approach will spend

more costs sequentializing more large-scale application. Second one is APIs locating at branches.

This is because, as shown in Fig. 8.4, the APIs locating at branches will lead to the different

executions of the application. To sequentialize this type of applications, our approach will spend

more costs exploring sub-paths. In the shown figures, we use (#API, #loc) to represent X-axis,

where #API is number of times of invoked APIs, #loc is the number of lines. Y -axis is the time

consumption or memory consumption. Note that, the parameters #API and #loc in Fig. 8.5 are

simultaneously increased, and the loops in the application are unfolded as branch structures.
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Chapter 9

Related Work

With the development of OSEK/VDX OS standard, OSEK/VDX is not only widely adopted

by automobile manufacturers to implement a vehicle-mounted OS, but also employed by other

electronics manufacturers to develop an embedded system such as [1][44][46][48]. Currently, with

the continuously increasing complexity in the development process, how to ensure the reliability

of the developed OSEK/VDX OS and its applications is becoming a challenge for developers.

9.1 Model Checking on OSEK/VDX OS

In the scope of verifying developed OSEK/VDX OS, there are many invaluable model checking

methods, e.g., Chen and Aoki have proposed a method [32] to generate the highly reliable

test-cases for checking whether the developed OS conforms to the OSEK/VDX OS standard

based on the Spin model checker. As to support an environment of OSEK/VDX OS for the

model checking, an UML-based method for producing Promela scripts of OSEK/VDX OS is

proposed in paper [33]. In addition, for the Trampoline [1] which is an open source RTOS

developed based on the OSEK/VDX OS standard, Choi presented a method [53] to convert the

Trampoline kernel into formal models, and in the method an incremental verification approach

is proposed to carry out the verification. Furthermore, a CSP-based approach for checking the

code-level OSEK/VDX OS is addressed in the paper [52].

These existing works are different from our work, because these works focus on the verifica-

tion of developed OSEK/VDX OS. Compared with the existing works, our work concentrates
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OS model process 
(TA)

API(channel)

UPPAAL

task t2 TA
process

task t1 TA
process

task t2 TA
process

task t3 TA
process

Figure 9.1: Timing property of OSEK/VDX application

on the verification of developed OSEK/VDX applications.

9.2 Model Checking on OSEK/VDX Applications

To the developed OSEK/VDX applications, Libor has proposed a method [36] to check the

timing property based on the UPPAAL. In the method, as shown in Fig. 9.1, all of the tasks

within the application are represented as timed automaton (TA), and the task timed automaton

are designed processes. Moreover, an OSEK/VDX OS as a cooperative process is used to

conduct the executions of tasks and respond to the API invoked from tasks.

Our Spin-based checking approach is similar to this method in using a combination model

of application model and OSEK/VDX OS model to simulate the executions of application.

However, our Spin-based checking approach focuses on the safety property. In addition, com-

pared with this method, in our EPG technique and sequentialization-based checking approach,

we embedded OSEK/VDX OS model in the constructing model algorithm flat to conduct the

executions of tasks and respond to the API invoked from tasks, which is different from this

method.

9.3 Model Checking on Concurrent Software

Model checking as an exhaustive verification technique has been widely applied to check con-

current software. E.g., Cimatti has proposed a method [13] to verify SystemC multi-threaded

software based on the predicate abstraction [22]. In the method, as shown in Fig. 9.2, since a
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t1 t2 t3 t1 t2 t3

unexecuted thread

running thread

executed thread
thread

Figure 9.2: All of the interleavings for three threads t1, t2 and t3

non-deterministic scheduler is adopted by SystemC to dispatch threads, all of the possible inter-

leavings of runnable threads are checked in the verification stage in order to completely check the

target software. Particularly, in this method, in order to reduce the unnecessary interleavings

of threads caused by synchronization events, a scheduler that conforms to SystemC standard is

embedded in constructing model algorithm flat to determine runnable threads in the verification

process.

Our EPG technique is similar to this method in embedding scheduler model in constructing

model algorithm flat, but we handle deterministic scheduling software, and use SMT-based BMC

to perform the verification, which are different from ESST technique. In addition, the method

is not suitable to check OSEK/VDX applications because the deterministic scheduler is adopted

by OSEK/VDX OS to dispatch tasks within the application. Compared with this method, our

EPG technique is more accurate in checking OSEK/VDX applications.

In the scope of verifying multi-threaded software using bounded model checking technique,

Lucas presented a SMT-based BMC method to check ANSI-C multi-threaded software in pa-

per [37]. In the method, like the method proposed by Cimatti, all of the possible interleav-

ings of threads are taken into account in the verification stage, because in ANSI-C the non-

deterministic scheduler is used to dispatch threads. In addition, in the method, two functions

named “pthread mutex lock()” and “pthread cond wait()” are used to simulate mutex lock

operation and synchronous behaviours between threads. In the verification, these two functions

can be called by threads to implement the mutual and synchronous behaviours.

Our EPG technique is similar to this method in using SMT-based BMC to perform the
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(function)

thread
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thread
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Figure 9.3: Sequentialization process for SystemC multi-threaded software

verification. However, our work handles deterministic scheduling software, and the interactive

behaviours between tasks and OS such as mutual and synchronous behaviours will not be checked

in the verification stage (the interactive behaviours between tasks and OS are directly processed

by embedded OSEK/VDX OS model in our approach). Moreover, like the method proposed

by Cimatti, the method is also not suitable to check OSEK/VDX applications because the

deterministic scheduler is adopted by OSEK/VDX OS to dispatch tasks within the application.

9.4 Sequentialization-based Model Checking on Con-

current Software

Sequentialization-based model checking method has been successfully applied to verify concur-

rent software. E.g., Campana has proposed a method to translate the SytemC multi-threaded

software into the corresponding sequential software based on the Spin model checker in paper

[19]. In the method, as shown in Fig. 9.3, all of the threads are designed as functions. Par-

ticularly, as to simulate the executions of the threads, the SytemC scheduler as a process is

used to conduct the executions of functions. In addition, Inverso also shown an approach [42]

to translate the multi-threaded software that conforms to the POSIX standard [30] into a non-

deterministic sequential program. Unlike the method proposed by Campana, in the method a

function named “CS()” is used to simulate the context switch of threads instead of scheduler.

In our sequentialization-based checking approach, the scheduler model is embedded in the

translation algorithm flat to conduct the executions of application, the constructed sequential
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model of application does not hold the behaviours of scheduler. In the verification stage, the

behaviour of scheduler will not be checked. In contrast with our approach, in the shown existing

works scheduler or function “CS()” is a part of sequential model. In the verification stage, the

behaviours of scheduler or function “CS()” will be checked. Moreover, these two methods are not

suitable to sequentialize OSEK/VDX applications, because they focus on the non-deterministic

scheduler software. In contrast to non-deterministic scheduler, in OSEK/VDX applications the

deterministic scheduler is adopted by OSEK/VDX OS to dispatch tasks.
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Chapter 10

Conclusion

OSEK/VDX as a standard of automobile OS has been widely adopted by many automobile

manufacturers to design and implement a vehicle-mounted OS, such as BMW, Opel and TOY-

OTA. Based on the OSEK/VDX OS, more and more applications are developed and deployed in

vehicles to assist drivers to control vehicles, such as the cruise control system and temperature

control system. However, with the growing functionalities in vehicles and increasing complexity

in the development, how to straitly ensure the reliability of the developed OSEK/VDX applica-

tions is becoming a challenge for developers.

When an application runs on OSEK/VDX OS, the running task within application is explic-

itly determined by OSEK/VDX scheduler (deterministic scheduling policy is used to dispatch

tasks), and the APIs invoked from tasks will haphazardly affect the scheduling of tasks. To

ensure the reliability of OSEK/VDX applications, model checking as an efficient and exhaustive

verification technique for concurrent software can be applied to verify OSEK/VDX applications

for detecting the subtle and logic errors. Although there exist many model checking methods

that have been successfully applied to verify concurrent software such as SystemC and ANSI-C

multi-threaded software, these methods usually perform an approximate verification since the

behaviours of scheduler are not taken into account in verification process. If we apply these

existing model checking methods to verify OSEK/VDX applications, it is too imprecise since a

lot of unnecessary interleavings of tasks will be superfluously checked in the verification stage,

especially these unnecessary interleavings will usually result in a spurious bug. As a result of

the spurious bug, developers have to spend extra costs judging whether the detected bug is real
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one or not after completing verification. As to reduce the checking costs, a more accurate model

checking approach should be used in the verification of OSEK/VDX applications. Furthermore,

to accurately check concurrent software such as ANSI-C multi-threaded software and SystemC

multi-threaded software, several prominent model checking methods have been proposed by

some senior researchers. In these methods, as to seek a more accurate verification result, the

behaviours of scheduler are taken into account in the verification process. Even so, these promi-

nent model checking methods are still unsuitable to accurately verify OSEK/VDX applications

because these prominent methods focus on the non-deterministic scheduler based concurrent

software. In contrast with non-deterministic scheduler, in OSEK/VDX applications a deter-

ministic scheduler is used to dispatch tasks. In this thesis, we described and developed three

approaches that can accurately and automatically verify the safety property of OSEK/VDX

applications using model checking technique. To the best of our knowledge, our work is first to

apply model checking technique to accurately verify the multi-tasks/threads software which is

dispatched by a deterministic scheduler.

10.1 Checking Approaches

To accurately verify OSEK/VDX applications using model checking technique, a cheap method

is based on the existing model checker, because we do not need to establish a new model checker.

Thus, in our first approach we investigate a method based on the existing model checker Spin.

In the method, as to make Spin model checker accurately verify OSEK/VDX applications, a

checking model which is a combination model of application model and OSEK/VDX OS model

is employed to precisely simulate the executions of the OSEK/VDX applications. We have

conducted many experiments using this method. The experiment results show that, although

our Spin-based checking approach can accurately verify OSEK/VDX applications, the scalability

of this approach is limited because too many details of OSEK/VDX OS model will be explored

in the verification stage, especially the state space explosion may happen if application invokes

a lot of APIs.

In the second approach, as to verify a complex application which holds a large number of

states and APIs, we develop a new technique named execution path generator (EPG) to verify

OSEK/VDX applications based on the advanced SMT-based bounded model checking technique.
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Particularly, in the approach the OSEK/VDX OS model is embedded in EPG (constructing

model algorithm flat) to dispatch tasks and respond to the invoked APIs in the process of

constructing transition system of application. In OSEK/VDX applications, the APIs invoked

from tasks will haphazardly affect the scheduling of tasks, e.g., the context switch of tasks may

happen when an API is invoked, and the different APIs location at different branches will lead

to different task execution orders. In our EPG technique, like other bounded model checking for

concurrent software (e.g., the method [37] for ANSI-C multi-threaded software), a reachability

tree as an intermediate form is constructed for establishing the transition system of application.

Based to the proposed approach, we established new bounded model checker named osek-bmc

for OSEK/VDX applications, and carried out many experiments using the established model

checker. The experiment results show that our EPG technique is more scalable than Spin-based

checking approach. However, it is not efficient to check the large-scale applications which hold a

lot of branches, because EPG will spend a lot of time exploring execution paths for constructing

the reachability tree in the checking process, which will slow down the efficiency of the approach.

As to efficiently handle the applications which hold a large number of branches, in the

last approach we present a novel method to translate OSEK/VDX applications into sequential

models in order to apply the existing model checkers such as spin and cbmc to efficiently

verify OSEK/VDX applications. As to efficiently construct a sequential model for OSEK/VDX

application. In our sequentialization-based checking approach, we use an extended directed

graph instead of reachability tree to construct the sequential model of OSEK/VDX application.

Particularly, as to avoid the behaviours of OSEK/VDX OS to be poured into the sequential

model, like EPG technique we embed OSEK/VDX OS model in translation algorithm flat to

dispatch tasks and respond to the invoked APIs. There are several strengths from extended

directed graph that can make our sequentialization-based checking approach more efficient than

EPG technique in checking the applications which hold a lot of branches, e.g., (i) based on

the directed graph, we do not need to explore execution paths when meeting branches in the

sequentialization process, instead, we can use the combination states to reduce the computation

times; (ii) based on the directed graph, we do not need to repeatedly compute the same execution

behaviours of application in the sequentialization process, instead, we can construct a cycle in

directed graph to represent the same execution behaviours. We have implemented a tool named

autoC according to the proposed approach, and evaluated the proposed approaches based on a
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series of experiments. The experiment results show that our sequentialization-based checking

approach is more efficient and scalable than EPG technique and Spin-based checking approach.

Furthermore, we have used autoC to sequentialize many experimental OSEK/VDX applications

which hold about 1000 lines of C code, and verified the sequentialized applications using the

well-known bounded model checker cbmc. The performances indicate that autoC and cbmc

can be considered as a practical method to verify the OSEK/VDX applications with industrial

complexity.

10.2 Merits and Drawbacks of Checking Approaches

To accurately verify OSEK/VDX applications, in our approaches the OSEK/VDX OS model as

a cooperative component is employed to dispatch tasks and respond to the APIs invoked from

tasks. Based on the OSEK/VDX OS model, the explicitly executions of the application are

checked in the verification process. There is a key merit in our approaches, that is, developers

do not need to spend extra costs judging whether the detected bug is a spurious bug or not. To

check a realistic OSEK/VDX application, there are several arguments that can be considered

as criteria to apply our approaches in the verification of OSEK/VDX applications.

• If the given application holds a few tasks and does not invoke a lot of APIs, the Spin-

based checking approach is the best choice, since the approach is based on the existing

model checker Spin. Compared with EPG technique and sequentialization-based checking

approach, we do not need to establish a new model checker and translator.

• If the given application holds a lot of tasks, loops and APIs, the sequentialization-based

checking approach is an outstanding checking method compared with Spin-based checking

approach and EPG technique. This is because, although we should establish a translator

compared with Spin-based checking approach, the approach can successfully verify the

given application. In addition, in contrast with EPG technique, we just need to implement

a translator rather than a new model checker.

• Compared with sequentialization-based checking approach, EPG technique is not efficient

for the application which holds a lot of branches and loops. Moreover, a new model checker

needs to be established in contrast with Spin-based checking approach. Even so, there is
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ready queue
FIFO

t1
priorityISR1() {

   ActivateTask(t1);
   ActivateTask(t2);
}

Figure 10.1: The ISR with APIs

a merit that makes EPG technique worthwhile, that is, the approach can be considered

as generator to generate the test-cases for the path coverage and condition coverage, since

all of the execution paths within the given application will be explored in the verification

process, and the back-end SMT solver Z3 will efficiently give a test-case for the specified

execution path.

However, there is a drawback in our approaches, that is, our approaches deeply rely on the

OSEK/VDX OS model. To accurately verify OSEK/VDX applications using our approaches,

we have to develop an OSEK/VDX OS model according to the specification of OSEK/VDX OS.

Furthermore, as to achieve an accurate checking result, we should spend extra costs ensuring

whether the developed OSEK/VDX OS model straitly conforms to the OSEK/VDX OS spec-

ification. Even so, our approaches still hold the superiority in the verification of OSEK/VDX

applications, e.g., once a reliable OSEK/VDX OS model is implemented, our approaches can

be employed to accurately verify many developed OSEK/VDX applications, which will signifi-

cantly reduce the costs on the verification of developed applications. In addition, in our work

we have developed an OSEK/VDX OS model and tested the developed OSEK/VDX OS model

with at least 1000 experimental applications. We believe that the developed OSEK/VDX OS

model can make our approaches trustworthy and serviceable in the verification of OSEK/VDX

applications.

10.3 Future Work

In the future, we intend to extend our approaches to verify the OSEK/VDX applications which

hold interrupt service routines (ISRs). There are several challenges that should be addressed

when we applied model checking to verify the application with ISRs, e.g.,
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• How to simulate the occurrence positions of ISRs. In OSEK/VDX applications, the occur-

rence positions of ISRs are difficult to be statically determined in the verification process,

because the ISRs are triggered by external environment.

• How to simulate the occurrence times of ISRs. In OSEK/VDX applications, the occurrence

times of ISRs cannot be statically determined in the verification process, since an ISR will

not happen or happen many times.

• Furthermore, how to simulate the ISRs with APIs. In OSEK/VDX applications, as shown

in Fig. 10.1, ISRs can invokes APIs, and the invoked APIs will dynamically change the

scheduling of tasks. The deterministic scheduling policy in OSEK/VDX applications will

be changed to non-deterministic scheduling policy by the APIs invoked from ISRs.
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