
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
クラウド・コンピューティングのセキュリティに関す

る研究

Author(s) Tran, Thao Phuong

Citation

Issue Date 2015-09

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/12965

Rights

Description Supervisor:面　和成, 情報科学研究科, 博士

A STUDY ON SECURITY FOR CLOUD
COMPUTING

By TRAN, THAO PHUONG

submitted to
Japan Advanced Institute of Science and Technology,

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Written under the direction of
Associate Professor Kazumasa Omote

September, 2015

A STUDY ON SECURITY FOR CLOUD
COMPUTING

By TRAN, THAO PHUONG (1220210)

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Doctor of Information Science

Graduate Program in Information Science

Written under the direction of
Associate Professor Kazumasa Omote

and approved by
Associate Professor Kazumasa Omote

Professor Atsuko Miyaji
Professor Kazuhiro Ogata
Professor Ryuhei Uehara

Doctor Kiyomoto Shinsaku

July, 2015 (Submitted)

Copyright c© 2015 by TRAN, THAO PHUONG

ABSTRACT

Keywords: cloud computing, proofs of retrievability, secret sharing
scheme, network coding, Slepian-Wolf coding.

Since amount of data is increasing exponentially, data storage and manage-
ment become burdensome tasks of the data owner. To reduce the burdens
for the data owners, the concept of remote storage known as cloud has been
proposed. A cloud is considered as a service through which the clients can
use to publish, access, manage and share their data remotely and easily
from anywhere via the Internet. Although data outsourcing reduces stor-
age burden for the client, this method still has a problem that the service
provider is typically not fully trusted. Thus, this model introduces numer-
ous interesting research challenges: (i) data privacy, (ii) data availability
and (iii) data integrity. Data confidentiality consists of the two research
approaches: the cryptographic approach and the information-theoretic ap-
proach. In this study, we focus on integrity, availability and information-
theoretic confidentiality. We choose the information-theoretic approach
because our security analysis derives purely from information theory. Our
goal is to construct a practical and secure cloud system. Based on this
goal, we are interested in two research directions: Proof Of Retrievability
(POR) and Secret Sharing Scheme (SSS).

The POR has been proposed to allow the client to check whether his/her
data stored in the servers is available, intact and is always retrievable.
Based on the POR protocol, four common techniques are used: replication,
erasure coding, ORAM and network coding. In this study, we focus on
the network coding because: it achieve better storage cost compared with
replication, and better computation and communication costs compared
with erasure coding and ORAM. Although many network coding-based
PORs have been proposed, the efficiency and practicality have not been
addressed simultaneously.

The SSS is a method for protecting distributed file systems against data
leakage and data loss. In this scheme, the secret is encoded into a number
of shares. The shares are then distributed among a group of participants

where each participant holds a share of the secret. The secret can be
only reconstructed when a sufficient number of shares are reconstituted.
Although many SSSs are introduced, they have not achieved an optimal
share size and have not supported the share repair feature.

In this dissertation, we propose three schemes, named the MD-POR
(Multi-client and Direct repair for POR), DD-POR (Dynamic operation
and Direct repair for POR) and SW-SSS (Slepian-Wolf coding-based SSS).

The MD-POR is our main proposed POR which has the following con-
tributions: (i) The scheme can support direct repair feature. This means
that if a corrupted server is detected, the healthy servers are required to
provide their coded blocks directly to the new server. The new server can
verify the provided coded blocks and can compute the new coded blocks
for itself without disturbing the client. This mechanism can reduce the
communication cost and the burden for the client; (ii) Multiple clients
who own different secret keys can participant in the system. Their data
are mixed together without losing the data confidentiality of individual
clients; (iii) The scheme is constructed using symmetric key setting for the
efficiency; and (iv) The scheme support public authentication. This means
that not only the client but also any entity who has a given information
can check the cloud servers while learning nothing about the secret key
of each client. We employ a Third Party Auditor (TPA) on behalf of the
clients to check the servers periodically. By delegating the responsibility
of checking the servers to the TPA, the clients are free of the burden of
checking the servers.

The DD-POR scheme is an improvement of the MD-POR scheme. Con-
cretely, this scheme can support dynamic operations unlike the MD-POR
scheme. The client not only can read the data but also can modify, insert,
and delete the data. However, the DD-POR scheme is a partial improve-
ment of the MD-POR scheme because in this DD-POR scheme, we can
only deal with a single client instead of multiple clients as the MD-POR
scheme. Furthermore, the DD-POR does not deal with the public authen-
tication as the MD-POR scheme. The DD-POR scheme has the following
contributions: (i) This scheme can support direct repair feature like the
MD-POR scheme. When a server is corrupted, the healthy servers will
provide their coded blocks and tags directly to the new server without

sending them back to the client. Then, the new server can check them,
and can compute the new coded blocks and the tags for itself; (ii) Unlike
the MD-POR the client not only can check and retrieve the data, but also
can perform dynamic operations such as modification, insertion and dele-
tion on the data stored in the servers; and (iii) The scheme is constructed
using symmetric key setting for the efficiency.

The SW-SSS scheme, we show that the Slepian-Wolf Coding, which is
used to compress a data stream in a network, can be applied to the SSS to
achieve the following advantages:(i) The shares are constructed using the
XOR for fast computation; (ii) The parameter can be chosen arbitrarily;
(iii) The direct share repair is supported; and (iv) The size of a share is
optimized compared with previous schemes.

Acknowledgements

There are not many chances in our lives when we have the opportunity to acknowledge
the people who really help us to achieve the success and who always encourage us in good
and bad situations. I find myself very lucky to have the chance to express my thanks and
appreciation to all those kind people in this PhD thesis.

First of all, I would like to thank my advisor Associate Professor Kazumasa Omote of
Japan Advanced Institute of Science and Technology (JAIST). He is the person who has
made this work possible by leading it in a feasible direction. Standing behind his valuable
advice, I always receive precious comments and consistent encouragement which guided
me since the early stages of my study and through my most difficult time in research.

I would like to thank Professor Atsuko Miyaji of JAIST for broadening my horizons
on this work. Her dedication in teaching and research has always been a rich source of
inspiration. I am really grateful to Associate Professor Yuto Lim of JAIST for his super-
vision of my minor research. Be confronted with his challenging questions has furthered
my mature in scientific life. I express my gratefulness to Associate Professor Ogata and
Professor Ryuhei Uehara of JAIST, and Doctor Kiyomoto Shinsaku of KDDI R & D
Laboratories Inc. for their supportive discussions and suggestions.

Last but not least, I am much grateful to my beloved family for keeping their faith in
me throughout my time at doctoral course. I devote my sincere thanks and appreciation
to all of them.

Contents

Acknowledgements 1

Table of Contents 4

List of Figures 5

List of Tables 6

List of Abbreviations 7

1 Introduction 8
1.1 Challenge of Cloud Computing . 8
1.2 Research Goal . 9

1.2.1 Proof Of Retrievability (POR) . 9
1.2.2 Secret Sharing Scheme (SSS) . 10

1.3 Contributions . 11
1.3.1 MD-POR: Multi-client and Direct Repair for POR 11
1.3.2 DD-POR: Dynamic Operations and Direct Repair for POR 12
1.3.3 ND-POR: Network Coding and Dispersal Coding for POR 13
1.3.4 SW-SSS: Slepian-Wolf coding-based SSS 15

1.4 Thesis Outline . 16

2 Related Work 17
2.1 POR . 17

2.1.1 State Of The Art . 17
2.1.2 Problem Statement . 30

2.2 SSS . 32
2.2.1 State Of The Art . 32
2.2.2 Problem Statement . 36

3 Preliminary 38
3.1 POR . 38
3.2 Network Coding . 38

3.2.1 Fundamental Concept . 39
3.2.2 Application in Distributed Storage System 39

1

CONTENTS

3.3 Homomorphic MAC . 40
3.3.1 Inner-product MAC . 41
3.3.2 Inter MAC . 41
3.3.3 Inter MAC in Network Coding . 42

3.4 Dispersal Coding . 44
3.4.1 Building Block . 45

3.5 Shamir SSS . 47
3.6 Ramp SSS . 49
3.7 SWC . 51

4 MD-POR: Multi-client and Direct Repair for POR 54
4.1 System Model . 54
4.2 Adversarial Model . 55
4.3 Proposed MD-POR Scheme . 57

4.3.1 Keygen . 60
4.3.2 Encode . 62
4.3.3 Check . 63
4.3.4 Repair . 64

4.4 Correctness . 65
4.5 Security Analysis . 66

4.5.1 Mobile Attack . 66
4.5.2 Curious Attack . 67
4.5.3 Response Forgery . 68
4.5.4 Pollution Attack . 69

4.6 Efficiency Analysis . 71
4.6.1 Storage Cost . 71
4.6.2 Encode cost . 73
4.6.3 Check Cost . 75
4.6.4 Repair Cost . 76
4.6.5 Total cost . 77

4.7 Performance Evaluation . 79
4.7.1 Computation Performance . 79

CASE 1: fix number of blocks, change block size 79
CASE 2: fix block size, change number of blocks 83
CASE 1 vs CASE 2 . 87

4.7.2 Communication Performance . 89
4.8 Numeric Example of Keygen Phase . 90

4.8.1 The key of the client C1 . 91
4.8.2 The key of the client C2 . 92
4.8.3 The key of the TPA . 93
4.8.4 The key of the new server . 93

4.9 Summary . 95

2

CONTENTS

5 DD-POR: Dynamic Operations and Direct Repair for POR 96
5.1 System Model . 96
5.2 Adversarial Model . 96
5.3 Proposed DD-POR Scheme . 97

5.3.1 Keygen . 98
5.3.2 Encode . 98
5.3.3 Check . 99
5.3.4 Repair . 100

5.4 Correctness . 101
5.5 Dynamic Operations . 102

5.5.1 Modification . 102
5.5.2 Insertion . 105
5.5.3 Deletion . 111

5.6 Security Analysis . 115
5.6.1 Pollution Attack . 115
5.6.2 Curious Attack . 117
5.6.3 File reconstruction condition . 117

5.7 Efficiency Analysis . 118
5.7.1 Encode Computation . 118
5.7.2 Check Computation . 118
5.7.3 Repair Computation . 118
5.7.4 Modification Computation . 120
5.7.5 Insertion Computation . 120
5.7.6 Deletion Computation . 120

5.8 Numeric Example . 120
5.8.1 Generating Keys . 121
5.8.2 Dynamic Operations . 122

Modification . 122
Insertion . 124
Deletion . 125

5.9 Summary . 127

6 ND-POR: Network Coding and Dispersal Coding for POR 128
6.1 System Model . 128
6.2 Adversarial Model . 128
6.3 Proposed ND-POR Scheme . 130

6.3.1 Keygen . 131
6.3.2 Encode . 132
6.3.3 Check . 133
6.3.4 Repair . 134

6.4 Security Analysis . 135
6.4.1 Adversarial Check and Repair . 135
6.4.2 Small Corruption Attack . 137
6.4.3 Large Corruption Attack, Replay Attack and Pollution Attack . . . 138

3

CONTENTS

6.5 Efficiency Analysis . 139
6.5.1 Encode Phase . 139
6.5.2 Check Phase . 139
6.5.3 Repair Phase . 141
6.5.4 Storage Cost . 141
6.5.5 Numerical Examples of The Parameters 142

6.6 Summary . 143

7 SW-SSS: Slepian-Wolf Coding-based SSS 144
7.1 System Model . 144
7.2 Revisited XOR Network Coding-based SSS 145
7.3 Proposed SW-SSS . 146

7.3.1 Share Generation . 147
7.3.2 Secret Reconstruction . 148
7.3.3 Share Repair . 150

7.4 Secrecy and Share Size . 152
7.4.1 Secrecy . 152
7.4.2 Share Size . 153

7.5 Efficiency Analysis . 154
7.5.1 Storage Cost . 154
7.5.2 Computation Cost . 154
7.5.3 Communication Cost . 157

7.6 Implementation . 158
7.6.1 Speeding up the FindShare algorithm 158
7.6.2 Speeding up the FindXOR algorithm 158
7.6.3 Performance Evaluation . 160

7.7 Summary . 161

8 Conclusion and Future works 162
8.1 Conclusion . 162
8.2 Future work . 164

Bibliography 165

Publications 178

A Appendix 180
A.1 The Algorithms of the SW-SSS Scheme . 180

A.1.1 Share Generation . 180
A.1.2 Secret Reconstruction . 181
A.1.3 Share Repair . 182
A.1.4 Speeded Up Algorithms . 183

4

List of Figures

1.1 My research map . 11
1.2 Thesis Outline . 16

3.1 An example of data repair of network coding 40
3.2 SWC . 52

4.1 System model of the MD-POR scheme . 55
4.2 Technical roadmap . 58
4.3 Computation time performance of init and keygen phases 81
4.4 Computation time performance of encode phase 81
4.5 Computation time performance of check phase 82
4.6 Computation time performance of repair phase 82
4.7 Computation time performance of init and keygen phases 85
4.8 Computation time performance of encode phase 85
4.9 Computation time performance of check phase 86
4.10 Computation time performance of repair phase 86
4.11 Computation time performance of init and keygen phases 88
4.12 Computation time performance of encode phase 88
4.13 Computation time performance of check phase 89
4.14 Computation time performance of repair phase 89
4.15 Communication time performance . 90

6.1 The structure of the ND-POR scheme . 131

7.1 System Model of the SW-SSS . 144
7.2 Computation performance of the SW-SSS scheme 160

5

List of Tables

2.1 Notations used in the RDC-NC scheme . 20
2.2 Notations used in the NC-Audit scheme 26
2.3 Previous PORs vs our POR . 32
2.4 Previous SSSs vs our SSS . 36

4.1 List of notations in the MD-POR scheme 59
4.2 Efficiency comparison between the MD-POR and previous schemes 72
4.3 Summary of computation results in case 1 (time unit: second) 80
4.4 Summary of computation results in case 2 (time unit: second) 84

5.1 List of notations in the DD-POR scheme. 97
5.2 Efficiency comparison between the DD-POR and previous schemes 119

6.1 List of notations in the ND-POR scheme 130
6.2 The comparison between the RDC-NC and ND-POR schemes 140

7.1 List of notations in the revisited SSS and the SW-SSS 145
7.2 Efficiency comparison between the SW-SSS and previous schemes 155

6

List of Abbreviations

CPA Chosen Plaintext Attack
DD-POR Dynamic operation and Direct repair for POR
ECC Error-Correcting Code
FMSR Functional Minimum-Storage Regenerating
LDPC Low Density Parity Check
LT Luby Transform
MAC Message Authentication Code
MD-POR Multi-client and Direct repair for POR
NC-Audit Audit for Network Coding storage
ND-POR Network Coding and Dispersal Coding for POR
ORAM Obvious RAM
PDP Provable Data Possession
POR Proof Of Retrievability
PRF Pseudo-random Function
RDC-NC Remote Data Checking for Network Coding-based distributed storage

system
RDC-EC Remote Data Checking for Erasure Coding-based distributed storage with

server-side repair
RDC-SR Remote Data Checking for replication-based distributed storage with

Server-side Repair
RS Reed Solomon code
RS-UHF Universal Hash Function which is constructed using the Reed-Solomon

code
SSS Secret Sharing Scheme
SW-SSS Slepian-Wolf coing-based SSS
SWC Slepian-Wolf Coding
TPA Third Party Auditor
UHF Universal Hash Function
UMAC MAC based on Universal Hash Function
XOR Exclusive-OR

7

Chapter 1

Introduction

1.1 Challenge of Cloud Computing

Since amount of data is increasing exponentially, data storage and data management be-
come troublesome tasks of the data owners. To reduce the burdens for the data owners,
the concept of remote storage known as cloud has been proposed. A cloud is considered
as a service through which the clients (the data owners) can use to publish, access, man-
age and share their data remotely and easily from anywhere via the Internet. Several
examples of clouds which are commonly used are Amazon S3 [1], Storage Request Broker
[2], Google’s BigTable [3], HP Public Cloud [4]; and the mostly recent clouds are Dropbox
[5], Google Drive [6] and iCloud [7].

Although data outsourcing to clouds can reduce the storage and management burdens
for the client, this method still encounters a problem that the service provider may be
typically not fully trusted. Therefore, this method introduces numerous interesting re-
search challenges in data security: (i) data availability, (ii) data integrity and (iii) data
confidentiality.

• Data availability : For any information system to serve its purpose, the data must
be always ready when it is needed. This means that the computing systems used
to store and process the information, the security controls used to protect it, and
the communication channels used to access it must be functioning correctly. High
availability systems aim to remain available at all times, preventing service disrup-
tions due to power outages, hardware failures, system upgrades and denial-of-service
(DOS) attacks such as a flood of incoming messages to the target system essentially
forcing it to shut down.

• Data integrity : Integrity involves maintaining the consistency, accuracy, and trust-
worthiness of data over its entire life cycle. Data must not be changed in transit,
and steps must be taken to ensure that data cannot be altered by unauthorized or
undetected manner. Integrity is violated when the data is actively modified.

• Data confidentiality : The data needs to be prevented from the disclosure to unau-
thorized individuals or systems. The system attempts to enforce confidentiality

8

1.2. RESEARCH GOAL

by encrypting the data or by restricting access. Data confidentiality consists of
the two research approaches: the cryptographic approach and the information-
theoretic approach. Compared with the cryptographic confidentiality approach, the
information-theoretic confidentiality approach achieves a security level determined
by thresholds.

In this study, we focus on data availability, data integrity and data information-theoretic
confidentiality. We choose the information-theoretic confidentiality approach because our
security analysis derives purely from information theory.

1.2 Research Goal

Our general goal is to construct a cloud system which is practical, efficient and secure. To
obtain the goal, our research consists of two directions: Proof Of Retrievability (POR)
and Secret Sharing Scheme (SSS).

1.2.1 Proof Of Retrievability (POR)

The POR is important because it has been proposed to help the client check whether
his/her data stored in the cloud servers (‘the servers’ for short) is always available, intact
and retrievable. Based on the POR protocol, the following four techniques can be used:
(i) replication, (ii) erasure coding, (iii) obvious RAM (ORAM) and (iv) network coding.
In this study, we focus on the network coding because it can achieve better storage cost
compared with the replication, and better computation and communication costs com-
pared with the erasure coding and the ORAM. Although many network coding-based
PORs have been proposed, the efficiency and practicality have not been addressed simul-
taneously (We will describe more detail about previous work in Chapter 2). Therefore,
we would like to construct a new network coding-based POR which satisfies the following
two aims:

• The first aim is that our proposed network coding-based POR should be practical.
Concretely:

– The system model should consist of multiple clients, not just a single client
like previous network coding-based PORs. Each client should keep a different
secret key. This is because in many distributed storage systems today such as
Dropbox, each client has a personal data and should compute the authentica-
tion information for that data using his/her own secret key in order to ensure
that data integrity and data confidentiality are satisfied.

– The clients should be able to check and retrieve the data, and also be able
to perform dynamic operations on their data such as modification, deletion
and insertion. This is because in a real cloud system, the dynamic operations
happen very often during the system lifetime.

9

1.2. RESEARCH GOAL

• The second aim is that our proposed network coding-based POR should be lightweight.
Concretely:

– The clients should be free of two heaviest tasks: (i) periodically checking the
servers to ensure that the data stored in the servers is available, intact and
retrievability and (ii) repairing the data stored in corrupted servers.

– The system should be constructed using a symmetric key setting which is a
well-known lightweight cryptography rather than an asymmetric key setting.

1.2.2 Secret Sharing Scheme (SSS)

SSS is important because it is a method for protecting distributed file systems against
data leakage and data loss. In this scheme, the secret is encoded into a number of shares.
The shares are then distributed to a group of participants where each participant holds a
share of the secret. The secret can be only reconstructed if and only if a sufficient number
of valid shares are reconstituted. A general SSS consists of two algorithms: (i) share
generation and (ii) secret reconstruction. Although many SSSs have been introduced,
they have not achieved an optimal share size and cannot support the share repair feature
(We will describe more detail about previous work in Chapter 2). Therefore, we would
like to construct a new SSS which satisfies the following two aims:

• The first aim is that our proposed SSS should be lightweight. Concretely:

– The computation costs of the share generation and secret reconstruction algo-
rithms should be reduced as much as possible because in a real system, the
size of the secret is very large; thus, it will affect the computation costs of the
share generation and the secret reconstruction algorithms.

– The bit-size of the shares should be optimized. If the bit-size of the shares is
optimized, the required storage cost for the system will be also optimized.

• The second aim is that our proposed SSS should be practical. Concretely:

– The parameters can be chosen arbitrarily, not strictly constrained as previous
schemes.

– The direct share repair feature should be supported because in a real scenario,
a share which is held by a participant could be corrupted or lost. This share
corruption or share loss will reduce the entropy of the system and will make
the secret reconstruction impossible.

10

1.3. CONTRIBUTIONS

1.3 Contributions

Efficient and Secure

Cloud

MD-POR

(IJDSN journal)

SW-SSS

(CISIS conf.)

DD-POR

(COCOON

conf.)

AINA

conf.

ND-POR

(IEICE journal)

WISA

conf.

ATC

conf.

POR SSS

Presented in

this thesis

RIVF

conf.

ICITST

conf.

Master

program

POR-2P

(CRISIS

conf.)

Figure 1.1: My research map

As depicted in Figure 1.1, we firstly present an overview about my research map. Up to
now, we have some papers and journals. An arrows in Figure 1.1 is used to connect a
prior work to a later work. Our main contributions are the following schemes:

• The MD-POR scheme, which is the main proposed POR.

• The SW-SSS scheme, which is the main proposed SSS.

• The DD-POR scheme, which is the partial improvement of the MD-POR scheme.

• The ND-POR scheme, which is our first proposed POR.

In this thesis, we will introduce these four schemes.

1.3.1 MD-POR: Multi-client and Direct Repair for POR

This MD-POR scheme is our main proposed network-coding POR. To the best of our
knowledge, we are the first to propose a symmetric key setting-based direct repair for

11

1.3. CONTRIBUTIONS

the POR. Furthermore, our proposed scheme can also support multi-client and public
authentication. Namely, the MD-POR has the following contributions:

• Direct repair : When a corrupted server is detected during the check phase, a number
of healthy servers are required to provide their coded blocks along with the tags di-
rectly to the new server, instead of sending them back to the client. Afterwards, the
new server can verify the coded blocks and the tags it received, and computes new
coded blocks and new tags for itself without disturbing the client. This mechanism
can reduce a lot of the communication cost and the burden for the client.

• Multi-client : To enable multiple clients, our method does not simply duplicate the
process of a single client to multiple parallel processes for multiple clients. Instead,
in our proposed scheme, the data of multiple clients are mixed together without
losing the data confidentiality of individual client. To enable such a multi-client
setting, we employ the inter MAC technique [79] which was proposed for network
scenario. The inter MAC technique allows multiple sources to send their packages
to the network using different secret keys and allows the recipients to verify the
packages they received.

• Symmetric key setting : The MD-POR scheme is constructed based on the symmetric
key setting. We use only secret keys without any public key, unlike an asymmetric
key setting.

• Public authentication: Not only the client but also any entity who is given our ad-
ditional information can check the servers while learning nothing about the secret
keys of the clients. However, there should be a consistent entity who has responsi-
bility to check the servers periodically. Therefore, we employ a Third Party Auditor
(TPA) to check the servers periodically on behalf of the clients. By delegating the
responsibility of checking the servers to the TPA, the clients are free of the burden
of checking the servers. Otherwise, for the non-existence of TPA, the clients have to
periodically check the servers, and the public authentication feature cannot be sup-
ported. The interesting point here is that although the proposed MD-POR scheme
supports the public authentication feature, our method does not use an asymmetric
key setting.

1.3.2 DD-POR: Dynamic Operations and Direct Repair for POR

The DD-POR scheme is a partial improvement of the MD-POR scheme. In this scheme,
we point out that the previous schemes do not consider the dynamic operations. That
is, the client can only perform the data check and data retrieval, but cannot perform the
modification, insertion and deletion. Several PORs have been proposed to deal with the
dynamic operations, e.g, [34, 36, 67, 69–73]. However, all these schemes are based on the
erasure coding, not the network coding. Therefore, our aim on this DD-POR scheme is
that we want to construct a new network coding-based POR which can support both the
direct repair feature and dynamic operations.

12

1.3. CONTRIBUTIONS

There are two most notable schemes which are mostly related to our aim. The first
one is our proposed MD-POR scheme, which can support the direct repair, but cannot
support the dynamic operations. The second one is the NC-Audit scheme [62], which also
considered the direct repair and dynamic operations. However, when the direct repair
is supported, this scheme cannot prevent the pollution attack which is a common attack
of the network coding. This is because the new server cannot check the provided coded
blocks it receives during the repair phase. In addition, the authors only discuss about the
dynamic operations without clear details. For example, for the modification, the authors
discuss how to update the tag without mentioning how to update the coded blocks which
are related to the modified file block. For the deletion, there is no concrete explanation.
Moreover, the dynamic operations in the scheme have not been completed because for the
insertion, the authors mentioned that the insertion does not work in their scheme.

For this motivation, we propose the DD-POR scheme with the following contributions:

• Direct repair: when a server is corrupted, the healthy servers will provide their
coded blocks and tags directly to the new server without sending them back to the
client. Then, the new server can check them to prevent the pollution attack, and
can compute the new coded blocks and the tags for itself. The client is thus free
from the repair process.

• Dynamic operations: the client not only can check and retrieve the data, but also
can modify, insert and delete the data.

• Symmetric key setting: our scheme does not use any public key as in an asymmetric
key setting. The direct repair feature introduces a challenge that how to let the new
server which is untrusted check and compute the new coded blocks and the tags
without using a public key. Our scheme can address this problem by employing the
inter MAC technique [79].

Note that this proposal is a partial improvement of our first proposed MD-POR scheme.
This is because in this DD-POR scheme, we can only deal with a single client instead
of multiple clients as in the MD-POR scheme. Furthermore, the DD-POR does not deal
with the public authentication as in the MD-POR scheme.

1.3.3 ND-POR: Network Coding and Dispersal Coding for POR

The ND-POR is one of our very first proposed POR scheme in which we started studying
about network coding. The purpose when we propose this scheme is to construct a POR
which can beat the RDC-NC scheme [61] in both security (i.e., small corruption attack)
and efficiency.

In these network coding-based POR schemes, the most notable scheme is the RDC-NC
scheme [61]. It, unlike the other previous schemes, not only focuses on the efficiency,
but also considers how to prevent the three common attacks of the POR: replay attack,
pollution attack and large corruption attack. However, the RDC-NC scheme has some
shortcomings: (i) the corruption check is still inefficient because only one server can be

13

1.3. CONTRIBUTIONS

checked per challenge and (ii) it cannot prevent another common attack of the POR:
small corruption attack. The small corruption attack is defined in [26,67,105,106]. In this
attack, the adversary tries to corrupt the data with a small data unit to hide data loss
incidents. Protecting against the small corruption attack protects the data itself, not just
the storage resource. Modifying a single bit may destroy an encrypted file or invalidate
authentication information. The difference between the large and small corruption attacks
is that the small corruption attack corrupts at most t-fraction of the file while the large
corruption attack corrupts more than t-fraction of the file, where t is a parameter. These
are described more details in the adversarial model of the ND-POR scheme.

To address the small corruption attack, the common solution is to use the Error-
Correcting Code (ECC) [94], which allows the data to be checked for errors and corrected
even one bit on the fly. The ECC has several types, i.e., Hamming code, Golay code,
Reed-Muller code, Reed-Solomon code, etc. However, our scheme uses the Reed-Solomon
code because the Universal Hash Function can be constructed using the Reed-Solomon
code. Bowers et al. [26] then proposed the dispersal coding using the Reed-Solomon code
in order to prevent the small corruption attack and to ensure the file integrity with high
probability. However, [26] uses the erasure coding instead of the network coding.

The ND-POR scheme has been proposed using the network coding and the dispersal
coding. To the best of our knowledge, the ND-POR scheme is the first POR to apply
both the dispersal coding and the network coding. The ND-POR scheme has the following
contributions:

• Security : The ND-POR scheme, unlike the RDC-NC scheme, can prevent the small
corruption attack.

• Efficiency :

– The RDC-NC scheme allows the client to check one server for each challenge.
Meanwhile, the ND-POR scheme allows the client to check all servers simulta-
neously for each challenge.

– In the RDC-NC scheme, the number of MACs is nαs where n denotes the
number of servers, α denotes the number of coded blocks stored on a server
and s denotes the number of segments in a coded block. In the ND-POR
scheme, the number of MACs is only lα where l denotes some servers out of n
servers (l < n) and is far less than the dominant parameter s.

– In data repair, the RDC-NC scheme uses the network coding to repair the cor-
ruptions. Meanwhile, the ND-POR scheme performs two phases: if the number
of corruptions is smaller than the ECC boundary, the ECC is used to repair
the corruptions; otherwise the network coding is used to repair the corrup-
tions. Thus, the corruptions are repaired with an overwhelming probability.
Furthermore, the ECC uses the parity information on the server itself to repair
without the other healthy servers as the network coding.

The dispersal coding is constructed based on UMAC (MAC obtained from Universal
Hash Function) which is closely related to the network coding-based schemes as indicated

14

1.3. CONTRIBUTIONS

in [52,104]. Hence, the network coding and the dispersal coding can be suitably combined
together in the ND-POR scheme.

1.3.4 SW-SSS: Slepian-Wolf coding-based SSS

Before presenting the main proposed SW-SSS scheme, we firstly revisit the network coding
based on the XOR [135–139] and show that it can be applied to for SSS to address the
drawbacks of the previous schemes. Concretely, the revisited XOR network coding-based
SSS has the following four advantages:

• The shares are constructed using the XOR for fast computation.

• The parameters (m,n) can be chosen arbitrarily.

• The direct share repair is supported.

• The size of a share is smaller than the size of the secret.

We then show that another coding named the Slepian-Wolf Coding (SWC) [140, 142–
145], which is commonly used to compress a data stream in a network, can be also applied
for SSS to reduce the share size of the revisited XOR network coding-based SSS. We name
our proposed scheme as the SW-SSS. The SW-SSS has the following advantages:

• The share size in the SW-SSS is surprisingly less than the share size in the revisited
XOR network coding-based SSS. In other words, the SW-SSS scheme improves the
fourth advantage of the revisited XOR network coding-based SSS.

• The SW-SSS still satisfies the first three advantages of the revisited XOR network
coding-based SSS.

15

1.4. THESIS OUTLINE

1.4 Thesis Outline

Chapter 1:

Introduction
Challenges Goals

Chapter 2:

Related Work

Chapter 3:

Contributions

POR SSS

Chapter 6:

Proposed POR2

(DD-POR)

Chapter 7:

Proposed SSS

(SW-SSS)

Chapter 5:

Proposed POR1

(MD-POR)

Chapter 8:

Conclusion
Contributions Future Work

Chapter 4:

Preliminary

Figure 1.2: Thesis Outline

This thesis consists of 7 chapters as depicted in Figure 1.2. In Chapter 2, we discuss
several previous works which are related to our two research directions: POR and SSS.
In Chapter 3, we introduce several preliminaries which are used in our proposed schemes:
POR, network coding, homomorphic MAC, Shamir SSS, Ramp SSS and SWC. In Chapter
4, we describe our proposed MD-POR scheme (Multi-client and Direct repair for POR)
along with its security, efficiency and performance evaluation analyses. In Chapter 5, we
describe our propose DD-POR scheme (Dynamic operation and Direct repair for POR)
along with its security, efficiency and performance evaluation analyses. In Chapter 6, we
describe our proposed ND-POR scheme (Network Coding and Dispersal Coding for POR)
along with its security, efficiency performance evaluation analyses, and numeric example.
In Chapter 7, we describe our proposed SW-SSS scheme (Slepian-Wolf coding-based SSS)
along with its secrecy, efficiency and performance evaluation analyses. Finally, Chapter 8
will summarize this thesis, point out the contributions and suggest for the future research
directions.

16

Chapter 2

Related Work

2.1 POR

2.1.1 State Of The Art

POR. To assist the client in checking whether the data stored in the servers is always
available, intact and retrievable, researchers proposed Provable Data Possession (PDP)
[102,108,109] and Proof of Retrievability (POR) [8–13] which are challenge-response pro-
tocols between a verifier (client) and a prover (cloud server). Both protocols support data
check. However, only the POR can ensure that the data are always retrievable and can
support data repair. Thus, the POR is considered to be a stronger tool. A POR consists
of four phases: (i) keygen, (ii) encode, (iii) check and (iv) repair. Below we generally
review the four phases (we will describe them formally in Section 3.1 in Chapter 3).

• Keygen: The client performs this algorithm to generate a pair of secret key and
public key. In case of symmetric key setting, the public key is set to be null.

• Encode: The client uses his/her secret key to transform an original file to an encoded
file, then stores the encoded file in the server.

• Check: This is the challenge-response protocol which happens as follows:

– Challenge: The client generates a challenge and sends it to the server.

– Respond: The server computes a corresponding response and sends it back to
the client.

– Verify: The client verifies whether the response is valid or not in order to
conclude that the server is corrupted or not.

• Repair: If the server is detected as corrupted during the check phase, the client will
perform this algorithm to repair the data stored in the corrupted server.

17

2.1. POR

Approaches in POR. Based on the POR protocol, there are two research approaches:

• The first approach is that the data is stored in only a single server. The client can
periodically check data possession at the server and can thus detect data corruption.
However, the drawback of this approach is that when a corruption is detected, the
data repair will not be supported.

• The second approach is that the data is stored redundantly in multiple servers.
When a server is corrupted, the client will use the remaining healthy servers to repair
the data stored in the corrupted server. This approach consists of the following four
techniques: replication, erasure coding, ORAM, and network coding.

– Replication. Replication is a technique which allows the client to store file
replicas (file copies) in the servers. The replication was firstly proposed in
[14–16] and has been applied to distributed storage systems in [17, 18]. The
client can perform periodic server checks. When a corrupted server is detected,
the client will use the replica stored in one of the healthy servers to repair the
data stored in the corrupted server. The drawback of this technique, however,
is that it incurs high storage cost because the client must store a whole file
copy in each server.

– Erasure Coding. Erasure coding was used traditionally in communication sys-
tems [19] and then has been applied in distributed storage systems [20–27] for
optimal data redundancy. Instead of storing file replicas in the server as the
replication, in this technique, the client stores file blocks (parts of the file)
in each server. Thus, the erasure coding can reduce the storage cost of the
replication. However, the drawback of this technique is that to repair a cor-
rupted server, the client must reconstruct the original file before repairing the
corruption. Therefore, the computation cost is increased during data repair.

– ORAM. ORAM was initially introduced for protecting software [28–33]. Re-
cently, the ORAM has been applied to distributed storage systems [34–37].
Basically, this technique is proposed for privacy-preserving the data access
pattern. By using the ORAM structure, the servers cannot obtain the data
access patterns when the client performs the data checks. For the data repair,
the ORAM-based POR embeds the erasure coding to repair corruptions. How-
ever, the drawback of this technique is that the ORAM structure leads to high
storage cost because of its hierarchical storage layout. Moreover, the ORAM
structure leads to high computation cost because of its shuffling procedure
every number of read/write operations.

– Network Coding. Network coding was firstly proposed in the network scenario
[38–50]. To address the drawback of the erasure coding, the network coding
has been applied [51, 60–65] to distributed storage systems to improve the
efficiency in data repair. The client does not need to reconstruct the entire file
before generating new coded blocks as the erasure coding. Instead, the coded
blocks which are collected from the healthy servers can be used to generate new

18

2.1. POR

coded blocks. Compare with the ORAM, the structure of the network coding
is much simpler with no hierarchical storage, no shuffling procedure and no
the drawback of the erasure coding. Therefore, in this thesis, we focus on the
network coding technique.

Message Authentication Code (MAC) vs. Digital Signature (signature). The
data stored in the servers cannot be checked without additional authentication informa-
tion. The authentication information can be (i) MAC or (ii) digital signature (or just
signature for short).

• A MAC is also called a tag. A MAC protects against message forgery by anyone
who does not know the secret key (which is shared by sender and receiver). A MAC
is used only in a symmetric key setting. The traditional MAC and digital signature
night not be suitable for network coding; thus, new technique called homomorphic
MAC [52–54] has been proposed.

• A (digital) signature is created with a private key, and verified with the correspond-
ing public key of an asymmetric key-pair. Only the holder of the private key can
create this signature, and normally anyone knowing the public key can verify it.
Therefore, the digital signature is used only in an asymmetric key setting. Similar
to the MAC approach, the homomorphic signature [55–59] have been proposed to
combine with the network coding.

In this thesis, we focus on a symmetric key setting for efficiency. We thus use homo-
morphic MAC approach in our proposed schemes.

Network Coding. Because the network coding technique is focused on in this thesis as
we mentioned before, in this part, we introduce several previous works about the network
coding. The network coding was originally proposed in the networks, and then has been
applied to distributed storage systems.

• Network coding in networks: Ahlswede et al. [42] were the first to consider the
problem multicast of an error-free network. In their work, which had its precursor
in earlier work relating to specific network topologies [38–41], the authors showed
that coding at intermediate nodes is in general necessary to achieve the capacity
of a multicast connection in an error-free network and characterized that capacity.
This result generated renewed interest in error-free networks, and it was quickly
strengthened by Li et al. [43] and Koetter et al. [44], who independently showed
that linear codes (i.e., codes where nodes are restricted to performing operations that
are linear over some base finite field) suffice to achieve the capacity of a multicast
connection in an error-free network. Ho et al. [45] then introduced the random linear
network coding as a method for multicast in lossless packet networks and analysed
its properties. The random linear network coding for multicast in lossless packet
networks was further studied in [46–48]. Li et al. [49] proposed a tree structure
data regeneration with the linear network coding to achieve an efficient regeneration

19

2.1. POR

traffic and bandwidth capacity by using an undirected-weighted maximum spanning
tree and the Prim algorithm. In their paper, the authors analysed the bottleneck
bandwidth that the tree-structured regeneration can achieve, but did not analysed
the constraint of the threshold which is the number of providers. Therefore, the
authors then improved their paper in [50] to present an in-depth analysis of the
general case that the number of providers.

• Network coding in distributed storage systems: Dimakis et al. [51] was the first to
apply the network coding to distributed storage systems and achieve a remarkable
reduction in the communication overhead of the repair component. Acedanski et al.
[60] demonstrated that when the random linear coding is applied to distributed stor-
age system, it performs as well without suffering additional storage space required
at the centralized server before distribution among multiple locations. Further, with
a probability close to one, the minimum number of storage location a downloader
needs to connect to (for reconstructing the entire file), can be very close to the
case where there is complete coordination between the storage locations and the
downloader. Chen et al. [61] presented the RDC-NC scheme (Remote Data Check-
ing for Network Coding-based distributed storage systems) which provides a decent
solution for efficient data repair by recoding encoded blocks on the healthy servers
during the repair procedure. Le et al. [62] introduced the NC-Audit scheme (Audit
for Network Coding storage) for efficient data check and data repair. Furthermore,
the NC-Audit scheme can also prevent data leakage to a Third Party Auditor (TPA)
using a combination of a homomorphic MAC called SpaceMac and a Chosen Plain-
text Attack (CPA)-secure encryption called NCrypt. Cao et al. [63] applied the
Luby Transform (LT) code for reducing the computation cost because the LT code
is a special network code which works in the finite field of order two and only uses
the XOR operations. Chen et al. [64] proposed the NC-Cloud scheme to improve
the cost-effectiveness of repair using the Functional Minimum-Storage Regenerat-
ing (FMSR) code, which lightens the encoding requirement of storage nodes during
repair. The authors then extended their prior work to [65] with more in-depth anal-
ysis and evaluations on their implementable design of FMSR codes. Chen et al.
[66] investigated the intrinsic relationship between secure cloud storage and secure
network coding and proposed a publicly verifiable secure cloud storage protocol in
the standard model.

Overview of RDC-NC scheme. In this part, we briefly describe the RDC-NC scheme
[61] which is a notable previous network coding-based POR proposed by Chen et al. We
will use this scheme to compare with our schemes in later chapters. The notations used
throughout this scheme are given in Table 2.1.

Table 2.1: Notations used in the RDC-NC scheme

Notation Description
C client

20

2.1. POR

F original file of C
m number of file blocks
n number of servers
α number of coded blocks stored in a server
s number of segments in a coded block
u number of symbols in a coded block
bk file block (k ∈ {1, · · · ,m})
Si server (i ∈ {1, · · · , n})
cij coded block (i ∈ {1, · · · , n}, j ∈ {1, · · · , α})
f pseudo-random function f : {0, 1}∗ × {0, 1}κ → Fq
tijk challenge tag of cij (i ∈ {1, · · · , n}, j ∈ {1, · · · , α}, k ∈ {1, · · · , s})
Tij repair tag of cij (i ∈ {1, · · · , n}, j ∈ {1, · · · , α})
Fq finite field of a prime order q
zij1, · · · , zijm coding coefficients
εij1, · · · , εijm encrypted coefficients
r number of spot checks in the check phase
Sy corrupted server
S ′ new server which is used to replace Sy

We now describe the RDC-NC scheme via each phase of the POR as follows:

Keygen:

1. C divides F into m blocks: F = b1|| · · · bm.

2. C generates the secret key sk = (K1, K2, K3, K4, Kenc), where each of these five keys
is chosen at random from {0, 1}κ.

Encode: For each server ∀i ∈ {1, · · · , n}:

1. C computes values for generating challenge tags and repair tags

• C generates a value δ which will be used for generating the challenge tags:

δ = fK1(i) (2.1)

• C generates u values λ1, · · · , λu which will be used for generating the repair
tag:
∀k ∈ {1, · · · , u}:

λk = fK2(i||k) (2.2)

2. C generates coded blocks and metadata to be stored at server Si:

∀j ∈ {1, · · · , α}:

21

2.1. POR

• C randomly generates coefficients zk
rand← Fq for ∀k ∈ {1, · · · ,m}.

• C computes coded block:

cij =
m∑
k=1

zkbk (2.3)

Note that the symbols in the vector cij are elements in Fq.
• C views coded block cij as an ordered collection of s segments cij = (cij1, · · · , cijs)

where each segment contains one symbol from Fq, and computes a challenge
tag for each segment:
∀k ∈ {1, · · · , s}:

tijk = fK3(i||j||k||z1|| · · · ||zm) + δcijk mod q. (2.4)

• C views coded block cij as a column vector of u symbols cij = (cij1, · · · , ciju)
where each symbol cijk ∈ Fq, and computes a repair tag for block cij:

Tij = fK4(i||j||z1|| · · · ||zm) +
u∑
k=1

λkcijk mod q. (2.5)

• C then encrypts the coefficients:
∀k ∈ {1, · · · ,m}:

εijk = EncKenc(zijk) (2.6)

3. C sends the following data to the server Si for storage:

∀j ∈ {1, · · · , α}:

• cij: coded block.

• εij1, · · · , εijm: encrypted coefficients.

• tij1, · · · , tijs: challenge tags.

• Tij: repair tag.

C can now delete the file F and stores only the secret key sk.

Check: For each of n servers, C checks possession of each of α coded blocks at each
server by using spot-checking of segments for each coded block. In this process, each server
uses its stored blocks and the corresponding challenge tags to prove data possession.

For each server Si (∀i ∈ {1, · · · , n}):

1. C generates a set of queries to send to each server :

• C generates r pairs (k, vk) (correspond to the segments that are being checked)
where:

– k
rand← {1, · · · , s} (k is the index of the segment).

22

2.1. POR

– vk
rand← Fq (vk is the corresponding query coefficient).

Let the query Q be the r-element set {(k, vk)}. C sends Q to each server.

2. Si computes a proof of possession for coded block :

∀j ∈ {1, · · · , α}:

• Si computes the proof:

tij =
∑

(k,vk)∈Q

vktijk mod q (2.7)

ρij =
∑

(k,vk)∈Q

vkcijk mod q (2.8)

• Si sends to C:
– The proof of possession (tij, ρij).

– The encrypted coefficients (εi11, · · · , εi1m, εi21, · · · , εi2m, · · · , εiα1, · · · , εiαm).

3. C checks the validity of the proof of possession (tij, ρij):

For ∀j ∈ {1, · · · , α}:

• C decrypts the encrypted coefficients:
∀k ∈ {1, · · · ,m}:

zijk = DecKenc(εijk) (2.9)

• C regenerates δ = fK1(i)

• C checks if:

tij =
∑

(k,vk)∈Q

vkfK3(i||j||k||zij1|| · · · ||zijm) + δρij mod p (2.10)

If the equality does not hold, C declares Si faulty.

The correctness of Equation 2.10 is proved as follows:

Proof.
tij =

∑
(k,vk)∈Q vktijk mod q //because of Equation 2.7

=
∑

(k,vk)∈Q vkfK3(i||j||k||zij1|| · · · ||zijm) + δρij mod p

= //because of Equation 2.4

Therefore, Equation 2.10 holds.

23

2.1. POR

Repair: Assume that in the check phase, C has identified Sy as a corrupted server
whose coded blocks are Sy1, · · · , Syα. C will contact l healthy servers Si1 , · · · , Sil and asks
each of them to generate a new coded block. C further combines these l coded blocks to
generate α new coded blocks and metadata, and then stores them on a new server S ′.

1. C contacts l healthy servers Si1 , · · · , Sil to ask them to generate new coded blocks.

For ∀i ∈ {i1, · · · , il}:

• C generates a set of coefficients (x1, · · · , xα) where xk
rand← Fq with k ∈ {1, · · · , α}.

• C asks server Si to provide a new coded block and the proof of correct encoding
using the coefficients (x1, · · · , xα).

• Server Si executes as follows:

– Si computes ai =
∑α

j=1 xjcij (here the symbols air of block ai are computed
as air =

∑α
j=1 xjcijr mod q for r ∈ {1, · · · , u}).

– Si computes a proof of correct encoding:

τi =
α∑
j=1

xjTij mod q (2.11)

– Si sends to C:
∗ ai
∗ τi
∗ {εi11, · · · , εi1m, εi21, · · · , εi2m, · · · , εiα1, · · · , εiαm}

• C decrypts the encrypted coefficients ε to recover coefficients zi11, · · · , zi1m,
zi21, · · · , zi2m, · · · , ziα1, · · · , ziαm.

• C regenerates u values λ1, · · · , λu ∈ Fq:
∀k ∈ {1, · · · , u}:

λk = fK2(i||k) (2.12)

• C checks if:

τi =
α∑
j=1

xjfK4(i||j||zij1|| · · · ||zijm) +
u∑
k=1

λkaik mod q (2.13)

where ai1, · · · , aiu are symbols of block ai. If the equality does not hold, then
C declares Si faulty.

The correctness of Equation 2.13 is proved as follows:

Proof.
τi =

∑α
j=1 xjTij mod q //because of Equation 2.11

=
∑α

j=1 xjfK4(i||j||zij1|| · · · ||zijm) +
∑u

k=1 λkaik mod q

= //because of Equation 2.5 and replacing cijk by aik

Therefore, Equation 2.13 is corrected.

24

2.1. POR

2. C combines these l coded blocks to generate α new coded blocks and metadata.

• C generates a value δ which will be used for generating the challenge tags:

δ = fK1(y) (2.14)

• Generate u values λ1, · · · , λu which will be used for generating the repair tag:
∀k ∈ {1, · · · , u}:

λk = fK2(y||k) (2.15)

• For ∀j ∈ 1, · · · , α:

– C randomly generates coefficients zk
rand← Fq where ∀k ∈ {1, · · · , l}.

– C computes coded block:

cyj =
l∑

k=1

zkak (2.16)

The symbols in the vector cyj are elements in Fq.
– C views cyj as an ordered collection of s segments cyj = (cyj1, · · · , cyjs)

where each segment contains one symbol from Fq, and computes a chal-
lenge tag for each segment:
∀k ∈ {1, · · · , s}:

tyjk = fK3(y||j||k||zi1|| · · · ||zil) + δcyjk mod q (2.17)

– C views cyj as a column vector of u symbols cyj = (cyj1, · · · , cyju) with
cyjk ∈ Fq, and computes a repair tag for the block cyj:

Tyj = fK4(y||j||zi1|| · · · ||zil) +
u∑
k=1

λkcyjk mod q (2.18)

– C encrypts coefficients:
∀k ∈ {1, · · · ,m}:

εyjk = EncKenc(zyjk) (2.19)

3. C sends the new coded blocks to the new server S ′:

For ∀j = {1, · · · , α}: C sends to S ′:

• cyj: new coded block

• εyj1, · · · , εyjm: encrypted coefficients

• tyj1, · · · , tyjs: challenge tags

• Tyj: repair tag

Overview of NC-Audit scheme. In this part, we briefly describe the NC-Audit
scheme [62] which is another notable previous network coding-based POR proposed by
Le et al. We will use this scheme to compare with our schemes in later chapters. The
notations used throughout this scheme are given in Table 2.2.

25

2.1. POR

Table 2.2: Notations used in the NC-Audit scheme

Notation Description

C client
F original file of C
m number of file blocks
Fq finite field of a prime order q
n− 1 number of elements in Fq of a file block
M number of coded blocks stored in a server
b̄i ∈ Fn−1q file block (i ∈ {1, · · · ,m})
b̂i ∈ Fnq padded block of b̄i
bi ∈ Fn+mq augmented block of b̂i
tbi tag of bi
k1 MAC key
k2 encryption key
F1 pseudo-random function F1 : K1 × [1, n+m]→ Fq
F2 pseudo-random function F2 : K2 × ([1, n− 1]× [1, n− 1])→ Fq
F3 pseudo-random function F3 : K2 × ({0, 1}λ × [1, n− 1])→ Fq
ej coded block (j ∈ {1, · · · ,M})
tej tag of ej
p1, · · · , pn−1 tagging elements
aug(ej) coding coefficients of coded block ej (j ∈ {1, · · · ,M})

We now describe the NC-Audit scheme as follows:

Keygen:

• C generates MAC key: k1
rand← {0, 1}λ.

• C generates encryption key: k2
rand← {0, 1}λ.

Encode:

• C divides the file into m blocks of size (n− 1) instead of n:

F = b̄1|| · · · ||b̄m (2.20)

Each b̄i ∈ Fn−1q for all i ∈ {1, · · · ,m}.

• C pads to each file block b̄i ∈ Fn−1q a random element rand in Fq. A padded block

is denoted by b̂i.
b̂i = (b̄i, rand) ∈ Fnq (2.21)

26

2.1. POR

• C creates augmented block for each b̂i, denoted by bi:

bi = (b̂i,

m︷ ︸︸ ︷
0, · · · , 0, 1︸ ︷︷ ︸

i

, 0, · · · , 0) ∈ Fn+mq (2.22)

• C then setups the encryption scheme by computing the tagging elements, p1, · · · , pn−1:

– Compute a value r̄:

r̄ = (F1(k1, 1), · · · , F1(k1, n− 1)) (2.23)

– Compute (n− 1) values p̄1, · · · , p̄n−1:
∀i ∈ {1, · · · , n− 1}:

p̄i = (F2(k2, i, 1), · · · , F2(k2, i, n− 1)) ∈ Fn−1q (2.24)

– Compute (n− 1) values p1, · · · , pn−1:
∀i ∈ {1, · · · , n− 1}:

pi = r̄ · p̄i ∈ Fq (2.25)

• C computes a tag for each augmented block bi:

– Compute a value r:

r = (F1(k1, 1), · · · , F1(k1, n+m)) (2.26)

– Compute tag for bi:
tbi = bi · r ∈ Fq (2.27)

• C computes M coded blocks:
∀j ∈ {1, · · · ,M}:

ej =
m∑
i=1

αijbi ∈ Fn+mq (2.28)

Note that a coded block has the following form:

ej = (
m∑
i=1

αij b̂i︸ ︷︷ ︸
êj︸︷︷︸

ēj ,e
(n)
j

, α1j, · · · , αmj︸ ︷︷ ︸
aug(ej)

) ∈ Fn+mq (2.29)

where ēj ∈ Fn−1q , e
(n)
j ∈ Fq and aug(ej) ∈ Fmq .

27

2.1. POR

• C computes M tags corresponding to M coded blocks:
∀j ∈ {1, · · · ,M}:

tej =
m∑
i=1

αijtbi ∈ Fq (2.30)

• C sends to the server the following information:

– Coded blocks: e1, · · · , eM
– Tags: te1 , · · · , teM
– Tagging elements: p1, · · · , pn−1
– Encryption key: k2

• C sends to the TPA the following information:

– Coding coefficients of coded blocks: aug(e1), · · · , aug(eM) which are the last
m elements of each coded block.

– MAC key: k1

The authors assume that C uses private and authentic channels to send k1 and k2
while using an authentic channel for sending the other data. The user then keeps
the coding coefficients (aug(e1), · · · , aug(eM)) for repair and the keys (k1, k2) but
delete all other data.

Check:

• The TPA chooses a set of indexes of coded blocks to be checked I ⊆ {1, · · · ,M},
and chooses the coefficients for these blocks uniformly at random: γj

rand← Fq for
j ∈ I. The challenge includes the indexes of the blocks and their corresponding
coefficients:

chal = {(j, γj)|j ∈ I} (2.31)

• The server generates the proof of storage, V , is implemented as follows:

– Compute the aggregated block:

ê =
∑
j∈I

γj êj (2.32)

– Parse ê = (ē, e(n)) where ē ∈ Fn−1q and e(n) ∈ Fq.
– Compute the aggregated tag:

t =
∑
j∈I

γjtej (2.33)

28

2.1. POR

– Encrypt the response block:

∗ Compute (n− 1) values p̄1, · · · , p̄n−1 using k2:
∀i ∈ {1, · · · , n− 1}:

p̄i = (F2(k2, i, 1), · · · , F2(k2, i, n− 1)) ∈ Fn−1q (2.34)

∗ Choose r uniformly at random: r
rand← {0, 1}λ.

∗ Compute the masking coefficients:
∀i ∈ {1, · · · , n− 1}:

βi = F3(k2, r, i) ∈ Fq (2.35)

∗ Compute masking vector:

m̄ =
n−1∑
i=1

βip̄i ∈ Fn−1q (2.36)

∗ Compute a value c̄:
c̄ = ē+ m̄ ∈ Fn−1q (2.37)

∗ Compute a value p:

p =
n−1∑
i=1

βipi ∈ Fq (2.38)

In essence, the data is masked with a randomly chosen vector m̄ ∈ span
(p̄1, · · · , p̄n−1).

– The server sends to the TPA:

resp = (c̄, r̄, p, e(n), t) (2.39)

• The TPA verifies the proof V as follows:

– Compute coefficients of ê:

aug(e) =
∑
j∈I

γj · aug(ej) (2.40)

– Let c as:
c = (c̄, e(n), aug(e)) ∈ Fn+mq (2.41)

where c̄ ∈ Fn−1q , e(n) ∈ Fq and aug(e) ∈ Fmq .

– Compute a value r:

r = (F1(k1, 1), · · · , F1(k1, n+m)) ∈ Fn+mq (2.42)

– Compute a value t′:
t′ = c · r ∈ Fq (2.43)

29

2.1. POR

– Check if:
t′ = t+ p (2.44)

If the equality holds, the TPA will output 1 (the server is healthy). Otherwise,
the TPA will output 0 (the server is corrupted).

The correctness of Equation 2.44 is proved as follows:

Proof.
c = (c̄, e(n), aug(e))

= ((ē+ m̄), e(n), aug(e))
= e+ (m̄, 0, · · · , 0)

In the verification:

t′ = c · r
= e · r + m̄ · r̄
= t+

∑n−1
i=1 βip̄i · r̄

= t+
∑n−1

i=1 βipi
= t+ p

Therefore, t′ = t+ p.

Repair (discuss): When there is a corrupted server, C creates a new server to
replace this corrupted server. Based on the coding coefficients of the coded blocks at
the remaining healthy servers, C instructs the healthy servers to send appropriate coded
blocks to the new server. The new server then linearly combines them, according to the
user instruction, to construct its own coded blocks.

The verification tags of the newly constructed blocks at the new server do not need to
be computed by C. In particular, the healthy servers can send along the verification tags
of the coded blocks that they send to the new server. The new server can generate tags
corresponding to the coded blocks that it needs to construct. Finally, C sends the coding
coefficients of the coded blocks at the newly constructed server to the TPA so that it can
audit this new server. Finally, the TPA audits the new server based on the new set of
coefficients.

2.1.2 Problem Statement

Although many network coding-based PORs have been proposed, none of them satisfies
our goals (we mentioned our goals in Section 1.2) because of the following reasons:

• The system models in these previous PORs only have a single client. In other words,
multiple clients cannot participant in the system as one of our goals.

• The check phase and repair phase in these previous PORs bring a lot of burden to
the client. Concretely:

30

2.1. POR

– The client must periodically check the servers. The task of checking the servers
must be executed very often during the system lifetime. Thus, the client incurs
very high computation and communication costs during the check phase

– The previous PORs can only support the indirect repair. That is, to repair
a corrupted server, the client must require a number of healthy servers to
compute the aggregated coded blocks and the aggregated tags. Each of these
healthy servers then sends its aggregated coded block along with the corre-
sponding aggregated tag back to the client. After that, the client checks the
provided coded blocks using the provided tags, and computes the new coded
blocks and new tags to replace the corruption. Finally, the client sends these
new coded blocks and new tags to the new server. It is clear that this repair
mechanism is a troublesome task for the client. The data repair is performed
very often during the system lifetime; thus, the client incurs high computation
and communication costs during the repair phase.

Le et al. after that proposed the NC-Audit scheme [62] in which a Third Party Auditor
(TPA) is employed and is delegated the responsibility of checking the servers periodically.
The client does not need to check the servers any more. The authors also discussed a
new repair mechanism in which the new server is able to check the coded blocks provided
from the healthy servers, and is able to compute the new coded blocks along with the
tags for itself without the need of the client. We call that mechanism as direct repair.
Unfortunately, the NC-Audit has the following weak points:

• The direct repair in the scheme is not completed because the authors mainly focused
on how to prevent the data leakage from the TPA instead of data repair.

• The scheme is constructed in an asymmetric key setting.

• The scheme does not deal with multiple clients.

Chen et al. [80] also proposed RDC-SR scheme (a Remote Data Checking scheme for
replication-based distributed storage which enables Server-side Repair) in which direct
repair is supported. However, this scheme is based on replication, not network coding
as our objective. Chen et al. [81] after wards improved their RDC-SR scheme to the
RDC-EC scheme (a Remote Data Checking scheme for erasure coding-based distributed
storage which enables Server-side Repair). Again, this scheme is based on erasure coding,
not network coding as our objective.

To support multiple sources for the network coding, several papers have been discussed
[82–85]. However, these schemes also have the following problems:

• In these schemes, the network coding with multiple sources is applied in the network
scenario instead of the distributed storage system or the POR as our scenario.

• These schemes are based on an asymmetric key setting instead of a symmetric
key setting as one of our goal. These schemes use the digital signatures as the
authentication information instead of the MACs.

31

2.2. SSS

Opposite with the previous schemes, we propose our scheme to simultaneously address
all the drawbacks mentioned above. We now briefly make an overview to compare our
contribution with the previous schemes in Table 2.3.

Table 2.3: Previous PORs vs our POR

Previous PORs Our PORs
Practicality (impractical): (practical):

Only a single client can participate
in system.

Multiple clients can participate in
system.

(impractical): (practical):
Client cannot perform dynamic
operations (modification, inser-
tion, deletion)

Client can perform dynamic op-
erations (modification, insertion,
deletion).

Efficiency (inefficient): (efficient):
Direct repair is not supported. Direct repair is supported.
⇒ Client is burdened. ⇒ Client is free.

(inefficient): (efficient):
Public authentication is not sup-
ported.

Public authentication is sup-
ported.

⇒ Client is burdened. ⇒ Client is free.

(inefficient): (efficient):
Asymmetric key setting is used. Symmetric key setting is used.

2.2 SSS

2.2.1 State Of The Art

Shamir-SSS. SSSs are ideal for storing information that is sensitive. The basic ideas
of SSS were independently invented by Shamir [110] and Blakley [111]. A secret S is
encoded into n shares. These n shares are distributed to n participants. Each participant

32

2.2. SSS

receives one share. This is known as the (m,n)-threshold SSS in which any m or more
shares can be used to reconstruct the secret and in which the bit-size of a share is the same
as the bit-size of the secret. In a SSS, there is a dealer and n participants (sometimes is
called as players). The dealer has responsibility to perform share generation and secret
reconstruction. The participants have responsibility to hold their own shares and provide
the shares to dealer when the dealer requires. The efficiency of the scheme is evaluated by
the entropy of each share, and it must hold that H(Ci) ≥ H(S) where H(S) and H(Ci)
are the entropies of a secret S and shares Ci where i ∈ {1, · · · , n} [112,113].

Ramp-SSS. In order to improve the efficiency of the Shamir-SSS, the Ramp-SSS was
proposed [114–118] with a trade-off between security and coding efficiency. The Ramp-SSS
has three parameters (m,L, n) instead of two parameters (m,n) as in the Shamir-SSS. The
(m,L, n)-Ramp-SSS is constructed in a way that the secret S can be reconstructed from
any m or more shares; no information about S can be obtained from less than L shares;
but a partial information of S can be leaked from any arbitrary set of (m− t) shares with
equivocation (t/m)H(S) for t ∈ {1, · · · ,m−L}. It can attain thatH(Ci) = H(S)/(m−L),
and that is the reason the Ramp-SSS is more efficient than the Shamir-SSS [114,115].

However, the drawback of these previous SSSs is the heavy computational cost because
the shares are constructed using multiplicative polynomials. An example of a polynomial
is the Reed-Solomon code, which takesO(n log n) field operations for the share distribution
and O(m2) field operations for the secret reconstruction, as showed by Wang et al. in
[119].

XOR-based SSS. For the purpose to realize high performance, researchers proposed
SSSs which use just XOR operations to make shares and reconstruct the secret, instead
of the polynomials. We call these SSSs as XOR-SSSs. Examples include:

• Ishizu et al. [120] proposed a fast (2, 3)-SSS as a solution for the high computational
cost due to polynomials.

• Fujii et al. [121], Hosaka et al. [122] and Suga et al. [123] then proposed (2, n)-SSSs
to generalize Ishizu’s scheme for the number of participants.

• Kurihara et al. [124], after that, proposed a fast (3, n)-SSS using XOR operations
as an extension of Fujii’s scheme by constructing shares with the XOR between the
secret and two random numbers.

• Wang et al. [119] proposed the (m,n)-SSS where m = {2, 3, 4, n− 3, n− 2, n− 1}.

The shortcoming of these XOR-SSSs is that the parameters (m,n) are constrained. For
example, m must be 2 and n must be 3 in [120]; m must be 2 in [121–123]; m must be 3
in [124]; and m must be {2, 3, 4, n−3, n−2, n−1} in [119]. To extend the previous XOR-
SSSs, Shiina et al. [125] firstly proposed another fast (m,n)-SSS using XOR operations.
However, the share size in this scheme is larger O(nm−1) times of the secret size. Kunii
et al. then improve Shiina’s scheme in [126]. However, the share size is larger than or

33

2.2. SSS

equal to log2 n time the secret size, as indicated in [127]. Afterwards, Kurihara et al.
[127], Chunli et al. [128] and Wang et al. [129] proposed the (m,n)-SSSs based on XOR
operations in which the share size is equal to the secret size. Kurihara et al. then improved
their scheme [127] to achieve the Ramp-SSS in [130].

Most of these previous schemes can support the share generation and the secret recon-
struction. Nonetheless, these previous schemes cannot support the direct share repair.
This means that when a share is corrupted, without the direct share repair, the dealer
must reconstruct the secret S at first and then generate the new share to replace the cor-
ruption later. If the direct share repair is supported, the corrupted share can be repaired
directly from the remaining healthy shares without the need to reconstruct the secret S.

Network coding-based SSS. Breaking with the flow of previous schemes, recently,
there are several SSSs in which the linear network coding is applied to deal with the
direct share repair. We call these SSSs as NC-SSSs. Some notable NC-SSSs are proposed
by Rashmi et al. [131], Kurihara et al. [132], Tang et al. [133], Shah et al. [134].
Unfortunately, the NC-SSSs have been constructed using a linear combination instead of
the XOR.

Overview of a Previous Network Coding-based SSS. In this part, we briefly
describe a network coding-based SSS proposed by Rashmi et al. in [131] which is a
notable network coding-based SSS.

Let (m,n) denote the parameters of the scheme. Let d denote another parameter such
that 2m − 2 ≤ d ≤ n − 1. Let B = m(2d −m + 1)/2. Let S1 be a (m ×m) symmetric
matrix constructed so that the m(m + 1)/2 components in the upper-triangular half of
the matrix are filled up by m(m+ 1)/2 distinct secret symbols drawn from the set of the
B secret symbols of the secret. The remaining m(d −m) secret symbols are used to fill
up a second m(d−m) matrix S2. Let O denote the (d−m)× (d−m) zero matrix with
all zero components. A secret matrix S is then defined as the (d × d) symmetric matrix
given by:

S =

(
S1 S2

St2 O

)
=



u1,1 · · · u1,m u1,m+1 · · · u1,d
...

. . .
...

...
. . .

...
um,1 · · · um,m um,m+1 · · · um,d
um+1,1 · · · um+1,m 0 · · · 0

...
. . .

...
...

. . .
...

ud,1 · · · ud,m 0 · · · 0


(2.45)

where St2 is the transpose of the matrix S2. From the definition of the secret matrix S
with components ui,j, note that ui,j = uj,i for all i, j ∈ {1, · · · , d} and ui,j = 0 for all
i, j ∈ {m+ 1, · · · , d}.

Share Generation: For each i ∈ {1, · · · , n}, assign a unique and public symbol
xi in Fq to participant i in such a way that the following two conditions are satisfied.

34

2.2. SSS

Condition for xi:

• For any i ∈ {1, · · · , n}, xi 6= 0.

• For any i, j ∈ {1, · · · , n} if i 6= j then xi 6= xj.

For the secret matrix S, the share ci stored in participant i is then defined as:

ci = [ci,1, ci,2, · · · , ci,d]t = S · φi ∈ Fdq (2.46)

where φi = [1, xi, x
2
i , · · · , xd−1i]t ∈ Fdq is a coefficient vector associated with participant

i and all operations are done over Fq. Note that the size of a share is d from B =
m(2d−m+ 1)/2 and from Equation 2.46. Thus, the B secret symbols are encoded to n
shares c1, · · · , cn.

Secret Reconstruction: From Equation 2.45, we can observe that to reconstruct
S, only S1 and S2 need to be reconstructed. Let SSR be a matrix which is defined as
follows:

S =
(
S1 S2

)
=

u1,1 · · · u1,m u1,m+1 · · · u1,d
...

. . .
...

...
. . .

...
um,1 · · · um,m um,m+1 · · · um,d

 (2.47)

SSR consists of (m× d) unknowns that need to be solved. In addition, from Equation
2.46, each share ci consists of d elements (ci = [ci,1, ci,2, · · · , ci,d]t). Therefore, to solve SSR,
only m shares are required to reconstitute together. Let CSR denote the matrix which
consists of these m shares. Let φSR denote the matrix which consists of the coefficient
vectors of these m shares. From Equation 2.46, ci = S · φi. Thus,

CSR = SSR · φSR (2.48)

Therefore, SSR = CSR · φ−1SR. Finally, S can be reconstructed using Equation 2.45.

Share Repair: Suppose a participant Pf is corrupted and the healthy participants
P1, · · · ,Pd are used to repair Pf . For each index p ∈ {1, · · · , d}, the healthy participant
Pp computes a piece df,Pp for the corrupted participant from the share cPp of itself and
the coding vector φf of the corrupted participant as follows:

df,Pp = ctPpφf ∈ Fq, p = 1, · · · , d (2.49)

and sends it to the corrupted participant. Note that idf,Pp = dtf,Pp because a piece df,Pp
is a scalar in Fq. As a result, the corrupted participant Pf obtains the piece-vector df
consisting of d pieces as follows:

df = [df,P1 , df,P2 , · · · , df,Pd]t ∈ Fdq . (2.50)

35

2.2. SSS

The sizes of a piece and a piece-vector are one and d, respectively. Using the piece-
vector df and the d coding vectors iφP1 , · · · , φPd associated with the healthy participants
P1, · · · ,Pd, the corrupted participant can compute the same share cf as follows:

cf = ([φP1 , · · · , φPd]t)−1df (2.51)

Note that the (d× d) matrix [φP1 , · · · , φPd]t is non-singular because the determinant of
the matrix is the Vandermonde determinant from the conditions for xi.

2.2.2 Problem Statement

We now summarize all the shortcomings of the previous SSSs that have been mentioned
above.

• Most of the previous SSSs only support two functions which are share generation
and secret reconstruction, but have not focused on share repair function. In a real
system, because a share stored in a participant is probably corrupted, share repair
should be considered.

• The parameters (m,n) are constrained. For instance, m must be {2, 3, 4, n− 3, n−
2, n− 1}. It would be more practical if the parameters can be chosen arbitrarily.

• From a secret, shares are computed by a multiplicative polynomial over a finite field.
In a real system, because the parameters (m,n) are very large, the the computation
cost to compute the shares and the communication cost to distributed the shares to
the participants are required.

• Indirect share repair: when a share stored in a participant is corrupted, the only way
to repair the corrupted share is that the dealer must reconstructing the secret by
requiring the other shares to reconstitute together. After that, the dealer re-encodes
the new share which is used to replace the corrupted share. This mechanism yields
a high computation cost for reconstructing the secret.

• Although in most of existing SSSs, the size of a share is less than or equal to the
size of the secret, they might not achieve an optimal share size.

Opposite with the previous SSSs, we propose our SSS to simultaneously address all the
drawbacks mentioned above. We now briefly make an overview to compare our contribu-
tion with the previous SSSs in Table 2.4.

Table 2.4: Previous SSSs vs our SSS

Previous SSSs Our SSS
Practicality (impractical): (practical):

Two functions are supported: Three functions are supported:
- Share generation - Share generation
- Secret reconstruction - Secret reconstruction

36

2.2. SSS

- Share repair
(impractical): (practical):
Parameters (m,n) are con-
strained.

Parameters (m,n) are not con-
strained.

Efficiency (inefficient): (efficient):
Shares are computed using multi-
plicative polynomials.

Shares are computed using XORs.

(inefficient): (efficient):
Direct share repair is not sup-
ported.

Direct share repair is supported.

⇒ Secret must be reconstructed. ⇒ Secret does not need to be re-
constructed.

(inefficient): (efficient):
Share size is not optimal. Share size is optimal.

37

Chapter 3

Preliminary

3.1 POR

The POR [8–13] is a challenge-response protocol between a verifier (client) and a prover
(server) that supports the client to check whether his/her data stored in the servers is
always available, intact and retrievable. The POR consists of the functions defined below.

1. Keygen (1λ) → {sk, pk}: This function is performed by the client. This function
takes a security parameter (λ) as an input, and outputs a pair of {sk, pk} where sk
denotes the secret key and pk denotes the public key. For a symmetric key setting,
pk is set to be null.

2. Encode(F, sk) → F ∗: This function allows the client to encode his/her original file
(F) to an encoded file (F ∗) using the secret key sk, then stores F ∗ into the server.

3. Check() → {accept/deny}: This function conducts the challenge-response protocol
between the client and the server during which the client uses sk to generate a
challenge (c) and sends the c to the server. The server computes a corresponding
response (r) and sends the r back to the client. The client then verifies the server
based on c and r, and outputs accept (the server is healthy) or deny (the server is
corrupted).

4. Repair(): When a corrupted data from a server is detected in the check function, this
function is executed by the client to repair the corrupted data. The repair function
is depended on the used techniques, e.g., replication, erasure coding, ORAM or
network coding.

3.2 Network Coding

Network coding has been proposed to improve the network throughput and the efficiency
of data transmission and data repair. Network coding was originally proposed for the
network scenario [38–50]. It then is applied to the distributed storage system scenario
[51,60–65].

38

3.2. NETWORK CODING

3.2.1 Fundamental Concept

In the network scenario, suppose that a source node wants to send a message to a receiver
node. Before transmitting the message, the source node breaks the message into m blocks
v1|| · · · ||vm. Each message block vi belongs to Fξq where i ∈ {1, · · · ,m} and Fξq denotes
a vector consisting of ξ elements in a finite field F of a prime order q. The source node
augments each message block vi where i ∈ {1, · · · ,m} with a vector of length m in which
a single ‘1’ is placed in the i-th position and ‘0’s are placed elsewhere. Let w1, · · · , wm
denote the augmented blocks. Each augmented block has the following form:

wi = (vi,

m︷ ︸︸ ︷
0, · · · , 0, 1︸ ︷︷ ︸

i

, 0, · · · , 0) ∈ Fξ+mq (3.1)

These augmented blocks are then sent as packets to the network. When an intermediate
node in the network receives t packets, the intermediate node will generates t coefficients,
linearly combines the t packets using the generated coefficients and transmits the result
to its adjacent nodes. Consequently, the receiver node can receive combinations of all
augmented blocks. The receiver node can reconstruct the m augmented blocks using
any set of m combinations. Suppose that the receiver node receives m packages denoted
by {y1, · · · , ym}. Each packet yi ∈ Fξ+mq where i ∈ {1, · · · ,m}. The receiver node can
solve all m augmented blocks {w1, · · · , wm} using the accumulated coefficients which are
contained in the last m coordinates of each package yi. Afterwards, each of the m file
blocks {v1, · · · , vm} can be obtained from the first coordinate of each augmented block.
Finally, the original message can be reconstructed by concatenating all message blocks.

3.2.2 Application in Distributed Storage System

In the network scenario, there are multiple types of entities: source node, intermediate
nodes, and receiver node. However, when the network coding is applied to the distributed
storage system scenario, there are two types of entities: a client and servers. Suppose
that a client owns an original file F . The client firstly divides F into m file blocks:
F = v1|| · · · ||vm. Each file block vi ∈ Fξq where i ∈ {1, · · · ,m}. The client wants to store
redundantly encoded blocks in the servers in a way that the client can reconstruct the
original file F and can repair the encoded blocks in a corrupted server. From the m file
blocks, the client firstly creates m augmented blocks {w1, · · · , wm} in which wi ∈ Fξ+mq

where i ∈ {1, · · · ,m} has the form as Equation 3.1. The client then randomly chooses

m coding coefficients α1, · · · , αm
rand← Fq and computes coded blocks using the linear

combination as follows:

c =
m∑
i=1

αi · wi ∈ Fξ+mq (3.2)

The coded blocks are then stored in the servers. To reconstruct the original file F ,
any m coded blocks are required to solve m augmented blocks w1, · · · , wm using the
accumulated coefficients contained in the last m coordinates of each coded block. After

39

3.3. HOMOMORPHIC MAC

these m augmented blocks are solved, m file blocks v1, · · · , vm can be obtained from the
first coordinate of each augmented block. Finally, the original file F is reconstructed by
concatenating all file blocks.

Note that the matrix consisting of the coefficients used to construct any m coded blocks
should have full rank. Koetter et al. [44] proved that if the prime q is chosen large enough
and the coefficients are chosen randomly, the probability for the matrix having full rank
is high.

When a corrupted server is detected, the client repairs it as follows: the client firstly
retrieves coded blocks from the healthy servers and linearly combines them to regenerate
new coded blocks. An example about the data repair of network coding is given in Figure
3.1. From three augmented blocks {w1, w2, w3}, the client computes six coded blocks and
stores two coded blocks in each of servers S1,S2,S3. Suppose that S3 is corrupted, the
client requires S1 and S2 to create new blocks using linear combinations. The client then
mixes them using linear combinations to obtain two new coded blocks. The client finally
stores the new coded blocks in the new server which is used to replace the corrupted
server.

w1

w2

w3

3w1+3w2+w3

w1+w2+2w3

1
1 2

1

1

1

new coded block

client-side server-side

v1

v2

v3

w3

w1+w2
S2

w2+w3

3w1+2w2S1

w2+2w3

2w1+w2
S3

1

2

4w1+4w2+3w3

7w1+7w2+4w3

Figure 3.1: An example of data repair of network coding

3.3 Homomorphic MAC

A MAC is proposed to provide integrity and authenticity assurances on the message by
allowing verifiers (who also possess the secret key) to detect any changes to the message
content. A MAC consists of a tuple of algorithms (KeyGen, Tag, Verify) as follows:

• KeyGen(1λ) → k: This algorithm takes a security parameter λ as the input, and
outputs a secret key k.

• Tag(M,k)→ t: This algorithm takes k and a message M as the inputs, and outputs
a tag t.

40

3.3. HOMOMORPHIC MAC

• Verify(M, t, k)→ {0, 1}: This algorithm takes M , t and k as the input, and outputs
1 if t is a valid tag and 0 otherwise.

A MAC is an additive homomorphic MAC if it has the following property:

Tag(M +M ′, k) = Tag(M,k) + Tag(M ′, k) (3.3)

A MAC is a multiplicative homomorphic MAC if it has the following property:

Tag(M ·M ′, k) = Tag(M,k) · Tag(M ′, k) (3.4)

3.3.1 Inner-product MAC

The inner-product MAC consists of the following algorithms:

• KeyGen(1λ) → k: This algorithm takes a security parameter λ as the input, and
outputs a secret key k.

• Tag(M,k)→ t: This algorithm takes k and a message M as the inputs, and outputs
a tag t such that:

t = M · k (3.5)

• Verify(M, t, k)→ {0, 1}: This algorithm takes M , t and k as the input, and outputs
1 if t is a valid tag and 0 otherwise.

Theorem 1. The inner-product MAC is an additive homomorphic MAC.

Proof. Because t = M ·k and t′ = M ′ ·k, it is easy to see that t′ = (M+M ′) ·k. Therefore,
the inner-product MAC is an additive homomorphic MAC.

3.3.2 Inter MAC

The inter MAC consists of the following algorithms:

• KeyGen(1λ,M) → {k, k′}: This algorithm takes a security parameter λ and a mes-
sage M as the input, and outputs secret keys {k, k′} where M · k′ = 0.

• Tag(M,k, k′)→ t: This algorithm takes the message M and the secret keys {k, k′}
as the inputs, and outputs a tag t such that:

t = M · (k + k′) (3.6)

• Verify(M, t, k + k′)→ {0, 1}: This algorithm takes M , t and (k + k′) as the inputs,
and outputs 1 if t is a valid tag and 0 otherwise. Note that this algorithm takes the
summation (k + k′) as an input (not k and k′ separately).

Theorem 2. The inter MAC is an additive homomorphic MAC.

Proof. t = M · (k + k′) = M · k because M · k′ = 0. Similarly, t′ = M ′ · (k + k′) = M ′ · k
because M ′ · k′ = 0. Thus, t+ t′ = (M +M ′) · k. Therefore, the inter MAC is an additive
homomorphic MAC.

41

3.3. HOMOMORPHIC MAC

3.3.3 Inter MAC in Network Coding

The inter MAC is firstly combined with the network coding in the network scenario [79].
We now describe it via two cases: a network with a single source node and a network with
multiple source nodes.

a) Single Source Node. Suppose that the single source node owns an original file
F . The source node divides F into m blocks: F = v1|| · · · ||vm. vi ∈ Fξq where i ∈
{1, · · · ,m}. From m file blocks {v1, · · · , vm}, m augmented blocks {w1, · · · , wm} are
created as Equation 3.1. wi ∈ Fξ+mq where i ∈ {1, · · · ,m}. The tuple of algorithms
(KeyGen–SS, Tag–SS and Veirfy–SS) is given as follows:

• KeyGen–SS(1λ, {w1, · · · , wm})→ {k, k′}: This algorithm takes a security parameter
λ and a set of m augmented blocks {w1, · · · , wm} as the inputs, and outputs secret
keys {k, k′} where wi · k′ = 0 for all i ∈ {1, · · · ,m}.

• Tag–SS({w1, · · · , wm}, k)→ {t1, · · · , tm}: This algorithm takes {w1, · · · , wm} and k
as the inputs, and outputs a set of m tags such that ti = wi ·k for all i ∈ {1, · · · ,m}.

• Verify–SS(c, t, k + k′)→ {0, 1}: This algorithm takes c, t and (k + k′) as the inputs
where c and t are the linear combinations of {w1, · · · , wm} and {t1, · · · , tm}, respec-
tively. In other words, c =

∑m
i=1 αiwi and t =

∑m
i=1 αiti where αi denotes a coding

coefficient. This algorithm outputs 1 if t is a valid tag and 0 otherwise.

The KeyGen–SS introduces a challenge that how to generate k′ such that it is orthogonal
to all m augmented blocks. Formally, k′ ·wi = 0 for all i ∈ {1, · · · ,m}. The algorithm to
generate k′ is given as follows.

• OrthogonalGen–SS (w1, · · · , wm) → k′:

– Find the span π of w1, · · · , wm ∈ Fξ+mq .

– Construct the matrix M in which {w1, · · · , wm} are the rows of M .

– Find the null-space of M , denoted by π⊥M , which is the set of all vectors u ∈
Fξ+mq such that M · uT = 0.

– Find the basis vectors of π⊥M , denoted by B1, · · · , Bξ ∈ Fξ+mq // Theorem 3
will explain why the number of the basis vectors is ξ.

– Compute k′ ← Kg–SS(B1, · · · , Bξ).

• Kg–SS(B1, · · · , Bξ) → k′: this is the sub-algorithm used in the OrthogonalGen–SS
algorithm:

– Let f be a pseudo-random function such that K × [1, ξ]→ Fq.
– Generate rx ← f(kPRF , x) ∈ Fq,∀x ∈ {1, · · · , ξ} where kPRF ∈ K.

– Compute k′ ←
∑ξ

x=1 rx ·Bx ∈ Fξ+mq .

42

3.3. HOMOMORPHIC MAC

Theorem 3. Given {w1, · · · , wm} ∈ Fξ+mq , the number of basis vectors of π⊥M is ξ.

Proof. rank(M) = m. Let πM be the space spanned by the rows of M . For any m×(ξ+m)
matrix, the rank-nullity theorem gives:

rank(M) + nullity(M) = ξ +m (3.7)

where nullity(M) is the dimension of π⊥M . Thus, we have:

dim(π⊥M) = (ξ +m)−m = ξ (3.8)

Therefore, the number of basis vectors of π⊥M is ξ. In the OrthogonalGen–SS algorithm,
we denoted the basis vectors by B1, · · · , Bξ.

b) Multiple Source Nodes. Suppose that there are s source nodes, denoted by
{C1, · · · , Cs}. Each client Ci where i ∈ {1, · · · , s} owns a file Fi which consists of g
file blocks: Fi = vi1|| · · · ||vig. vij ∈ Fξq where i ∈ {1, · · · , s}, j ∈ {1, · · · , g}. Suppose that
all the clients have the same number of file blocks (g is the same for all C1, · · · , Cs). Let
m = s ·g. The set of all m file blocks is: {v11, · · · , v1g, · · · , vs1, · · · , vsg}. From these m file
blocks, the m augmented blocks {w11, · · · , w1g, · · · , ws1, · · · , wsg} are created as follows:

wij = (vij, 0, · · · , 0︸ ︷︷ ︸
g(i−1)

,

j︷ ︸︸ ︷
0, · · · , 0, 1, 0, · · · , 0︸ ︷︷ ︸

g

, 0, · · · , 0︸ ︷︷ ︸
g(s−i)︸ ︷︷ ︸

m=s·g

) ∈ Fξ+mq (3.9)

where i ∈ {1, · · · , s}, j ∈ {1, · · · , g}, m = s · g. The tuple of algorithms (KeyGen–MS,
Tag–MS, Verify–MS) is given as follows:

• KeyGen–MS(1λ, {w11, · · · , w1g, · · · , ws1, · · · , wsg}) → {k1, · · · , ks}: This algorithm
takes a security parameter λ and the set of m = s·g augmented blocks {w11, · · · , w1g,
· · · , ws1, · · · , wsg} as the inputs, and outputs a set of s secret keys {k1, · · · , ks} such
that wij · kp = 0 for all i, p ∈ {1, · · · , s}, j ∈ {1, · · · , g} and p 6= i.

• Tag–MS({w11, · · · , w1g, · · · , ws1, · · · , wsg}, {k1, · · · , ks})→ {t11, · · · , t1g, · · · , ts1, · · · ,
tsg}: This algorithm takes the set of m = s · g augmented blocks {w11, · · · , w1g, · · · ,
ws1, · · · , wsg} and the set of s secret keys {k1, · · · , ks} as the inputs, and outputs a
set of m tags such that tij = wij · ki for all i ∈ {1, · · · , s} and j ∈ {1, · · · , g}.

• Verify–MS(c, t, k1 + · · · + ks) → {0, 1}: This algorithm takes c, t and (k1 + · · · +
ks) as the inputs where c and t are the linear combinations of {w11, · · · , w1g, · · · ,
ws1, · · · , wsg} and {t11, · · · , t1g, · · · , ts1, · · · , tsg}, respectively. In other words, c =∑m

i=1 αiwi and t =
∑m

i=1 αiti where αi denotes a coding coefficient. This algorithm
outputs 1 if t is a valid tag and 0 otherwise.

43

3.4. DISPERSAL CODING

Similar to the KeyGen–SS, the KeyGen–MS also introduces a challenge that how to
generate kp where p ∈ {1, · · · , s} such that it is orthogonal to the augmented blocks
which do not belong to the source node Cp. Formally, wij · kp = 0 for all i, p ∈ {1, · · · , s},
j ∈ {1, · · · , g} and i 6= p. The algorithm to generate kp is given as follows.

• OrthogonalGen–MS (p, {wij ∈ Fξ+mq |i = 1, · · · , s; i 6= p; j = 1, · · · , g}) → kp:

– Find the span π of the set {wij ∈ Fξ+mq |i = 1, · · · , s; i 6= p; j = 1, · · · , g}. The
set consists of (m− g) elements.

– Construct the matrix M in which the above (m − g) elements in the set are
the rows of M .

– Find the null-space of M , denoted by π⊥M , which is the set of all vectors u ∈
Fξ+mq such that M · uT = 0.

– Find the basis vectors of π⊥M , denoted by B1, · · · , Bξ+g ∈ Fξ+mq // Theorem 4
will explain why the number of the basis vectors is (ξ + g).

– Compute kp ← Kg–MS(B1, · · · , Bξ+g).

• Kg–MS(B1, · · · , Bξ+g)→ kp: this is the sub-algorithm used in the OrthogonalGen–MS
algorithm.

– Let f be a pseudo-random function such that K × [1, ξ + g]→ Fq.
– Generate rx ← f(kPRF , x) ∈ Fq,∀x ∈ {1, · · · , ξ + g} where kPRF ∈ K.

– Compute kp ←
∑ξ+g

x=1 rx ·Bx ∈ Fξ+mq .

Theorem 4. Given an integer p ∈ {1, · · · , s} and the set {wij ∈ Fξ+mq |i = 1, · · · , s; i 6=
p; j = 1, · · · , g}, the number of basis vectors of π⊥M is (ξ + g).

Proof. rank(M) = m − g. Let πM be the space spanned by the rows of M . For any
(m− g)× (ξ +m) matrix, the rank-nullity theorem gives:

rank(M) + nullity(M) = ξ +m (3.10)

where nullity(M) is the dimension of π⊥M . Thus, we have:

dim(π⊥M) = (ξ +m)− (m− g) = ξ + g (3.11)

Therefore, the number of basis vectors of π⊥M is (ξ + g). In the OrthogonalGen–MS algo-
rithm, we denoted the basis vectors by B1, · · · , Bξ+g.

3.4 Dispersal Coding

To prevent the small corruption attack and to allow the client to repair the data with a
high probability, the dispersal coding is proposed [26] with a minimal additional storage
overhead.

44

3.4. DISPERSAL CODING

3.4.1 Building Block

The dispersal coding is constructed into a single primitive called codeword using the
following building blocks.

Universal Hash Function (UHF). A UHF [93] is a function h: K × I l → I where
I denotes a field with operations (+,×). This UHF compresses a message m ∈ I l into
a compact digest based on a key κ ∈ K such that the hash of two different messages is
different with an overwhelming probability over keys. A common UHF is almost XOR
universal (AXU) which satisfies:

• h is an ε-UHF family if:

∀x 6= y ∈ I l : Prκ←K[hκ(x) = hκ(y)] ≤ ε (3.12)

• h is an ε-AXU family if:

∀x 6= y ∈ I l,∀z ∈ I : Prκ←K [hκ(x)⊕ hκ(y) = z] ≤ ε (3.13)

• If a UHF is linear, for any message pair (m1,m2):

hκ(m1) + hκ(m2) = hκ(m1 +m2) (3.14)

Error-Correcting Code (ECC). An ECC [94–96] is used to express a sequence of the
original data and the parity data such that any errors can be detected and corrected. An
ECC has two parameters (n, l) where l denotes the number of the original blocks, and n
denotes the number of blocks after adding (n − l) redundant blocks. There exists (n, l)-
ECC codes that can correct up to t = n−l+1

2
errors. The Reed-Solomon code (RS) [97, 98]

is a kind of ECC which uses a special polynomial:

g(x) = (x− ai)(x− ai+1) · · · (x− ai+2t) (3.15)

The codeword of the RS code is:

c(x) = g(x) · i(x) (3.16)

where g(x) is the generator polynomial over Fp, i(x) is the information block, and a is a
primitive element of the field.

• Encoder : The 2t parity symbols are given by:

p(x) = i(x) · xn−l mod g(x) (3.17)

• Decoder : Given a codeword r(x) which is the original codeword c(x) plus errors:

r(x) = c(x) + e(x) (3.18)

the RS decoder identifies the position and magnitude of up to t and corrects the
errors.

45

3.4. DISPERSAL CODING

– Calculating the syndrome: The RS codeword has 2t syndromes that depend
on errors. The syndromes are calculated by substituting the 2t roots of g(x)
into r(x).

– Finding the symbol error locations: This involves solving the equations with
t unknowns. The first step is to find an error locator polynomial using the
Berlekamp-Massey algorithm or the Euclid algorithm. The second step is to
find the roots of this polynomial using the Chien search algorithm.

– Finding symbol error values: This involves solving the equations with t un-
knowns using the Forney algorithm.

Universal Hash Function which is constructed using the Reed-Solomon code
(RS-UHF). A RS-UHF [99] is constructed in a way as follows. Suppose that a message
m is a vector −→m = (m1, · · · ,ml) where mi ∈ I and suppose that an (n, l)-RS code over I
is used. −→m is viewed as a polynomial representation of the form:

p−→m = mlx
l−1 +ml−1x

l−2 + · · ·+m1 (3.19)

A RS code can be defined as a vector
−→
k = (k1, · · · , kn). The codeword of a message −→m

is the evaluation of polynomial p−→m at point (k1, · · · , kn): (p−→m(k1), · · · , p−→m(kn)). A UHF
is hκ(m) = p−→m(κ) where κ is the key.

Message Authentication Code (MAC). A MAC [100] is used to authenticate a mes-
sage and to detect message tampering and forgery. A MAC is a tuple of (MGen,MTag,MVer):

• MGen(1λ): generates a secret key κ given a security parameter λ.

• MTagκ(m): computes a tag τ for the message m with the key κ.

• MVerκ(m, τ): outputs 1 if τ is a valid tag, and 0 otherwise.

Pseudo-random Function (PRF). A PRF [101] is used to generate exponentially many
random bits in a way that behaves like a random function. A PRF is a keyed family of a
function g : KPRF × L → I which is indistinguishable from a random family of functions
from L to I. A PRF can be constructed from any pseudorandom generator as follows:

• Let G : {0, 1}n → {0, 1}2n be a length-doubling pseudorandom generator.

• Define G0 : {0, 1}n → {0, 1}n such that G0(x) is the first n bits of G(x).

• Define G1 : {0, 1}n → {0, 1}n such that G1(x) is the last n bits of G(x).

• For the key KPRF ∈ {0, 1}n and an input x ∈ {0, 1}n, the PRF is constructed as:

FKPRF
(x) = Gxn(Gxn−1(· · ·Gx2(Gx1(KPRF)) · · ·)) (3.20)

where xi ∈ {0, 1} (i = 1, · · · , n) are the elements of x (x = {x1, · · · , xn} ∈ {0, 1}n).

46

3.5. SHAMIR SSS

MAC based on Universal Hash Function (UMAC). A UMAC [99] can be con-
structed as the composition of a UHF with a PRF. Given a UHF family h : KUHF×I l → I
and a PRF family g : KPRF×L → I, the UMAC is a tuple of UMAC = (UGen,UTag,UVer):

• UGen(1λ): generates key (κ, κ′) uniformly at random from KUHF ×KPRF.

• UTagκ,κ′(m): works in space KUHF×KPRF×I l → L×I, outputs (r, hκ(m) + gκ′(r))
in which a unique counter r ∈ L is increased in each execution.

• UVerκ,κ′(m, (c1, c2)): works in space KUHF×KPRF×I l×L×I, outputs 1 if and only
if hκ(m) + gκ′(c1) = c2.

Dispersal coding. The dispersal coding [26] is constructed as follows: To tag a message,
the message is encoded under an (n, l)-RS code; and a PRF is then applied to the last s
code symbols (s ∈ {1, · · · , n}). A MAC is obtained on each of those s code symbols using
UMAC. A codeword is valid if at least one of the last s symbols is the valid MAC.

• KGenECC(1λ): selects key −→κ = {{κi}ni=1, {κ′i}ni=n−s+1} randomly from space K =
In × (KPRF)s. The keys {κi}ni=1 are used for the RS code. The keys {κ′i}ni=n−s+1 are
used for the PRF in the UMAC.

• MTagECC−→κ (m1, · · · ,ml): outputs (c1, · · · , cn) in which ci = RS-UHFκi(
−→m) when

i ∈ {1, · · · , n − s} and ci = UTagκi,κ′i(m1, · · · ,ml) = (ri,RS-UHFκi(
−→m) + gκ′i(ri))

when i ∈ {n− s+ 1, · · · , n}.

• MVerECC−→κ (c1, · · · , cn): strips off the PRF from (cn−s+1, · · · , cn) as: c′i = ci− gκ′i(ri)
where i ∈ {n− s + 1, · · · , n}, and then decodes (c1, · · · , cn−s, c′n−s+1, · · · , c′n) using
the RS decoder to obtain the message −→m = (m1, · · · ,ml). If the RS decoder fails at
the point {κi}ni=1 (when the number of corruptions is more than n−l+1

2
), MVerECC

outputs (⊥, 0). If one of the last s symbols of (c1, · · · , cn) is a valid MAC on −→m
under UMAC, MVerECC outputs (−→m, 1), otherwise it outputs (−→m, 0).

Because the dispersal coding uses the RS code in MTagECC to tag the message and
uses the RS decoder in MVerECC to verify, the dispersal coding can prevent the small
corruption attack.

3.5 Shamir SSS

The Shamir-SSS [110,111] consists of n participants P = {P1, · · · ,Pn} and a dealer. Two
algorithms ShareGen and Reconst are run by the dealer. The share generation ShareGen
algorithm takes a secret S as the input and outputs a set C = {c1, · · · , cn}. ci where
i ∈ {1, · · · , n} is called a share and is given to a participant Pi. The secret reconstruction
algorithm Reconst inputs a set of m shares and outputs the secret S. A (m,n)-Shamir-SSS
has the following properties:

47

3.5. SHAMIR SSS

• perfect SSS: any m ≤ n participants or more can reconstruct the secret S and no
(m − 1) participants or less can learn any information of the secret S. Formally,
let H(S) and H(A) denote the entropy of the secret S and a set of shares A ⊆ C,
respectively.

H(S|A) =

{
0, if |A| ≥ m

H(S), if |A| < m
(3.21)

• ideal SSS: the size of a share is the same as the size of the secret: |ci| = |S|.

Example 3.5.1. Suppose the secret S = 13. All operations work in Fp = F17. The
thresholds (m,n) = (3, 5). The polynomial which is used to generate the shares has the
following form:

f(x) = S +
m−1∑
i=1

aix
i (mod p) (3.22)

where ai
rand← Fp. Because n = 5, the dealer chooses 5 inputs of the polynomial to compute

5 shares. Suppose that these inputs are: id = [x1, x2, x3, x4, x5] = [1, 2, 3, 4, 5].

• Share generation: The dealer chooses the coefficients a1 = 10 ∈ F17 and a2 = 2 ∈
F17. The polynomial is:

f(x) = 13 + 10x+ 2x2 (mod 17) (3.23)

Because n = 5, the dealer then computes 5 shares as follows:

– For x1 = 1, compute f(x1) = 8, then sends the pair of [x1, f(x1)] = [1, 8] to
the participant P1.

– For x2 = 2, compute f(x2) = 7, then sends the pair of [x2, f(x2)] = [2, 7] to
the participant P2.

– For x3 = 3, compute f(x3) = 10, then sends the pair of [x3, f(x3)] = [3, 10] to
the participant P3.

– For x4 = 4, compute f(x4) = 0, then sends the pair of [x4, f(x4)] = [4, 0] to
the participant P4.

– For x5 = 5, compute f(x5) = 11, then sends the pair of [x5, f(x5)] = [5, 11] to
the participant P5.

• Secret reconstruction: To reconstruct the secret S, the dealer requires m = 3 par-
ticipants to provide their shares. Suppose that {P1,P3,P5} are required for recon-
structing S. After obtaining [x1, f(x1)], [x3, f(x3)] and [x5, f(x5)], the dealer solves
S using the following equation system:

48

3.6. RAMP SSS


f(x1) = s+ a1x1 + a2(x1)

2 (mod 17)
f(x3) = s+ a1x3 + a2(x3)

2 (mod 17)
f(x5) = s+ a1x5 + a2(x5)

2 (mod 17)
(3.24)

Because [x1, f(x1)] = [1, 8], [x3, f(x3)] = [3, 10] and [x5, f(x5)] = [5, 11], the equation
system becomes: 

8 = s+ a11 + a21
2 (mod 17)

10 = s+ a13 + a23
2 (mod 17)

11 = s+ a15 + a25
2 (mod 17)

(3.25)

The solution of the equation system is:
s = 13
a1 = 10
a2 = 2

(3.26)

Not only the secret S is reconstructed, all the coefficients (a1 and a2) are also
reconstructed.

3.6 Ramp SSS

The Ramp-SSS [114–118] was proposed to improve the coding efficiency of the Shamir-
SSS. The Ramp-SSS has three parameters (m,L, n) instead of two parameters (m,n) like
the Shamir-SSS. The Ramp-SSS is constructed in a way that any m shares or more can
reconstruct the secret S; any set of (m− t) shares where t ∈ {1, · · · ,m− L} can learn a
partial information of the secret S; and any L shares or less cannot obtain any information
of the secret S. Formally,

H(S|A) =


H(S), if |A| < L
m−|A|
m

, if L ≤ |A| < m

0, if |A| ≥ m

(3.27)

where H(S) and H(A) denote the entropy of the secret S and a set of shares A ⊆
C, respectively. The Ramp-SSS is more efficient than the Shamir-SSS because in any
(m,L, n)-Ramp-SSS, H(Ci) = H(S)/(m− L) [114,115].

Example 3.6.1. Suppose that the secret S = [S1, S2] = [83, 102]. All operations work in
Fp = F10729. Suppose that (m,L, n) = (3, 2, 7). The polynomial which is used to generate
the shares has the following form:

f(x) =
m−1∑
i=0

aix
i (mod p) (3.28)

49

3.6. RAMP SSS

where ai
rand← Fp. Because n = 7, the dealer chooses 7 inputs of the polynomial to compute

7 shares. Suppose that these inputs are: id = [x1, x2, x3, x4, x5, x6, x7] = [1, 2, 3, 4, 5, 6, 7].
Besides these inputs id, the dealer chooses m more inputs for the polynomial: sid =
[x8, x9, x10] = [8, 9, 10]. The dealer chooses (m−L) = (3− 2) = 1 value in F10729 (suppose
the value is R = 123).

• Share generation: Because m = 3, the polynomial is:

f(x) = a0 + a1x+ a2x
2 (mod 10729) (3.29)

Before computing the shares, the dealer finds the coefficients of the polynomial by
solving the following equation system:

S1 = a0 + a1x8 + a2(x8)
2

S2 = a0 + a1x9 + a2(x9)
2

R = a0 + a1x10 + a2(x10)
2

(3.30)

Replace (S1 = 83, x8 = 8), (S2 = 102, x9 = 9), (R = 123, x10 = 10):
83 = a0 + a18 + a2(8)2

102 = a0 + a19 + a2(9)2

123 = a0 + a110 + a2(10)2
(3.31)

The coefficients are solved as follows:
a0 = 3
a1 = 2
a2 = 1

(3.32)

Thus, the polynomial becomes:

f(x) = 3 + 2x+ 1x2 (mod 10729) (3.33)

The dealer is now ready for computing n = 7 shares as follows:

– For x1 = 1, compute f(x1) = 6, then sends the pair of [x1, f(x1)] = [1, 6] to
the participant P1.

– For x2 = 2, compute f(x2) = 11, then sends the pair of [x2, f(x2)] = [2, 11] to
the participant P2.

– For x3 = 3, compute f(x3) = 18, then sends the pair of [x3, f(x3)] = [3, 18] to
the participant P3.

– For x4 = 4, compute f(x4) = 27, then sends the pair of [x4, f(x4)] = [4, 27] to
the participant P4.

– For x5 = 5, compute f(x5) = 38, then sends the pair of [x5, f(x5)] = [5, 38] to
the participant P5.

50

3.7. SWC

– For x6 = 6, compute f(x6) = 51, then sends the pair of [x6, f(x6)] = [6, 51] to
the participant P6.

– For x7 = 7, compute f(x7) = 66, then sends the pair of [x7, f(x7)] = [7, 66] to
the participant P7.

• Secret reconstruction: To reconstruct the secret S, the dealer requires m = 3 par-
ticipants to provide their shares. Suppose that {P1,P3,P4} are required for recon-
structing S. After obtaining [x1, f(x1)], [x3, f(x3)] and [x4, f(x4)], the dealer solves
S using the following equation system:

f(x1) = a0 + a1x1 + a2(x1)
2 (mod 10729)

f(x3) = a0 + a1x3 + a2(x3)
2 (mod 10729)

f(x4) = a0 + a1x4 + a2(x4)
2 (mod 10729)

(3.34)

Because [x1, f(x1)] = [1, 6], [x3, f(x3)] = [3, 18] and [x4, f(x4)] = [4, 27], the equation
system becomes: 

6 = a0 + a11 + a21
2 (mod 10729)

18 = a0 + a13 + a23
2 (mod 10729)

27 = a0 + a14 + a24
2 (mod 10729)

(3.35)

The solution of the equation system is:
a0 = 3
a1 = 2
a2 = 1

(3.36)

Thus, the dealer can recover the polynomial as:

f(x) = a0 + a1x+ a2x
2 (mod 10729) (3.37)

Then the secret S is reconstructed as follows:

– For x8 = 8, compute f(x8) = 83. Thus, the first secret is S1 = 83.

– For x9 = 9, compute f(x9) = 102. Thus, the second secret is S2 = 102.

Lastly, the secret is S = [S1, S2] = [83, 102].

3.7 SWC

The SWC was firstly proposed by Slepian and Wolf in 1973 [140] to compress data in a
network. While the possibility for the practical implementation of SWC was suggested in
[141–143], it was not until late 90s that SWC was actually implemented. The SWC has

51

3.7. SWC

several approaches: syndrome-based, binning idea, Low Density Parity Check (LDPC)-
based and parity-based [144–151].

For the most efficient computation, we use the binning idea. While the concept of
binning is simple, it is extremely powerful. In essence, the source space is partitioned into
bins and the encoder identifies the bin in which a input source belongs to. The label of
the bin instead of the source itself is passed to the decoder, which will then estimate the
original source based on the bin information and the correlation among sources. More
concretely, suppose that a source node has two data b1 and b2 which have the same size.
To compress, b1 is divided into a number of bins. During encoding, the index of the bin
that the input belongs to is transmitted to the receiver node instead of the input itself.
For example, |b1| is divided into k bins. Each bin contains |b1|

k
elements. If the SWC is not

used, log2 |b1| bits are required to transmit the input to the receiver node. If the SWC is
used, only log2 k bits are required to transmit the input to the receiver node. The receiver
node cannot decode b1 if b2 does not present because the receiver node cannot know the
corresponding element of the bin index. If b2 is obtained, the receiver node can decode b1
by picking the element in the bin that is best matched with b2.

X
Encoder

Correlation
Channel

Decoder
X S

Y

X

Figure 3.2: SWC

To consolidate the idea, we consider two numerical examples that were introduced by
Pradhan et al. [152] and then re-presented in [149].

Example 3.7.1. This example is a compression of a 3-bit sequence with side informa-
tion. Consider two binary sequences of length 3 and the two sequences are correlated
in such a way that they can differ no more than 1 bit. Denote the two sequences as
X and Y , respectively. Assuming that Y is given to both the encoder and the de-
coder, apparently we can compress X into 2 bits since we can represent and transmit
X − Y ∈ {[000]T , [001]T , [010]T , [100]T} with log2 4 = 2 bits instead of transmitting X
directly. At the decoder, given XY and the side information Y , X can be recovered as
(XY) + Y .

Example 3.7.2. This example is an asymmetric SWC of a 3-bit sequence. Continuing
with the above example, the side information Y is now given only to the decoder but not

52

3.7. SWC

the encoder. So the encoder cannot compute XY any more. There is a challenge that
how can we still compress X into two bits.

Let us partition all possibilites of X into 4 bins as follows:

• Bin 0: {[000]T , [111]T}

• Bin 1: {[001]T , [110]T}

• Bin 2: {[010]T , [101]T}

• Bin 3: {[100]T , [011]T}

Now, let say X = [001]T and Y = [000]T . At the decoder, the index of the bin that
X = [001]T lies into, i.e., 1, will be transmitted to the decoder. Since there are only 4
bins, we only need log2 4 = 2 bits to represent the bin index. From the bin index, the
decoder knows that X is either [001]T or [110]T . Since it is given that X and Y can differ
no more than 1 bit. We know that X is [001]T .

53

Chapter 4

MD-POR: Multi-client and Direct
Repair for POR

4.1 System Model

As depicted in Figure 4.1, the system model of our proposed MD-POR scheme consists
of four types of entities:

• Key manager: This entity is fully trusted, and has the responsibility to generate the
keys for the other entities.

• Clients: There are multiple clients who can be either enterprises or individual cus-
tomers. Each client owns his/her data and wants to store the data in the cloud
servers. The clients rely on the cloud for data storage, computation, and mainte-
nance.

• Servers: The servers are managed and monitored by a cloud service provider to
accommodate a service of data storage and have significant and unlimited storage
space and computation resources. In the cloud storage service, the clients can store
their data into a set of servers in a simultaneous and distributed manner.

• TPA: This entity is delegated the responsibility of checking the servers on behalf of
the clients. The TPA is assumed to be semi-trusted (trusted in checking the servers
periodically, and untrusted in learning the secret keys of the clients).

Originally, the system model which consists of only the client and the servers without
the TPA is enough for data check. To enable the public authentication feature, the TPA
is employed with the assumption that the TPA is a honest-but-curious entity. Several
previous papers also use the same assumption of the TPA, e.g, [62,68–70,74,75].

54

4.2. ADVERSARIAL MODEL

Clients Cloud Servers

Third Party

Auditor (TPA)

data flow

communication link

Key manager

Key

Figure 4.1: System model of the MD-POR scheme

To be suitable for our system model, we modify the POR such that the verifier is the
TPA and there are multiple clients as follows:

1. keygen(1λ): The key manager runs this algorithm which takes a security parameter
λ as the input, and outputs a set of secret keys {ski}i∈{1,··· ,s} for s clients, a secret
key κ for the TPA and a secret key κ′ for a new server every when a repair phase is
executed.

2. encode(ski, Fi): Each client i uses his secret key ski to encode his original file Fi to
an encoded file F ′i , then sends F ′i to the servers. Each server then linearly combines
all F ′i (i ∈ {1, · · · , s}) and stores the combined blocks of the files.

3. check(κ): The TPA uses his key κ to generate a challenge c and sends c to the
servers. Each server then computes a response r and sends r back to the TPA.
Finally, the TPA verifies whether each Fi is available and intact based on c and r.

4. repair(): This algorithm is executed when a failure is detected in the check phase.
The technique of the repair phase depends on each specific scheme.

4.2 Adversarial Model

In this scheme, the key manager and the clients are trusted. The following entities are
considered to be untrusted:

• Adversaries outside the system.

• The servers in the system.

55

4.2. ADVERSARIAL MODEL

• The TPA in the system.

There are two assumptions:

• The TPA is assumed to not collude with the servers.

• All the data and the keys are transmitted via a secure channel.

Concretely, the adversaries can perform the following the attacks:

Mobile Attack. This attack is also considered in several papers [26,76–78]. This attack
can be performed by an adversary outside the system who may potentially corrupt all
the servers across the full system lifetime. A restriction for the adversary is that it can
attack at most (n− l) out of n servers in any given time step. Let epoch denote a given
time step. In each epoch, the servers are checked and if a corruption in a certain server
is detected, the data stored in that corrupted server will be repaired from redundancy in
the intact servers. Without the server checks, the adversary can corrupt all n the servers
and can destroy the system in n/(n− l) epochs.

Curious Adversary. This attack can be performed by the untrusted entities in order
to search the secret keys of the clients. This attack is a specific attack in our scheme.
Namely, the attackers can behave as follows:

• In order to check the data stored in each server during the check phase, the TPA
is given a key which is constructed from the secret keys of the clients. Given the
key, the TPA may try to search the secret keys of the clients using the brute force
search.

• In order to check the data provided from other servers during the repair phase, the
new server is also given another key which is also constructed from the secret keys
of the clients. Given the key, the new server may try to search the secret keys of
the clients using the brute force search.

• Anyone who has the access to the keygen algorithm may also try to search these
secret keys of the clients.

Response Forgery. This forgery is performed by the servers. This attack is a specific
attack in our scheme. Namely, the forgery happens as follows:

• The TPA requires each server to provide a response to ensure the data stored in
that server is healthy.

• Each server must respond a valid pair of the aggregated coded block (says, c) and
the aggregated tag (says, t) to the TPA in order to demonstrate that the server
is healthy. However, the malicious server responds {cforge, tforge} instead of {c, t}
to the TPA. If {cforge, tforge} holds the verification, that server can pass the check
phase.

56

4.3. PROPOSED MD-POR SCHEME

Pollution Attack. This attack is performed by the servers. This attack is also con-
sidered in several papers [79, 82, 86–92, 137]. The purpose of this attack is to break the
linear independence of the encoded blocks by injecting invalid packets to prevent data
recover. In the network scenario, a malicious node may forward invalid package to the
receiver node. Therefore, when the receiver node obtain multiple packets, the receiver
node cannot tell which of the received packets are corrupt. In the distributed storage
system scenario, this attack happens when the malicious server provides a valid response
to pass the check phase, but then provides an invalid response during the repair phase.
An example is given as follows:

• Encode: the client encodes the augmented blocks (w1, w2, w3) to six coded blocks:
c11, c12 (stored in the server S1), c21, c22 (stored in the server S2), and c31, c32 (stored
in the server S3). Suppose that S1 is malicious and will perform a pollution attack.

• Check: suppose that S3 is detected as a corrupted server.

• Repair: S3 should be repaired by two coded blocks: c′31 (which is a linear combina-
tion of c11 and c12) and c′32 (which is a linear combination of c21 and c22). However,
S1 is not detected because this time is the repair phase, not the check phase. The
client still thinks S1 is healthy, and thus the client requests the coded blocks from
S1 and S2. S1 will provide an invalid coded block c′′31 to the client instead of c′31.

Because the valid coded blocks c′′31 is not a linear combination of (w1, w2, w3), the original
file cannot be recovered from any m = 3 coded blocks.

4.3 Proposed MD-POR Scheme

Before describing the MD-POR scheme in detail, we firstly introduce the technical roadmap,
the key idea, the notations and the structure as follows:

• Technical Roadmap. We depict the technical roadmap in Figure 4.2. The input is
the file blocks. Firstly, the file blocks are used to generate the augmented blocks.
Then, the augmented blocks are combined with random values to compute the keys.
Meanwhile, the augmented blocks are linearly combined into the coded blocks using
the network coding. Finally, the coded blocks are tagged using the keys. The coded
blocks and the tags are the outputs. The network coding is used because it is related
to the data repair. The inter MAC is used because it is related to the multi-user,
direct repair and public authentication features. The network coding and inter MAC
are suitable to combine together in the MD-POR scheme.

57

4.3. PROPOSED MD-POR SCHEME

File

blocks

File

blocks
Augmented

blocks

Augmented

blocks
Coded

blocks

Coded

blocks

TagsTagsKeysKeys

Network coding

InterMac

RandomRandom

Figure 4.2: Technical roadmap

• Key Idea. In our scheme, multiple clients are simultaneously supported. Each client
owns a different secret key. The data of each client cannot be checked alone; instead,
each client uses his/her secret key to compute additional information which is MAC
tag for each augmented block. Each client then transmits the aggregated augmented
block and the corresponding tag to the servers. The servers will linearly combine
the aggregated augmented blocks and the aggregated tags. Herein lies a challenge
that how to enable the TPA to check the servers during the check phase without any
information of the secret keys of the clients; and how to enable the new server to
check the other servers during the repair phase without any information of the secret
keys of the clients. The traditional MACs are inadequate to solve this task. Some
recent papers related to this problem have been proposed (e.g., [82–84]). However,
as mentioned in Section 2.1, they all use an asymmetric key setting. The inter MAC
technique is a suitable technique to generate such secret keys for multiple clients.
Using this technique, we can generate the keys for the system as follows:

– The key of a client is generated such that it is orthogonal to all the augmented
blocks which do not belong to that client.

– The key of the TPA is generated such that it is the summation of the secret
keys of the clients. The TPA can check the servers during the check phase
without the information of the secret keys.

– The key of the new server is generated such that it is the summation between
the key of the TPA and an additional key which is orthogonal to all augmented
blocks of all the clients. The new server can also check the other servers used
in the repair phase without the information of the secret keys.

• Notations. The notations used throughout the MD-POR scheme are given in Table
4.1.

58

4.3. PROPOSED MD-POR SCHEME

Table 4.1: List of notations in the MD-POR scheme

Notation Description

s number of clients
i client index (i ∈ {1, · · · , s})
Ci client (i ∈ {1, · · · , s})
ki secret key of Ci
Fi original file of Ci
g number of file blocks in Fi of each client (g is the same for all clients)
j file block index (j ∈ {1, · · · , g})
vij file block (i ∈ {1, · · · , s}, j ∈ {1, · · · , g})
wij augmented block of vij (i ∈ {1, · · · , s}, j ∈ {1, · · · , g})
Fξq a ξ-dimensional finite field Fq of a prime order q.

m m = s · g
n number of servers
l number of healthy servers which are used to repair a corrupted server

during repair phase
d number of coded blocks in each server
x server index (x ∈ {1, · · · , n})
y coded block index in each server (y ∈ {1, · · · , d})
Sx server (x ∈ {1, · · · , n})
cxy coded block (x ∈ {1, · · · , n}, y ∈ {1, · · · , d})
txy tag of cxy (x ∈ {1, · · · , n}, y ∈ {1, · · · , d})
κ key of the TPA
κ′ key of a new server
A adversary
spotcheck number of coded blocks in a server which are checked during the check and

repair phases (spotcheck ∈ {1, · · · , d})

• Structure. Let C1, · · · , Cs denote the set of s clients. Each client Ci where i ∈
{1, · · · , s} owns a file Fi = vi1|| · · · ||vig where g is the number of file blocks. Suppose
that for all the clients, g is the same and each file block vij ∈ Fξq where j ∈ {1, · · · , g}.
Ci creates g augmented blocks {wi1, · · · , wig} from g file blocks {vi1, · · · , vig}. Each
augmented block wij has the following form:

wij = (vij, 0, · · · , 0︸ ︷︷ ︸
g(i−1)

,

j︷ ︸︸ ︷
0, · · · , 0, 1, 0, · · · , 0︸ ︷︷ ︸

g

, 0, · · · , 0︸ ︷︷ ︸
g(s−i)︸ ︷︷ ︸

m=s·g

) ∈ Fξ+mq (4.1)

where i ∈ {1, · · · , s}, j ∈ {1, · · · , g}, m = s ·g. Each client Ci is given a secret key ki
by the key manager. Ci uses his secret key ki to compute a tag tij for each augmented
blocks wij. The augmented blocks and the tags are then linearly combined and

59

4.3. PROPOSED MD-POR SCHEME

transmitted to all the servers via a secure channel. The TPA will check each server
every epoch. Each server must linearly combine its coded blocks and the tags. Each
server then responds the aggregated coded block and the aggregated tag to the TPA.
The TPA finally verifies each server based on the response even though the TPA
does not know any secret key ki for all i ∈ {1, · · · , s}.

We are now ready to describe the proposed scheme via each phase of the POR (KeyGen,
Encode, Check, Repair).

4.3.1 Keygen

a) Keys for the clients (KeyGen1). The key manager generates a set of s secret keys
{k1, · · · , ks} for s clients. Each key kp of the client Cp where p ∈ {1, · · · , s} is constructed
in a way that kp is orthogonal to all the augmented blocks which do not belong to Cp. In
a formal statement, kp is constructed such that:

∀i ∈ {1, · · · , s}, i 6= p, p ∈ {1, · · · , s}, wij · kp = 0 (4.2)

Concretely, the key manager will perform the following algorithm:

• KeyGen1(w11, · · · , wsg)→ {k1, · · · , ks}:

– For each p ∈ {1, · · · , s}, compute kp ∈ Fξ+mq :

kp ← OrthogonalGen–MS(p, {wij ∈ Fξ+mq |i = 1, · · · , s; i 6= p; j = 1, · · · , g})
(4.3)

– After the set {k1, · · · , ks} is computed, assign kp ∈ Fξ+mq to the client Cp as
his/her secret key via a secure channel.

Each client will uses his/her secret keys to compute the tags for his/her own augmented
blocks.

b) Key for the TPA (KeyGen2). The key manager will perform the following algo-
rithm:

• KeyGen2(k1, · · · , ks)→ κ:

– Compute the key:
κ = k1 + · · ·+ ks ∈ Fξ+mq (4.4)

– Assign κ to the TPA via a secure channel.

The TPA will use κ to verify the servers during the check phase. We can see that the
TPA is only given the sum κ without each component ki where i = {1, · · · , s}. We will
prove the security in Section 4.5.

60

4.3. PROPOSED MD-POR SCHEME

c) One-time key for a new server (KeyGen3). When the repair phase is executed,
the key manager will compute a key κ′ which is a summation between the key of the
TPA (κ) and another key krepair. The new server will use κ′ to check pollution attack
during the repair phase. κ is already computed in KeyGen2 as a static key. krepair must be
re-computed every repair time in other to ensure that an adversary cannot attack the new
server to obtain krepair for passing the pollution attack check in the later repair phases
(We thereafter explain it in Section 4.5.4). rrepair is constructed such that it is orthogonal
to all augmented blocks of all the clients. Namely, the key manager will perform the
following algorithm:

• KeyGen3(κ, {w11, · · · , wsg})→ κ′:

– Compute krepair ← OrthogonalGen–New(w11, · · · , wsg). krepair ∈ Fξ+mq

– Compute the key:

κ′ = κ+ krepair = (k1 + · · ·+ ks) + krepair ∈ Fξ+mq (4.5)

– Assign κ′ ∈ Fξ+mq to the new server when a repair phase is executed.

• OrthogonalGen–New(w11, · · · , wsg) → krepair: this is the sub-algorithm used in the
KeyGen3 algorithm:

– Find the span π of {w11, · · · , wsg}. Each wij ∈ Fξ+mq .

– Construct the matrix M in which w11, · · · , wsg are the rows of M .

– Find the null-space of M , denoted by π⊥M , which is the set of all vectors u ∈
Fξ+mq such that M · uT = 0.

– Find the basis vectors of π⊥M , denoted by B1, · · · , Bξ ∈ Fξ+mq // Theorem 5
will explain why the number of the basis vectors is ξ.

– Compute krepair ← Kg–New(B1, · · · , Bξ).

• Kg–New(B1, · · · , Bξ) → krepair: this is the sub-algorithm which is used in the
OrthogonalGen–New algorithm.

– Let f be a pseudo-random function such that K × [1, ξ]→ Fq.
– Generate rx ← f(kPRF , x) ∈ Fq,∀x ∈ {1, · · · , ξ} where kPRF ∈ K.

– Compute krepair ←
∑ξ

x=1 rx ·Bx ∈ Fξ+mq .

Theorem 5. Given {w11, · · · , wsg} where each wij ∈ Fξ+mq , the number of basis vectors
of π⊥M is ξ.

Proof. rank(M) = s · g = m. Let πM be the space spanned by the rows of M . For any
m× (ξ +m) matrix, the rank-nullity theorem gives:

rank(M) + nullity(M) = ξ +m (4.6)

61

4.3. PROPOSED MD-POR SCHEME

where nullity(M) is the dimension of π⊥M . Thus, we have:

dim(π⊥M) = (ξ +m)−m = ξ (4.7)

Therefore, the number of basis vectors of π⊥M is ξ. In the OrthogonalGen–New algorithm,
we denoted the basis vectors by B1, · · · , Bξ.

Note that when krepair is constructed in the first time, the basis vectors B1, · · · , Bξ are
computed and saved for reusing in the later times. In the next repair times, the basis
vectors will be re-used for computation cost-effective, and only the random coefficient rx
is re-generated again to compute krepair. The KeyGen3 algorithm is only executed and
κ′ is given to a new server if only if a repair phase is executed. The key κ is already
computed in the KeyGen1 algorithm as a static information, only krepair is different each
repair time.

4.3.2 Encode

1. Each client Ci where i ∈ {1, · · · , s} computes g tags for g augmented blocks as
follows:

For ∀i ∈ {1, · · · , s},∀j ∈ {1, · · · , g}:

tij = wij · ki ∈ Fq (4.8)

2. Each client Ci linearly combines the augmented blocks and the corresponding tags
as follows:

For ∀i ∈ {1, · · · , s}:

• Ci generates g coefficients: αij
rand← Fq for all j ∈ {1, · · · , g}.

• Ci computes coded block:

wCi =

g∑
j=1

αij · wij ∈ Fξ+mq (4.9)

• Ci computes tag:

tCi =

g∑
j=1

αij · tij ∈ Fq (4.10)

• Ci sends the pair of {wCi , tCi} to all n servers {S1, · · · ,Sn}.

3. Each server Sx where x ∈ {1, · · · , n} creates d pairs of coded block cxy and corre-
sponding tag txy where y ∈ {1, · · · , d} as follows:

For ∀x ∈ {1, · · · , n},∀y ∈ {1, · · · , d}:

• Sx generates s coefficients: βxyi
rand← Fq for all i ∈ {1, · · · , s}.

62

4.3. PROPOSED MD-POR SCHEME

• Sx computes coded block:

cxy =
s∑
i=1

βxyi · wCi ∈ Fξ+mq (4.11)

• Sx computes tag:

txy =
s∑
i=1

βxyi · tCi ∈ Fq (4.12)

4.3.3 Check

The TPA challenges each server. Each server must provide its corresponding proof to the
TPA. The TPA then uses its key κ to check whether the server is healthy or not based
on the proof. The TPA has responsibility to check all the n servers periodically.

1. The TPA challenges each server:

• The TPA generates a challenge chall which consists of spotcheck pairs of in-

dex and coefficient: chall = {(y1, γ1), · · · , (yspotcheck, γspotcheck)} where ysp
rand←

{1, · · · , d} and γsp
rand← Fq for sp ∈ {1, · · · , spotcheck}.

• The TPA sends chall to all the servers.

2. Each server Sx where x ∈ {1, · · · , n} provides its proof as follows:

• Sx combines coded blocks:

cx =

spotcheck∑
sp=1

γsp · cxysp ∈ Fξ+mq (4.13)

• Sx combines tags:

tx =

spotcheck∑
sp=1

γsp · txysp ∈ Fq (4.14)

• Sx sends {cx, tx} to the TPA.

3. The TPA verifies Sx as follows:

• TPA computes:
t′x = cx · κ ∈ Fq (4.15)

• TPA verifies iff:
tx = t′x (4.16)

If the equality holds, the TPA will return true (this means that Sx is healthy),
otherwise the TPA will return false (this means that Sx is corrupted).

63

4.3. PROPOSED MD-POR SCHEME

4.3.4 Repair

Suppose that the server Sr is detected as a corrupted server in the check phase. Sr will
be replaced by a new server S ′r. The new server S ′r challenges and requires l healthy
servers Sx1 , · · · ,Sxl to provide the aggregated coded blocks and the aggregated tags. S ′r
will check each of these l servers using the key κ′, which is generated by the KeyGen3
algorithm. We will explain how to choose l in Section 4.5.

1. The new server S ′r challenges l healthy servers:

• S ′r generates a challenge chall which consists of spotcheck pairs of index and co-

efficient: chall = {(y1, γ1), · · · , (yspotcheck, γspotcheck)} where ysp
rand← {1, · · · , d}

and γsp
rand← Fq for sp ∈ {1, · · · , spotcheck}.

• S ′r sends chall to l healthy servers.

2. Each server Sx where x ∈ {x1, · · · , xl} linearly combines its spotcheck coded blocks
and linearly combines its spotcheck tags as follows:

For ∀x ∈ {x1, · · · , xl}:

• Sx combines coded blocks:

cx =

spotcheck∑
sp=1

γsp · cxysp ∈ Fξ+mq (4.17)

• Sx combines tags:

tx =

spotcheck∑
sp=1

γsp · txysp ∈ Fq (4.18)

• Sx sends {cx, tx} to S ′r.

3. The new server S ′r checks whether each server Sx where x ∈ {x1, · · · , xl} provides a
valid packet (pollution attack), using the key κ′ = (k1 + · · ·+ks) +krepair as follows:

• S ′r computes:
t′x = cx · κ′ ∈ Fq (4.19)

• S ′r checks iff:
tx = t′x (4.20)

4. The new server S ′r computes d coded blocks and d tags for itself as follows:

For ∀y ∈ {1, · · · , d}:

• S ′r generates l coefficients θxy
rand← Fq for all x ∈ {x1, · · · , xl}.

64

4.4. CORRECTNESS

• S ′r computes new coded blocks:

cry =

xl∑
x=x1

θxy · cx ∈ Fξ+mq (4.21)

• S ′r computes new tags:

try =

xl∑
x=x1

θxy · tx ∈ Fq (4.22)

4.4 Correctness

1. The correctness of Equation 4.16 is proven as follows:

Proof.
tx =

∑spotcheck
sp=1 γsp · txysp // because of Equation 4.14

=
∑spotcheck

sp=1 γsp(
∑s

i=1 βxyspitCi) // because of Equation 4.12

=
∑spotcheck

sp=1

∑s
i=1 γspβxyspitCi

=
∑spotcheck

sp=1

∑s
i=1 γspβxyspi(

∑g
j=1 αijtij) // because of Equation 4.10

=
∑spotcheck

sp=1

∑s
i=1

∑g
j=1 γspβxyspiαijtij

=
∑spotcheck

sp=1

∑s
i=1

∑g
j=1 γspβxyspiαij(wijki) // because of Equation 4.8

=
∑spotcheck

sp=1

∑s
i=1

∑g
j=1 γspβxyspiαijwijki

t′x = cx · κ // because of Equation 4.15
= cx · (k1 + · · ·+ ks) // because of Equation 4.4

=
∑spotcheck

sp=1 γspcxysp(k1 + · · ·+ ks) // because of Equation 4.13

=
∑spotcheck

sp=1 γsp(
∑s

i=1 βxyspiwCi)(k1 + · · ·+ ks) // because of Equation 4.11

=
∑spotcheck

sp=1

∑s
i=1 γspβxyspiwCi(k1 + · · ·+ ks)

=
∑spotcheck

sp=1

∑s
i=1 γspβxyspi(

∑g
j=1 αijwij)(k1 + · · ·+ ks) // because of Equation 4.9

=
∑spotcheck

sp=1

∑s
i=1

∑g
j=1 γspβxyspiαijwij(k1 + · · ·+ ks)

Because k1, · · · , ks are constructed such that wij ·kp = 0 for all i, p ∈ {1, · · · , s} and
i 6= p using the KeyGen1 algorithm, then we have:

t′x =
∑spotcheck

sp=1

∑s
i=1

∑g
j=1 γspβxyspiαijwijki

= tx

This completes the proof.

2. The correctness of Equation 4.20 is proven as follows:

Proof. The way to prove the correctness of Equation 4.20 is similar to the correctness
of Equation 4.16 in the check phase. The only different thing is that in Equation
4.16, not only k1, · · · , ks but also krepair participates in linearly combining the coded
blocks and the tags. Concretely:

65

4.5. SECURITY ANALYSIS

tx =
∑spotcheck

sp=1 γsp · txysp // because of Equation 4.18

=
∑spotcheck

sp=1 γsp(
∑s

i=1 βxyspitCi) // because of Equation 4.12

=
∑spotcheck

sp=1

∑s
i=1 γspβxyspitCi

=
∑spotcheck

sp=1

∑s
i=1 γspβxyspi(

∑g
j=1 αijtij) // because of Equation 4.10

=
∑spotcheck

sp=1

∑s
i=1

∑g
j=1 γspβxyspiαijtij

=
∑spotcheck

sp=1

∑s
i=1

∑g
j=1 γspβxyspiαij(wijki) // because of Equation 4.8

=
∑spotcheck

sp=1

∑s
i=1

∑g
j=1 γspβxyspiαijwijki

t′x = cx · κ′ // because of Equation 4.19
= cx(k1 + · · ·+ ks + krepair) // because of Equation 4.5

=
∑spotcheck

sp=1 γspcxysp(k1 + · · ·+ ks + krepair) //because of Equation 4.17

=
∑spotcheck

sp=1 γsp(
∑s

i=1 βxyspiwCi)(k1 + · · ·+ ks + krepair) // because of Equation 4.11

=
∑spotcheck

sp=1

∑s
i=1 γspβxyspiwCi(k1 + · · ·+ ks + krepair)

=
∑spotcheck

sp=1

∑s
i=1 γspβxyspi(

∑g
j=1 αijwij)(k1 + · · ·+ ks + krepair) // because of Equation 4.9

=
∑spotcheck

sp=1

∑s
i=1

∑g
j=1 γspβxyspiαijwij(k1 + · · ·+ ks + krepair)

Because k1, · · · , ks are constructed such that kp ·wij = 0 for all i, p ∈ {1, · · · , s} and
i 6= p using the KeyGen1 algorithm, then we have:

t′x =
∑spotcheck

sp=1

∑s
i=1

∑g
j=1 γspβxyspiαijwij(ki + krepair)

Because krepair is constructed such that wij · krepair for all i ∈ {1, · · · , s} and for all
j ∈ {1, · · · , g} using the KeyGen3 algorithm, then we have:

t′x =
∑spotcheck

sp=1

∑s
i=1

∑g
j=1 γspβxyspiαijwijki

= tx

This completes the proof.

4.5 Security Analysis

4.5.1 Mobile Attack

To prevent the mobile attack, a data repair condition is given as follows:

Theorem 6. The original files F1, · · · , Fs of the clients can be reconstructed if in any
epoch, at least l out of n servers collectively store m = s · g coded blocks which are
linearly independent combinations of m original file blocks; and the matrix consisting of
the accumulated coefficients has full rank (i.e, rank m).

Proof. Each server Sx where x ∈ {1, · · · , n} contains d coded blocks cxy where y ∈
{1, · · · , d}. Each coded block cxy is computed from m = s · g augmented blocks wij where
i ∈ {1, · · · , s}, j ∈ {1, · · · , g} using the linear combination cxy =

∑s
i=1

∑g
j=1 βxyiαijwij.

To reconstruct the original files, m augmented blocks w11, · · · , w1g, · · · , ws1, · · · , wsg are
viewed as the variables that need to be solved. To solve these m variables, at least m
coded blocks are required to make the coefficient matrix has full rank because the number

66

4.5. SECURITY ANALYSIS

of variables in an equation system must be less than or equal to the number of independent
equations. 

cxy1 =
∑s

i=1

∑g
j=1 βxyi1 · αij1 · wij

cxy2 =
∑s

i=1

∑g
j=1 βxyi2 · αij2 · wij

· · ·
cxym =

∑s
i=1

∑g
j=1 βxyim · αijm · wij

(4.23)

Therefore, at least l servers which collectively store m = s ·g coded blocks in each epoch
are required. dm

d
e ≤ l < n.

4.5.2 Curious Attack

The following theorems describes the probabilities for the adversaries to search the secret
keys of the clients.

Theorem 7. Given the key κ, the TPA cannot derive the secret keys of the clients
k1, · · · , ks via the brute force search.

Proof. The TPA is given the key κ to verify n servers S1, · · · ,Sn during the check phase.
Because κ = k1 + · · ·+ ks as computed in the KeyGen2 algorithm, the security problem is
now the problem of solving s variables k1, · · · , ks given a single equation. The brute force
search to solve these variables is to try all possible variable sets, and test whether the sets
satisfy the equation by using the trial-and-error method. Because each key ki ∈ Fξ+mq

where i ∈ {1, · · · , s}, the probability to search ki is 1
qξ+m

. The probability to search (s−1)

keys is 1
q(ξ+m)(s−1) . Given κ, the TPA can search (s− 1) keys and then obtains the last key

by subtracting the (s − 1) keys from κ. Therefore, the probability for the TPA to solve
all s keys (k1, · · · , ks) is 1

q(ξ+m)(s−1) . In a formal statement:

Pr[{k1, · · · , ks} ← TPA(κ)] =
1

q(ξ+m)(s−1) (4.24)

If q is chosen as a large prime (e.g., 160 bits), this probability is 1
2160(ξ+m)(s−1) , which is

negligible. k1, · · · , ks and krepair cannot be solved in a polynomial time.

Theorem 8. Given the key κ′, the new server cannot derive the secret keys of the clients
k1, · · · , ks via the brute force search.

Proof. The way to prove this theorem is similar to the way to prove Theorem 7. Con-
cretely, the new server S ′r is given the key κ′ to verify l servers Sx1 , · · · ,Sxl during the
repair phase. Because κ′ = (k1 + · · ·+ks)+krepair as computed in the KeyGen3 algorithm,
the security problem is now the problem of solving (s+1) variables: k1, · · · , ks and krepair
given a single equation. The brute force search to solve these variables is to try all possible
variable sets, and test whether the sets satisfy this equation by using the trial-and-error
method. Because each key ki and krepair belong to Fξ+mq , the probability to search ki or
krepair is 1

qξ+m
. The probability to search s keys is 1

q(ξ+m)s . Given κ′, the new server S ′r can

67

4.5. SECURITY ANALYSIS

search s keys and then obtains the last key by subtracting the s keys from κ′. Therefore,
the probability for the new server S ′r to solve all (s + 1) keys: k1, · · · , ks and krepair is

1
q(ξ+m)s . In a formal statement:

Pr[{k1, · · · , ks, krepair} ← S ′r(κ′)] =
1

q(ξ+m)s
(4.25)

If q is chosen as a large prime (e.g., 160 bits), this probability is 1
2160(ξ+m)s , which is

negligible. k1, · · · , ks and krepair cannot be solved in a polynomial time.

Theorem 9. The secret keys of the clients k1, · · · , ks cannot be derived by any entity who
has an access to the KeyGen1 algorithm, which is used to compute the secret keys of the
clients.

Proof. In the KeyGen1 algorithm, each key kp where p ∈ {1, · · · , s} is computed as:

kp ← OrthogonalGen–MS(p, {wij ∈ Fξ+mq |i = 1, · · · , s; i 6= p; j = 1, · · · , g}). (4.26)

More concretely, in the OrthogonalGen–MS algorithm, after finding the basis vectors
B1, · · · , Bξ+g, kp is computed as:

• rx ← f(kPRF , x) ∈ Fq,∀x ∈ {1, · · · , ξ + g}.

• kp ←
∑ξ+g

x=1 rx ·Bx ∈ Fξ+mq .

where f is a pseudo-random function. The probability to find each rx is (Pr[f] + 1
q
). The

probability to find all r1, · · · , rξ+g is (Pr[f]+ 1
qξ+g

). Note that it is not ((ξ+g)Pr[f]+ 1
qξ+g

)

because Pr[f] can be re-used for finding other ri. This is also the probability to find one
key kq. The probability to find all s keys: k1, · · · , ks is (Pr[f] + 1

q(ξ+g)s). Again, note that

Pr[f] can be re-used for finding other keys; thus, it is not (sPr[f] + 1
q(ξ+g)s). In a formal

statement:

Pr[k1, · · · , ks ← KeyGen1] = Pr[f] +
1

q(ξ+g)s
(4.27)

If the pseudo-random function is supposed to be unforgeable and q is chosen large
enough (e.g., 160 bits), this probability is negligible.

4.5.3 Response Forgery

Suppose that a malicious server which performs this forgery is Sx. In the check phase,
instead of sending a pair of aggregated coded block and aggregated tag {cx, tx} (as com-
puted in Equation 4.13 and Equation 4.14) to the TPA, Sx sends a pair of forged coded
block and forged tag (c′′x, t

′′
x) to the TPA.

Theorem 10. Sx cannot pass the check phase with the response forgery.

Proof. The purpose of Sx is to generate (c′′x, t
′′
x) which holds the verification t′′x = c′′x · κ.

Because the TPA is assumed to not collude with any server and κ is sent to the TPA via
a secure channel, a possible way for Sx is to pass the verification is to obtain κ.

68

4.5. SECURITY ANALYSIS

• Using the brute force search: the probability to find κ is 1
qξ+m

because κ ∈ Fξ+mq .
Formally:

PrBruteForce[Sx → κ] =
1

qξ+m
(4.28)

• Using the access to the KeyGen2 algorithm: because κ = k1 + · · ·+ ks, the problem
to find κ now becomes the problem to find k1, · · · , ks via the KeyGen1 algorithm.
As Theorem 9, the probability to find k1, · · · , ks is (Pr[f] + 1

q(ξ+g)s). Formally:

PrKeyGen2[Sx → κ] = Pr[f] +
1

q(ξ+g)s
(4.29)

From Equation 4.28, Equation 4.29, the probability for Sx to pass the check phase is:

Pr[Sx → verify(CheckPhase) = 1] = PrBruteForce[Sx → κ] + PrKeyGen2[Sx → κ]

=
1

qξ+m
+ Pr[f] +

1

q(ξ+g)s
(4.30)

If the pseudo-random function f is unforgeable and q is chosen large enough (e.g., 160
bits), the probability for Sx to pass the check phase is negligible.

4.5.4 Pollution Attack

In the check phase, the server Sr is detected as a corrupted server. Then, a set of l
servers Sx1 , · · · ,Sxl are required to provide their responses which consist of aggregated
coded blocks (as in Equation 4.17) and aggregated tags (as in Equation 4.18) to the
new server S ′r for repairing Sr. Suppose that Sx, which is a server in the set of the l
servers Sx1 , · · · ,Sxl , is the malicious server which performs the pollution attack. Instead
of sending the valid pair of aggregated coded block and aggregated tag {cx, tx} to the new
server S ′r, Sx sends a pair of forged coded block and forged tag (c′′x, t

′′
x) to the new server

S ′r.

Theorem 11. Sx cannot pass the verification in the repair phase with the pollution attack.

Proof. The key idea here is that S ′r always checks each aggregated coded block which is
provided from each of the servers Sx1 , · · · ,Sxl . Although Sx already passed the check
phase, Sx must be checked again by S ′r in the repair phase before S ′r uses the aggregated
coded block of Sx for repairing Sr. Namely, we analyse the probability of Sx as follows.
(c′′x, t

′′
x) holds the verification t′′x = c′′x · κ′ if Sx can obtain κ′ because the new server S ′r is

assumed to not collude with the other servers and κ′ is sent to S ′r via a secure channel.

• Using the brute force search: the probability to find κ′ is 1
qξ+m

because κ′ ∈ Fξ+mq .
Formally:

PrBruteForce[Sx → κ′] =
1

qξ+m
(4.31)

69

4.5. SECURITY ANALYSIS

• Using the access to the KeyGen3 algorithm: because κ′ = k1 + · · ·+ ks + krepair, the
problem to find κ′ now becomes the problem to find k1, · · · , ks via the KeyGen1 al-
gorithm and to find krepair in the KeyGen3 algorithm. As Theorem 9, the probability
to find k1, · · · , ks is (Pr[f] + 1

q(ξ+g)s). Formally:

PrKeyGen1[Sx → k1, · · · , ks] = Pr[f] +
1

q(ξ+g)s
(4.32)

Now we find the probability to find krepair as follows. In the KeyGen3 algorithm,
krepair is computed as:

krepair ← OrthogonalGen–New(w11, · · · , wsg)

In the OrthogonalGen–New algorithm, after finding the basis vectors B1, · · · , Bξ,
krepair is computed as:

– rx ← f(kPRF , x) ∈ Fq,∀x ∈ {1, · · · , ξ}.
– krepair ←

∑ξ
x=1 rx ·Bx ∈ Fξ+mq .

where f is a pseudo-random function. The probability to find each rx is (Pr[f] + 1
q
).

The probability to find all r1, · · · , rξ is (Pr[f] + 1
qξ

). It is not (ξPr[f] + 1
qξ

) because

Pr[f] can be re-used for finding other ri. This is also the probability to find krepair.
Formally:

PrKeyGen3[Sx → krepair] = Pr[f] +
1

qξ
(4.33)

From Equation 4.32 and Equation 4.33, the probability for Sx to find κ using the
access to KeyGen3 algorithm is as follows:

PrKeyGen3[Sx → κ′] = PrKeyGen1[Sx → k1, · · · , ks] + PrKeyGen3[Sx → krepair]

= 2Pr[f] +
1

q(ξ+g)s
+

1

qξ
(4.34)

From Equation 4.31 and Equation 4.34, the probability for Sx to pass the verification
of the new server S ′r in the repair phase is as follows:

Pr[Sx → verify(RepairPhase) = 1] = PrBruteForce[Sx → κ′] + PrKeyGen3[Sx → κ′]

=
1

qξ+m
+ 2Pr[f] +

1

q(ξ+g)s
+

1

qξ
(4.35)

If the pseudo-random function f is unforgeable and q is chosen large enough (e.g., 160
bits), the probability for Sx to pass the verification of the new server S ′r in the repair
phase is negligible.

We also consider that the new server S ′r may become a malicious server. After repairing
the corrupted server Sr, the server S ′r keeps the key κ′ to perform the pollution attack
in the next repair phase. However, because krepair is re-computed every repair time as
explained in the KeyGen3 algorithm, S ′r cannot re-use krepair.

70

4.6. EFFICIENCY ANALYSIS

4.6 Efficiency Analysis

In Table 4.2, we compare the features and the efficiency between the MD-POR scheme
and the previous schemes (the RDC-NC [61] and the NC-Audit [62] schemes). The RDC-
NC and NC-Audit schemes are chosen for the comparison with our scheme because they
have the same scenario as the MD-POR scheme at most. However, the different thing
between our scheme and these two previous schemes is that these two schemes only con-
sider a single client instead of multiple clients as our scheme. Therefore, for the fairness in
the comparison, we assume that s clients can participate in the RDC-NC and NC-Audit
schemes. However, these s clients in the RDC-NC and NC-Audit schemes can only per-
form in parallel instead of simultaneously combination as the MD-POR scheme. That
parameter s in the RDC-NC and NC-Audit schemes does not affect the costs in the check
phase and the repair phase because only one client can check and repair the servers. That
s only affects the storage cost on server-side and the communication cost of the encode
phase in the RDC-NC and NC-Audit schemes.

4.6.1 Storage Cost

Client-side. The storage costs on the client-side in the RDC-NC, NC-Audits and MD-
POR schemes are given as follows:

• In the RDC-NC scheme, the client stores five secret keys in Fξ+gq . Thus, the storage
cost on the client-side is 5(ξ + g) log2 q.

• In the NC-Audit scheme, the client stores only one secret key in Fξ+gq . Thus, the
storage cost on the client-side is (ξ + g) log2 q.

• In the MD-POR scheme, there are s keys for s clients. Each key belongs to Fξ+sgq .
Thus, the storage cost per client is (ξ + sg) log2 q.

Server-side. Because the file of each client is divided into g file block, the size of a
file block is |vij| = |F |

g
where i ∈ {1, · · · , s} and j ∈ {1, · · · , g}. As Equation 4.1, an

augmented block has the following form:

wij = (vij, 0, · · · , 0︸ ︷︷ ︸
g(i−1)

,

j︷ ︸︸ ︷
0, · · · , 0, 1, 0, · · · , 0︸ ︷︷ ︸

g

, 0, · · · , 0︸ ︷︷ ︸
g(s−i)︸ ︷︷ ︸

m=s·g

) ∈ Fξ+mq

The storage costs on the server-side in the RDC-NC, NC-Audit and MD-POR schemes
are given as follows:

• In the RDC-NC scheme, the size of an augmented block is |wij| = |F |
g

+ g. The size

of a coded block is |cij| = |wij| because each coded block is a linear combination of
all the augmented blocks. The number of servers is n. The number of coded blocks
in each server is d. s clients are assumed to participate in the RDC-NC scheme in
parallel. Therefore, the server storage on the server-side is O(sdn(|F |

g
+ g)).

71

4.6. EFFICIENCY ANALYSIS

T
ab

le
4.

2:
E

ffi
ci

en
cy

co
m

p
ar

is
on

b
et

w
ee

n
th

e
M

D
-P

O
R

an
d

p
re

v
io

u
s

sc
h
em

es

R
D

C
-N

C
[6

1
]

N
C

-A
u
d
it

[6
2
]

M
D

-P
O

R

F
e
a
tu

re
M

u
lt

i-
cl

ie
n
t

n
o

n
o

ye
s

D
ir

ec
t

re
p
ai

r
n
o

n
ot

co
m

p
le

te
d

ye
s

S
y
m

m
et

ri
c

ke
y

ye
s

ye
s

ye
s

P
u
b
li
c

au
th

en
ti

ca
ti

on
n
o

ye
s

ye
s

S
to

ra
g
e

C
li
en

t-
si

d
e

5(
ξ

+
g
)

lo
g
2
q

(ξ
+
g
)

lo
g
2
q

(ξ
+
sg

)
lo

g
2
q

co
m

p
le

x
it

y
S
er

ve
r-

si
d
e

O
(s
d
n

(|
F
|
g

+
g
))

O
(s
d
n

(|
F
|
g

+
g
))

O
(d
n

(|
F
|
g

+
sg

))

T
P

A
-s

id
e

N
/A

O
((
ξ

+
g

+
g
d
n

)
lo

g
2
q)

O
((
ξ

+
sg

)
lo

g
2
q)

.

E
n
co

d
in

g
C

om
p
u
ta

ti
on

(c
li
en

t)
O

(g
d
n

)
O

(g
d
n

)
O

(g
)

co
m

p
le

x
it

y
C

om
p
u
ta

ti
on

(s
er

ve
r)

O
(1

)
O

(1
)

O
(s
d
n

)
C

om
p
u
ta

ti
on

(T
P

A
)

N
/A

O
(1

)
O

(1
)

C
om

m
u
n
ic

at
io

n
O

(s
d
n

(|
F
|
g

+
g
))

O
(s
d
n

(|
F
|
g

+
g
)

+
sg
d
n

)
O

(n
s(
|F
|
g

+
sg

))

C
h
e
ck

in
g

C
om

p
u
ta

ti
on

(c
li
en

t)
O

(n
)

O
(1

)
O

(1
)

co
m

p
le

x
it

y
C

om
p
u
ta

ti
on

(s
er

ve
r)

O
(n
d
)

O
(n
d
)

O
(n
d
)

C
om

p
u
ta

ti
on

(T
P

A
)

N
/A

O
(n

)
O

(n
)

C
om

m
u
n
ic

at
io

n
O

(n
(|
F
|
g

+
g
))

O
(n

(|
F
|
g

+
g
))

O
(n

(|
F
|
g

+
sg

))

R
e
p

a
ir

in
g

C
om

p
u
ta

ti
on

(c
li
en

t)
O

((
l
+

1)
d
)

O
(1

)
O

(1
)

co
m

p
le

x
it

y
C

om
p
u
ta

ti
on

(s
er

ve
r)

O
(d
l)

O
(d
l)

O
(d
l)

C
om

p
u
ta

ti
on

(n
ew

se
rv

er
)

N
/A

O
(d
l)

O
(d
l)

C
om

p
u
ta

ti
on

(T
P

A
)

N
/A

O
(l

)
O

(1
)

C
om

m
u
n
ic

at
io

n
O

((
l
+
d
)(
|F
|
g

+
g
))

O
(l

(|
F
|
g

+
g
)

+
ld

)
O

(l
(|
F
|
g

+
sg

))

72

4.6. EFFICIENCY ANALYSIS

• In the NC-Audit scheme, the analysis is the same as the analysis in the RDC-NC
scheme. Thus, the storage cost on the server-side is also O(sdn(|F |

g
+ g)).

• In the MD-POR scheme, the size of an augmented block is |w| = |F |
g

+ sg. Similar

to the RDC-NC and NC-Audit scheme, the size of a coded block is |cij| = |wij|
because each coded block is a linear combination of all the augmented blocks; the
number of servers is n and the number of coded blocks in each server is d. However,
s clients participate in our scheme simultaneously (not in parallel as the RDC-NC
and NC-Audit schemes). Thus, the storage cost on the server-side in the MD-POR

scheme is O(dn(|F |
g

+ sg)).

TPA-side. The storage costs on the TPA-side in the RDC-NC, NC-Audit and MD-POR
schemes are given as follows:

• In the RDC-NC scheme, the TPA does not exists because this scheme does not sup-
port public authentication. The client must check the servers periodically. There-
fore, the storage cost on the TPA-side is N/A, which means that it is not applicable
due to the lack of support.

• In the NC-Audit scheme, the TPA not only stores a key in Fξ+gq which is used for
verification (O(ξ + g) log2 q) but also stores the coding coefficients in Fq which are
used to compute all coded blocks (O(gdn log2 q)). Thus, the storage cost on the
TPA-side is O((ξ + g + gdn) log2 q).

• In the MD-POR scheme, the TPA stores the key κ ∈ Fξ+mq which is computed using
the KeyGen2 algorithm. Because m = s · g, we have κ ∈ Fξ+sgq . Therefore, the
storage cost on the TPA-side is O((ξ + sg) log2 q).

4.6.2 Encode cost

Computation on Client-side. The computation costs on the client-side in the RDC-
NC, NC-Audit and MD-POR schemes are given as follows:

• In the RDC-NC scheme, during the encode phase, each client combines g augmented
blocks (O(g)) to create dn coded blocks in order to store d coded blocks in each of
n servers. Thus, the computation cost on the client-side is O(gdn).

• In the NC-Audit scheme, the encode phase is the same as the encode phase in the
RDC-NC scheme. The computation cost on the client-side is also O(gdn).

• In the MD-POR scheme, each client only needs to combine g augmented blocks
(O(g)) and then distributes them to all the servers. The servers will create coded
blocks by themselves. The cost in the MD-POR scheme is thus O(g).

73

4.6. EFFICIENCY ANALYSIS

Computation on Server-side. The computation costs on the server-side in the RDC-
NC, NC-Audit and MD-POR schemes are given as follows:

• In the RDC-NC scheme, the servers do not need to do anything. The servers only
need to receive the coded blocks which are computed by the clients. Thus, the
computation cost on the server-side is O(1).

• In the NC-Audit scheme, the servers also do not need to do anything and only need
to receiver the coded blocks which are computed by the clients like the RDC-NC
scheme. Thus, the computation cost on the server-side is also O(1).

• In the MD-POR scheme, each of n servers must combine s coded blocks which are
sent by the clients in order to compute d coded blocks for the server itself. Thus,
the computation cost on the server-side is O(sdn).

Computation on TPA-side. The computation costs on the TPA-side in the RDC-NC,
NC-Audit and MD-POR schemes are given as follows:

• In the RDC-NC scheme, the TPA does not exist because the scheme does not
support the public authentication. The client must check the servers periodically.
Therefore, the storage cost on the TPA-side is N/A.

• In the NC-Audit scheme, the TPA does nothing during the encode phase. Thus,
the computation cost on the TPA-side is O(1).

• In the MD-POR scheme, the TPA also does nothing during the encode phase like
the NC-Audit scheme. Thus, the computation cost on the TPA-side is also O(1).

Communication. The communication costs in the RDC-NC, NC-Audit and MD-POR
schemes are given as follows:

• In the RDC-NC scheme, the client computes dn coded blocks and sends d coded
blocks to each of n servers. The size of a coded block is (|F |

g
+ g) as mentioned

in the analysis about the storage cost. The number of clients is s. Therefore, the
communication cost is O(sdn(|F |

g
+ g)).

• In the NC-Audit scheme, besides the communication cost like the RDC-NC scheme
(O(sdn(|F |

g
+ g))), the client also must send all (sgdn) coefficients which are used to

create the coded blocks to the servers (O(sgdn)). Thus, the communication cost is

O(sdn(|F |
g

+ g) + sgdn).

• In the MD-POR scheme, each of s clients sends the aggregated coded block to each
of n servers. The size of a coded block in the MD-POR scheme is (|F |

g
+sg) as in the

analysis about the storage cost on the server-side. Thus, the communication cost is
O(ns(|F |

g
+ sg)).

74

4.6. EFFICIENCY ANALYSIS

4.6.3 Check Cost

Computation on Client-side. The computation costs on the client-side in the RDC-
NC, NC-Audit and MD-POR schemes are given as follows:

• In the RDC-NC scheme, the client receives the aggregated coded block and the
aggregated tag from each of n servers, and verifies each of them using the secret key
of the client. Thus, the computation cost on the client-side is O(n).

• In the NC-Audit scheme, the clients do nothing because the TPA will check the
servers instead of the clients. The computation cost on the client-side is O(1).

• In the MD-POR scheme, the clients also do nothing because the TPA will check the
servers instead of the clients. The computation cost on the client-side is also O(1).

Computation on Server-side. The computation costs on the server-side in the RDC-
NC, NC-Audit and MD-POR schemes are given as follows:

• In the RDC-NC scheme, each of n servers combines its spotcheck coded blocks and
its spotcheck tags where spotcheck ∈ {1, · · · , d}, and sends the aggregated coded
block and the aggregated tag to the client. Thus, the computation cost on the
server-side is O(nd).

• In the NC-Audit scheme, each of n servers combines its spotcheck coded blocks
and its spotcheck tags where spotcheck ∈ {1, · · · , d}, and sends the aggregated
coded block and the aggregated tag to the TPA. Thus, the computation cost on the
server-side is also O(nd).

• In the MD-POR scheme, similar to the NC-Audit scheme, each of n servers combines
its spotcheck coded blocks and its spotcheck tags where spotcheck ∈ {1, · · · , d}, and
sends the aggregated coded block and the aggregated tag to the TPA. Thus, the
computation cost on the server-side is also O(nd).

Computation on TPA-side. The computation costs on the TPA-side in the RDC-NC,
NC-Audit and MD-POR schemes are given as follows:

• In the RDC-NC scheme, the TPA does not exist. Thus, the computation cost on
the TPA-side is N/A.

• In the NC-Audit scheme, the TPA verifies the aggregated coded block which is sent
by each of n servers. The computation cost on the TPA-side is O(n).

• In the MD-POR scheme, similar to the NC-Audit, the TPA also verifies the aggre-
gated coded block which is sent from each of n servers. The computation cost on
the TPA-side is also O(n).

75

4.6. EFFICIENCY ANALYSIS

Communication. The communication costs in the RDC-NC, NC-Audit and MD-POR
schemes are given as follows:

• In the RDC-NC scheme, during the check phase, each of n servers sends its aggre-
gated coded block and its aggregated tag to the client. The size of a coded block is
(|F |
g

+ g). Thus, the communication cost is O(n(|F |
g

+ g)).

• In the NC-Audit scheme, similar to the RDC-NC scheme, during the check phase,
each of n servers sends its aggregated coded block and its aggregated tag to the
client. The size of a coded block is (|F |

g
+ g). Thus, the communication cost is

O(n(|F |
g

+ g)).

• In the MD-POR scheme, the mechanism is the same as the RDC-NC and NC-Audit
scheme, but the different thing is that the size of a coded block in the MD-POR
scheme is (|F |

g
+ sg). Thus, the communication cost is O(n(|F |

g
+ sg)).

4.6.4 Repair Cost

Computation on Client-side. The computation costs on the client-side in the RDC-
NC, NC-Audit and MD-POR schemes are given as follows:

• In the RDC-NC scheme, in the repair phase, the client firstly must check the l
coded blocks which are provided from l healthy servers (O(l)). Thereafter, the client
computes d new coded blocks for the new server by linearly combining l provided
coded blocks (O(ld)). Thus, the computation cost on the client-side is O((l + 1)d).

• In the NC-Audit scheme, the clients do nothing. Thus, the computation cost on the
client-side is O(1).

• In the MD-POR scheme, similar to the NC-Audit scheme, the clients do nothing.
Thus, the computation cost on the client-side is O(1).

Computation on Server-side. The computation costs on the server-side in the RDC-
NC, NC-Audit and MD-POR schemes are given as follows:

• In the RDC-NC scheme, each of l healthy servers is required to combine its spotcheck
coded blocks and spotcheck tags where spotcheck ∈ {1, · · · , d}. Thus, the compu-
tation cost on the server-side is O(dl). The computation cost on the new server is
N/A because the direct repair feature is not supported in the RDC-NC scheme.

• In the NC-Audit scheme, not only l healthy servers combine their coded blocks
(O(dl)) but also the new server must compute its d new coded blocks by linearly
combining l provided coded blocks (O(dl)).

• In the MD-POR scheme, similar to the NC-Audit scheme, only l healthy servers
combine their coded blocks (O(dl)) but also the new server must compute its d new
coded blocks by linearly combining l provided coded blocks (O(dl)).

76

4.6. EFFICIENCY ANALYSIS

Computation on TPA-side. The computation cost on the TPA-side in the RDC-NC,
NC-Audit and MD-POR schemes are given as follows:

• In the RDC-NC scheme, the TPA does not exist. The computation cost on the
TPA-side is N/A.

• In the NC-Audit scheme, the TPA must check l coded blocks which are provided
by l servers during the repair phase. Thus, the computation cost on the TPA-side
is O(l).

• In the MD-POR scheme, the TPA does nothing because the new server will check
pollution attack, not the TPA as the NC-Audit scheme. Therefore, the computation
cost on the TPA-side is O(1).

Communication. The communication costs in the RDC-NC, NC-Audit and MD-POR
schemes are given as follows:

• In the RDC-NC scheme, each of l healthy servers sends the aggregated coded block
whose size is (|F |

g
+ g) to a client (O(l(|F |

g
+ g))). After computing d new coded

blocks, the client sends them to the new server (O(d(|F |
g

+ g))). Therefore, the

communication cost is O((l + d)(|F |
g

+ g)).

• In the NC-Audit scheme, each of l healthy servers also sends the aggregated coded
block to the new server (O(l(|F |

g
+ g))). Then, the new server sends its linear

coefficients which are used to compute d new coded blocks from l provided coded
blocks to the TPA (O(ld)). Therefore, the communication cost is O(l(|F |

g
+ g) + ld).

• In the MD-POR scheme, only each of l healthy servers sends the aggregated coded
block to the new server. The size of each coded block is (|F |

g
+ sg). Therefore, the

communication cost is O(l(|F |
g

+ sg)).

4.6.5 Total cost

Although the MD-POR scheme supports many heavy features, the total cost in the MD-
POR scheme is still better than the previous schemes. Let Op(A), Op(B), Op(C) denote
the total computation costs of the RDC-NC, NC-Audit and MD-POR schemes, respec-
tively. Let Om(A), Om(B), Om(C) denote the total communication costs of the RDC-NC,
NC-Audit and MD-POR schemes, respectively. Let Os(A), Os(B), Os(C) denote the total
storage costs of the RDC-NC, NC-Audit and MD-POR schemes, respectively. In reality,
d and g are far larger than s and n (d, g � s, n), l ∈ {1, · · · , n}, and d > g. From Table
4.2, the following results are obtained.

• The difference between the computations costs of the RDC-NC scheme and our
scheme is:

Op(A)−Op(C) = (gdn+ d)− (sdn+ g) (4.36)

77

4.6. EFFICIENCY ANALYSIS

Because g � s, Op(A)−Op(C) > 0. Thus, Op(A) > Op(C). This indicates that the
RDC-NC incurs higher computation cost than the MD-POR scheme.

• The difference between the computations costs of the NC-Audit scheme and the
MD-POR scheme is:

Op(B)−Op(C) = (gdn+ l)− (sdn+ g) (4.37)

Because g � s, Op(B) − Op(C) > 0. Thus, Op(B) > Op(C). This indicates that
the NC-Audit incurs higher computation cost than the MD-POR scheme.

• The difference between the communication costs of the RDC-NC scheme and the
MD-POR scheme is:

Om(A)−Om(C) = (dns+ d− ns) |F |
g

+ g(sdn+ n+ l + d− ns2 − ns− ls) (4.38)

Because d � s and 1 ≤ l ≤ n, Om(A) − Om(C) > 0. Thus, Om(A) > Om(C).
This indicates that the RDC-NC scheme incurs higher communication cost than
the MD-POR scheme.

• The difference between the communication costs of the NC-Audit scheme and the
MD-POE scheme is:

Om(B)−Om(C) = (dns− ns) |F |
g

+ g(2sdn+ n+ l − ns2 − ns− ls) + ld (4.39)

Because d � s and 1 ≤ l ≤ n, Om(B) − Om(C) > 0. Thus, Om(B) > Om(C).
This indicates that the NC-Audit scheme incurs higher communication cost than
the MD-POR scheme.

• The difference between the storage costs of the RDC-NC scheme and our scheme is:

Os(A)−Os(C) = (3ξ + 5g) log2 q + (s− 1)dn
|F |
g
− 2sg log2 q (4.40)

Because |F |
g

= ξ log2 q and d > g, Os(A)− Os(C) > 0. Thus, Os(A) > Os(C). This
indicates that the RDC-NC scheme incurs higher storage cost than the MD-POR
scheme.

• The difference between the storage costs of the NC-Audit scheme and the MD-POR
scheme is:

Os(B)−Os(C) = (s− 1)dn
|F |
g

+ g log2 q(dn− 2s+ 2) (4.41)

Because d� s, Os(B)−Os(C) > 0. Thus, Os(B) > Os(C). This indicates that the
NC-Audit scheme incurs higher storage cost than the MD-POR scheme.

78

4.7. PERFORMANCE EVALUATION

4.7 Performance Evaluation

In this section, we evaluate the computation and communication performances of the
MD-POR scheme to show that it is applicable for a real system. A program written by
Python 2.7.3 is executed using a computer with Intel Core i5 processor, 2.4 GHz, 4 GB
of RAM, Windows 7 64-bit OS. The parameters are set as follows:

• The length of the prime q is set to be 256 bits.

• The number of clients is set to be 2 (s = 2).

• The number of servers is set to be 3 (n = 3).

• The number of coded blocks stored in each server is set to be 10 (d = 10).

• The number of healthy servers which are used for repairing is set to be 3 (l = 2).

• The number of spot checks during the check and repair phases is set to be d/2.

• Each result is the average of 100 runs.

4.7.1 Computation Performance

Because |Fi| = g× |vij| (where |Fi| is file size, g is number of file blocks, and |vij| is block
size), for the computation performance, we implemented the scheme with two cases:

• Case 1: Fix g to be 80 → change |vij| according to |Fi|.

• Case 2: Fix block size to be 1 MB (|vij| = 223 bits) → change g according to |Fi|.

CASE 1: fix number of blocks, change block size

In this case, we fix g to be 80; then we change |vij| according to |Fi|. Namely:

• |Fi| = 10MB ⇒ |vij| = 0.125MB = 128KB.

• |Fi| = 20MB ⇒ |vij| = 0.25MB = 256KB.

• |Fi| = 30MB ⇒ |vij| = 0.375MB = 384KB.

• |Fi| = 40MB ⇒ |vij| = 0.5MB = 512KB.

• |Fi| = 50MB ⇒ |vij| = 0.625MB = 640KB.

The summary of computation results in this case are described in Table 4.3. These
results can also be observed in Figure 4.3 (init and keygen), Figure 4.4 (encode), Figure
4.5 (check), and Figure 4.6 (repair) by varying the file size of each client.

79

4.7. PERFORMANCE EVALUATION

T
ab

le
4.

3:
S
u
m

m
ar

y
of

co
m

p
u
ta

ti
on

re
su

lt
s

in
ca

se
1

(t
im

e
u
n
it

:
se

co
n
d
)

|F
|=

1
0
M

B
|F

|=
2
0
M

B
|F

|=
3
0
M

B
|F

|=
4
0
M

B
|F

|=
5
0
M

B
(|
v
ij
|=

(|
v
ij
|=

(|
v
ij
|=

(|
v
ij
|=

(|
v
ij
|=

0
.1

2
5
M

B
=

0
.2

5
M

B
=

0
.3

7
5
M

B
=

0
.5
M

B
=

0
.6

2
5
M

B
=

1
2
8
K

B
)

2
5
6
K

B
)

3
8
4
K

B
)

5
1
2
K

B
)

6
4
0
K

B
)

In
it

(c
li
en

t)
18

.0
97

33
.4

47
51

.6
68

68
.4

06
86

.3
62

K
ey

ge
n

(c
li
en

t)
16

5.
28

2
41

9.
89

0
68

2.
93

0
11

24
.5

15
24

88
.9

14

E
n
co

d
e

(c
li
en

t)
1.

37
4

2.
68

3
4.

02
5

5.
39

7
6.

73
9

(s
er

ve
r)

0.
15

1
0.

30
7

0.
45

2
0.

60
9

0.
84

2

C
h
ec

k
ch

al
le

n
ge

(T
P

A
)

0.
01

5
0.

01
6

0.
01

6
0.

01
6

0.
01

5
re

sp
on

d
(s

er
ve

r)
0.

14
1

0.
28

6
0.

42
1

0.
56

1
0.

70
2

ve
ri

fy
(T

P
A

)
0.

02
6

0.
03

1
0.

04
7

0.
06

2
0.

07
8

R
ep

ai
r

(n
ew

se
rv

er
)

0.
18

7
0.

35
9

0.
54

6
0.

71
8

0.
93

6
(s

er
ve

r)
0.

14
1

0.
28

6
0.

42
1

0.
56

1
0.

70
2

80

4.7. PERFORMANCE EVALUATION

18.097 33.447 51.668 68.406 86.362 165.282
419.89

682.93

1424.515

2008.914

0

500

1000

1500

2000

2500

10 20 30 40 50

Ti
m

e
(s

e
co

n
d

)

File size (MB)

Init (client-side)

Keygen (client-side)

Figure 4.3: Computation time performance of init and keygen phases

1.374

2.683

4.025

5.397

6.739

0.151 0.307 0.452 0.609 0.842

0

1

2

3

4

5

6

7

8

10 20 30 40 50

T
im

e
(s

ec
o

n
d

)

File size (MB)

Encode (client-side)

Encode (server-side)

Figure 4.4: Computation time performance of encode phase

81

4.7. PERFORMANCE EVALUATION

0.015 0.016 0.016 0.016 0.015

0.141

0.286

0.421

0.561

0.702

0.026 0.031 0.047 0.062 0.078

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10 20 30 40 50

Ti
m

e
 (

se
co

n
d

)

File size (MB)

Challenge (TPA-side)

Respond (server-side)

Verify (TPA-side)

Figure 4.5: Computation time performance of check phase

0.187

0.359

0.546

0.718

0.936

0.141

0.286

0.421

0.561

0.702

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50

Ti
m

e
(s

ec
o

n
d

)

File size (MB)

New server-side

Server-side

Figure 4.6: Computation time performance of repair phase

The experiment results reveal that the computation time increases almost linearly as
the file size increases, and each graph has a different slope. Only the computation time
of challenge step on the TPA-side in the check phase is almost constant. Note that the
init, keygen and encode phases are only executed one time in the beginning.
Meanwhile, the check and repair phases are executed very often during the

82

4.7. PERFORMANCE EVALUATION

system lifetime. Therefore, the computation time of the check and repair
phases are more important.

• In Figure 4.3, the graph slopes of the init and keygen phases are approximately
1.707 and 46.091, respectively. If the file size is 1 GB, the computation time of
the init and keygen phases is estimated as 1748.615 seconds and 46901.35 seconds,
respectively (performed only one time).

• In Figure 4.4, the graph slopes of the encode phase on client-side and server-side are
approximately 0.134 and 0.017, respectively. If the file size is 1 GB, the computa-
tion time of the encode phase on client-side and server-side is estimated as 137.377
seconds and 17.67 seconds, respectively (performed only one time).

• In Figure 4.5, the graph slopes of the check phase (challenge, respond and verify)
are approximately 0, 0.014 and 0.001, respectively. If the file size is 1 GB, the
computation time of the challenge, respond and verify algorithms is estimated as
0.015 seconds, 14.362 seconds and 1.344 seconds, respectively (performed often).

• In Figure 4.6, the graph slopes of the repair phase on new server-side and healthy
server-side are approximately 0.019 and 0.014, respectively. If the file size is 1 GB,
the computation time of the repair phase on new server-side and healthy server-side
is estimated as 19.174 seconds and 14.362 seconds, respectively (performed often).

CASE 2: fix block size, change number of blocks

In this case, we fix block size to be 1 MB (|vij| = 223 bits), and then change g according
to |Fi|. Namely:

• |Fi| = 10MB ⇒ g = 10.

• |Fi| = 20MB ⇒ g = 20.

• |Fi| = 30MB ⇒ g = 30.

• |Fi| = 40MB ⇒ g = 40.

• |Fi| = 50MB ⇒ g = 50.

The summary of computation results in this case are described in Table 4.4. These
results can also be observed in Figure 4.7 (init and keygen), Figure 4.8 (encode), Figure
4.9 (check), and Figure 4.10 (repair) by varying the file size of each client.

83

4.7. PERFORMANCE EVALUATION

T
ab

le
4.

4:
S
u
m

m
ar

y
of

co
m

p
u
ta

ti
on

re
su

lt
s

in
ca

se
2

(t
im

e
u
n
it

:
se

co
n
d
)

|F
|=

1
0
M

B
|F

|=
2
0
M

B
|F

|=
3
0
M

B
|F

|=
4
0
M

B
|F

|=
5
0
M

B
(g

=
1
0
)

(g
=

2
0
)

(g
=

3
0
)

(g
=

4
0
)

(g
=

5
0
)

In
it

(c
li
en

t)
18

.7
21

40
.8

41
58

.5
57

76
.2

06
95

.2
31

K
ey

ge
n

(c
li
en

t)
73

46
.4

19
76

31
.3

88
77

77
.4

86
88

49
.1

60
91

02
.4

80

E
n
co

d
e

(c
li
en

t)
1.

43
5

2.
80

0
4.

11
1

5.
50

7
6.

79
5

(s
er

ve
r)

1.
25

8
1.

25
9

1.
31

0
1.

32
6

1.
33

6

C
h
ec

k
ch

al
le

n
ge

(T
P

A
)

0.
01

5
0.

01
6

0.
01

6
0.

01
5

0.
01

6
re

sp
on

d
(s

er
ve

r)
1.

13
4

1.
13

8
1.

14
4

1.
14

4
1.

16
6

ve
ri

fy
(T

P
A

)
1.

12
5

1.
12

5
1.

12
8

1.
13

2
1.

13
7

R
ep

ai
r

(n
ew

se
rv

er
)

1.
40

0
1.

41
4

1.
43

5
1.

45
1

1.
56

(s
er

ve
r)

1.
13

4
1.

13
8

1.
14

4
1.

14
4

1.
16

6

84

4.7. PERFORMANCE EVALUATION

18.721 40.841 58.557 76.206 95.231

7346.419 7631.388 7777.486
8849.16

9102.48

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

10 20 30 40 50

Ti
m

e
(s

ec
o

n
d

)

File size (MB)

Keygen (client-side)

Init (client-side)

Figure 4.7: Computation time performance of init and keygen phases

1.435

2.8

4.111

5.507

6.795

1.258
1.259 1.31 1.326 1.336

0

1

2

3

4

5

6

7

8

10 20 30 40 50

T
im

e
(s

ec
o

n
d

)

File size (MB)

Encode (client-side)

Encode (server-side)

Figure 4.8: Computation time performance of encode phase

85

4.7. PERFORMANCE EVALUATION

1.125 1.125 1.128 1.132 1.137
1.134 1.138 1.144 1.144 1.166

0.015 0.016 0.016 0.015 0.016
0

0.2

0.4

0.6

0.8

1

1.2

1.4

10 20 30 40 50

Ti
m

e
 (

se
co

n
d

)

File size (MB)

Challenge (TPA-side)

Respond (server-side)

Verify (TPA-side)

Figure 4.9: Computation time performance of check phase

1.4 1.419 1.435 1.451
1.56

1.134 1.138 1.144 1.144 1.166

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

10 20 30 40 50

T
im

e
(s

ec
o

n
d

)

File size (MB)

New server-side

Server-side

Figure 4.10: Computation time performance of repair phase

The experiment results reveal that the computation time increases almost linearly as
the file size increases, and each graph has a different slope. Only the computation time
of challenge step on the TPA-side in the check phase is almost constant. Note that the
init, keygen and encode phases are only executed one time in the beginning.
Meanwhile, the check and repair phases are executed very often during the

86

4.7. PERFORMANCE EVALUATION

system lifetime. Therefore, the computation time of the check and repair
phases are more important.

• In Figure 4.7, the graph slopes of the init and keygen phases are approximately
1.913 and 43.902, respectively. If the file size is 1 GB, the computation time of
the init and keygen phases is estimated as 1958.25 seconds and 51862.57 seconds,
respectively (performed only one time).

• In Figure 4.4, the graph slopes of the encode phase on client-side and server-side are
approximately 0.134 and 0.002, respectively. If the file size is 1 GB, the computa-
tion time of the encode phase on client-side and server-side is estimated as 137.311
seconds and 3.235 seconds, respectively (performed only one time).

• In Figure 4.5, the graph slopes of the check phase (challenge, respond and verify)
are approximately 0, 0.0008 and 0.0003, respectively. If the file size is 1 GB, the
computation time of the challenge, respond and verify algorithms is estimated as
0.016 seconds, 1.945 seconds and 1.429 seconds, respectively (performed often).

• In Figure 4.6, the graph slopes of the repair phase on new server-side and healthy
server-side are approximately 0.004 and 0.0008, respectively. If the file size is 1 GB,
the computation time of the repair phase on new server-side and healthy server-side
is estimated as 5.456 seconds and 1.945 seconds, respectively (performed often).

CASE 1 vs CASE 2

In this section, we compare case 1 and case 2 for 1 GB file in Figure 4.11 (keygen), Figure
4.12 (encode), Figure 4.13 (check) and Figure 4.14 (repair). The results show that:

• In keygen phase, the computation time of case 1 is better than that of case 2. Thus,
block size is the dominant parameter.

• In the other three phases (encode, check and repair phases), the computation time
of case 2 is better than that of case 1. Thus, number of file blocks is the dominant
parameter.

87

4.7. PERFORMANCE EVALUATION

1748.615

46901.35

1958.25

51862.57

0

10000

20000

30000

40000

50000

60000

Init Keygen

Ti
m

e
(s

ec
o

n
d

)

INIT - KEYGEN

Case 1

Case 2

Figure 4.11: Computation time performance of init and keygen phases

137.377

17.67

137.311

3.235
0

20

40

60

80

100

120

140

160

Client-side Server-side

Ti
m

e
(s

ec
o

n
d

)

ENCODE

Case 1

Case 2

Figure 4.12: Computation time performance of encode phase

88

4.7. PERFORMANCE EVALUATION

0.015

14.362

1.344
0.016

1.945 1.429

0

2

4

6

8

10

12

14

16

Challenge Repond Verify

Ti
m

e
(s

ec
o

n
d

)

CHECK

Case 1

Case 2

Figure 4.13: Computation time performance of check phase

19.174

14.362

5.456

1.945

0

5

10

15

20

25

New server-side Server-side

Ti
m

e
(s

ec
o

n
d

)

REPAIR

Case 1

Case 2

Figure 4.14: Computation time performance of repair phase

4.7.2 Communication Performance

The communication results can be observed with a set of communication performance
by varying the file size of each client. These results are depicted in Figure 4.15 (encode,
check, and repair).

89

4.8. NUMERIC EXAMPLE OF KEYGEN PHASE

2.900 3.280

4.312

6.513

7.668

0.021 0.155
0.572 0.727 0.841

0.060 0.099 0.249 0.385 0.630
0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

50 75 100 125 150

T
im

e
 (

s
e

c
o

n
d

)

File size (MB)

Encode

Check

Repair

Figure 4.15: Communication time performance

The MD-POR scheme is performed with the bandwidth of 300Mbps. The experiment
results reveal that the communication time increases almost linearly as the file size in-
creases, and each graph in Figure 4.15 has a different slope. The slopes of increment in
the graphs of the encode phase, the check phase and the repair phase are approximately
0.048, 0.008 and 0.006, respectively. Therefore, if the file size is 1 GB, the communication
time of the encode phase, check phase, and repair phase is estimated as 49.27 seconds,
7.86 seconds and 5.83 seconds, respectively. In addition, the size of the response from
each server is given as follows. The response sizes of the 50MB, 75MB, 100MB, 125MB
and 150MB file size are 13KB, 19KB, 26KB, 32KB and 38KB, respectively. Therefore, if
the file size is 1 GB, the response size is estimated as 264.87 KB.

The above results indicate that the computation and communication per-
formances are very fast even when the file size is 1 GB.

4.8 Numeric Example of Keygen Phase

In this section, an example is given to explain how the keygen phase in our scheme works.
Suppose that there are two clients: C1 and C2. The augmented blocks are:

• w11 = (2, 1, 0, 0, 0)

• w12 = (3, 0, 1, 0, 0)

• w21 = (1, 0, 0, 1, 0)

• w22 = (5, 0, 0, 0, 1)

Suppose that all operations work in F7.

90

4.8. NUMERIC EXAMPLE OF KEYGEN PHASE

4.8.1 The key of the client C1
A matrix M1 is constructed in a way that it consists of all augmented blocks which do
not belong to the client C1:

M1 =

(
w21

w22

)
=

(
1, 0, 0, 1, 0
5, 0, 0, 0, 1

)
(4.42)

M1 is then reduced by the Gauss-Jordan elimination to a row echelon form as follows:

M ′
1 =

(
1 , 0, 0, 1, 0

0, 0, 0, 1 , 4

)
(4.43)

Let δ1, · · · , δ5 denote the unknown variables which correspond to the columns of M ′
1.

Let δ = [δ1, · · · , δ5]T . The pivots which are the values in the squares belong to δ1 and
δ4. The free variables are δ2, δ3 and δ5. Solving M ′

1 · δ = 0, we have δ1 + δ4 = 0 and
δ4 + 4δ5 = 0. Let δ2 = a, δ3 = b and δ5 = c.

δ1
δ2
δ3
δ4
δ5

 = a


0
1
0
0
0

+ b


0
0
1
0
0

+ c


4
0
0
−4
1

 (4.44)

Because the number of free variables is 3, the number of elements in the basis is also
3. Namely, the basis is as follows:

{


0
1
0
0
0

 ,


0
0
1
0
0

 ,


4
0
0
−4
1

} (4.45)

Suppose that the random values are 2, 3 and 2. The key of C1 is computed as follows:

k1 = 2


0
1
0
0
0

+ 3


0
0
1
0
0

+ 2


4
0
0
−4
1

 (mod 7) =


1
2
3
6
2

 (4.46)

We can observe that k1 is orthogonal to w21 and w22. In other words, k1 ·w21 = k1 ·w22 =
0 because:

k1 · w21 =


1
2
3
6
2

(1, 0, 0, 1, 0) (mod 7) = 0 (4.47)

91

4.8. NUMERIC EXAMPLE OF KEYGEN PHASE

k1 · w22 =


1
2
3
6
2

 (5, 0, 0, 0, 1) (mod 7) = 0 (4.48)

4.8.2 The key of the client C2
Similarly, k2 is also constructed in the same way as k1. Concretely, a matrix M2 is
constructed in a way that it consists of all augmented blocks which do not belong to the
client C2:

M2 =

(
w11

w12

)
=

(
2, 1, 0, 0, 0
3, 0, 1, 0, 0

)
(4.49)

M1 is then reduced by the Gauss-Jordan elimination to a row echelon form as follows:

M ′
2 =

(
1 , 4, 0, 0, 0

0, 1 , 4, 0, 0

)
(4.50)

The free variables are δ3, δ4 and δ5. The basis is as follows:

{


16
−4
1
0
0

 ,


0
0
0
1
0

 ,


0
0
0
0
1

} (4.51)

Suppose that the random values are 2, 2 and 1. The key k2 is constructed as follows:

k2 = 2


16
−4
1
0
0

+ 2


0
0
0
1
0

+ 1


0
0
0
0
1

 (mod 7) =


4
6
2
2
1

 (4.52)

We can observe that k2 is orthogonal to w11 and w12. In other words, k2 ·w11 = k2 ·w12 =
0 because:

k2 · w11 =


4
6
2
2
1

(2, 1, 0, 0, 0) (mod 7) = 0 (4.53)

k2 · w12 =


4
6
2
2
1

 (3, 0, 1, 0, 0) (mod 7) = 0 (4.54)

92

4.8. NUMERIC EXAMPLE OF KEYGEN PHASE

4.8.3 The key of the TPA

The TPA is given the key κ as follows:

κ = k1 + k2 =


1
2
3
6
2

+


4
6
2
2
1

 (mod 7) =


5
1
5
1
3

 (4.55)

We can observer that κ is orthogonal to all the augmented blocks of all the clients. In
other words, κ · w11 = κ · w12 = κ · w21 = κ · w22 = 0 because:

κ · w11 =


5
1
5
1
3

(2, 1, 0, 0, 0) (mod 7) = 0 (4.56)

κ · w12 =


5
1
5
1
3

 (3, 0, 1, 0, 0) (mod 7) = 0 (4.57)

κ · w21 =


5
1
5
1
3

(1, 0, 0, 1, 0) (mod 7) = 0 (4.58)

κ · w22 =


5
1
5
1
3

 (5, 0, 0, 0, 1) (mod 7) = 0 (4.59)

4.8.4 The key of the new server

The new server is given the key κ′ as: κ′ = κ + krepair where krepair is constructed as
follows. Firstly, a matrix Mr is constructed in a way that it consists of all augmented
blocks:

Mr =


w11

w12

w21

w22

 =


2, 1, 0, 0, 0
3, 0, 1, 0, 0
1, 0, 0, 1, 0
5, 0, 0, 0, 1

 (4.60)

93

4.8. NUMERIC EXAMPLE OF KEYGEN PHASE

Mr is then reduced by the Gauss-Jordan elimination to a row echelon form as follows:

M ′
r =


1 , 0, 0, 0, 3

0, 1 , 0, 0, 1

0, 0, 1 , 4, 0

0, 0, 0, 1 , 4

 (4.61)

The free variable is δ5. The basis is as follows:

{


−3
−1
16
−4
1

} (4.62)

Suppose the random value is 3. krepair is computed as follows:

krepair = 3


−3
−1
16
−4
1

 (mod 7) =


5
4
6
2
3

 (4.63)

We can see that krepair is orthogonal to all augmented blocks: krepair ·w11 = krepair ·w12 =
krepair · w21 = krepair · w22 = 0 because:

krepair · w11 =


5
4
6
2
3

(2, 1, 0, 0, 0) (mod 7) = 0 (4.64)

krepair · w12 =


5
4
6
2
3

(3, 0, 1, 0, 0) (mod 7) = 0 (4.65)

krepair · w21 =


5
4
6
2
3

(1, 0, 0, 1, 0) (mod 7) = 0 (4.66)

krepair · w22 =


5
4
6
2
3

(5, 0, 0, 0, 1) (mod 7) = 0 (4.67)

94

4.9. SUMMARY

Finally, κ′ is computed as follows:

κ′ = κ+ krepair =


5
1
5
1
3

+


5
4
6
2
3

 (mod 7) =


3
5
4
3
6

 (4.68)

4.9 Summary

In this chapter, a new network coding-based POR scheme named the MD-POR has been
proposed. The MD-POR scheme supports multi-client, symmetric key-based direct repair
and public authentication features. Moreover, the MD-POR scheme can protect against
a strong adversary who can perform mobile attack, curious attack, response forgery and
pollution attack. In addition, the efficiency analysis based on the complexity theory shows
that although the MD-POR scheme supports many features, its costs are not bad com-
pared with the previous schemes. The experiment results reveal that the computation
time increases as the file size increases. However, the graphs show that the slope of incre-
ment for the MD-POR scheme increases merely. Future work is investigated to implement
two previous RDC-NC and NC-Audit schemes in order to compare with the MD-POR
scheme. The implementation of the MD-POR scheme shows that its computation cost is
applicable for a real system.

95

Chapter 5

DD-POR: Dynamic Operations and
Direct Repair for POR

5.1 System Model

The system model of the DD-POR scheme consists of three types of entities:

• Key manager: This entity is fully trusted, and has the responsibility to generate the
keys for the other entities.

• Client: There is only a single client who can be either an enterprise or an indi-
vidual customer. The client owns his/her data and wants to store the data in the
cloud servers. The client relies on the cloud for data storage, computation, and
maintenance.

• Servers: The servers are managed and monitored by a cloud service provider to
accommodate a service of data storage and have significant and unlimited storage
space and computation resources. In the cloud storage service, the client can store
his/her data into a set of servers in a simultaneous and distributed manner.

5.2 Adversarial Model

In this scheme, the key manager and the client are trusted; meanwhile, the servers are
untrusted. We assume that the servers do not collude with each other. The servers can
perform the following attacks:

1. In the check phase: the servers may disrupt or modify the data. These attacks can
be commonly prevented by the MAC tags, we thus do not focus on this attack.

2. In the repair phase: the servers may perform: (i) the pollution attack which is a
common attack of the network coding, and (ii) the curious attack which is a special
attack of the direct repair. We focus on these attacks in the security analysis.

96

5.3. PROPOSED DD-POR SCHEME

• Pollution Attack. This attack is also considered in several papers [79, 82, 86–
92,137]. The malicious server firstly uses a valid coded block to pass the check
phase, but then injects an invalid coded block in the repair phase to prevent
data repair. An example is given as follows:

– Encode: the client encodes the augmented blocks (w1, w2, w3) to six coded
blocks: c11, c12 (stored in the server S1), c21, c22 (stored in the server S2),
and c31, c32 (stored in the server S3). Suppose that S1 will perform a
pollution attack.

– Check: suppose that S3 is corrupted.

– Repair: S3 should be repaired by two coded blocks: c′31 (which is a linear
combination of c11 and c12) and c′32 (which is a linear combination of c21 and
c22). However, S1 is not detected because this time is the repair phase, not
the check phase. The client still thinks S1 is healthy, and thus the client
requests the coded blocks from S1 and S2. S1 will provide an invalid coded
block c′′31 to the client instead of c′31.

• Curious Attack. This attack is the a specific attack in our scheme. This attack
is performed by the new server in the repair phase. Every repair time, the new
server is given a key kr constructed from the secret key kC of the client and a
variant kp. Having kr, the new server may try to obtain kC in order to pass the
check phases in the later epochs.

5.3 Proposed DD-POR Scheme

The notations which are used throughout the DD-POR scheme are given in Table 5.1.

Table 5.1: List of notations in the DD-POR scheme.

Notation Description

C client
F original file
m number of file blocks
n number of servers
d number of coded blocks in each server
k file block index (k ∈ {1, · · · ,m})
i server index (i ∈ {1, · · · , n})
j coded block index in each server (j ∈ {1, · · · , d})
vk file block (k ∈ {1, · · · ,m})
wk augmented block of vk
twk tag of wk
Si server
cij j-th coded block stored in Si
tij tag of cij

97

5.3. PROPOSED DD-POR SCHEME

l number of healthy servers used for data repair
Sr corrupted server
S ′r new server which is used to replace Sr
Fξq ξ-dimensional finite field F of a prime order q

|| concatenate operation
spotcheck number of coded blocks in a server which are checked during the check and

repair phases (spotcheck ∈ {1, · · · , d})

5.3.1 Keygen

1. Create augmented blocks :

• C divides F into m blocks: F = v1|| · · · ||vm. Each vk ∈ Fξq where k ∈
{1, · · · ,m}.
• C creates m augmented blocks as follows:

wk = (vk,

m︷ ︸︸ ︷
0, · · · , 0, 1︸ ︷︷ ︸

k

, 0, · · · , 0) ∈ Fξ+mq (5.1)

2. Keygen: The key manager generates two types of keys:

• The key of the client (kC): kC
rand← Fξ+mq .

• The one-time key of the new server every repair time (kr):

– Compute kp ← OrthogonalGen–SS(w1, · · · , wm). The property of kp is that
kp · wk = 0 where k ∈ {1, · · · ,m}.

– Compute the key for the new server:

kr = kC + kp ∈ Fξ+mq (5.2)

kC is static, only kp is re-computed every repair time.

– kr is sent to the new server if and only if the repair phase is executed.

5.3.2 Encode

1. C computes a tag for each augmented block as follows:

For ∀k ∈ {1, · · · ,m}:
twk = wk · kC ∈ Fq (5.3)

2. C computes nd coded blocks and nd corresponding tags as follows:

For ∀i ∈ {1, · · · , n},∀j ∈ {1, · · · , d}:

• C generates m coefficients: αijk
rand← Fq where k ∈ {1, · · · ,m}.

98

5.3. PROPOSED DD-POR SCHEME

• C computes code block:

cij =
m∑
k=1

αijk · wk ∈ Fξ+mq (5.4)

• C computes tag:

tij =
m∑
k=1

αijk · twk ∈ Fq (5.5)

3. C sends d pairs of {cij, tij} where j ∈ {1, · · · , d} to the server Si.

5.3.3 Check

1. C challenges each Si where i ∈ {1, · · · , n}:

• C generates a challenge chall which consists of spotcheck pairs of index and co-

efficient: chall = {(j1, β1), · · · , (jspotcheck, βspotcheck)} where jsp
rand← {1, · · · , d}

and βsp
rand← Fq for sp ∈ {1, · · · , spotcheck}.

• C sends chall to all the servers.

2. Si provides its aggregated coded block and aggregated tag as follows:

• Si combines coded blocks:

cSi =

spotcheck∑
sp=1

βsp · cijsp ∈ Fξ+mq (5.6)

• Si combines tags:

tSi =

spotcheck∑
sp=1

βsp · tijsp ∈ Fq (5.7)

• Si sends {cSi , tSi} to C.

3. C verifies Si as follows:

For ∀i ∈ {1, · · · , n}:

• C computes:
t′Si = cSi · kC ∈ Fq (5.8)

• C checks iff:
tSi = t′Si (5.9)

If the equation 5.9 holds, Si is healthy. Otherwise, Si is corrupted.

99

5.3. PROPOSED DD-POR SCHEME

5.3.4 Repair

Suppose Sr is corrupted. A set of l healthy servers {Si1 , · · · ,Sil} are required for repairing
Sr. Each of the servers {Si1 , · · · ,Sil} provides its aggregated coded block along with its
aggregated tag to the new server S ′r, which is used to replace Sr.

1. The new server S ′r challenges the l healthy servers:

• S ′r generates a challenge chall which consists of spotcheck pairs of index and co-

efficient: chall = {(j1, β1), · · · , (jspotcheck, βspotcheck)} where jsp
rand← {1, · · · , d}

and βsp
rand← Fq for sp ∈ {1, · · · , spotcheck}.

• S ′r sends chall to all the l healthy servers.

2. Si where i ∈ {i1, · · · , il} provides its aggregated coded block along with its aggre-
gated tag to S ′r as follows:

• Si combines coded blocks:

cSi =

spotcheck∑
sp=1

βsp · cijsp ∈ Fξ+mq (5.10)

• Si combines tags:

tSi =

spotcheck∑
sp=1

βsp · tijsp ∈ Fq (5.11)

• Si sends {cSi , tSi} to S ′r.

3. S ′r checks each Si where i ∈ {i1, · · · , il} as follows:

• S ′r computes:
t′Si = cSi · kr ∈ Fq (5.12)

• S ′r checks iff:
t′Si = tSi (5.13)

If the equation 5.13 holds, Si is healthy. Otherwise, Si is corrupted.

4. S ′r computes d new coded blocks and d corresponding tags for itself as follows:

For ∀j ∈ {1, · · · , d}:

• S ′r generates l coefficients: γri
rand← Fq where i ∈ {i1, · · · , il}.

• S ′r computes new coded block:

crj =

il∑
i=i1

γri · cSi ∈ Fξ+mq (5.14)

100

5.4. CORRECTNESS

• S ′r computes new tag:

trj =

il∑
i=i1

γri · tSi ∈ Fq (5.15)

5. S ′r stores d pairs of {crj, trj} where j ∈ {1, · · · , d}:

5.4 Correctness

1. The correctness of Equation 5.9 is proven as follows:

tSi =
∑spotcheck

sp=1 βsptijsp // because of Equation 5.7

=
∑spotcheck

sp=1 βsp(
∑m

k=1 αijspktwk) // because of Equation 5.5

=
∑spotcheck

sp=1

∑m
k=1 βspαijspktwk

=
∑spotcheck

sp=1

∑m
k=1 βspαijspk(wkkC) // because of Equation 5.3

=
∑spotcheck

sp=1

∑m
k=1 βspαijspkwkkC

t′Si = cSi · kC // because of Equation 5.8

= (
∑spotcheck

sp=1 βspcijsp)kC // because of Equation 5.6

=
∑spotcheck

sp=1 βspcijspkC
=

∑spotcheck
sp=1 βsp(

∑m
k=1 αijspkwk)kC // because of Equation 5.4

=
∑spotcheck

sp=1

∑m
k=1 βspαijspkwkkC

= tSi

2. The correctness of Equation 5.13 is proven as follows:

tSi =
∑spotcheck

sp=1 βsptijsp // because of Equation 5.11

=
∑spotcheck

sp=1 βsp(
∑m

k=1 αijspktwk) //because of Equation 5.5

=
∑spotcheck

sp=1

∑m
k=1 βspαijspktwk

=
∑spotcheck

sp=1

∑m
k=1 βspαijspk(wkkC) //because of Equation 5.3

=
∑spotcheck

sp=1

∑m
k=1 βspαijspkwkkC

t′Si = cSikr // because of Equation 5.12
= cSi(kC + kp) // because of Equation 5.2

= (
∑spotcheck

sp=1 βspcijsp)(kC + kp) // because of Equation 5.10

=
∑spotcheck

sp=1 βspcijsp(kC + kp)

=
∑spotcheck

sp=1 βsp(
∑m

k=1 αijspkwk)(kC + kp) //because of Equation 5.4

=
∑spotcheck

sp=1

∑m
k=1 βspαijspkwk(kC + kp)

Because kp is constructed such that kp · wk = 0 for all k ∈ {1, · · · ,m} using the
OrthogonalGen–SS, then we have:

t′Si =
∑spotcheck

sp=1

∑m
k=1 βspαijspkwkkC

= tSi

101

5.5. DYNAMIC OPERATIONS

5.5 Dynamic Operations

When the client C performs a dynamic operation on a file block (modification/ insertion/
deletion), herein introduces a challenge that how the servers deal with the coded blocks
which are related to the modified/ inserted/ deleted file block. The trivial solution is
to perform the encode phase again with the new data. This solution incurs very high
computation costs. In our solution, the old coded blocks and tags stored in the servers can
be re-used, and only a small additional computation is needed for the dynamic operations.

Before describing each type of dynamic operations, we give the following theorem, which
will form the basis of the dynamic operations.

Theorem 12. The basis vector of the matrix which consists of all m augmented blocks
(each augmented block belongs to Fξ+mq) is ξ.

Proof. Let M be the matrix in which each of m augmented blocks is a row in M . Namely,
M has the following form:

M =


w1

w2
...
wm

 =


ξ︷︸︸︷

v1

m︷ ︸︸ ︷
1 0 0 · · · 0

v2 0 1 0 · · · 0
...

...
...

...
...

...
vm 0 · · · · · · 0 1


︸ ︷︷ ︸

m×(ξ+m)

(5.16)

Because each augmented block wk ∈ Fξ+mq (where k ∈ {1, · · · ,m}) consists of vk ∈ Fξq
and m elements in Fq, the dimension of M is m× (ξ +m). Thus, we have:

• The number of pivot variables is m.

• The number free variables is (ξ +m)−m = ξ.

Therefore, the number of basis vectors of M is ξ.

5.5.1 Modification

Suppose that the client C modifies a file block vX to a new file block v′X where X ∈
{1, · · · ,m}. Let wX and w′X denote the augmented block of vX and v′X , respectively.

1. C re-computes kr for the next repair time:

Let M be the matrix which consists of m augmented blocks. After the modification,
only vX is changed and other elements in M are unaffected. Namely, M is changed
to M ′ as follows:

102

5.5. DYNAMIC OPERATIONS

M =



v1 1 0 0 · · · · · · · · · 0
v2 0 1 0 · · · · · · · · · 0
...

...
...

...
...

...
...

vX ︸ ︷︷ ︸
X

0 · · · 0 1 0 · · · 0

...
...

...
...

...
...

...
vm 0 · · · · · · · · · · · · 0 1


︸ ︷︷ ︸

m×(ξ+m)

(5.17)

M ′ =



v1 1 0 0 · · · · · · · · · 0
v2 0 1 0 · · · · · · · · · 0
...

...
...

...
...

...
...

v′X ︸ ︷︷ ︸
X

0 · · · 0 1 0 · · · 0

...
...

...
...

...
...

...
vm 0 · · · · · · · · · · · · 0 1


︸ ︷︷ ︸

m×(ξ+m)

(5.18)

Because M is changed and kC is not constructed from M , the modification does
not affect kC. However, because M is changed and kp is constructed from M , the
modification affects kr(= kC + kp). This is the reason we need to update kr. We
now describe how to update kr as follows.

• The number of columns in M is (ξ + m). The number of basis vectors of
M is ξ (Theorem 12). Thus, each of these ξ basis vectors of M consists of
(ξ+m) elements in Fq, denoted by Bψ = (b1, · · · , bξ+m)T where ψ ∈ {1, · · · , ξ}.
Similarly, each of the ξ basis vectors of M ′ also consists of (ξ+m) elements in
Fq, denoted by B′ψ = (b′1, · · · , b′ξ+m)T where ψ ∈ {1, · · · , ξ}. We need to find
B′ψ from Bψ for each ψ ∈ {1, · · · , ξ}.

• Because vX ∈ Fξq, vX is viewed as a set of ξ elements in Fq as: vX = {vX1, · · · , vXξ}.
Only vX ∈ Fξq in M is changed and other elements are not changed. For each
ψ ∈ {1, · · · , ξ}, C only needs to update the (ξ + X)-th element of Bψ by

103

5.5. DYNAMIC OPERATIONS

computing (−
∑ξ

µ=1 v
′
Xµbµ mod q). Namely,

B′ψ =



b1
...

bξ+X−1

−
ξ∑

µ=1

v′Xµbµ mod q

bξ+X+1
...

bξ+m


(5.19)

• After havingB′ψ for all ψ ∈ {1, · · · , ξ}, C then computes k′p ← Kg–SS(B′1, · · · , B′ξ).
• C finally sends k′r = kC + k′p to the new server when the next repair phase is

executed.

2. C computes the tag of w′k. :

• C computes the tag: t′X = w′X · kC ∈ Fq.
• C sends {w′X , t′X} to each Si.

3. Each server updates its coded blocks and tags:
Because a file block vk ∈ Fξq, vk can be viewed as a set of ξ elements in Fq as:
vk = {vk1, · · · , vkξ}. An augmented block wk ∈ Fξ+mq has the form:

wk = (vk1, · · · , vkξ,
m︷ ︸︸ ︷

0, · · · , 0, 1︸ ︷︷ ︸
k

, 0, · · · , 0) ∈ Fξ+mq (5.20)

Because a coded block cij =
∑m

k=1 αijkwk ∈ Fξ+mq , cij can be also viewed as a
set of (ξ + m) elements in Fq. Let cij[x] denote the x-th element of cij where
x ∈ {1, · · · , ξ +m}:

cij =



∑m
k=1 αijkvk1

...∑m
k=1 αijkvkξ
αij1

...
αijm



T

=



cij[1]
...

cij[ξ]
cij[ξ + 1]

...
cij[ξ +m]



T

(5.21)

104

5.5. DYNAMIC OPERATIONS

• Si updates coded blocks:
For ∀j ∈ {1, · · · , d}, the new coded block is computed as:

c′ij =



cij[1] + αijX(v′X1 − vX1)
...

cij[ξ] + αijX(v′Xξ − vXξ)
cij[ξ + 1]

...
cij[ξ +m]



T

(5.22)

• Si updates tags:
For ∀j ∈ {1, · · · , d}, the new tag is computed as:

t′ij = tij + αijX(t′X − tX) (5.23)

where cij and tij are the old coded block and tag. The coefficient αijX can be
found at the (ξ +X)-th element of cij.

The modification only needs O(ξ) for recomputing kr, O(1) for computing tag for w′k
and O(ξ) for updating a coded block and a tag.

5.5.2 Insertion

Suppose that the client C inserts a file block vI after the existing file block vX where
X ∈ {1, · · · ,m}. Let wI denote the augmented block of vI .

1. C modifies kC:

Before the insertion, an augmented block has (ξ +m) elements in Fq:

wk = (vk1, · · · , vkξ,
m︷ ︸︸ ︷

0, · · · , 0, 1︸ ︷︷ ︸
k

, 0, · · · , 0) ∈ Fξ+mq (5.24)

Thus, kC has (ξ+m) elements in Fq (says, kC = (k1, · · · , kξ+m)T). After the insertion,
an augmented block has (ξ +m+ 1) elements in Fq:

w′k = (vk1, · · · , vkξ,
m+1︷ ︸︸ ︷

0, · · · , 0, 1︸ ︷︷ ︸
k

, 0, · · · , 0) ∈ Fξ+m+1
q (5.25)

Thus, the new k′C also has (ξ+m+1) elements in Fq (says, k′C = (k′1, · · · , k′ξ+m+1)
T).

Given kC, we find k′C as follows:

• The first (ξ +X) elements of k′C are the same as the first (ξ +X) elements of
kC.

105

5.5. DYNAMIC OPERATIONS

• The (ξ +X + 1)-th element of k′C (denoted by kI) is computed as: kI
rand← Fq.

• The last (m − ξ − X) elements of k′C are the same as the last (m − ξ − X)
elements of kC.

Namely:
k′C = (k1, · · · , kξ+X , kI , kξ+X+1, · · · , kξ+m)T (5.26)

The reason that we construct such k′C will be explained in Step 3 (tag update).

2. C re-computes kr for the next repair time:

After the insertion, the matrix M is changed as follows:

• In each of the first X rows: a ‘0’ bit is padded in the final position.

• In the inserted row (wI): vI is placed in the first ξ elements, a ‘1’ bit is placed
at the (ξ + X + 1)-th element counted from the left, and ‘0’ bits are placed
elsewhere.

• In each of the last (m−X) rows: a ‘0’ bit is padded in the final position and
then, the ‘1’ bit is shipped to the next right position.

M =



v1 1 0 · · · · · · · · · · · · · · · 0
...

...
...

...
...

...
...

...
...

vX ︸ ︷︷ ︸
X

0 · · · 0 1 0 · · · · · · 0

vX+1 ︸ ︷︷ ︸
X + 1

0 · · · 0 0 1 0 · · · 0

...
...

...
...

...
...

...
...

...
vm 0 · · · · · · · · · · · · · · · 0 1


︸ ︷︷ ︸

m×(ξ+m)

(5.27)

M ′ =



v1 1 0 · · · · · · · · · · · · · · · · · · 0
...

...
...

...
...

...
...

...
...

...
vX ︸ ︷︷ ︸

X

0 · · · 0 1 0 · · · · · · · · · 0

vI ︸ ︷︷ ︸
X + 1

0 · · · 0 0 1 0 · · · · · · 0

vX+1 ︸ ︷︷ ︸
X + 2

0 · · · 0 0 0 1 0 · · · 0

...
...

...
...

...
...

...
...

...
...

vm ︸ ︷︷ ︸
m+ 1

0 · · · · · · · · · · · · · · · · · · 0 1


︸ ︷︷ ︸

(m+1)×(ξ+m+1)

(5.28)

106

5.5. DYNAMIC OPERATIONS

We now update k′r as follows:

• Let Bψ = (b1, · · · , bξ+m)T and B′ψ = (b′1, · · · , b′ξ+m+1)
T be the ξ basis vectors

of M and M ′, respectively. Given Bψ, we firstly find B′ψ as follows:

– The first (ξ+X) elements of B′ψ are the same as the first (ξ+X) elements
of Bψ: 

b′1 = b1
...
b′ξ+X = bξ+X

(5.29)

– The (ξ +X + 1)-th elements of B′ψ is computed as:

b′ξ+X+1 = (−
ξ∑

µ=1

vIµbµ) mod q (5.30)

– The last (m−X) elements of B′ψ are simply computed as:

b′t = bt−1 where t ∈ {ξ +X + 2, · · · , ξ +m+ 1} (5.31)

In other words:

B′ψ = (b1, · · · , bξ+X , −
ξ∑

µ=1

vIµbµ mod q , bξ+X+2, · · · , bξ+m+1)
T (5.32)

• After havingB′ψ for all ψ ∈ {1, · · · , ξ}, C then computes k′p ← Kg–SS(B′1, · · · , B′ξ).
• C finally sends k′r = k′C + k′p to the new server when the next repair phase is

executed.

3. C computes a tag for wI :

• C computes a tag for wI as: tI = wI · k′C.
• C sends {wI , tI} to Si.

4. Each server Si updates its coded blocks and tags:
Because a file block vk ∈ Fξq, vk can be viewed as a set of ξ elements in Fq as:
vk = {vk1, · · · , vkξ}. An augmented block wk ∈ Fξ+mq has the form:

wk = (vk1, · · · , vkξ,
m︷ ︸︸ ︷

0, · · · , 0, 1︸ ︷︷ ︸
k

, 0, · · · , 0) ∈ Fξ+mq (5.33)

Because a coded block cij =
∑m

k=1 αijkwk ∈ Fξ+mq , cij can be also viewed as a
set of (ξ + m) elements in Fq. Let cij[x] denote the x-th element of cij where

107

5.5. DYNAMIC OPERATIONS

x ∈ {1, · · · , ξ +m}:

cij =



∑m
k=1 αijkvk1

...∑m
k=1 αijkvkξ
αij1

...
αijm



T

=



cij[1]
...

cij[ξ]
cij[ξ + 1]

...
cij[ξ +m]



T

(5.34)

• Si updates its coded blocks as follows:

c′ij =



∑m
k=1 αijkvk1 + αijIvI1

...∑m
k=1 αijkvkξ + αijIvIξ

αij1
...

αijX
αijI

αij(X+1)
...

αijm



T

=



cij [1] + αijIvI1
...

cij [ξ] + αijIvIξ
cij [ξ + 1]

...
cij [ξ +X]
αijI

cij [ξ +X + 1]
...

cij [ξ +m]



T

(5.35)

where αijI
rand← Fq.

• Si updates its tags:
The tags of the augmented blocks before the insertion are:

108

5.5. DYNAMIC OPERATIONS



tw1

...
twX
tw(X+1)

...
twm


= M · kC

=



v1 1 0 · · · · · · · · · · · · · · · 0
...

...
...

...
...

...
...

...
...

vX ︸ ︷︷ ︸
X

0 · · · 0 1 0 · · · · · · 0

vX+1 ︸ ︷︷ ︸
X + 1

0 · · · 0 0 1 0 · · · 0

...
...

...
...

...
...

...
...

...
vm 0 · · · · · · · · · · · · · · · 0 1





k1
...

kξ+1
...

k(ξ+X)

k(ξ+X+1)
...

kξ+m



=



v11k1 + · · ·+ v1ξkξ + kξ+1
...

vX1k1 + · · ·+ vXξkξ + kξ+X
v(X+1)1k1 + · · ·+ v(X+1)ξkξ + kξ+X+1

...
vm1k1 + · · ·+ vmξkξ + kξ+m



(5.36)

By constructing k′C in Step 1, the tags of the augmented blocks after the inser-
tion are:

109

5.5. DYNAMIC OPERATIONS



t′w1
...
t′wX
tI

t′w(X+1)

...
t′wm+1


= M ′ · k′C

=



v1 1 0 · · · · · · · · · · · · · · · · · · 0
...

...
...

...
...

...
...

...
...

...
vX ︸ ︷︷ ︸

X

0 · · · 0 1 0 · · · · · · · · · 0

vI ︸ ︷︷ ︸
X + 1

0 · · · 0 0 1 0 · · · · · · 0

vX+1 ︸ ︷︷ ︸
X + 2

0 · · · 0 0 0 1 0 · · · 0

...
...

...
...

...
...

...
...

...
...

vm ︸ ︷︷ ︸
m+ 1

0 · · · · · · · · · · · · · · · · · · 0 1





k1
...
kξ
kξ+1

...
k(ξ+X)

kI
k(ξ+X+1)

...
kξ+m



=



v11k1 + · · ·+ v1ξkξ + kξ+1
...

vX1k1 + · · ·+ vXξkξ + kξ+X
vI1k1 + · · ·+ vIξkξ + kI

v(X+1)1k1 + · · ·+ v(X+1)ξkξ + kξ+X+1
...

vm1k1 + · · ·+ vmξkξ + kξ+m


(5.37)

We can observe that before and after the insertion, the first (X) tags and the
last (m−X) tags are not changed; only a new tag tI , which is the tag of wI , is
inserted. Furthermore, the old tag of cij is computed as tij =

∑m
k=1 αijk · twk .

We are now ready to compute the tag for c′ij as follows:

tc′ij =
X∑
k=1

αijktwk + αijItI +
m∑

k=X+1

αijktwk = tij + αijItI (5.38)

where αijI is the same as in Equation 5.35.

The insertion only needs O(1) for recomputing kC, O(ξ) for recomputing kr, O(1) for
computing tag for wI and O(ξ) for updating a coded block and a tag.

110

5.5. DYNAMIC OPERATIONS

5.5.3 Deletion

Suppose that the client C deletes the X-th file block (vX). Let wX denote the augmented
block of vX .

1. C modifies kC:

Similar to the insertion operation, before the deletion, the key of C has the form:
kC = (k1, · · · , kξ+m)T . After the deletion, C simply removes the (ξ +X)-th element
in kC. Namely,

k′C = (k1, · · · , kξ+X−1, kξ+X+1, · · · , kξ+m)T (5.39)

The reason to construct such k′C will be explained in Step 3 (tag update).

2. C recomputes kr for the next repair time:

After the deletion, the matrix M is changed as follows:

• In each of the first (X − 1) rows, the ‘0’ bit at the final position is removed.

• The X-th row is removed.

• In each of the last (m − X) rows, the ‘1’ bit is shipped to the previous left
position and then, the ‘0’ bit at the final position is removed.

M =



v1 1 0 · · · · · · · · · · · · · · · · · · 0
...

...
...

...
...

...
...

...
...

...
vX−1 ︸ ︷︷ ︸

X − 1

0 · · · 0 1 0 · · · · · · · · · 0

vX ︸ ︷︷ ︸
X

0 · · · 0 0 1 0 · · · · · · 0

vX+1 ︸ ︷︷ ︸
X + 1

0 · · · 0 0 0 1 0 · · · 0

...
...

...
...

...
...

...
...

...
...

vm ︸ ︷︷ ︸
m

0 · · · · · · · · · · · · · · · · · · 0 1


︸ ︷︷ ︸

m×(ξ+m)

(5.40)

111

5.5. DYNAMIC OPERATIONS

M ′ =



v1 1 0 · · · · · · · · · · · · · · · 0
...

...
...

...
...

...
...

...
...

vX−1 ︸ ︷︷ ︸
X − 1

0 · · · 0 1 0 · · · · · · 0

vX+1 ︸ ︷︷ ︸
X

0 · · · 0 0 1 0 · · · 0

...
...

...
...

...
...

...
...

...
vm ︸ ︷︷ ︸

m− 1

0 · · · · · · · · · · · · · · · 0 1


︸ ︷︷ ︸

(m−1)×(ξ+m−1)

(5.41)

We now update k′r as follows:

• Let Bψ = (b1, · · · , bξ+m)T and B′ψ = (b1, · · · , bξ+m−1)T where ψ ∈ {1, · · · , ξ}
be the ξ basis vectors of M and M ′, respectively.

• To compute B′ψ from Bψ, C simply removes the (ξ +X + 1)-th element of Bψ.
Namely,

B′ψ = (b1, · · · , bX , bX+2, · · · , bξ+m)T (5.42)

• After having B′ψ for all ψ ∈ {1, · · · , ξ}, C computes k′p as:

k′p ← Kg–SS(B′1, · · · , B′ξ) (5.43)

• C finally sends k′r = k′C + k′p to the new server when the next repair phase is
executed.

3. Si updates its coded blocks and tags :
Because a file block vk ∈ Fξq, vk can be viewed as a set of ξ elements in Fq as:
vk = {vk1, · · · , vkξ}. An augmented block wk ∈ Fξ+mq has the form:

wk = (vk1, · · · , vkξ,
m︷ ︸︸ ︷

0, · · · , 0, 1︸ ︷︷ ︸
k

, 0, · · · , 0) ∈ Fξ+mq (5.44)

Because a coded block cij =
∑m

k=1 αijkwk ∈ Fξ+mq , cij can be also viewed as a
set of (ξ + m) elements in Fq. Let cij[x] denote the x-th element of cij where
x ∈ {1, · · · , ξ +m}:

cij =



∑m
k=1 αijkvk1

...∑m
k=1 αijkvkξ
αij1

...
αijm



T

=



cij[1]
...

cij[ξ]
cij[ξ + 1]

...
cij[ξ +m]



T

(5.45)

112

5.5. DYNAMIC OPERATIONS

• Si updates its coded blocks:

c′ij =



∑m
k=1 αijkvk1 − αijXvX1

...∑m
k=1 αijkvkξ − αijXvXξ

αij1
...

αij(X−1)
αij(X+1)

...
αijm



T

=



cij[1]− αijXvX1
...

cij[ξ]− αijXvXξ
cij[ξ + 1]

...
αij[ξ +X − 1]
αij[ξ +X + 1]

...
αij[ξ +m]



T

(5.46)

where αijX = cij[ξ +X].

• Si updates its tags as follows:
The tags of the augmented blocks before the deletion are:

113

5.5. DYNAMIC OPERATIONS



tw1

...
twX−1

twX
tw(X+1)

...
twm


= M · kC

=



v1 1 0 · · · · · · · · · · · · · · · · · · 0
...

...
...

...
...

...
...

...
...

...
vX−1 ︸ ︷︷ ︸

X − 1

0 · · · 0 1 0 · · · · · · · · · 0

vX ︸ ︷︷ ︸
X

0 · · · 0 0 1 0 · · · · · · 0

vX+1 ︸ ︷︷ ︸
X + 1

0 · · · 0 0 0 1 0 · · · 0

...
...

...
...

...
...

...
...

...
...

vm 0 · · · · · · · · · · · · · · · · · · 0 1





k1
...
kξ
kξ+1

...
kξ+m



=



v11k1 + · · ·+ v1ξkξ + kξ+1
...

v(X−1)1k1 + · · ·+ v(X−1)ξkξ + kξ+X−1
vX1k1 + · · ·+ vXξkξ + kξ+X

v(X+1)1k1 + · · ·+ v(X+1)ξkξ + kξ+X+1
...

vm1k1 + · · ·+ vmξkξ + kξ+m


(5.47)

By constructing k′C as Step 1, the tags of all augmented blocks after the deletion
are:

114

5.6. SECURITY ANALYSIS



t′w1
...

t′wX−1

t′w(X+1)

...
t′wm+1


= M ′ · k′C

=



v1 1 0 · · · · · · · · · · · · · · · 0
...

...
...

...
...

...
...

...
...

vX−1 ︸ ︷︷ ︸
X − 1

0 · · · 0 1 0 · · · · · · 0

vX+1 ︸ ︷︷ ︸
X

0 · · · 0 0 1 0 · · · 0

...
...

...
...

...
...

...
...

...
vm ︸ ︷︷ ︸

m− 1

0 · · · · · · · · · · · · · · · 0 1





k1
...
kξ
kξ+1

...
kξ+X−1
kξ+X+1

...
kξ+m



=



v11k1 + · · ·+ v1ξkξ + kξ+1
...

v(X−1)1k1 + · · ·+ v(X−1)ξkξ + kξ+X−1
v(X+1)1k1 + · · ·+ v(X+1)ξkξ + kξ+X+1

...
vm1k1 + · · ·+ vmξkξ + kξ+m



(5.48)

We observe that before and after the deletion, the X-th tag is removed and
the other tags are still the same. The old tag of cij is computed as: tij =∑m

k=1 αijktwk . We compute the tag for c′ij as follows:

tc′ij =
X−1∑
k=1

αijktwk +
m∑

k=X+1

αijktwk = tij − αijXtX (5.49)

where αijX is the same as in Equation 5.46.

The deletion only needs O(1) for recomputing kC, O(ξ) for recomputing kr, O(ξ) for
updating a coded block and tag.

5.6 Security Analysis

5.6.1 Pollution Attack

We show that our scheme is secure from the pollution attack via the following theorem.

115

5.6. SECURITY ANALYSIS

Theorem 13. The DD-POR is secured from the pollution attack.

Proof. In the check phase, the server Sr is detected as a corrupted server. Then, a set of
l servers Si1 , · · · ,Sil are required to provide their responses which consist of aggregated
coded blocks (as in Equation 5.10) and aggregated tags (as in Equation 5.11) to the
new server S ′r for repairing Sr. Suppose that Sx, which is a server in the set of the l
servers Si1 , · · · ,Sil , is the malicious server which performs the pollution attack. Instead
of sending the valid pair of aggregated coded block and aggregated tag {cx, tx} to the new
server S ′r, Sx sends a pair of forged coded block and forged tag (c′′x, t

′′
x) to the new server

S ′r.
The key idea here is that S ′r always checks each aggregated coded block which is provided

from each of the servers Si1 , · · · ,Sil . Although Sx already passed the check phase, Sx must
be checked again by S ′r in the repair phase before S ′r uses the aggregated coded block of
Sx for repairing Sr. Namely, we analyse the probability of Sx as follows. (c′′x, t

′′
x) holds the

verification t′′x = c′′x · κ′ if Sx can obtain kr because the new server S ′r is assumed to not
collude with the other servers and kr is sent to S ′r via a secure channel.

• Using the brute force search: the probability to find kr is 1
qξ+m

because kr ∈ Fξ+mq .
Formally:

PrBruteForce[Sx → kr] =
1

qξ+m
(5.50)

• Using the access to the KeyGen algorithm: because kr = kC+kp, the problem to find
kr now becomes the problem to find kC and kp in the OrthogonalGen–SS algorithm.

Because kC
rand← Fξ+mq , the probability to find kC is:

PrKeyGen[Sx → kC] =
1

q(ξ+m)
(5.51)

kp is computed as:

kp ← OrthogonalGen–SS(w1, · · · , wm)

In the OrthogonalGen–SS algorithm, after finding the basis vectors B1, · · · , Bξ, kp is
computed as:

– rx ← f(kPRF , x) ∈ Fq,∀x ∈ {1, · · · , ξ}.
– kp ←

∑ξ
x=1 rx ·Bx ∈ Fξ+mq .

where f is a pseudo-random function. The probability to find each rx is (Pr[f] + 1
q
).

The probability to find all r1, · · · , rξ is (Pr[f] + 1
qξ

). It is not (ξPr[f] + 1
qξ

) because

Pr[f] can be re-used for finding other ri. This is also the probability to find kp.
Formally:

PrKeyGen[Sx → kp] = Pr[f] +
1

qξ
(5.52)

From Equation 5.51 and Equation 5.52, the probability for Sx to find kr using the
access to KeyGen algorithm is:

116

5.6. SECURITY ANALYSIS

PrKeyGen[Sx → kr] = PrKeyGen[Sx → kC] + PrKeyGen[Sx → kp]

=
1

q(ξ+m)
+ Pr[f] +

1

qξ
(5.53)

From Equation 5.50 and Equation 5.53, the probability for Sx to pass the verification
of the new server S ′r in the repair phase is as follows:

Pr[Sx → verify(RepairPhase) = 1] = PrBruteForce[Sx → kr] + PrKeyGen[Sx → kr]

= 2
1

qξ+m
+ Pr[f] +

1

qξ
(5.54)

If the pseudo-random function f is unforgeable and q is chosen large enough (e.g., 160
bits), the probability for Sx to pass the verification of the new server S ′r in the repair
phase is negligible.

We also consider that the S ′r itself is a malicious server who will perform the pollution
attack in the next epoch. Even though S ′r holds kr, S ′r cannot pass the verification in the
repair phase because kr is a one-time repair key. Another new server will be given a key
k′r 6= kr.

5.6.2 Curious Attack

We also show that our scheme is secure from the curious attack via the following theorem.

Theorem 14. The DD-POR is secured from the curious attack.

Proof. The new server is given the key kr = kC + kp ∈ Fξ+mq .

• Via the brute force search: the probability of the new server to find kC is 1/qξ+m.
This probability is from searching kC directly or searching kp and then obtaining
kC by kC = kr − kp. If q is chosen large enough (e.g, 160 bits), the probability is
1/(2160)ξ+m, which is negligible.

• Via the access to the Keygen algorithm: the probability of the new server to find kC
from learning kp and then obtaining kC by kC = kr − kp is: Pr[f] + 1

qξ
. If q is chosen

large enough and f is unforgeable, the probability is negligible.

5.6.3 File reconstruction condition

We show the condition to reconstruct F via the following theorem.

Theorem 15. The original file F can be reconstructed if in any epoch, at least l out of n
servers collectively store m coded blocks which are linearly independent combinations of m
augmented blocks, and the matrix consisting of the accumulated coefficients has full rank
(i.e, the rank is m).

117

5.7. EFFICIENCY ANALYSIS

Proof. Si contains d coded blocks: cij where j ∈ {1, · · · , d}. cij is computed from m
augmented blocks w1, · · · , wm by cij =

∑m
k=1 αijkwk ∈ Fξ+mq . Therefore, to reconstruct F ,

m augmented blocks are viewed as the unknowns that need to be solved. To solve these
unknowns, at least m coded blocks are required such that the coefficient matrix has full
rank. 

c(ij)1 =
∑m

k=1 α(ijk)1
· wk

c(ij)2 =
∑m

k=1 α(ijk)2
· wk

· · ·
c(ij)m =

∑m
k=1 α(ijk)m

· wk

(5.55)

Let l be the number of servers (l < n) which collectively stores these m coded blocks.
Because each server stores d coded blocks, l = dm

d
e.

5.7 Efficiency Analysis

The feature and efficiency comparison between the DD-POR scheme and the previous
scheme (RDC-NC, MD-POR, NC-Audit) is depicted in Table 5.2. Because the MD-POR
and NC-Audit schemes focus on the public authentication, the system models have one
more entity called TPA (Third Party Auditor) who is delegated the task of checking the
servers by the client C. For the fair comparison, we assume that the check task in these
schemes is performed by the client C.

5.7.1 Encode Computation

• In all the schemes, C needs O(m) to compute m tags for m augmented blocks, and
O(mnd) to compute nd coded blocks along with the tags. The complexity on the
client-side is thus O(mnd).

• Meanwhile, the servers only need to receive the coded blocks and tags from C without
any computation. The complexity on the server-side is thus O(1).

5.7.2 Check Computation

• In all the schemes, C needs O(1) to verify the aggregated coded block and tag of
each server. Therefore, the complexity on the client-side is O(n) to verify n servers.

• Meanwhile, each server needs to combine spotcheck coded blocks and spotcheck
tags to compute the aggregated coded block and aggregated tag, respectively where
spotcheck ∈ {1, · · · , d}. Therefore, the complexity of n servers is O(dn).

5.7.3 Repair Computation

• In the RDC-NC scheme, C needs O(l) to check l pairs of the aggregated coded
block and aggregated tag from l healthy servers, and needs O(dl) to compute d

118

5.7. EFFICIENCY ANALYSIS

T
ab

le
5.

2:
E

ffi
ci

en
cy

co
m

p
ar

is
on

b
et

w
ee

n
th

e
D

D
-P

O
R

an
d

p
re

v
io

u
s

sc
h
em

es

R
D

C
-N

C
[6

1]
M

D
-P

O
R

N
C

-A
u

d
it

[6
2]

D
D

-P
O

R

F
e
a
tu

re
D

ir
ec

t
re

p
ai

r
N

o
Y

es
N

ot
co

m
p
le

te
d

(*
)

Y
es

D
y
n
am

ic
op

er
at

io
n
s

N
o

N
o

N
o

Y
es

S
y
m

m
et

ri
c

ke
y

Y
es

Y
es

Y
es

Y
es

E
n
co

d
e

C
li
en

t-
si

d
e

O
(m
n
d
)

O
(m
n
d
)

O
(m
n
d
)

O
(m
n
d
)

C
o
m

p
u
ta

ti
o
n

S
er

ve
r-

si
d
e

O
(1

)
O

(1
)

O
(1

)
O

(1
)

C
h
e
ck

C
li
en

t-
si

d
e

O
(n

)
O

(n
)

O
(n

)
O

(n
)

C
o
m

p
u
ta

ti
o
n

S
er

ve
r-

si
d
e

O
(d
n

)
O

(d
n

)
O

(d
n

)
O

(d
n

)

R
e
p

a
ir

C
li
en

t-
si

d
e

O
(d
l)

O
(1

)
O

(1
)

O
(1

)
C

o
m

p
u
ta

ti
o
n

S
er

ve
r-

si
d
e

O
(d
l)

O
(d
l)

O
(d
l)

O
(d
l)

M
o
d

ifi
ca

ti
o
n

C
li
en

t-
si

d
e

N
/A

N
/A

N
/A

O
(ξ

)
C

o
m

p
u
ta

ti
o
n

S
er

ve
r-

si
d
e

N
/A

N
/A

N
/A

O
(d
n
ξ)

In
se

rt
io

n
C

li
en

t-
si

d
e

N
/A

N
/A

N
/A

O
(ξ

)
C

o
m

p
u
ta

ti
o
n

S
er

ve
r-

si
d
e

N
/A

N
/A

N
/A

O
(d
n
ξ)

D
e
le

ti
o
n

C
li
en

t-
si

d
e

N
/A

N
/A

N
/A

O
(ξ

)
C

o
m

p
u
ta

ti
o
n

S
er

ve
r-

si
d
e

N
/A

N
/A

N
/A

O
(d
n
ξ)

N
/A

m
ea

n
s

n
ot

ap
pl

ic
ab

le
du

e
to

th
e

la
ck

of
su

pp
or

t.
(*

)
In

th
e

N
C

-A
u

di
t,

th
e

di
re

ct
re

pa
ir

ca
n

le
ad

to
th

e
po

ll
u

ti
on

at
ta

ck
be

ca
u

se
th

e
n

ew
se

rv
er

ca
n

n
ot

ch
ec

k
th

e
pr

ov
id

ed
co

de
d

bl
oc

ks
.

119

5.8. NUMERIC EXAMPLE

pairs of new coded blocks and new tags using the linear combinations of l pairs of
the provided coded blocks and tags. Therefore, the complexity on the client-side is
O(dl). In the MD-POR, NC-Audit and DD-POR schemes, the complexity on the
client-side is O(1) because C does not need to do anything due to the direct repair
feature.

• In the RDC-NC scheme, each of l servers combines its spotcheck coded blocks
and spotcheck tags to compute the aggregated coded block and aggregated tag,
respectively where spotcheck ∈ {1, · · · , d}. Therefore, the complexity on the server-
side is O(dl). In the MD-POR, NC-Audit and DD-POR schemes, l healthy servers
perform as in the RDC-NC (O(dl)), and the new server performs the task of C as
in the RDC-NC (O(dl)). Therefore, the complexity on the server-side is O(dl).

5.7.4 Modification Computation

• In the DD-POR, C only needs O(ξ) to recompute kr (Step 1), and O(1) to compute
the new tag of the modified augmented block (Step 2). Therefore, the complexity
on the client-side is O(ξ).

• Meanwhile, each server needs O(dξ) to update the coded blocks and tags (Step 3).
Therefore, the complexity of n servers is O(dnξ).

5.7.5 Insertion Computation

• In the DD-POR, C only needs O(1) to recompute kC (Step 1), O(ξ) to recompute
kr (Step 2), and O(1) to compute the tag of the inserted augmented block (Step 3).
Therefore, the complexity on the client-side is O(ξ).

• Meanwhile each server needs O(dξ) to update the coded blocks and tags (Step 4).
Therefore, the complexity of n servers is O(dnξ).

5.7.6 Deletion Computation

• In the DD-POR, C only needs O(1) to recompute kC (Step 1), and O(ξ) to recompute
kr (Step 2). Thus, the complexity on the client-side is O(ξ).

• Meanwhile each server needs O(dξ) to update the coded blocks and tags (Step 3).
Thus, the complexity of n servers is O(dnξ).

5.8 Numeric Example

Suppose m = 3, ξ = 1, q = 7. The file blocks are:
v1 = 3 ∈ F1

7

v2 = 4 ∈ F1
7

v3 = 2 ∈ F1
7

(5.56)

120

5.8. NUMERIC EXAMPLE

The augmented blocks are:
w1 = (v1, 1, 0, 0) = (3, 1, 0, 0) ∈ F4

7

w2 = (v2, 0, 1, 0) = (4, 0, 1, 0) ∈ F4
7

w3 = (v3, 0, 0, 1) = (2, 0, 0, 1) ∈ F4
7

(5.57)

5.8.1 Generating Keys

Key for client. kC
rand← F4

7. Suppose:

kC =


k1
k2
k3
k4

 =


1
2
3
4

 ∈ F4
7 (5.58)

Key for new server. kr = kC + kp ∈ F4
7. kp is generated such that wkkp = 0 for all

k ∈ {1, · · · ,m} as follows:

• Construct a matrix M consisting of all augmented blocks:

M =

w1

w2

w3

 =

3 1 0 0
4 0 1 0
2 0 0 1

 (5.59)

• Transform M by Gaussian row echelon in F7 to obtain M ′ as follows:

M ′ =

 1 5 0 0

0 1 1 0

0 0 1 5

 (5.60)

• Let x = (x1, x2, x3, x4)
T . Solve M ′x = 0, we have:

x1 + 5x2 = 0
x2 + x3 = 0
x3 + 5x4 = 0

(5.61)

• From M ′, determine free variables = {x4} and pivot variables = {x1, x2, x3}. Equa-
tion 5.61 yields: 

x1
x2
x3
x4

 = x4


3
5
2
1

 (5.62)

121

5.8. NUMERIC EXAMPLE

• Thus, the basis vector of M is:

B =


b1
b2
b3
b4

 =


3
5
2
1

 (5.63)

• Generate randomly r = 3 in F7.

• Compute kp as:

kp = rB = 3


3
5
2
1

 mod 7 =


2
1
6
3

 (5.64)

It is clear that: 
w1kp mod 7 = 0
w2kp mod 7 = 0
w3kp mod 7 = 0

(5.65)

• Finally, kr is computed as:

kr = kC + kp =


1
2
3
4

+


2
1
6
3

 mod 7 =


3
3
2
0

 (5.66)

5.8.2 Dynamic Operations

Modification

Suppose v2 = 4 is modified to v′2 = 5. Matrix M is changed as:

M =

3 1 0 0
4 0 1 0
2 0 0 1

→M ′ =

 3 1 0 0

5 0 1 0
2 0 0 1

 (5.67)

1. C recomputes kr:

• Recompute basis vector:

B′ =


b1
b2

−b1v′2 mod 7
b4

 =


3
5
6
1

 (5.68)

• Generate randomly r′ = 2 ∈ F7.

122

5.8. NUMERIC EXAMPLE

• Recompute kp:

k′p = r′B′ = 2


3
5
6
1

 mod 7 =


6
3
5
2

 (5.69)

It is clear that: 
kpw1 mod 7 = 0
kpw

′
2 mod 7 = 0

kpw3 mod 7 = 0
(5.70)

• Recompute kr:

k′r = kC + k′p =


1
2
3
4

+


6
3
5
2

 mod 7 =


0
5
1
6

 (5.71)

2. C computes tag for w′2:

• C computes:

t′2 = w′2kC = (5, 0, 1, 0)


1
2
3
4

 mod 7 = 1 (5.72)

• C sends {w′2, t′2} to Si

3. Si recomputes coded blocks and tags :

Let {cij[1], · · · , cij[4]} denote the elements of cij:

cij =


∑m

k=1 αijkwk
αij1
αij2
αij3


T

=


cij[1]
cij[2]
cij[3]
cij[4]


T

(5.73)

Si update coded blocks:

cij =


cij[1] + αij2(w

′
2 − w2)

cij[2]
cij[3]
cij[4]


T

(5.74)

Si updates tags:

t′ij = tij + αij2(t
′
2 − t2) (5.75)

where αij2 = cij[3].

123

5.8. NUMERIC EXAMPLE

Insertion

Suppose vI = 1 is inserted after v2. The matrix M is changed as follows:

M =

3 1 0 0
4 0 1 0
2 0 0 1

→M ′ =


3 1 0 0 0
4 0 1 0 0
1 0 0 1 0
2 0 0 0 1

 (5.76)

1. C recomputes kC:

k′C =


k1
k2
k3

kI
rand← Fq
k4

 =


1
2
3
5
4

 (5.77)

2. C recomputes kr:

• Recompute basis vector:

B′ =


b1
b2
b3

−vIb1 mod 7
b4

 =


3
5
2
4
1

 (5.78)

• Generate randomly r′ = 4 ∈ F7.

• Recompute kp:

k′p = r′B′ = 4


3
5
2
4
1

 mod 7 =


5
6
1
2
4

 (5.79)

It is clear that: 
w1k

′
p mod 7 = 0

w2k
′
p mod 7 = 0

wIk
′
p mod 7 = 0

w3k
′
p mod 7 = 0

(5.80)

• Recompute kr:

k′r = k′C + k′p =


1
2
3
5
4

+


5
6
1
2
4

 mod 7 =


6
1
4
0
1

 (5.81)

124

5.8. NUMERIC EXAMPLE

3. C computes tag for w′2:

• C computes:

tI = wIk
′
C = (1, 0, 0, 1, 0)


1
2
3
5
4

 mod 7 = 6 (5.82)

• C sends {wI , tI} to Si.

4. Si recomputes coded blocks and tags:

Let {cij[1], · · · , cij[4]} denote the elements of cij:

cij =


∑m

k=1 αijkwk
αij1
αij2
αij3


T

=


cij[1]
cij[2]
cij[3]
cij[4]


T

(5.83)

Si updates coded blocks:

c′ij =


cij[1] + αijIwI

cij[2]
cij[3]

αijI
rand← Fq
cij[4]


T

(5.84)

Si updates tags:
t′ij = tij + αijItI (5.85)

Deletion

Suppose v2 = 4 is deleted. The matrix M is changed as follows:

M =

3 1 0 0
4 0 1 0
2 0 0 1

→M ′ =

(
3 1 0
2 0 1

)
(5.86)

1. C recomputes kC:

k′C =

k1k2
k4

 =

1
2
4

 (5.87)

2. C recomputes kr:

125

5.8. NUMERIC EXAMPLE

• Recompute basis vector:

B′ =

b1b2
b4

 =

3
5
1

 (5.88)

• Generate randomly r′ = 3 ∈ F7.

• Recompute kp:

k′p = r′B′ = 3

3
5
1

 mod 7 =

2
1
3

 (5.89)

It is clear that: {
w1k

′
p mod 7 = 0

w3k
′
p mod 7 = 0

(5.90)

• Recompute kr:

k′r = k′C + k′p =

1
2
4

+

2
1
3

 mod 7 =

3
3
0

 (5.91)

3. Si recomputes coded blocks and tags:

Let {cij[1], · · · , cij[4]} denote the elements of cij:

cij =


∑m

k=1 αijkwk
αij1
αij2
αij3


T

=


cij[1]
cij[2]
cij[3]
cij[4]


T

(5.92)

Si updates coded blocks:

c′ij =


cij[1]− αij2w2

cij[2]
cij[3]
cij[4]


T

(5.93)

Si updates tags:
t′ij = tij − αij2t2 (5.94)

where αij2 = cij[3].

126

5.9. SUMMARY

5.9 Summary

In this chapter, we have proposed a network coding-based POR scheme, name the DD-
POR scheme, to support the direct repair and the dynamic operations in a symmetric
key setting. The main idea is based on the inter MAC technique which can generate a
key such such that the key is orthogonal to the augmented blocks. The security analysis
shows that the scheme can prevent the pollution attack and curious attack. The efficiency
analysis is given based on complexity theory to compare with the previous schemes.

127

Chapter 6

ND-POR: Network Coding and
Dispersal Coding for POR

6.1 System Model

The ND-POR scheme has the following two entities:

• The first entity is the client who can be individuals or organizations. The client
outsources his/her data to a cloud storage and relies on the cloud storage for data
storage and maintenance.

• The second entity is the cloud servers which are managed by a cloud provider. The
cloud servers store the data of the clients and have responsibility to prove to the
client that the stored data are always available and intact.

6.2 Adversarial Model

The ND-POR scheme considers an adversary A as follows. A may control the servers
by corrupting the servers and robbing all the privileges of the servers. If A has not
corrupted a server, A cannot do anything because that all the data and the keys between
the client and the servers are assumed to be transmitted via a secure channel. After A
corrupts a server, A can modify/replace/forge data stored on that server and pretend to
be a healthy server by providing a fake valid MAC tag to the client, can prevent the client
from recovering the original file, and can perform the below four attacks (small corruption
attack, large corruption attack, replay attack and pollution attack). A restriction of A
is that A can control at most (n − h) out of the n servers within any time step (called
epoch). More concretely, after corrupting a server, A can perform as follows:

1. Accessing to the encode and check phases to output a codeword c such that A can
pass the verification without being detected with an advantage defined as:

AdvND−POR
A = Pr[κ← KGenECCκ(1

λ); c← AMTagECCκ(·),MVerECCκ(·):
MVerECCκ(c) = (m, 1) ∧m is not queried to MTagECCκ(·)]

128

6.2. ADVERSARIAL MODEL

2. Preventing F to be recovered in the repair phase.

3. Performing the following four attacks:

• Small corruption attack. A corrupts at most a t-fraction of the file F with a
small data unit, where t = n−l+1

2
, in order to hide the data loss incidents. This

applies to the servers that want to preserve their reputation. To prevent the
small corruption attack, the ECC is used to detect and correct errors [10,26].

• Large corruption attack. A corrupts more than a t-fraction of the file F
with a large data unit, where t is the same parameter as in the small corruption
attack, to discard a significant fraction of the data. This applies to the servers
who want to sell the storage resource to multiple clients. To prevent the large
data corruption, the spot check method is proposed [9,102] in which the client
randomly samples small portions of the data. Then, the server returns a com-
putation over these portions of the data to the client. The results are checked
by MACs. The spot check can only prevent the large corruption attack but
cannot prevent the small corruption attack [8, 102].

• Replay attack. A tries to prevent the client from repairing the corruption by
re-using the old coded blocks instead of the current coded blocks and providing
these old coded blocks to the client in the repair phase. For example:

– The client encodes the augmented blocks {b1, b2, b3} into six coded blocks:
c11 = b1 and c12 = b2+b3 (stored on the server S1), c21 = b3 and c22 = b1+b2
(stored on the server S2), c31 = b1 + b3 and c32 = b2 + b3 (stored on the
server S3).

– In epoch 1, suppose that S3 is corrupted.

– In epoch 2, the client repairs S3 by two new coded blocks: c′31 = b1+b2+2b3
and c′32 = 2b1 + b2.

– In the end of epoch 2, suppose that S1 is corrupted.

– In epoch 3, S1 is repaired by two new coded blocks: c′11 = 3b1 + 3b2 and
c′12 = 3b2 + 3b3. At this time, A re-uses the old coded blocks c31 and c32
of S3 instead of c′31 and c′32.

– Thus, if S2 is corrupted in epoch 4, the linear combination between the
coded blocks of S1 and S2 is unable to repair S2.

• Pollution attack. A uses a valid data to avoid detection in the check phase,
but provides an invalid data in the repair phase. For example:

– Encode: the client encodes the augmented blocks {b1, b2, b3} into six coded
blocks: c11 = b1 and c12 = b2 + b3 (stored on the server S1), c21 = b3 and
c22 = b1 + b2 (stored on the server S2), c31 = b1 + b3 and c32 = b2 + b3
(stored on the server S3).

– Check: suppose that the corrupted server S3 is detected.

– Repair: S3 is repaired by two new coded blocks: c′31 = b1 + b2 + 2b3 and
c′32 = 2b1 + b2. At this time, A corrupts S1 without detection because this

129

6.3. PROPOSED ND-POR SCHEME

time is the repair phase, not the check phase. To repair S3, suppose that
the client requests coded blocks from S1 and S2. S1 then provides invalid
coded blocks to the client.

One of the contributions is to prevent the small corruption attack. The other three
attacks are still prevented in this ND-POR scheme by using the same solution as the
RDC-NC scheme [61]. These are discussed in the security analysis of the ND-POR
scheme.

6.3 Proposed ND-POR Scheme

Throughout this ND-POR scheme, the notations described in Table 6.1 are used.

Table 6.1: List of notations in the ND-POR scheme

Notation Description

C client
F original file
m number of file blocks
n number of servers
l number of NC-servers
n− l number of DC-servers
β number of blocks stored on a server.
k file block index (k ∈ {1, · · · ,m})
i server index (i ∈ {1, · · · , n})
j coded block index in a server (j ∈ {1, · · · , β})
vk file block (k ∈ {1, · · · ,m})
bk augmented block of vk (k ∈ {1, · · · ,m})
Si server (i ∈ {1, · · · , n})
cij coded block (i ∈ {1, · · · , l} and j ∈ {1, · · · , β})
dij dispersal coding parity block (i ∈ {l + 1, · · · , n}, j ∈ {1, · · · , β})
Fp finite field of a prime order p
z length of vk over Fp
Fzp a vector of length z over Fp
w w = z +m (length of a coded block over Fp)
Fwp a vector of length w over Fp
f Pseudo-Random Function (PRF) f : {0, 1}∗ × {0, 1}κ → Fp where κ is the

key length of f and κ should be large enough (e.g., 160)
|| concatenate operator
Sy corrupted server
S ′y new server which is used to replace Sy
h number of healthy servers used for data repair
v number of rows used for spot checks

130

6.3. PROPOSED ND-POR SCHEME

A adversary
s number of segments in a coded block of the RDC-NC scheme
λ security parameter
t boundary of small corruption attack or ECC threshold (t = (n− l+ 1)/2)

In the ND-POR scheme, n servers are employed:

• The first l servers {S1, · · · , Sl}, called NC-servers, store the coded blocks cij where
i ∈ {1, · · · , l}, j ∈ {1, · · · , β}.

• The last (n−l) servers {Sl+1, · · · , Sn}, called DC-servers, store the dispersal coding
parity blocks dij where i ∈ {l + 1, · · · , n}, j ∈ {1, · · · , β}.

The structure of the ND-POR scheme is depicted in Figure 6.1.

𝑐1,2

…

𝑐1,𝛼

…

𝑐1,𝛽

𝑐1,1

𝑐𝑙,2

…

𝑐𝑙,𝛼

…

𝑐𝑙,𝛽

𝑐𝑙,1

𝑑𝑙+1,2

…

𝑑𝑙+1,𝛼

…

𝑑𝑙+1,𝛽

𝑑𝑙+1,1

𝑑𝑛,2

…

𝑑𝑛,𝛼

…

𝑑𝑛,𝛽

𝑑𝑛,1

Codeword

Coded blocks Dispersal code

parity blocks

𝑆1 𝑆𝑙 … 𝑆𝑙+1 𝑆𝑛 …

Figure 6.1: The structure of the ND-POR scheme

The ND-POR scheme is now described via each phase of the POR as follows.

6.3.1 Keygen

C generates the secret key: K = {Krtag,K′rtag, {Ki,K′i}i∈{l+1,··· ,n},Kenc} which are ran-
domly chosen in {0, 1}κ.

131

6.3. PROPOSED ND-POR SCHEME

6.3.2 Encode

C divides the original file into m file blocks: F = v1|| · · · ||vm. vk ∈ Fzp where k ∈
{1, · · · ,m}. C createsm augmented blocks {b1, · · · , bm} in which bk ∈ Fwp (k ∈ {1, · · · ,m})
has the following form:

bk = (vk,

m︷ ︸︸ ︷
0, · · · , 0, 1︸ ︷︷ ︸

k

, 0, · · · , 0) ∈ Fz+mp (6.1)

where w = z + m. Given a set of m augmented blocks, C computes lβ coded blocks cij
using the linear combinations and stores them on the NC servers {S1, · · · , Sl}. C then
encodes cij using the dispersal coding into a dispersal coding parity block dij for each row
and stores them on the DC-servers {Sl+1, · · · , Sn}. Namely, the encode phase is described
as follows.

1. C computes coded blocks from m augmented blocks:

For ∀i ∈ {1, · · · , l}, ∀j ∈ {1, · · · , β}:

• Generate m coefficients αijk
rand← Fp where k ∈ {1, · · · ,m}.

• Compute coded blocks:

cij =
m∑
k=1

αijkbk (6.2)

Therefore, a matrix {cij} where i ∈ {1, · · · , l}, j ∈ {1, · · · , β} is constructed.

2. C computes dispersal coding parity blocks in each row:

For ∀i ∈ {l+1, · · · , n}, ∀j ∈ {1, · · · , β}, C computes dispersal coding parity blocks:

dij = MTagECCKi,K′i(ci1, · · · , cil) (6.3)

3. C computes metadata for coded blocks:

For ∀i ∈ {1, · · · , l}:

• Generate w values {ξ1, · · · , ξw}:

ξu = fKrtag(i||u),∀u ∈ {1, · · · , w} (6.4)

• For ∀j ∈ {1, · · · , β}, cij ∈ Fwp is viewed as a column vector of w symbols:
cij = (cij1, · · · , cijw) with ciju ∈ Fp where u ∈ {1, · · · , w}. C computes a repair
tag for cij:

Tij = fK′rtag(i||j||αij1|| · · · ||αijm) +
w∑
u=1

ξuciju (mod p) (6.5)

132

6.3. PROPOSED ND-POR SCHEME

• C encrypts the coefficients:

εijk = EncKenc(αijk),∀k ∈ {1, · · · ,m}. (6.6)

This encryption is used to prevent the replay attack.

4. C distributes data to the servers:

• C sends to Si where i ∈ {1, · · · , l} the following information:

– The coded blocks cij where i ∈ {1, · · · , l}, j ∈ {1, · · · , β}.
– The encrypted coefficients εijk where i ∈ {1, · · · , l}, j ∈ {1, · · · , β}, k ∈
{1, · · · ,m}.

– The repair tags Tij where i ∈ {1, · · · , l}, j ∈ {1, · · · , β}.
• C sends to Si where i ∈ {l + 1, · · · , n} the following information:

– The dispersal coding parity blocks dij where i ∈ {l+1, · · · , n}, j ∈ {1, · · · , β}.

6.3.3 Check

C chooses a number of row indices to challenge the servers using the spot check method.
The servers respond C. C checks the responses using the MVerECC algorithm. All the
servers operate over the same subset of rows. Because the responses of all the servers lie
on a codeword, all the servers can be checked for each challenge.

1. C challenges the servers:

• C firstly chooses an integer v
rand← [1, β].

• C then sends to each server a set of row indices D = {j1, · · · , jv} where

j1, · · · , jv
rand← [1, β] and a key k ∈ I where I is a field with operation (+,×).

2. The servers respond C:

• Si computes:
Ri = RS-UHFk(cij1 , · · · , cijv) (6.7)

3. C verifies the servers: Because all servers operate over the same subset of rows D,
the combined response R = (R1, · · · , Rn) is a codeword of the dispersal coding.

• C firstly checks R by calling MVerECC(R1, · · · , Rn) of the dispersal coding to
verify. It returns false if the responses are invalid, and return true otherwise.

• After checking R, C checks the validity of each individual response Ri to de-
tect which server is corrupted. For the l NC-servers {S1, · · · , Sl}, Ri is a
valid response if it matches the i-th symbol in −→m. For the (n − l) DC-serves
{Sl+1, · · · , Sn}, Ri is a valid response if it is a valid MAC on −→m.

133

6.3. PROPOSED ND-POR SCHEME

6.3.4 Repair

If a failure is detected in the check phase, C executes the repair phase with the following
two sub-phases:

Sub-phase 1. The corruptions are firstly repaired by the RS decoder with the boundary
number of corruptions t = n−l+1

2
. If the number of corruptions is more than t, C uses the

sub-phase 2.

Sub-phase 2. The corruptions are repaired by the network coding. C firstly requires the
healthy servers to compute the aggregated coded blocks. Then, C combines these coded
blocks to generate β coded blocks for the new server. Suppose that Sy is the corrupted
server and S ′y is the new server which is used to replace Sy.

1. C requests h healthy servers {Si1 , · · · , Sih} to compute the aggregated coded blocks
and the proofs of correct encoding :

For ∀i ∈ {i1, · · · , ih}:

• C generates the coefficients {xi1, · · · , xiβ} where xij
rand← Fp with j ∈ {1, · · · , β}.

• C requests Si to compute an aggregated coded block and a proof of correct
encoding.

• Si computes:

ai =
∑β

j=1
xijcij ∈ Fwp (6.8)

then computes a proof of correct encoding:

θ =
∑β

j=1
xijTij (mod p) (6.9)

and sends ai, θ, {εij1, · · · , εijm} where j ∈ {1, · · · , β} to C.
• C decrypts the encrypted coefficients from Si to get the raw coefficients: {αij1,
· · · , αijm} where j ∈ {1, · · · , β}.
• C regenerates w values {ξ1, · · · , ξw}:

ξu = fKrtag(i||u), ∀u ∈ {1, · · · , w} (6.10)

• C checks if:

θ 6=
∑β

j=1
xijfK′rtag(i||j||αij1|| · · · ||αijm) +

w∑
u=1

ξuaiu (6.11)

where {ai1, · · · , aiw} are the symbols of the block ai. This verification is to
ensure that Si does not have the pollution attack.

134

6.4. SECURITY ANALYSIS

2. C repairs Sy:

• C generates w values {ξ1, · · · , ξw}:

ξu = fKrtag(y||u),∀u ∈ {1, · · · , w} (6.12)

• For ∀j ∈ {1, · · · , β}, ∀γ ∈ {1, · · · , h}, C generates the coefficients αyjγ
rand← Fp,

and computes the coded block:

cyj =
h∑
γ=1

zyjγaγ ∈ Fwp (6.13)

By viewing cyj as a column vector of w symbols: cyj = {cyj1, · · · , cyjw}, C
computes a repair tag for the block cyj:

Tyj = fK′rtag(i||j||αyj1|| · · · ||αyjh) +
w∑
u=1

ξucyju (mod p) (6.14)

and encrypts the coefficient:

∀γ ∈ {1, · · · , h}, εijγ = EncKenc(αijγ) (6.15)

3. C sends to the new server S ′y:

• cyj where j ∈ {1, · · · , β}.
• εyjγ where j ∈ {1, · · · , β}, γ ∈ {1, · · · , h}.
• Tyj where j ∈ {1, · · · , β}.

6.4 Security Analysis

This section describes the advantage of the defined adversary and explains how the small
corruption attack, large corruption attack, replay attack and pollution attack are pre-
vented.

6.4.1 Adversarial Check and Repair

A MAC consists of three algorithms: {MGen,MTag,MVer}. Let q1 denote the number of
queries to MTag, and q2 denote the number of queries to MVer. Let t denote the running
time. The boundary of the advantage of A on UMAC [99] is given in the following fact:

Fact 1. Let AdvUMAC(q1, q2, t) denote the advantage of the adversary A on UMAC making
q1 queries to MTag, q2 queries to MVer, and running in the time t. Let Advprf(q1, q2, t)
denote the advantage of the adversary A making (q1 + q2) queries to the oracle PRF and
running in the time t. Suppose that the UHF is an εUHF-AXU family of hash function.
Then, the following inequality is obtained:

AdvUMAC(q1, q2, t) ≤ Advprf(q1 + q2, t) + εUHFq2 (6.16)

135

6.4. SECURITY ANALYSIS

Furthermore, the boundary of the advantage of A on the dispersal coding codeword is
given as follows:

Theorem 16. Let Advcodeword(q1, q2, t) denote the advantage of A on the dispersal coding
making q1 queries to MTagECC, q2 queries to MVerECC, and running in the time t. If
RS-UHF is constructed from an (n, l)-RS code, then the following inequality is obtained:

Advcodeword(q1, q2, t) ≤ 2[AdvUMAC(q1, q2, t)] (6.17)

Proof. Suppose that A is successful when A makes q1 queries to the tagging oracle
MTagECC, q2 queries to the verification oracle MVerECC and runs in time t. A outputs a
codeword (c1, · · · , cn) which can be decoded to the message −→m = (m1, · · · ,ml) such that
at least one of the last s symbols in the codeword is a valid MAC on −→m computed with
UMAC. Another adversary A′ is considered for the UMAC construction. A′ is given an
access to a tagging oracle UTagκ,κ′(·) and a verification oracle UVerκ,κ′(·, ·) and needs to
output a new message and a tag pair. A′ chooses a position j ∈ {n− s + 1, · · · , n} ran-
domly, and generates keys {κi}ni=1 and {κ′i}ni=n−s+1 for i 6= j. A′ runs A. When A makes
a query to tag −→m = (m1, · · · ,ml), A′ computes ci ← RS-UHFκi(

−→m) for i ∈ {1, · · · , n−s},
and ci = UTagκi,κ′i(

−→m) for i ∈ {n−s+1, · · · , n}, i 6= j. A′ calls the UTag oracle to compute

cj = UTagκ,κ′(
−→m). A′ then responds to A with −→c ← (c1, · · · , cn). When A makes a query

−→c = (c1, · · · , cn) to the verification oracle, A′ tries to decode (c1, · · · , cj−1, cj+1, · · · , cn)
into message −→m. If the decoding fails (the number of errors in the codeword is more than
t = n−l+1

2
), then A′ responds to A with (⊥, 0). Otherwise, let −→m be the decoded message.

A′ makes a query to the verification oracle α ← UVerκ,κ′(
−→m, cj) and returns (−→m,α) to

A. Assume that A outputs −→c = (c1, · · · , cn) under the codeword that can be decoded
to −→m, such that −→m was not an input to the tagging oracle and at least one of the last
s symbols in −→c is a valid MAC for −→m. Then A′ outputs (−→m, cj). Because t = n−l+1

2
,

the number of remaining correct blocks is at least n − n−l+1
2

= n+l−1
2

. The number of
correct parity blocks is thus at least n+l−1

2
− l = n−l−1

2
. Furthermore, the number of the

original parity blocks before errors is (n − l). Therefore, the number of correct parity

blocks is at least (n−l−1)/2
n−l ≈ 1

2
of the number of the original parity blocks. In other words,

the codeword −→c can be decoded if at least a majority of its parity blocks are correct.
Then, with probability at least 1

2
, cj is a correct MAC on −→m. It follows that A′ succeeds

in outputting a correct message and MAC pair (−→m, cj) with probability at least half the
success probability of A.

From Equation 6.16 and Equation 6.17, the following inequality is obtained:

Advcodeword(q1, q2, t) ≤ Advprf(q1 + q2, t) + εUHFq2 (6.18)

Assume that the PRF is secure and the MAC is unforgeable, then:

Advprf(q1 + q2, t) + εUHFq2 ≤ ε(negligible). (6.19)

Therefore, Advcodeword(q1, q2, t) ≤ ε. In other words, the probability for A to output
codeword c such that A can pass the verification is negligible:

136

6.4. SECURITY ANALYSIS

Pr[κ← KGenECCκ(1
λ); c← AMTagECCκ(·),MVerECCκ(·) : MVerECCκ(c) = (m, 1) ∧m is not

queried to MTagECCκ(·)] ≤ ε.

Now the probability of A to prevent data recovery is given as the following theorem.

Theorem 17. F can be recovered as long as in any epoch, at least h out of n servers are
healthy and the matrix which consists of all the coefficients of the coded blocks has full
rank, i.e., rank equals to m.

Proof. m augmented blocks are {b1, · · · , bm} which are created from m file blocks {v1,
· · · , vm}. The number of coded blocks is nx (n servers, x coded blocks per server). To
compute a coded block cij for the server Si, C chooses m coefficients {αij1, · · · , αijm}, and
uses the linearly independent combination: cij =

∑m
k=1 αijkbk. {b1, · · · , bm} are viewed as

the unknowns that need to be solved. After solving {b1, · · · , bm}, the file blocks v1, · · · , vm
can be obtained by picking the first coordinate of each bk where k ∈ {1, · · · ,m}. F is
finally recovered as F = v1|| · · · ||vm. To solve m unknowns {b1, · · · , bm}, at least m coded
blocks are required which make the matrix have full rank because the number of unknowns
in an equation system has to be less than the number of equations. Let {cr1 , · · · , crm}
denote such m coded blocks which are required for file recovery. Let {αrk1, · · · , αrkm}
denote m coefficients which are used to construct crk .

cr1 =
∑m

k=1 αr1kbk
cr2 =

∑m
k=1 αr2kbk
· · ·

crm =
∑m

k=1 αrmkbk

(6.20)

Let h be the number of healthy servers that collectively store m coded blocks. In
any epoch, h = m

x
. In the RDC-NC scheme, there are n servers and α coded blocks per

server. Thus, the number of healthy servers in an epoch in the RDC-NC scheme is at least
h = m

α
. In the ND-POR scheme, there are also n servers but such n servers are divided

into two types: l NC-servers and (n− l) DC-servers. Because l < n, each NC-server has
β = nα

l
coded blocks. Therefore, the number of healthy servers in each epoch is at least

h = m
β

= ml
αn

. If the theorem is satisfied, the probability for A to prevent recovering F is
negligible:

Pr[F = {v1, · · · , vm} cannot be recovered] ≤ ε (6.21)

6.4.2 Small Corruption Attack

Theorem 18. The RS code in the dispersal coding is sufficient to prevent the small
corruption attack.

Proof. Let terror denote the number of corruptions caused by A in an epoch. Firstly,
because the RS is constructed with the parameter (n, l), the message is interpreted as the
description of a polynomial p of the degree less than l which is evaluated at n distinct

137

6.4. SECURITY ANALYSIS

points {a1, · · · , an}. The sequence of the values is the corresponding codeword C: C =
{p(a1), · · · , p(an)} (Section 3.4). Because any two different polynomials of the degree less
than l agree in at most (l − 1) points, any two codewords of the RS code disagree in at
least n− (l− 1) = n− l+ 1 positions. Moreover, there are two polynomials that do agree
in (l − 1) points but are not equal. Hence, the distance of the RS code is:

d = n− l + 1 (6.22)

Secondly, because any two strings in C differ in at least d places, we have:

2terror ≤ d (6.23)

From Equation 6.22 and Equation 6.23, we have:

terror ≤
n− l + 1

2
(6.24)

The inequality reflects the fact that, given any string s, there is at most one string c ∈ C
which is within the distance d of terror from s. This means that the advantage of A is
always bounded by the error resilience of the RS code.

6.4.3 Large Corruption Attack, Replay Attack and Pollution
Attack

The attacks are addressed in the RDC-NC scheme. This section briefly describes the key
ideas as follows:

Large corruption attack. In the check phase, using the spot check method, C peri-
odically and randomly samples a set of indices of the coded blocks stored on each server.
C then checks whether these sampled blocks match with the embedded MAC. If the ad-
versary corrupts a large fraction of the data stored on the server, C easily detects the
corruptions with an optimal computation and I/O at the server and communication be-
tween the server and the client.

Replay attack. To avoid the adversaryA replaying a coded block, the common solution
is to use a counter which is incremented each time the coded block on a server is recreated
due to server failure. However, in this solution, the client must store locally the latest
value of the counters. Therefore, the RDC-NC scheme uses a different solution to mitigate
the replay attack and to reduce the storage cost for the client. That is, the coefficients are
encrypted and stored together with the coded blocks to prevent A from knowing how the
original blocks were combined to obtain the coded block. The ability of A is negligible
because A does not know which old coded blocks to replay.

138

6.5. EFFICIENCY ANALYSIS

Pollution attack. For each coded block cij of the server Si, a repair tag which is
constructed from a MAC is embedded into the coded block. In the repair phase, C requires
a number of servers which are used for data repair to provide their aggregated coded
blocks. Before computing the new coded blocks for the new server, C uses the tag to
check whether these servers combine the coded blocks correctly. Therefore, the servers
cannot inject polluted blocks to C.

6.5 Efficiency Analysis

Table 6.2 shows that the encode cost in the ND-POR scheme is more than that in the
RDC-NC scheme. However, the encode phase is performed only one time in the beginning,
but the check and repair phases are performed very often during the system lifetime.
Therefore, the check and repair costs are more important than the encode cost. Table 6.2
shows that the check and repair costs in the ND-POR scheme are less than these in the
RDC-NC scheme.

Before analysing the costs in the RDC-NC and ND-POR schemes, recall that each
coded block cij ∈ Fwp where w = m+ z. The coded block size is w log2 p. The unit of the
below computational complexities is the number of operations over Fwp .

6.5.1 Encode Phase

The RDC-NC scheme computes nα coded blocks. Its encode computation cost is thus
O(nα). The ND-POR scheme computes lβ coded blocks, then computes (n−l)β dispersal
coding parity blocks, where β = nα

l
. Its encode computation cost is thus O(n

2α
l

). It is
clear that the cost in the ND-POR scheme is more than n

l
times that in the RDC-NC

scheme. In an ECC, because the redundant blocks are chosen such that n− l < l, n
l
< 2.

Because n > l, n
l
> 1. Therefore, 1 < n

l
< 2. This means that although the cost in the

ND-POR scheme is more than n
l

times that of the RDC-NC scheme, it is less than double
times.

The number of MACs. In the RDC-NC scheme, the number of MACs is nαs where
n is the number of servers, α is the number of coded blocks stored on a server, s is the
number of segments in a coded block. This is because the MACs are embedded in the
segments of the coded blocks. In the ND-POR scheme, the number of MACs is lα where
l is a number of servers out of n servers (l < n). This is because the MACs are only
required for the network coding coded blocks which are located in only l servers.

6.5.2 Check Phase

The RDC-NC scheme challenges a subset of segment indices in each coded block of a
server. C thus needs nα challenges to check all blocks stored on n servers where α is the
number of blocks per server. In the ND-POR scheme, C challenges a subset of row indices
(the codewords of the dispersal coding). Each codeword lies on all n servers. There are

139

6.5. EFFICIENCY ANALYSIS

T
ab

le
6.

2:
T

h
e

co
m

p
ar

is
on

b
et

w
ee

n
th

e
R

D
C

-N
C

an
d

N
D

-P
O

R
sc

h
em

es

R
D

C
-N

C
N

D
-P

O
R

S
m

al
l

co
rr

u
p
ti

on
at

ta
ck

N
o

Y
es

S
ec

u
ri

ty
L

ar
ge

co
rr

u
p
ti

on
at

ta
ck

Y
es

Y
es

R
ep

la
y

at
ta

ck
Y

es
Y

es
P

ol
lu

ti
on

at
ta

ck
Y

es
Y

es
E

n
co

d
e

co
m

p
u
ta

ti
on

O
(n
α

)
O

(n
α
×

n l
)

C
h
ec

k
co

m
p
u
ta

ti
on

n
α

n
α l

E
ffi

ci
en

cy
R

ep
ai

r
co

m
p
u
ta

ti
on

O
(3
m
|F
|

m
+
α

)
O

(n
lo

g
2 2
n

lo
g
2

lo
g
2
n

)
(R

S
d
ec

o
d
e)

O
(
3
lm
|F
|

n
α
+
lm

)
(N

et
w

or
k

co
d
in

g)

T
h
e

n
u
m

b
er

of
M

A
C

s
n
sα

lα
R

eq
u
ir

ed
h
ea

lt
h
y

se
rv

er
s

dm α
e

dl
m n
α
e(
l
<
n

)
S
to

ra
ge

se
rv

er
co

st
O

(n
α

lo
g
2
p(
w

+
s

+
1)

)
O

(n
α

lo
g
2
p(

n
w l

+
1)

)

140

6.5. EFFICIENCY ANALYSIS

β codewords. C thus needs β = nα
l

challenges to check all blocks stored on n servers.
The cost in the RDC-NC scheme is more than l times that in the ND-POR scheme. This
is an advantage of the ND-POR scheme when multiple servers are checked per challenge
instead of one sever as the RDC-NC scheme.

6.5.3 Repair Phase

In the RDC-NC scheme, the cost for repairing a corrupted server is O(h 2|F |
h+1

+ |F |
1+ 1

h

) in which

the cost of h healthy servers is h 2|F |
h+1

and the cost of client-side is |F |
1+ 1

h

). Because h = m
α

,

the cost is O(|F | 3m
α+m

). In the ND-POR scheme, in the sub-phase 1, the corruptions are

repaired by the RS decoder which has O(n log2
2 n log2 log2 n) [107]. Because n is far less

than the dominant parameter |F |, the cost of the RS decoder is less than the RDC-NC
scheme. Let n = 12 as in the experimental evaluation of the RDC-NC scheme, the RS can
decode in only 284 field operations. In the sub-phase 2, the corruptions are repaired by
the network coding like the RDC-NC scheme. The cost is thus O(h′ 2|F |

h′+1
+ |F |

1+ 1
h′

). Because

h′ = lm
nα

, the cost in the ND-POR is thus O(3lm|F |
nα+lm

). Because n > l, 3m|F |
m+α

> 3lm|F |
nα+lm

. In
both cases, the costs in the ND-POR scheme are still better than the RDC-NC scheme.

Parameter Choice. The parameter choice is now discussed for maximizing resilience
of both cases simultaneously. Because an (n, l)-ECC can recover up to t = n−l+1

2
errors in

each row, A can win the ECC if the number of corruptions is more than t. Furthermore,
because the number of healthy servers is at least ml

nα
(Theorem 2), A can win if A corrupts

more than ml
nα

. Let f1(l) = n−l+1
2

, f2(l) = m
α
× l

n
. l should be chosen such that the

advantage of A is reduced. In other words, f1(l) and f2(l) are increased. If f1(l) and f2(l)
are considered separately, f1(l) = n−l+1

2
increases if l increases, f2(l) = ml

nα
increases if l

decreases. It is not synchronous. Hence, l should be balanced between f1 and f2. Let
f1(l) = f2(l), we determine l = dnα(n+1)

2m+nα
e.

Healthy Servers For Data Repair. As mentioned in Theorem 17, the RDC-NC
scheme needs at least dm

α
e healthy servers for data repair while the ND-POR scheme only

needs at least d lm
nα
e healthy servers for data repair (l < n). It is clear that the number

of healthy servers in the RDC-NC scheme is more than n
l

times that in the ND-POR
scheme.

6.5.4 Storage Cost

In the RDC-NC scheme, the size of nα coded blocks in Fwp is nαw log2 p. The size of
nαs challenge tags in Fp is nαs log2 p where s denotes the number of segments in a coded
block of the RDC-NC scheme. The size of nα repair tags in Fp is nα log2 p. Therefore, the
storage cost in the RDC-NC scheme is O(nα log2 p(w + s+ 1)). In the ND-POR scheme,
the size of nα coded blocks and (n− l)β where β = nα

l
dispersal coding parity blocks in

Fwp is w log2 p(nα+ (n− l)nα
l

) = n2α
l
w log2 p. The size of nα repair tags in Fp is nα log2 p.

141

6.5. EFFICIENCY ANALYSIS

Thus, the storage cost in the ND-POR scheme is O(nα log2 p(
nw
l

+ 1)). To make the
cost in the ND-POR scheme better than the RDC-NC scheme, let nα log2 p(

nw
l

+ 1) <
nα log2 p(w + s+ 1). As a result, the parameters should be chosen such that w < sl

n−l .

6.5.5 Numerical Examples of The Parameters

In this section, we give two concrete numerical examples of the parameters as follows.

Example 6.5.1. n = 12, α = 3, s = 5, l = 10,m = 7, w = 20, z = 13, p = 4099, |F | =
1092. Suppose that all elements in Fp is less than or equal to 4095. This is to let the
elements not exceed 12 bits length. These parameters satisfy the conditions which we
stated in the manuscript:

• 1 < n
l
< 2 as stated in Section 6.5.1.

• l = dnα(n+1)
2m+nα

e as stated in Section 6.5.3. (In this example, l = d 12·3·13
2·7+12·3e = 10).

• w < sl
n−l as stated in Section 6.5.4.

We now show the costs of the RDC-NC and ND-POR schemes.

• The encode computation cost of the RDC-NC scheme is nα = 12·3 = 36. Meanwhile,
the encode computation cost of the ND-POR scheme is nαn

l
= 12 · 3 · 12

10
= 43.2.

• The check computation cost of the RDC-NC scheme is nα = 12 ·3 = 36. Meanwhile,
the check computation cost of the ND-POR scheme is nα

l
= 12·3

10
= 3.6.

• The repair computation cost of the RDC-NC scheme is 3m|F |
m+α

= 3·7·1092
7+3

= 2293.2.

Meanwhile, the repair computation cost of the ND-POR scheme is n log2
2 n log2 log2 n =

284 (in the case of the RS code), or 3lm|F |
nα+lm

= 3·10·7·1092
12·3+10·7 = 2163.4 (in the case of the

network coding).

• The number of MACs in the RDC-NC scheme is nsα = 12 · 5 · 3 = 180. Meanwhile,
the number of MACS in the ND-POR scheme is lα = 10 · 3 = 30.

• The number of the required healthy servers for data repair in the RDC-NC scheme
is dm

α
e = d7

3
e = 3. Meanwhile, that in the ND-POR scheme is d lm

nα
e = d10·7

12·3e = 2.

• The storage cost in the RDC-NC scheme is nα log2 p(w+ s+ 1) = 12 · 3 · log2 4099 ·
(20 + 5 + 1) = 11232. Meanwhile, the storage cost in the ND-POR scheme is
nα log2 p(

nw
l

+ 1) = 12 · 3 · log2 4099 · (12·20
10

+ 1) = 10800.

Example 6.5.2. n = 16, α = 5, s = 4, l = 14,m = 10, w = 25, z = 15, p = 1031, |F | =
1500. Suppose that all elements in Fp is less than or equal to 1023. This is to let the
elements not exceed 10 bits length. These parameters satisfy the conditions which we
stated in the manuscript:

• 1 < n
l
< 2 as stated in Section 6.5.1.

142

6.6. SUMMARY

• l = dnα(n+1)
2m+nα

e as stated in Section 6.5.3. (In this example, l = d 16·5·17
2·10+16·5e = 14).

• w < sl
n−l as stated in Section 6.5.4.

We now show the costs of the RDC-NC and ND-POR schemes.

• The encode computation cost of the RDC-NC scheme is nα = 16·5 = 80. Meanwhile,
the encode computation cost of the ND-POR scheme is nαn

l
= 16 · 5 · 16

14
= 91.43.

• The check computation cost of the RDC-NC scheme is nα = 16 ·5 = 80. Meanwhile,
the check computation cost of the ND-POR scheme is nα

l
= 16·5

14
= 5.71.

• The repair computation cost of the RDC-NC scheme is 3m|F |
m+α

= 3·10·1500
10+5

= 3000.

Meanwhile, the repair computation cost of the ND-POR scheme is n log2
2 n log2 log2 n =

512 (in the case of the RS code), or 3lm|F |
nα+lm

= 3·14·10·1500
16·5+14·10 = 2863.64 (in the case of the

network coding).

• The number of MACs in the RDC-NC scheme is nsα = 16 · 4 · 5 = 320. Meanwhile,
the number of MACS in the ND-POR scheme is lα = 14 · 5 = 70.

• The number of the required healthy servers for data repair in the RDC-NC scheme
is m

α
= 10

5
= 2. Meanwhile, that in the ND-POR scheme is lm

nα
= 14·10

16·5 = 1.75.

• The storage cost in the RDC-NC scheme is nα log2 p(w+ s+ 1) = 16 · 5 · log2 1031 ·
(25 + 4 + 1) = 24000. Meanwhile, the storage cost in the ND-POR scheme is
nα log2 p(

nw
l

+ 1) = 16 · 5 · log2 1031 · (16·25
14

+ 1) = 23657.

In summary, although the ND-POR scheme combines the network coding and the dis-
persal coding, the ND-POR scheme is not worse than the RDC-NC scheme in totals.

6.6 Summary

In this chapter, the ND-POR scheme has been proposed in which the network coding and
the dispersal coding technique are combined to reduce the costs of two important phases,
the check and the repair phases, and to prevent small corruption attack, replay attack,
pollution attack and large corruption.

In future work, we focus on the following problem. The repair phase has not been
optimized because the healthy servers need to provide the aggregated coded blocks to the
client, then the client computes the new coded blocks and stores them on the new server.
A new mechanism can be considered in which the healthy servers send their coded blocks
directly to the new server without sending back to the client. This mechanism can reduce
the burden for the client and also reduce the communication. To support this mechanism,
a signature scheme can be employed such as [84,103] that allows the new server to verify
the coded blocks provided from the healthy servers instead of the client, and to construct
the new coded blocks by itself.

143

Chapter 7

SW-SSS: Slepian-Wolf Coding-based
SSS

7.1 System Model

Dealer

Participant 1

Participant 2

Participant 3

communication link

Figure 7.1: System Model of the SW-SSS

In the adversarial model of the SW-SSS scheme, there are two types of entities as depicted
in Figure 7.1.

• Dealer: this entity is trusted, and has the following responsibilities:

– Generate the shares from the secret, then distribute the shares to the partici-
pants.

144

7.2. REVISITED XOR NETWORK CODING-BASED SSS

– Collect the shares from the participants to reconstruct the secret when needed.

– Repair the share which is stored in the corrupted participant.

• Participants: these entities are untrusted, and have the following responsibilities:

– Store the shares (each participant store a share).

– Provide the shares to the dealer when the dealer needs to reconstruct the secret.

– Provide the shares to the dealer when the dealer needs to repair a corrupted
share.

The notations which are used in our SW-SSS scheme are given in Table 7.1.

Table 7.1: List of notations in the revisited SSS and the SW-SSS

Notation Description

S secret
m number of secret blocks (the first threshold)
bi secret block (i ∈ {0, · · · ,m− 1})
n number of participants (the second threshold)
L number of participants whose shares are collectively constructed from

m secret blocks.
Pi participant (i ∈ {0, · · · , n− 1})
ci share stored in Pi
si XOR used to construct ci (si = bj ⊕ bt ⊕ bz)
di metadata of ci (the number of ‘1’ bits in si)
j index of the first operand of si
t index of the second operand of si
z index of the third operand of si
|b| bit-size of a secret block (|b| = |S|

m
)

⊕ XOR operator
|| concatenation operator

7.2 Revisited XOR Network Coding-based SSS

In this section, we revisit the XOR network coding and apply it to a SSS. Although the
XOR-based network coding has been proposed in many previous network coding schemes
[135–139], the problem is that none of them applies the XOR network coding to a (m,n)-
SSS. Therefore, we revisit it and apply it to a (m,n) SSS as follows.

The dealer firstly divides S into m blocks: S = b0|| · · · ||bm−1 (|bi| = |S|
m

) and encodes S
into n shares. Each participant Pi holds a share ci where i ∈ {0, · · · , n− 1}. To compute
ci, the dealer chooses a number of secret blocks randomly and combines them using the

145

7.3. PROPOSED SW-SSS

XOR. The dealer then pads that XOR with a vector of length m which contains a ‘1’
bit in the index of each chosen secret block and (m − 1) ‘0’ bits elsewhere. The padded
vector is called the coefficient of ci. Suppose that ci is constructed from t secret blocks
bi0 , · · · , bit−1 . Let si = bi0 ⊕ · · · ⊕ bit−1 . ci has the following form:

ci = (a0, a2, · · · , am−1︸ ︷︷ ︸
m

, si︸︷︷︸
|S|
m

) (7.1)

where ai = 1 if i ∈ {i0, · · · , it−1} and ai = 0 elsewhere. The share size is |ci| = m + |S|
m

.
The ideal property of a SSS is |ci| = |S|. The revisited XOR network coding-based SSS

achieves a better share size if |ci| ≤ |S|. From this inequality, (m − |S|
2

)2 ≤ |S|2
4
− |S|.

Because |S| is large in a real system, |S|
2

4
−|S| ≈ |S|2

4
. Therefore, m ≤ |S|. In other words,

if the parameters are chosen such that m ≤ |S|, the scheme can reduce the share size.
Moreover, the coefficients are chosen such that the matrix consisting of the coefficients
of any m shares has rank m. This condition is to ensure that m secret blocks can be
reconstructed from any m shares. To reconstruct S, the dealer chooses any m shares to
find m secret blocks, then, concatenates them together. To repair a corrupted share, the
dealer requires m healthy shares to reconstitute using the XOR.

Example 7.2.1. Suppose that S = b0||b1||b2 and n = 4. The dealer creates the following
four shares:

• c0 = (1, 1, 1, b0 ⊕ b1 ⊕ b2)

• c1 = (1, 1, 0, b0 ⊕ b1)

• c2 = (1, 0, 1, b0 ⊕ b2)

• c3 = (1, 0, 0, b0)

The dealer sends {c0, · · · , c3} to the participants {P0, · · · P3}, respectively. To recon-
struct S, the dealer chooses m = 3 shares (suppose c0, c2, c3) and constructs the following
equation system: 

s0 = b0 ⊕ b1 ⊕ b2
s2 = b0 ⊕ b2
s3 = b0

(7.2)

Then, {b0, b1, b2} are solved using the Gaussian elimination. Finally, S is reconstructed
as S = b0||b1||b2. Suppose that P2 is corrupted, the dealer requires P0,P1 and P3 to
provide s0, s1 and s3. The dealer repairs s2 by s2 = s0 ⊕ s1 ⊕ s3.

7.3 Proposed SW-SSS

In this scheme, a share ci does not have the same form as in the revisited XOR network
coding-based SSS (Equation 7.1). Instead, ci is the index of the bin that the XOR belongs

146

7.3. PROPOSED SW-SSS

to. This scheme focuses on the share generation, secret reconstruction and share repair.
Checking a corrupted participant is beyond the scope of this proposed scheme because
several existing schemes using the MAC or signature techniques can be used.

7.3.1 Share Generation

Each XOR is constructed from three different secret blocks. From m secret blocks, there

are

(
m

3

)
XORs. However, only n out of

(
m

3

)
XORs are required for n participants. The

idea to choose these n XORs as the following remark:

Remark 1. The dealer chooses each XOR such that the index sequence of the three secret
blocks is a permutation of the proper set {0, · · · ,m − 1} in an ascending order. Each
XOR itself is also sorted in an ascending order. Namely, the dealer chooses n shares for
n participants from the following XORs respectively, until the dealer has enough n XORs:

(b0 ⊕ b1 ⊕ b2), (b0 ⊕ b1 ⊕ b3), · · · , (b0 ⊕ b1 ⊕ bm−1),
(b0 ⊕ b2 ⊕ b3), (b0 ⊕ b2 ⊕ b4), · · · , (b0 ⊕ b2 ⊕ bm−1),

· · ·
(b1 ⊕ b2 ⊕ b3), (b1 ⊕ b2 ⊕ b4), · · · , (b1 ⊕ b2 ⊕ bm−1),

· · ·

Concretely, the dealer performs the ShareGen algorithm which takes m,n and S as the
inputs, and outputs n pairs of share ci and its metadata di as follows:

• ShareGen(m,n, S)→ {(c0, d0), · · · , (cn−1, dn−1)}

– Divide the secret into m blocks: S = b0|| · · · ||bm−1.
– Compute the size of a secret block: |b| = |S|/m.

– Set a value: count← 0.

– For ∀j ∈ {0, · · · ,m− 3}, ∀t ∈ {j+ 1, · · · ,m− 2} and ∀z ∈ {t+ 1, · · · ,m− 1}:
∗ Compute a XOR for each share: si ← bj ⊕ bt ⊕ bz.
∗ Find the number of ‘1’ bits in si: di ← si.count(

′1′). This is also the
metadata of the share ci.

∗ Find the share ci ← FindShare(|b|, si, di).
∗ Increase count by 1: count = count+ 1

∗ Check if (count == n− 1), then return {(c0, d0), · · · , (cn−1, dn−1)}

• FindShare(|b|, si, di) → ci: this is the sub-algorithm which is used in the ShareGen
algorithm:

– Construct a set Mi which consists of all permutations of each XOR, given |b|
and di. The elements in Mi are sorted in an ascending order.

147

7.3. PROPOSED SW-SSS

– Find the corresponding index of si in Mi: ci ← index(Mi, si). This is the
share.

We can observe that the share is not si but the index of si in the set Mi. The number

of elements in Mi is |Mi| =
(
|b|
di

)
. The number of bits for representing a share is at most

log2 |Mi|. The bandwidth and the storage cost can be reduced because the size of an
index is less than the size of a XOR. Thank for the SWC. The ShareGen algorithm finally
returns (c0, d0), · · · , (cn−1, dn−1). The dealer distributes {ci, di} to the participant Pi.

Example 7.3.1. Suppose that S = 10100111001110110001. S is divided into m = 5
blocks: b0 = 1010, b1 = 0111, b2 = 0011, b3 = 1011 and b4 = 0001 (|S| = 20, |bi| = 4).
Suppose that n = 8, the shares are {c0, · · · , c7}.

To construct c0, s0 = b0 ⊕ b1 ⊕ b2 = 1110 is used. Because the number of ‘1’ bits
in s0 is 3, d0 = 3. Because d0 = 3 and |bi| = 4, M0 = {0111, 1011, 1101, 1110}. The
elements in M0 are sorted in an ascending order and are indexed as {0, · · · , 3}. Because

|M0| =
(

4

3

)
= 4, at most log2 4 = 2 bits are required to represent c0 instead of 4 bits of

s0. Because the index of s0 in M0 is 3, c0 = 3decimal = 11binary. {c0, d0} are sent to the
participant P0. Similarly, {c1, · · · c7} are computed as follows.

i si di Mi ci

0 b0 ⊕ b1 ⊕ b2 = 1110 3 {0111, 1011, 1101, 1110} 3decimal = 11binary
1 b0 ⊕ b1 ⊕ b3 = 0110 2 {0011, 0101, 0110, 1001, 1010, 1100} 2decimal = 10binary
2 b0 ⊕ b1 ⊕ b4 = 1100 2 {0011, 0101, 0110, 1001, 1010, 1100} 5decimal = 101binary
3 b0 ⊕ b2 ⊕ b3 = 0010 1 {0001, 0010, 0100, 1000} 1decimal = 1binary
4 b0 ⊕ b2 ⊕ b4 = 1000 1 {0001, 0010, 0100, 1000} 3decimal = 11binary
5 b0 ⊕ b3 ⊕ b4 = 0000 0 {} 0decimal = 0binary
6 b1 ⊕ b2 ⊕ b3 = 1111 4 {1111} 0decimal = 0binary
7 b1 ⊕ b2 ⊕ b4 = 0101 2 {0011, 0101, 0110, 1001, 1010, 1100} 1decimal = 1binary.

{ci, di} are then sent to Pi where i ∈ {0, · · · 7}.

7.3.2 Secret Reconstruction

To reconstruct S, the dealer requires m participants to provide their shares (suppose
ck0 , · · · , ckm−1). These shares are chosen such that the binary matrix consisting of the
coefficient vectors of the XORs has full rank. Concretely, the dealer performs the secret
reconstruction Reconst algorithm which takes m pairs of (cki , dki) as the inputs, and
outputs m secret blocks {b0, · · · , bm−1} as follows:

• Reconst((ck0 , dk0), · · · , (ckm−1 , dkm−1))→ {b0, · · · , bm−1}:

– For ∀i ∈ {0, · · · ,m− 1}:
∗ Find the XOR for cki : ski ← FindXOR(|b|, dki , cki).

148

7.3. PROPOSED SW-SSS

∗ Find the indices of three operands of ski : (jki , tki , zki)← LocateIndices(m, ki).

∗ Construct a vector vki which consists of (m+1) elements: m first elements
are the binary coefficients of m secret blocks and the finally element is ski .
Namely, vki = [e0, e1, · · · , em−1, ski] where ex ∈ {0, 1} for x = 0, · · · ,m−1.
ex = 1 when x is the index of each operand in ski (jki , tki and zki). ex = 0
elsewhere.

∗ Construct a matrix Q in which each vector vki is a row of the matrix Q:
Q← [vk0 , vk1 , · · · , vkm−1]T .

∗ Execute the Gaussian elimination on Q to obtain a matrix Q′.

∗ Filter m unknowns {b0, · · · , bm−1} from Q′.

∗ Reconstruct the secret by concatenating all the secret blocks: S = b0 || · · ·
|| bm−1.

• FindXOR(|b|, dki , cki) → ski : this is the sub-algorithm which is used in the Reconst
algorithm:

– Lists all permutations given |b| and dki .

– Find the XOR ski by picking the cki-th element in the set Mki .

• LocateIndices(m, ki) → {jki , tki , zki}: this is sub-algorithm which is used in the
Reconst algorithm:

– Set a value: count← −1.

– For ∀j ∈ {0, · · · ,m− 3}, ∀t ∈ {j + 1, · · · ,m− 2}, ∀z ∈ {t+ 1, · · · ,m− 1}:
∗ Increase count by 1: count = count+ 1.

∗ Check if (count == ki), then set:

· jki ← j

· tki ← t

· zki ← z

Example 7.3.2. This example follows Example 7.3.1. Suppose that {c1, c3, c5, c6, c7}
are chosen to reconstruct S because the matrix consisting of the coefficient vectors of
{s1, s3, s5, s6, s7} has full rank. Because |b| = 4 and d1 = 2, M1 = {0011, 0101, 0110, 1001,
1010, 1100}. Because the element whose index in M1 is c1 = 10binary = 2decimal is 0110,
s1 = 0110. Similarly, s3 = 0010, s5 = 0000, s6 = 1111 and s7 = 0101. A vector vki is then
constructed for each cki . Because s1 = b0⊕b1⊕b3 = 0110, (j1, t1, z1) = (0, 1, 3). Therefore,
v1 = [1, 1, 0, 1, 0, 0110]. Similarly, v3 = [1, 0, 1, 1, 0, 0010], v5 = [1, 0, 0, 1, 1, 0000], v6 =
[0, 1, 1, 1, 0, 1111] and v7 = [0, 1, 1, 0, 1, 0101]. The matrix Q is constructed as follows:

Q =


v1
v3
v5
v6
v7

 =


1, 1, 0, 1, 0,
1, 0, 1, 1, 0,
1, 0, 0, 1, 1,
0, 1, 1, 1, 0,
0, 1, 1, 0, 1,

∣∣∣∣∣∣∣∣∣∣
0110
0010
0000
1111
0101

 (7.3)

149

7.3. PROPOSED SW-SSS

We apply Gauss-elimination on Q to obtain Q′:

Q′ =


1, 0, 0, 0, 0,
0, 1, 0, 0, 0,
0, 0, 1, 0, 0,
0, 0, 0, 1, 0,
0, 0, 0, 0, 1,

∣∣∣∣∣∣∣∣∣∣
1010
0111
0011
1011
0001

 (7.4)

From Q′, the secret blocks are obtained as: b0 = 1010, b1 = 0111, b2 = 0011, b3 = 1011
and b4 = 0001. Finally, S is reconstructed as S = b0|| · · · ||b4.

7.3.3 Share Repair

Suppose that the participant Pcorr is corrupted. The dealer finds only three shares which
belongs to three participants to repair Pcorr. The idea to find these three shares is given
in the following remark:

Remark 2. Let scorr denote the XOR used to construct the share ccorr in Pcorr. scorr =
bjcorr ⊕ btcorr ⊕ bzcorr . We choose two integers α, β ∈ {0, · · · ,m − 1} such that α, β 6=
jcorr, tcorr, zcorr. The idea to find three shares to repair Pcorr is that:

bjcorr ⊕ btcorr ⊕ bzcorr = (bjcorr ⊕ btcorr ⊕ bα)
⊕ (bjcorr ⊕ bzcorr ⊕ bβ)
⊕ (bjcorr ⊕ bα ⊕ bβ)

The three shares which will be used to repair Pcorr is the shares that are constructed from
the XORs: (bjcorr ⊕ btcorr ⊕ bα), (bjcorr ⊕ bzcorr ⊕ bβ) and (bjcorr ⊕ bα ⊕ bβ).

Concretely, the dealer performs the ShareRepair algorithm which takes Pcorr as the
inputs, and outputs the share ccorr and the metadata dcorr of Pcorr as follows.

• ShareRepair(Pcorr)→ {ccorr, dcorr}:

– Find indices of the XOR (bjcorr ⊕ btcorr ⊕ bzcorr):

(jcorr, tcorr, zcorr)← LocateIndices(m, corr).

– Choose α, β ∈ {0, · · · ,m− 1} such that α, β 6= jcorr, tcorr, zcorr.

– Sort {jcorr, tcorr, α}, {jcorr, zcorr, β} and {jcorr, α, β} in an ascending orders. Let
{jr1 , tr1 , zr1}, {jr2 , tr2 , zr2} and {tr3 , tr3 , zr3} denote the results of these sorts,
respectively.

– Find three participants used for the repair:

∗ Pr1 ← LocateParticipant(jr1 , tr1 , zr1).

∗ Pr2 ← LocateParticipant(jr2 , tr2 , zr2).

∗ Pr3 ← LocateParticipant(jr3 , tr3 , zr3).

150

7.3. PROPOSED SW-SSS

– Require Pr1 ,Pr2 and Pr3 to provide {cr1 , dr1}, {cr2 , dr2} and {cr3 , dr3}, respec-
tively.

– Find the XORs (sr1 , sr2 and sr3) by picking the cr1-th, cr2-th and cr3-th element
in the set Mr1 , Mr2 and Mr3 , respectively:

∗ sr1 ← FindXOR(|b|, dr1 , cr1).

∗ sr2 ← FindXOR(|b|, dr2 , cr2).

∗ sr3 ← FindXOR(|b|, dr3 , cr3)

– Recover scorr as: scorr ← sr1 ⊕ sr2 ⊕ sr3 .

– Find the metadata dcorr by counting the number of ‘1’ bits in scorr.

– Compute the share ccorr using the FindShare sub-algorithm like the share gen-
eration algorithm.

• LocateParticipant(jri , tri , zri) → Pri : this is the sub-algorithm which is used in the
ShareRepair algorithm:

– Set a value: count = −1.

– For ∀j ∈ {0, · · · ,m− 3}, ∀t ∈ {j + 1, · · · ,m− 2}, ∀z ∈ {t+ 1, · · · ,m− 1}:
∗ Increase count by 1: count = count+ 1.

∗ Check if: (j == jri) and (t == tri) and (z == zri), then return count.

Example 7.3.3. This example follows Example 7.3.1 and Example 7.3.2. Suppose that
P4 is corrupted. {jcorr, tcorr, zcorr} = {0, 2, 4} because P4 uses b0⊕ b2⊕ b4 to construct its
share. Choose α = 1 and β = 3 because 1, 3 6= 0, 2, 4.

b0 ⊕ b2 ⊕ b4 = (b0 ⊕ b2 ⊕ b1)
⊕ (b0 ⊕ b4 ⊕ b3)
⊕ (b0 ⊕ b1 ⊕ b3)

Let {jr1 , tr1 , zr1} = {0, 1, 2}, {jr2 , tr2 , zr2} = {0, 3, 4} and {jr3 , tr3 , zr3} = {0, 1, 3}. The
participants are chosen for repairing P4 as follows:

• Given {jr1 , tr1 , zr1} = {0, 1, 2}, P0 is chosen because P0 uses (b0 ⊕ b1 ⊕ b2).

• Given {jr2 , tr2 , zr2} = {0, 3, 4}, P5 is chosen because P5 uses (b0 ⊕ b3 ⊕ b4).

• Given {jr3 , tr3 , zr3} = {0, 1, 3}, P1 is chosen because P1 uses (b0 ⊕ b1 ⊕ b3).

The participants P0,P5 and P1 are then required to provide (c0, d0), (c5, d5) and (c1, d1)
to the dealer. The XORs used for the repair are found as follows:

• Given (c0, d0) = (11, 3), the dealer finds s0 = 1110.

• Given (c5, d5) = (0, 0), the dealer finds s5 = 0000.

151

7.4. SECRECY AND SHARE SIZE

• Given (c1, d1) = (10, 2), the dealer finds s1 = 0110.

The dealer computes scorr = s0⊕s5⊕s1 = 1000. Because the number of ‘1’ bits in 1000
is 1, dcorr = 1. Because dcorr = 1 and |b| = 4, Mcorr = {0001, 0010, 0100, 1000}. Because
|Mcorr| = 4, at most log2 4 = 2 bits are required to represent ccorr. The share ccorr is the
index of scorr in Mcorr, which is ccorr = 3decimal = 11binary.

7.4 Secrecy and Share Size

This section analyses two properties of our proposed SW-SSS scheme.

7.4.1 Secrecy

We firstly consider the secret reconstruction condition. Let epoch be a time step in which
the participants are checked. If a corrupted participant is detected, it will be repaired in
the epoch.

Theorem 19. The secret S can be reconstructed if in any epoch, at least m out of n
participants are healthy, and the matrix consisting of the coefficient vectors of the XORs
has full rank.

Proof. S = b0|| · · · ||bm−1. To reconstruct S, we view m secret blocks (b0, · · · , bm−1)
as m unknowns that need to be solved. To solve these unknowns, at least m shares
(ci1 , · · · , cim−1) along with their metadata (di1 , · · · , dim−1) are required to make the matrix
have full rank. 

si0 = bj0 ⊕ bt0 ⊕ bz0
si1 = bj1 ⊕ bt1 ⊕ bz1
· · ·
sim−1 = bjm−1 ⊕ btm−1 ⊕ bzm−1

(7.5)

Therefore, the number of required participants is at least m, in order to ensure that
the equation system is solvable. Theorem 19 yields to a constrain between n and m that
n > m. Because each of n shares is constructed from any three out of m secret blocks,

another constraint between n and m is that n ≤
(
m

3

)
. Therefore, m and n should be

chosen such that m < n ≤
(
m

3

)
.

The secrecy is now analysed as follows. Let H(S) be the entropy of the random vari-
able which is induced by S. Let L denote the number of participants whose shares are
collectively constructed from m secret blocks. The secrecy of the SW-SSS scheme is given
in the following theorem:

Theorem 20. The secrecy of t random variables {Ci1 , · · · , Cit} which represent any t
shares {ci0, · · · , cit−1} and t random variables {Di0, · · · , Dit−1} which represent any t
metadata {di0, · · · , dit−1} is:

152

7.4. SECRECY AND SHARE SIZE

H(S|(Ci0 , Di0), · · · , (Cit−1 , Dit−1)) =


H(S), if t < L
m−t
m
H(S), if L ≤ t < m

0, if m ≤ t

(7.6)

Proof. si is the original coded sequence (the XOR) that can be uniquely determined by
the share ci and its metadata di. From the property of the conditional entropy:

H(S|(ci0 , di0), · · · , (cit−1 , dit−1)) ≤ H(S|si0 , · · · , sit−1) (7.7)

The equality holds if S is uniformly distributed. For each case of t, the secrecy is given
as follows:

• Case 1 (t < L): {si0 , · · · , sit−1} are constructed from inadequate m secret blocks
b0, · · · , bm−1. The matrix consisting of the coefficient vectors of sij does not have
full rank. Thus, H(S|si0 , · · · , sit−1) = H(S). This yields:

H(S|(Ci0 , Di0), · · · , (Cit−1 , Dit−1)) = H(S). (7.8)

• Case 2 (L ≤ t): the matrix consisting of the coefficient vectors of sij has rank t.
Thus, H(S|si0 , · · · , sit−1) = m−t

m
H(S). This yields:

H(S|(Ci0 , Di0), · · · , (Cit−1 , Dit−1)) =
m− t
m

H(S) < H(S) (7.9)

• Case 3 (m ≤ t): from (2), m−t
m
H(S) = 0. This yields:

H(S|(Ci0 , Di0), · · · , (Cit−1 , Dit−1)) = 0 (7.10)

This completes the proof.

7.4.2 Share Size

The share sizes in the previous schemes (Shamir-SSS, XOR-SSS, NC-SSS), the revisited
XOR network coding-based SSS and the SW-SSS are given as follows:

• In the previous schemes, the share size is |S| = m · |b| (ideal SSS).

• In the revisited XOR network coding-based SSS, the share size is (m+ |b|) as men-
tioned in Section 7.2.

• In the SW-SSS, the share size is at most log2

(
|b|
di

)
as mentioned in Section 7.3.1.

For ∀|b| and ∀di ∈ {0, · · · , |b|}, we have log2

(
|b|
di

)
< |b|. Thus, log2

(
|b|
di

)
= |b|

x
for a

certain x > 1. It is clear that m+ |b| > |b|
x

.

153

7.5. EFFICIENCY ANALYSIS

7.5 Efficiency Analysis

Let (×) and (⊕) denote the complexity of a multiplication operation in a finite field
and the complexity of a XOR, respectively. The ⊕ operation is much faster than ×
operation (denoted by (×) � (⊕)). The efficiency comparison between the previous
schemes (Shamir-SSS [110], XOR-SSS [130], NC-SSS [132]), the revisited XOR network
coding-based SSS and the SW-SSS scheme is given in Table 7.2.

7.5.1 Storage Cost

The storage costs in the previous schemes (Shamir-SSS, XOR-SSS, NC-SSS), the revisited
XOR network coding-based SSS and the SW-SSS are given as follows:

• In the previous schemes, the storage cost is the same as the share size because each
Pi only stores a share. Namely, the storage cost is O(m|b|).

• In the revisited XOR network coding-based SSS, similar to the previous schemes,
the storage cost is the same as the share size because each Pi only stores a share.
Namely, the storage cost is O(m|b|).

• In the SW-SSS, each Pi stores the share ci (|ci| = log2

(
|b|
di

)
) and the metadata di

(|di| = log2 |b| because di ∈ [1, |b|]). Therefore, the storage cost is O(log2

(
|b|
di

)
+

log2 |b|). For ∀|b| and ∀di ∈ [0, |b|], log2

(
|b|
di

)
< |b|. Thus, log2

(
|b|
di

)
= |b|

x
for some

x > 1, and (|b|
x

+ log2 |b|) < (|b| + m) if log2 |b| < m. This inequality holds if the
parameters are chosen such that |b| < 2m. If S is divided such that any three blocks
are different in the same number of bits (d0, · · · , dn−1 are the same), Pi does not
need to store di because it becomes a shared information. The storage cost is thus
the same as the share size.

7.5.2 Computation Cost

Share Generation. The computation costs of the share generation algorithm in the
previous schemes (Shamir-SSS, XOR-SSS, NC-SSS), the revisited XOR network coding-
based SSS and the SW-SSS are given as follows:

• In the Shamir-SSS, each share is computed from a polynomial on multiplications.
Thus, the computation cost is O(n log n)(×).

• In the XOR-SSS scheme, the computation cost is O(npn)(⊕) where np is the smallest
prime such that np ≥ n.

• In the NC-SSS, n shares are computed from a linear combination of m secret blocks.
Thus, the computation cost is O(mn)(×).

154

7.5. EFFICIENCY ANALYSIS

T
ab

le
7.

2:
E

ffi
ci

en
cy

co
m

p
ar

is
on

b
et

w
ee

n
th

e
S
W

-S
S
S

an
d

p
re

v
io

u
s

sc
h
em

es

P
re

v
io

u
s

sc
h
e
m

e
s

T
h

is
th

e
si

s
S

h
a
m

ir
-S

S
S

X
O

R
-S

S
S

N
C

-S
S
S

R
e
v
is

it
e
d

S
S

S
S

W
-S

S
S

F
ea

tu
re

X
O

R
-b

as
ed

N
o

Y
es

N
o

Y
es

Y
es

A
rb

it
ra

ry
th

re
sh

ol
d

Y
es

Y
es

Y
es

Y
es

Y
es

D
ir

ec
t

sh
ar

e
re

p
ai

r
N

o
N

o
Y

es
Y

es
Y

es

S
to

ra
ge

O
(m
|b
|)

O
(m
|b
|)

O
(m
|b
|)

O
(m

+
|b
|)

O
(|
b| x

+
lo

g
2
|b
|)

C
om

p
u
-

S
h
ar

eG
en

O
(n

lo
g
n

)(
×

)
O

(n
p
n

)(
⊕

)
O

(m
n

)(
×

)
O

(m
n

)(
⊕

)
O

(n
)(
⊕

)
ta

ti
on

R
ec

on
st

O
(m

2
)(
×

)
O

(n
2 p
)(
⊕

)
O

(m
2
)(
×

)
O

(m
2
)(
⊕

)
O

(m
2
)(
⊕

)
S
h
ar

eR
ep

ai
r

N
/A

N
/A

O
(m

)(
×

)
O

(m
)(
⊕

)
O

(1
)(
⊕

)

C
om

m
u
-

S
h
ar

eG
en

O
(n
m
|b
|)

O
(n
m
|b
|)

O
(n
m
|b
|)

O
(n

(m
+
|b
|))

O
(n

(|
b| x

+
lo

g
2
|b
|))

n
ic

at
io

n
R

ec
on

st
O

(m
2
|b
|)

O
(m

2
|b
|)

O
(m

2
|b
|)

O
(m

(m
+
|b
|))

O
(m

(|
b| x

+
lo

g
2
|b
|))

S
h
ar

eR
ep

ai
r

N
/A

N
/A

O
(m

2
|b
|)

O
(m

(m
+
|b
|))

O
(|
b| x

+
lo

g
2
|b
|)

155

7.5. EFFICIENCY ANALYSIS

• In the revisited XOR network coding-based SSS, the dealer also computes the shares
as in the NC-SSS. However, it uses the XOR instead of a linear combination over
field multiplications. Thus, the computation cost is O(mn)(⊕).

• In the SW-SSS, n shares are computed from the XORs of a tuple of three secret
blocks. Thus, the computation cost is O(n)(⊕).

Secret Reconstruction. The computation costs of the secret reconstruction algorithm
in previous schemes (Shamir-SSS, XOR-SSS, NC-SSS), the revisited XOR network coding-
based SSS and the SW-SSS are given as follows:

• In the Shamir-SSS, the Gaussian elimination on multiplications is applied to solve
the secret and (m− 1) coefficients. Thus, the computation cost is O(m2)(×).

• In the XOR-SSS, the dimension of the matrix used for the Gaussian elimination is
(np × np), not (m×m) where np is the smallest prime such that np ≥ n. Thus, the
computation cost is O(n2

p)(⊕).

• In the NC-SSS, the Gaussian elimination on multiplications is applied to solve m
coefficients. Thus, the computation cost is O(m2)(×).

• In the revisited XOR network coding-based SSS, the Gaussian elimination on XORs
is applied to solve m coefficients. Thus, the computation cost is O(m2)(⊕).

• In the SW-SSS, the computation cost is the same as the revisited XOR network
coding-based SSS. Namely, the computation cost is O(m2)(⊕).

Share Repair. The computation costs of the share repair algorithms in the previous
schemes (Shamir-SSS, XOR-SSS, NC-SSS), the revisited XOR network coding-based SSS
and the SW-SSS are given as follows:

• In the Shamir-SSS, the share repair is not supported. Thus, the computation cost
is N/A.

• In the XOR-SSS, the share repair is not supported. Thus, the computation cost is
N/A.

• In the NC-SSS, a corrupted share is repaired using m healthy shares using the field
linear combinations. The computation cost is O(m)(×).

• In the revisited XOR network coding-based SSS, a corrupted share is repaired using
m healthy shares using the XORs. The computation cost is O(m)(⊕).

• In the SW-SSS, a new share is computed from three healthy shares. Thus, the
computation cost is O(1).

156

7.5. EFFICIENCY ANALYSIS

7.5.3 Communication Cost

Share Generation. During the share generation, the dealer distributes n share to n
participants. The communication costs in the previous schemes (Shamir-SSS, XOR-SSS,
NC-SSS), the revisited XOR network coding-based SSS and the SW-SSS are given as
follows:

• In the previous schemes, the cost is O(nm|b|) because the share size is m|b|.

• In the revisited XOR network coding-based SSS, the cost is O(n(m+ |b|)) because
the share size is (m+ |b|).

• In the SW-SSS, the cost is O(n(|b|
x

+ log2 |b|)) because the size of a share and its

metadata is (|b|
x

+ log2 |b|).

Secret Reconstruction. In the previous schemes (Shamir-SSS, XOR-SSS, NC-SSS),
the revisited XOR network coding-based SSS and the SW-SSS, during the secret recon-
struction, m participants are required to provide their shares to the dealer. The commu-
nication cost in each scheme is thus m times the storage cost of that scheme. Concretely:

• In the previous schemes, the communication cost is O(m2|b|).

• In the revisited XOR network coding-based SSS, the communication cost isO(m(m+
|b|)).

• In the SW-SSS, the communication cost is O(m(|b|
x

+ log2 |b|)).

Share Repair. The communication costs of the share repair in the previous schemes
(Shamir-SSS, XOR-SSS, NC-SSS), the revisited XOR network coding-based SSS and the
SW-SSS are given as follows:

• In the Shamir-SSS, the share repair is not supported. Thus, the communication
cost is N/A.

• In the XOR-SSS, the share repair is not supported. Thus, the communication cost
is N/A.

• In the NC-SSS, m healthy participants are required to provide their shares to the
dealer for the share repair. The size of a share is m|b|. Thus, the communication
cost is O(m2|b|).

• In the revisited XOR network coding-based SSS, m healthy participants are required
to provide their shares to the dealer for the share repair. The size of a share is
(m+ |b|). Thus, the communication cost is O(m(m+ |b|)).

• In the SW-SSS, only three healthy shares are required for the share repair. The
size of a share and its metadata is (|b|

x
+ log2 |b|). Thus, the communication cost is

O(|b|
x

+ log2 |b|).

157

7.6. IMPLEMENTATION

7.6 Implementation

7.6.1 Speeding up the FindShare algorithm

To find the share ci, we need to use the FindShare algorithm in which we construct a list Mi

consisting of all permutations and then find the index of the XOR si in Mi. For example,
in the example of the share generation, the XOR s0 = 1110, the metadata d0 = 3, the
secret size is |b| = 4. To find c0, we construct M0 = {0111, 1011, 1101, 1110} and then
find the index of s0 in M0, which is 3. Then, c0 = 3.

In our implementation, we use another way to find ci given si, di, |b| without the need
to construct Mi. We describe it in the FindShare New algorithm which takes (|b|, di, si) as
the inputs and outputs ci as follows:

• FindShare New(|b|, di, si)→ ci:

– Set a value res← 0.

– Set a value mask as the bits shifted to the left by (|b| − 1) places: mask =
1 << (|b| − 1).

– For ∀l ∈ {|b|, · · · , 1}:
∗ Check if the bitwise and operation between si and mask is not 0, then:

· Update res by: res = res+ gmpy2.Combination(l − 1, di).

· Decrease di by 1: di = di − 1

∗ Shift mask to the right by 1 place: mask >>= 1

∗ Decrease l by 1: l = l − 1

– Return res

In the implementation, we use the gmpy2 library embedded in Python to compute a
combination operation as mentioned later in Section 7.6.3. This algorithm is O(n) where
n is the number of bits (and not the length of the list).

7.6.2 Speeding up the FindXOR algorithm

To find the XOR si, we need to use the FindXOR algorithm in which we construct a
list Mi consisting of all permutations and then map the share ci (which also means the
index) in Mi. For example, in the example of the secret reconstruction, the share c1 =
2, the metadata d1 = 2, the secret size is |b| = 4. To find c1, we construct M1 =
{0011, 0101, 0110, 1001, 1010, 1100} and then find the element whose index in M1 is 2,
which is 0110. Then, s1 = 0110.

In our implementation, we use another way to find si given ci, di, |b| without the need
to construct Mi. We describe it in the FindXOR New algorithm. The key idea of this
algorithm is introduced as follows. Let Z denote the number of ‘1’ bits (which is di),
and let N denote the number of ‘0’ bits (which is |b| − di). We know that the number of
permutations starting with ‘0’ is equal to the number of permutations of (N − 1) ‘0’s and
Z ‘1’s, let’s call it K.

158

7.6. IMPLEMENTATION

• If ci > K, the permutation starts with ‘1’, ci remains the same.

• If ci <= K, the permutation starts with ‘0’, remove K from ci.

Fix the first bit and loop this process with ci = ci −K and the correct number of ‘0’s
and ‘1’s. This algorithm is also O(n) where n is the number of bits (and not the length
of the list).

Concretely, the FindXOR New algorithm takes (|b|, di, ci) as the inputs, and outputs si
as follows:

• FindXOR New(|b|, di, ci)→ si:

– Set Z = di which is the number of ‘1’ bits.

– Set N = |b| − Z which is the number of ‘0’ bits.

– Construct a list lst = [0...01...1] which consists of N ‘0’ bits and Z ‘1’ bits.

– Set l← lst

– Set result as an empty string

– For i ∈ {0, · · · , len(lst)}:
∗ Compute K as a combination between the length of l and Z: K =(

len(l)− 1

Z

)
.

∗ Check if (ci < K), then:

· Pad a ‘0’ bit in the final position of result.

· Remove a ‘0’ bit in l.

∗ Else:

· Pad a ‘1’ bit in the final position of result.

· Remove a ‘1’ bit in l.

· Decrease Z by 1: Z = Z − 1.

· Update ci = ci −K
∗ Decrease i by 1: i = i− 1

– Pad the first element of l to result: result+ = l[0].

– Return result.

159

7.6. IMPLEMENTATION

7.6.3 Performance Evaluation

0.53

0.83

1.11

1.51

1.76

0.25
0.37 0.43

0.59
0.67

0.03 0.03 0.03 0.03 0.03
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

50 75 100 125 150

Ti
m

e
 (

s)

Number of secret blocks (m)

ShareGen

Reconst

ShareRepair

Figure 7.2: Computation performance of the SW-SSS scheme

We show the implementation of the SW-SSS scheme to prove that is is applicable to a
real system. The program that is written by Python 2.7.3 is executed using a computer
with Intel Core i5, 2.40 GHz, 4 GB of RAM, Win 7 64-bit OS. The gmpy2 library is used.
Each result is the average of 100 runs. The parameters m and n are set as follows:

• Each secret block, bi, is set to be 210 bits.

• The number of participants, n, is set to be n = m+ 1.

The simulation results in Figure 7.2 are observed with three sets of the computation
performance: ShareGen, Reconst, and ShareRepair by varying the number of secret blocks,
m. The graphs reveal that the computation time of the ShareRepair algorithm is almost
constant and is independent on m. The computation time of the ShareGen and Reconst
algorithms linearly increases with m. The average slopes of increment in the ShareGen
and Reconst algorithms are 0.004 and 0.012, respectively. From these results, if the secret
size, |S|, is 226 bits (m = 65, 500), which is almost an upper bound of the size of a
secret (e.g., secret key, digital signature), the computation time of the ShareGen, Reconst
and ShareRepair algorithms is merely 374.72 seconds (6 minutes), 905.28 seconds (15.1
minutes) and 0.031 seconds, respectively.

160

7.7. SUMMARY

7.7 Summary

In this chapter, we firstly revisit the XOR-based NC and then apply it for the SSS in order
to support the share repair, in order to obtain the arbitrary parameters, and in order to
reduce the share size. This chapter then proposes the main SSS to optimize the share
size, named the SW-SSS. The key idea is based on the binning idea of the SWC, which
is commonly used in data compression in a network. The security analysis is provided
based on the entropy theory. The efficiency analysis is discussed based on the complexity
theory. The simulation results of the SW-SSS scheme reveal that it is applicable to a real
SSS system. Future research is required to investigate the implementation of the previous
schemes.

161

Chapter 8

Conclusion and Future works

This chapter concludes our thesis by summing up what have been done and what contri-
butions were achieved. At the end of this chapter, we discuss some limits of the study
and point out suggestions for future research.

8.1 Conclusion

In this thesis, we propose three schemes as follows:

• MD-POR: this is our main proposed POR which has the following contributions:

– Direct repair : If a corrupted server is detected, the healthy servers will send
their coded blocks directly to the new server without sending them back to the
clients. The new server can verify the provided coded blocks and can compute
the new coded blocks for itself without burdening the clients.

– Multi-client : Multiple clients who own different secret keys can participate in
the system. Their data are mixed together without losing the data confiden-
tiality of individual clients.

– Symmetric key setting : The scheme is constructed using symmetric key setting
for the efficiency.

– Public authentication: Not only the client but also any entity who has a given
information can check the cloud servers while learning nothing about the secret
key of each client. We employ a TPA on behalf of the clients to check the servers
periodically.

• DD-POR: This scheme is an improvement of the MD-POR scheme to support dy-
namic operations unlike the MD-POR scheme. This means that the client not only
can read the data but also can modify, insert, and delete the data. However, the
DD-POR scheme is only a partial improvement of the MD-POR scheme because
in this DD-POR scheme, we can only deal with a single client instead of multiple
clients as the MD-POR scheme. Furthermore, the DD-POR does not deal with

162

8.1. CONCLUSION

the public authentication as the MD-POR scheme. Namely, the DD-POR has the
following contributions:

– Direct repair: like the MD-POR scheme, when a server is corrupted, the healthy
servers will provide their coded blocks and tags directly to the new server
without sending them back to the client. Then, the new server can check
them, and can compute the new coded blocks and the tags for itself.

– Dynamic operations: unlike the MD-POR the client not only can check and
retrieve the data, but also can modify, insert and delete the data.

– Symmetric key setting: The scheme is constructed using symmetric key setting
for the efficiency.

• ND-POR: This scheme has been proposed in which the network coding and the
dispersal coding technique are combined in order to:

– Reduce the costs of two important phases: the check phase and the repair
phase.

– Prevent replay attack, pollution attack and large corruption and specially, small
corruption attack.

In future work, we focus on how to support direct repair (the MD-POR and DD-
POR schemes). The repair phase has not been optimized because the healthy servers
need to provide the aggregated coded blocks to the client, then the client computes
the new coded blocks and stores them on the new server. A new mechanism can be
considered in which the healthy servers send their coded blocks directly to the new
server without sending back to the client. This mechanism can reduce the burden
for the client and also reduce the communication. To support this mechanism, a
signature scheme can be employed such as [84, 103] that allows the new server to
verify the coded blocks provided from the healthy servers instead of the client, and
to construct the new coded blocks by itself.

• SW-SSS: we firstly revisit the XOR network coding and apply it to the SSS. The
revisited XOR network coding-based SSS has the following four advantages:

– The shares are constructed using the XOR for fast computation.

– The parameters (m,n) can be chosen arbitrarily.

– The direct share repair is supported.

– The size of a share is smaller than the size of the secret.

We then show that the SWC, which is used to compress a data stream in a network,
can be also applied for SSS to reduce the share size of the revisited XOR network
coding-based SSS. In other words, the SW-SSS improves the fourth advantage and
still satisfies the first three advantages of the revisited XOR network coding-based
SSS.

163

8.2. FUTURE WORK

8.2 Future work

The research in this thesis has several future works:

1. Improve the DD-POR scheme to multiple clients and public authentication: As
mentioned in the contribution chapter, the DD-POR scheme is an improvement
of the MD-POR scheme such that the DD-POR scheme can support the dynamic
operations (which means that the client can modify, insert and delete his/her data
stored in the server) while the MD-POR cannot. However, the DD-POR scheme is
only a partial improvement of the MD-POR scheme because the DD-POR scheme
only supports a single client instead of multiple client like the MD-POR scheme,
and because the DD-POR scheme does not meet the public authentication feature.

2. Implement the DD-POR scheme: this is because the efficiency of the DD-POR
scheme is only analysed using the complexity theory without an implementation.

3. Implement the previous schemes which are used to compare with the MD-POR and
SW-SSS schemes.

164

Bibliography

[1] Amazon Simple Storage Service (Amazon S3). aws.amazon.com/s3.

[2] SRB Storage Resource Broker. http://www.sdsc.edu/srb/index.php/Main Page.

[3] Kumar, Aswini, Whitchcock, Andrew, ed., “Google’s BigTable,
First an overview. BigTable has been in development since early
2004 and has been in active use for about eight months” (2005),
http://googlecloudplatform.blogspot.com.au/2015/05/introducing-Google-Cloud-
Bigtable.html.

[4] HP Public Cloud. http://www.hpcloud.com/

[5] Dropbox. https://www.dropbox.com/

[6] Google Drive. https://www.google.com/drive/

[7] iCloud. https://www.icloud.com/

[8] A. Juels and B. S. Kaliski, “PORs: Proofs of retrievability for large files”. In:
Proceedings of the 14th ACM conference on Computer and communications security
- CCS’07, pp. 584-597 (2007).

[9] H. Shacham and B. Waters, “Compact Proofs of Retrievability”. In: Proceedings
of the 14th International Conference on the Theory and Application of Cryptology
and Information Security: Advances in Cryptology - ASIACRYPT’08, pp. 90-107
(2008).

[10] K. Bowers, A. Juels and A. Oprea, “Proofs of retrievability: theory and implemen-
tation”. In: Proceedings of the 2009 ACM workshop on Cloud computing security -
CCSW’09, pp. 43-54 (2009).

[11] A. Juels, B. S. Kaliski, K. D. Bowers and A. M. Oprea, “Proof of retrievability for
archived files”. In: US Patent, publication number: US8381062 B1 (2013).

[12] J. Xu and E. C Chang, “Towards efficient proofs of retrievability”. In: Proceedings of
the 7th ACM Symposium on Information, Computer and Communications Security
- ASIACCS’12, pp. 79-80 (2012).

165

BIBLIOGRAPHY

[13] Y. Dodis, S. Vadhan, and D. Wichs. “Proofs of retrievability via hardness amplifi-
cation”. In: Proceedings of the 6th Theory of Cryptography Conference on Theory
of Cryptography - TCC’09, pp. 109-127 (2009).

[14] W. J. Bolosky, J. R. Douceur, D. Ely and M. Theimer, “Feasibility of a serverless
distributed file system deployed on an existing set of desktop PCs”. In: Proceed-
ings of ACM conference on Measurement and modeling of computation systems -
SIGMETRICS’00, pp. 34-43 (2000).

[15] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Shenker, “A scalable content-
addressable network”. In: Proceedings of the 2001 conference on Applications, tech-
nologies, architectures, and protocols for computer communications - SIGCOMM’01,
pp. 161-172 (2001).

[16] P. Druschel and A. Rowstron, “Storage management and caching in PAST, a
largescale, persistent peer-to-peer storage utility”. In: Proceedings of the 18th ACM
symposium on Operating systems principles - SOSP’01, pp. 188-201 (2001).

[17] Z. Zhang, Q. Lian, S. Lin, W.Chen, Y.Chen and C. Jin, “Bitvault: A highly reliable
distributed data retention platform”. In: ACM SIGOPS Operating Systems Review
- Systems work at Microsoft Research, vol. 41, no. 2, pp. 27-36 (2007).

[18] R. Curtmola, O. Khan, R. Burns and G. Ateniese, “MR-PDP: Multiple-Replica
Provable Data Possession”. In: Proceedings of the 28th International Conference on
Distributed Computing Systems - ICDCS’08, pp. 411-420 (2008).

[19] V. Pless, “Introduction to the Theory of Error-Correcting Codes”. In: Wiley-
Interscience Series in Discrete Mathematics, John Wiley and Sons, ISBN 0-471-
08684-3 (1982).

[20] M. K. Aguilera, R. Janakiraman and L. Xu, “Efficient fault-tolerant distributed
storage using erasure codes”, Technical Report, Washington University in St. Louis
(2004), Available at: www.nisl.wustl.edu/Papers/Tech/aguilera04efficient.pdf

[21] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi,
S. Rhea, H. Weatherspoon, W. Weimer, C. Wells and B. Zhao, “Oceanstore: An
architecture for global-scale persistent storage”. In: ACM SIGPLAN Notices, vol.
35, no. 11, pp. 190-201 (2000).

[22] F. W. Chang, M. Ji, S. A. Leung, J. MacCormick, S. E. Perl and L. Zhang, “Myriad:
Cost-effective Disaster Tolerance”. In: Proceedings of the Conference on File and
Storage Technologies - FAST’02, pp. 103-116 (2002).

[23] S. Frolund, A. Merchant, Y. Saito, S. Spence and A. Veitch, “A decentralized algo-
rithm for erasure-coded virtual disks”. In: Proceedings of the International Confer-
ence on Dependable Systems and Networks - DSN’04, pp. 125-134 (2004).

166

BIBLIOGRAPHY

[24] M. K. Aguilera, R. Janakiraman and L. Xu, “Using erasure codes efficiently for
storage in a distributed system”. In: Proceedings of the International Conference
on Dependable Systems and Networks - DSN’05, pp. 336-345 (2005).

[25] J. Hendricks, G. R. Ganger and M. Reiter, “Verifying distributed erasure-coded
data”. In: Proceedings of the 26th ACM symposium on Principles of distributed
computing - PODC’07, pp. 139-146 (2007).

[26] K. D. Bowers, A. Juels and A. Oprea, “HAIL: A High-Availability and Integrity
Layer for Cloud Storage”. In: Proceedings of the 16th ACM conference on Computer
and communications security - CCS’09, pp. 187-198 (2009).

[27] H. Y. Lin and W. G. Tzeng, ”A Secure Erasure Code-Based Cloud Storage System
with Secure Data Forwarding”. In: IEEE Transactions on Parallel and Distributed
Systems, vol. 23, no. 6, pp. 995-1003 (2012).

[28] O. Goldreich, “Towards a Theory of Software Protection and Simulation by Obliv-
ious RAMs”. In: Proceedings of the nineteenth annual ACM symposium on Theory
of computing - STOC’87, pp. 182-194 (1987).

[29] R. Ostrovsky, “Efficient computation on oblivious rams”. In: Proceedings of the
nineteenth annual ACM symposium on Theory of computing - STOC’90, pp. 514-
523 (1990).

[30] O. Goldreich and R. Ostrovsky, “Software protection and simulation on oblivious
RAMs”. In: Journal of the ACM, vol. 43, no. 3, pp. 431-473 (1996).

[31] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko and R. Tamassia, “Oblivious
RAM simulation with efficient worst-case access overhead”. In: Proceedings of the
3rd ACM Cloud Computing Security Workshop - CCSW’11, pp. 95-100 (2011).

[32] E. Shi, T. H. H. Chan, E. Stefanov and M. Li, “Oblivious ram with o((logn)3) worst-
case cost”. In: Proceedings of the 17th International Conference on the Theory and
Application of Cryptology and Information Security - ASIACRYPT’11, pp. 197-214
(2011).

[33] E. Stefanov, M. Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu and S. Devadas, “Path
ORAM: an extremely simple oblivious RAM protocol”. In: Proceedings of the ACM
SIGSAC conference on Computer and communications security - CCS’13, pp. 299-
310 (2013).

[34] E. Shi, E. Stefanov and C. Papamanthou, “Practical dynamic proofs of retriev-
ability”. In: Proceedings of the 2013 ACM SIGSAC conference on Computer and
communications security - CCS’13, pp. 325-336 (2013).

[35] E. Stefanov and E. Shi, “Oblivistore: High performance oblivious cloud storage”.
In: IEEE Symposium on Security and Privacy - SP’13, pp. 253-267 (2013).

167

BIBLIOGRAPHY

[36] D. Cash, A. Kupcu and D. Wichs, “Dynamic Proofs of Retrievability via Oblivious
RAM”. In: Proceedings of the 32nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques - EUROCRYPT’13, vol. 7881, pp.
279-295 (2013).

[37] D. Apon, J. Katz, E. Shi and A. Thiruvengadam, “Verifiable Oblivious Storage”.
In: Proceedings of the 17th International Conference on Practice and Theory of
Public-Key Cryptography - PKC’14, pp. 131-148 (2014).

[38] R. W. Yeung, “Multilevel diversity coding with distortion”. In: IEEE Transactions
on Information Theory, vol. 41, no. 2, pp. 412-422 (1995).

[39] J. R. Roche, R. W. Yeung and K. P. Hau, “Symmetrical multilevel diversity coding”.
In: IEEE Transactions on Information Theory, vol. 43, no. 3, pp. 1059-1064 (1997).

[40] R. W. Yeung and Z. Zhang, “Distributed source coding for satellite communica-
tions”. In: IEEE Transactions on Information Theory, vol. 45, no. 4, pp. 1111-1120
(1999).

[41] R. W. Yeung and Z. Zhang, “On symmetrical multilevel diversity coding”. In: IEEE
Transactions on Information Theory, vol. 45, no. 2, pp. 609-621 (1999).

[42] R. Ahlswede, N. Cai, S. Y. R. Li and R.W. Yeung, “Network information flow”. In:
IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1204-1216 (2000).

[43] S. Y. R. Li, R. W. Yeung and N. Cai, “Linear Network Coding”. In: IEEE Trans-
actions on Information Theory, vol. 49, no. 2, pp. 371-381 (2003).

[44] R. Koetter and M. Medard, “An Algebraic Approach to Network Coding”. In:
IEEE/ACM Transactions on Networking (TON), vol. 11, no. 5, pp. 782-795 (2003).

[45] T. Ho, R. Koetter, M. Medard, D. R. Karger and M. Effros, “The benefits of coding
over routing in a randomized setting”. In: Proceedings of the IEEE International
Symposium on Information Theory - ISIT’03, p. 442 (2003).

[46] P. A. Chou, Y. Wu, K. Jain,“Practical network coding”. In: Proceedings of the 41st
Annual Allerton Conference on Communication, Control, and Computing (2003).

[47] T. Ho, M. Medard, J. Shi, M. Effros and D. R. Karger, “On randomized network
coding”. In: Proceedings of the 41st Annual Allerton Conference on Communication,
Control, and Computing (2003).

[48] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi and B. Leong, “A
random linear network coding approach to multicast”. In: IEEE Transactions on
Information Theory, vol. 52, no. 10, pp. 4413-4430 (2006).

[49] J. Li, S. Yang, X. Wang, X. Xue and B.Li, “Tree-structured data regeneration
with network coding in distributed storage systems”. In: Proceedings of the 17th
International Workshop on Quality of Service - IWQoS’09, pp. 1-9 (2009).

168

BIBLIOGRAPHY

[50] J. Li, S. Yang, X. Wang, X. Xue and B. Li, “Tree-structured Data Regeneration
in Distributed Storage Systems with Network Coding”. In: Proceedings of the 29th
conference on Information communications - INFOCOM’10, pp. 2892-2900 (2010).

[51] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright and K. Ramchandran, “Network
coding for distributed storage systems”. In: IEEE Transactions on Information
Theory, vol. 56, no. 9, pp. 4539-4551 (2010).

[52] S. Agrawal and D. Boneh, “Homomorphic MACs: MACBased Integrity for Net-
work Coding”. In: Proceedings of the 7th Conference on Applied Cryptography and
Network Security - ACNS’09, pp. 292-305 (2009).

[53] C. Cheng and T. Jiang, “An Efficient Homomorphic MAC with Small Key Size for
Authentication in Network Coding”. In: IEEE Transactions on Computers, vol. 62,
no. 10, pp. 2096-2100 (2012).

[54] C. Cheng, T. Jiang and Q. Zhang, “TESLA-Based Homomorphic MAC for Au-
thentication in P2P System for Live Streaming with Network Coding”. In: IEEE
Journal on Selected Areas in Communications, vol. 31, no. 9, pp. 291-298 (2013).

[55] Jonathan Katz and Brent Waters, “Compact signatures for network cod-
ing”. In: Cryptology ePrint Archive, vol. 316 (2008), Available at:
http://eprint.iacr.org/2008/316.

[56] R. Johnson, D. Molnar, D. Song and D Wagner, “Homomorphic Signature
Schemes”. In: Proceedings of th Cryptographer’s Track at the RSA Conference on
Topics in Cryptology - CT-RSA’02, pp. 244-262 (2002).

[57] N. Attrapadung and B. Libert, “Homomorphic network coding signatures in the
standard model”. In: Proceedings of the 14th conference on Practice and theory in
public key cryptography - PKC’11, pp. 680-696 (2011).

[58] D. M. Freeman, “Improved security for linearly homomorphic signatures: a generic
framework”. In: Proceedings of the 15th conference on Practice and Theory in Public
Key Cryptography - PKC’12, vol. 7293, pp. 697-714 (2012).

[59] D. Catalano, D. Fiore and B. Warinschi, “Efficient network coding signatures in the
standard model”. In: Proceedings of the 15th conference on Practice and theory in
public key cryptography - PKC’12, pp. 680-696 (2012)

[60] S. Acedanski, S. Deb, M. Medard, and R. Koetter, “How good is random linear
coding based distributed networked storage?”. In: Proceedings of the 1st Workshop
on Network Coding, Theory and Applications - NETCOD’05 (2005).

[61] B. Chen, R. Curtmola, G. Ateniese and R. Burns, “Remote Data Checking for
Network Coding-based Distributed Storage Systems”. In: Proceedings of the ACM
Cloud Computing Security Workshop - CCSW’10, pp. 31-42 (2010).

169

BIBLIOGRAPHY

[62] A. Le and A. Markopoulou, “NC-Audit: Auditing for network coding storage”. In:
International Symposium on Network Coding - NetCod’12, pp. 155-160 (2012).

[63] N. Cao, S. Yu, Z. Yang, W. Lou and Y. T. Hou, “LT Codes-based Secure and
Reliable Cloud Storage Service”. In: Proceedings of the 31st IEEE conference on
Computer Communications - INFOCOM’12, pp. 693-701 (2012).

[64] Y. Hu, H. C. H. Chen, P. P. C. Lee and Y. Tang, “NCCloud: Applying Network
Coding for the Storage Repair in a Cloud-of-Clouds”. In: Proceedings of the 10th
USENIX Conference on File and Storage Technologies - FAST’12 (2012).

[65] H. C. H. Chen, Y. Hu, P. P. C. Lee and Y. Tang, “NCCloud: A Network-Coding-
Based Storage System in a Cloud-of Clouds”. In: IEEE Transactions on Computers,
vol. 63, no. 1, pp. 31-44 (2014).

[66] F. Chen, T. Xiang, Y. Yang and S. S. M. Chow, “Secure Cloud Storage Meets with
Secure Network Coding”. In: Proceedings of the 33rd Annual IEEE International
Conference on Computer Communications - INFOCOM’14, pp. 673-681 (2014).

[67] B. Chen B and R. Curtmola, “Robust dynamic remote data checking for public
clouds”. In: Proceedings of the ACM conference on Computer and communications
security - CCS’12, pp. 1043-1045 (2012).

[68] C. Wang, Q. Wang, K. Ren and W. Lou, “Privacy-preserving public auditing for
data storage security in cloud computing”. In: Proceedings of the 29th conference
on Information communications - INFOCOM’10, pp. 525-533 (2010).

[69] Q. Wang, C. Wang, J. Li, K. Ren and W. Lou, “Enabling Public Verifiability and
Data Dynamics for Storage Security in Cloud Computing”. In:Proceedings of the
14th European Symposium on Research in Computer Security - ESORICS’09, pp.
355-370 (2009).

[70] Q. Wang, C. Wang, K. Ren, W. Lou and J. Li, “Enabling Public Auditability and
Data Dynamics for Storage Security in Cloud Computing”. In: IEEE Transactions
on Parallel and Distributed Systems, vol. 22, no. 5, pp. 847-859 (2011).

[71] C. Wang, Q. Wang, K. Ren, N. Cao and W. Lou, “Toward Secure and Depend-
able Storage Services in Cloud Computing”. In: IEEE Transactions on Services
Computing, vol. 5, no. 2, pp. 220-232 (2012).

[72] Q. Zheng and S. Xu, “Fair and dynamic proofs of retrievability”. In: Proceedings
of the first ACM conference on Data and application security and privacy - CO-
DASPY’11, pp. 237-248 (2011).

[73] Z. Mo, Y. Zhou and S. Chen, “A dynamic Proof of Retrievability (PoR) scheme with
O(logn) complexity”. In: Proceedings of the 2012 IEEE International Conference
on Communications ICC’12, pp. 912-916 (2012).

170

BIBLIOGRAPHY

[74] Y. Zhu, G. Ahn, H. Hu, S. S. Yau, H. G. An, C. Hu, “Dynamic Audit Services for
Outsourced Storages in Clouds”. In: IEEE Transactions on Services Computing,
vol. 6, no. 2, pp. 227-238 (2011).

[75] Y. Yu, Y. Mu, J. Ni, J. Deng and K. Huang, “Identity Privacy-Preserving Public
Auditing with Dynamic Group for Secure Mobile Cloud Storage”. In: Proceedings
of the 8th International Conference on Network and System Security - NSS’14, pp.
28-40 (2014).

[76] A. Herzberg, M. Jakobsson, H. Krawczyk, and M. Yung, “Proactive public key and
signature systems”. In: Proceedings of the 4th ACM conference on Computer and
communications security - CCS’97, pp. 100110 (1997).

[77] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive secret sharing,
or: How to cope with perpetual leakage”. In: Proceedings of the 15th Annual In-
ternational Cryptology Conference - CRYPTO’95, vol. 1963 of LNCS, pp. 339352
(1995).

[78] A. Juels and A. Oprea, “New Approaches to Security and Availability for
Cloud Data”. In: Communications of the ACM, vol. 56, no. 2, pp. 64-73, DOI:
10.1145/2408776.2408793 (2013).

[79] A. Le and A. Markopoulou, “On detecting pollution attacks in inter-session network
coding”. In: Proceedings of the 31st IEEE conference on Computer Communications
- INFOCOM’12, pp. 343-351 (2012).

[80] B. Chen and R. Curtmola, “Towards Self-Repairing Replication-Based Storage Sys-
tems Using Untrusted Clouds”. In: Proceedings of the third ACM conference on
Data and application security and privacy - CODASPY’13, pp. 377-388 (2013).

[81] B. Chen, A. K. Ammula and R. Curtmola, “Towards Server-side Repair for Erasure
Coding-based Distributed Storage Systems”. In: Proceedings of the 5th ACM Con-
ference on Data and Application Security and Privacy - CODASPY’15, pp. 281-288
(2015).

[82] S. Agrawal, D. Boneh, X. Boyen and D. M. Freeman, “Preventing pollution at-
tacks in multi-source network coding”. In: Proceedings of the 13th International
Conference on Practice and Theory in Public Key Cryptography - PKC’10 (2010).

[83] L. Czap and I. Vajda, “Signatures for multi-source network coding”. In: IACR
Cryptology ePrint Archive (2010). Available at: http://eprint.iacr.org/2010/328

[84] W. Yana, M. Yang, L. Li and H. Fang, “Short signature scheme for multi-source
network coding”. In: Journal on Computer Communications, vol. 35, issue. 3, pp.
344-351, Elsevier Science Publishers (2012).

171

BIBLIOGRAPHY

[85] J. Zhang, J. Shao, Y Ling, M. Ji, G. Wei1 and B. Ying, “Efficient multiple sources
network coding signature in the standard model”. In: Concurrency and Computa-
tion: Practice and Experience, Wiley publisher, DOI: 10.1002/cpe.3322 (2014).

[86] A. Le and A. Markopoulou, “Cooperative Defense Against Pollution Attacks in
Network Coding Using SpaceMac”. In: IEEE Journal Selected Areas in Communi-
cations, vol. 30, no. 2, pp. 442-449 (2012).

[87] F. Oggier and H. Fathi, “An Authentication Code Against Pollution Attacks in
Network Coding”. In: IEEE/ACM Transactions on Networking, vol. 19, no. 6, pp.
1587-1596, DOI: 10.1109/TNET.2011.2126592 (2011).

[88] X. Wu, Y. Xu, C. Yuen and L. Xiang, “A Tag Encoding Scheme against Pollu-
tion Attack to Linear Network Coding”. In: IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no. 1, pp. 33-42, doi:10.1109/TPDS.2013.24 (2014).

[89] Z. Yu, Y. Wei, B. Ramkumar and Y. Guan, “An Efficient Signature-Based
Scheme for Securing Network Coding Against Pollution Attacks”. In: Proceedings
of the IEEE 27th Conference on Computer Communication - INFOCOM’08, doi:
10.1109/INFOCOM.2008.199 (2008).

[90] X. Wu, Y. Xu, L. Xiang and W. Xu, “A Hybrid Scheme against Pollution Attack to
Network Coding”. In: Proceedings of the 2011 International Symposium on Network
Coding - NetCod’11, pp. 1-4, doi: 10.1109/ISNETCOD.2011.5979070 (2011).

[91] J. Dong, R. Curtmola, and C. Nita-Rotaru, “Practical Defenses Against Pollution
Attacks in Wireless Network Coding”. In: ACM Transactions on Information and
System Security, vol. 14, no. 1, article 7 (2011).

[92] A. Le and A. Markopoulou, “TESLA-Based Defense against Pollution Attacks in
P2P Systems with Network Coding”. In: Proceedings on IEEE International Sym-
posium on Network Coding - NetCod’11, pp. 1-7 (2011).

[93] L. Carter and M. Wegman, “Universal Hash Functions”. In: Journal of Computer
and System Sciences, vol. 18, no. 2, pp. 143-154 (1979).

[94] J. Baylis, “Error-Correcting Codes: A Mathematical Introduction”. Boca Raton,
FL: CRC Press (1998).

[95] J. H. Conway and N. J. A. Sloane, “Error-Correcting Codes”. Chapter 3.2 in Sphere
Packings, Lattices, and Groups, 2nd edition New York: Springer-Verlag, pp. 75-88
(1993).

[96] F. J. MacWilliams and N. J. A. Sloane, “The Theory of Error-Correcting Codes”.
Amsterdam, Netherlands: North-Holland (1977).

[97] M. Riley and I. Richardson, “An introduction to Reed Solomon codes: principles,
architecture and implementation”. Prentice-hall (2001).

172

BIBLIOGRAPHY

[98] L. R. Welch, “The Original View of ReedSolomon Codes”. PDF, Lecture Notes
(1997).

[99] V. Shoup, “On fast and provably secure message authentication based on univer-
sal hashing”. In: Proceedings of the 16th Cryptology Conference on Advances in
Cryptology - CRYPTO’96, pp. 313-328 (1996).

[100] D. R. Stinson, “Cryptography - Theory and Practice”. CRC Press, Boca Raton
(1995).

[101] O. Goldreich, S. Goldwasser and S. Micali, “How to Construct Random Functions”.
In: Journal of the ACM, vol. 33, no. 4, pp. 792-807 (1986).

[102] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D.
Song, “Provable data possession at untrusted stores”. In: Proceedings of the 14th
ACM Conference on Computing and communication security - CCS’07, pp. 598-609
(2007).

[103] D. Catalano, D. Fiore and B. Warinschi, “Efficient network coding signature in the
standard model”. In: Proceedings of the 15th Conference on Practice and Theory in
Public Key Cryptography - PKC’12, pp. 680-696 (2012).

[104] H. Handschuh and B. Preneel, “Key-Recovery Attacks on Universal Hash Function
Based MAC Algorithms”. In: Proceedings of the 28th Conference on Cryptology:
Advances in Cryptology - CRYPTO’08, pp. 144-161 (2008).

[105] R. Curtmola, O. Khan, and R. Burns, “Robust remote data checking”. In: Proceed-
ings of the 4th ACM international workshop on Storage security and survivability -
StorageSS’08, pp. 63-68 (2008).

[106] B. Chen, and R Curtmola, “Auditable Version Control Systems”. In: Proceedings
of the 21th Annual Network and Distributed System Security Symposium - NDSS’14
(2014).

[107] F. Didier, “Efficient erasure decoding of Reed-Solomon codes”. arXiv:0901.1886v1
[cs.IT] (2009).

[108] G. Ateniese, R. Di Pietro, L. Mancini, and G. Tsudik, “Scalable and efficient prov-
able data possession”. In: Proceedings of the 4th Conference on Security and privacy
in communication networks - SecureComm’08, Article no. 9 (2008).

[109] G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner, Z. Peterson,
and D. Song, “Remote data checking using provable data possession”. In: Journal
ACM Transactions on Information and System Security (TISSEC), vol 14, no. 1,
May 2011, Article No. 12 (2011).

[110] A. Shamir, “How to share a secret”. In: Communication of the ACM, vol. 22, no.
11, pp. 612-613 (1979).

173

BIBLIOGRAPHY

[111] G. R. Blakley, “Safeguarding cryptographic keys”. In: Proceedings of the AFIPS
National Computer Conference, vol.48, pp.313-317 (1979).

[112] E. Karnin, J. Greene and M. Hellman, “On secret sharing systems”. In: IEEE
Transactions on Information Theory, vol. 29, no. 1, pp. 35-41 (1983).

[113] R. Capocelli, A. Santis, L. Gargano and U. Vaccaro, “On the size of shares for secret
sharing schemes”. In: Journal of Cryptology, vol. 6, no. 3, pp. 157-167 (1993).

[114] G. R. Blakley and C. Meadows C, “Security of ramp schemes”. In: Proceedings of
the CRYPTO on Advances in cryptology, LNCS 196, Springer-Verlag, pp. 242-269
(1984).

[115] H. Yamamoto, “On secret sharing systems using (k, L, n) threshold scheme”. In: IE-
ICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, vol. J68-A,no. 9, pp. 945-952 (1985).

[116] K. Kurosawa, K. Okada, K. Sakano, W. Ogata and T. Tsujii, “Non perfect secret
sharing schemes and matroids”. In: Workshop on the Theory and Application of
Cryptographic Techniques - EUROCRYPT’93, LNCS 765, Springer-Verlag, pp.126-
141 (1993).

[117] W. Ogata and K. Kurosawa, “Some basic properties of general nonperfect secret
sharing schemes”. In: Journal of Universal Computer Science, vol. 4, no. 8, pp.
690-704 (1998).

[118] K. Okada and K. Kurosawa, “Lower bound on the size of shares of nonperfect secret
sharing schemes”. In: Proceedings of the 4th International Conference on the Theory
and Applications of Cryptology - ASIACRYPT’94, LNCS 917, SpringerVerlag, pp.
34-41 (1994).

[119] Y. Wang, “Efficient LDPC Code Based Secret Sharing Schemes and Private Data
Storage in Cloud without Encryption”. Technical report, UNC Charlotte (2012).

[120] H. Ishizu and T. Ogihara, “A study on long-term storage of electronic data”. In:
IEICE General Conference, vol. D-9-10, no. 1, pp. 125 (2004).

[121] Y. Fujii, M. Tada, N. Hosaka, K. Tochikubo and T. Kato, “A fast (2, n)-threshold
scheme and its application”. In: Proceedings of the CSS conference (in Japanese),
pp 631-636 (2005).

[122] N. Hosaka, K. Tochikubo, Y. Fujii, M. Tada and T. Kato, “(2, n)-threshold secret
sharing systems based on binary matrices”. In: Symposium on SCIS (in Japanese),
pp. 2D 1-4 (2007).

[123] Y. Suga, “New constructions of (2, n)-threshold secret sharing schemes using
exclusive-OR operations”. In: Proceedings of the 7th Conference on Innovative Mo-
bile and Internet Services in Ubiquitous Computing (IMIS’13), pp. 837-842 (2013).

174

BIBLIOGRAPHY

[124] J. Kurihara, S. Kiyomoto, K. Fukushima and T. Tanaka, “A fast (3,n)-threshold
secret sharing scheme using exclusive-OR operations”. In: IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences, vol. E91-A,
no. 1, pp. 127-138 (2008).

[125] N. Shiina, T. Okamoto and E. Okamoto, “How to convert 1-out-of-n proof into
k-out-of-n proof”. In: Symposium on SCIS (in Japanese), pp 1435-1440 (2004).

[126] H. Kunii and M. Tada, “A note on information rate for fast threshold schemes”. In:
Proceedings of CSS’06, pp. 101106 (2006).

[127] J. Kurihara, S. Kiyomoto, K. Fukushima and T. Tanaka, “A new (k, n)-threshold
secret sharing scheme and its extension”. In: Proceedings of the 11th conference on
Information Security - ISC’08, pp.455-470 (2008).

[128] L. Chunli, X. Jia, L. Tian L, J. Jing, M. Sun, “Efficient Ideal Threshold Secret
Sharing Schemes Based on EXCLUSIVE-OR Operations”. In: Proceedings of the
4th Conference on Network and System Security - NSS’10, pp.136-143 (2010).

[129] Y. Wang and Y. Desmedt, “Efficient Secret Sharing Schemes Achieving Optimal
Information Rate”. In: Proceedings of the IEEE Information Theory Workshop -
ITW’14, pp. 516-520 (2014).

[130] J. Kurihara, S. Kiyomoto, K. Fukushima and T. Tanaka, “A fast (k-L-N)-Threshold
Ramp secret sharing scheme”. In: IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences, doi:10.1587/transfun.E92.A.1808
(2009).

[131] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal Exact-Regenerating Codes
for Distributed Storage at the MSR and MBR Points via a ProductMatrix Construc-
tion”. In: IEEE Transactions on Information Theory, vol. 57, no. 8, pp. 52275239
(2011).

[132] M. Kurihara and H. Kuwakado, “Secret Sharing Schemes Based on Minimum Band-
width Regenerating Codes”. In: Proceedings of the International Symposium on
Information Theory and its Applications - ISITA’12, pp.255-259 (2012).

[133] Z. Tang, H. W. Lim and H. Wang, “Revisiting a Secret Sharing Approach to Network
Codes”. In: Proceedings of the 6th international conference on Provable Security -
ProvSec’12, pp. 300-317. (2012).

[134] N. B. Shah, K. V. Rashmi and K. Ramchandran, “Secure network coding for dis-
tributed secret sharing with low communication cost”. In: Proceedings of the 2013
IEEE International Symposium on Information Theory Proceedings - ISIT’13, pp.
2404-2408 (2013).

[135] N. Cai and W. Y. Raymond, “Secure network coding”. In: Proceedings of the IEEE
International Symposium on Information Theory - ISIT’02, pp. 323-329 (2002).

175

BIBLIOGRAPHY

[136] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard and J. Crowcroft, “XORs in the
air: practical wireless network coding”. In: IEEE/ACM Transactions on Network-
ing, vol. 16, no. 3, pp. 497-510 (2008).

[137] Z. Yu, Y. Wei, B. Ramkumar and Y. Guan, “An Efficient Scheme for Securing XOR
Network Coding against Pollution Attacks”. In: Proceedings of the 28th Conference
on Computer Communication - INFOCOM’09, pp.406-414 (2009).

[138] A. Khreishah, I. M. Khalil, P. Ostovari and J. Wu, “Flow-based XOR Network
Coding for Lossy Wireless Networks”. In: IEEE Transactions on Wireless Commu-
nications, vol. 11, no. 6, pp. 2321-2329 (2012).

[139] K. Izawa, A. Miyaji and K. Omote, “Lightweight Integrity for XOR Network Coding
in Wireless Sensor Networks”. In: Proceedings of the 8th international conference
on Information Security Practice and Experience - ISPEC’12, pp. 245-258 (2012).

[140] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information sources”. In:
IEEE Transactions on Information Theory, vol. 19, no. 4, pp. 471-480 (1973).

[141] A. Wyner, “Recent results in the Shannon theory”. In: IEEE Transactions on
Information Theory, vol. 20, Jan. 1974, pp. 210 (1974).

[142] D. A. Wyner and J. Ziv, “The rate-distortion function for source coding with side
information at the decoder”. In: IEEE Transactions on Information Theory, vol.
22, no. 1, pp. 1-10 (1976).

[143] M. C. Thomas (1975), “A proof of the data compression theorem of Slepian and
Wolf for ergodic sources”. In: IEEE Transactions on Information Theory, vol. 21,
no. 2, pp. 226-228 (1975).

[144] R. Cristescu, B. B. Lozano and M. Vetterli, “Networked Slepian-Wolf: theory, algo-
rithms, and scaling laws”. In: IEEE Transactions on Information Theory, vol. 51,
no. 12, pp. 4057-4073 (2005).

[145] E. Tuncel, “Slepian-Wolf coding over broadcast channels”. In: IEEE Transactions
on Information Theory, vol. 52, no. 4, pp. 1469-1482 (2006).

[146] V. Stankovi, A. D. Liveris, Z. Xiong Z and C. N. Georghiades, “Design of Slepian-
Wolf Codes by Channel Code Partitioning”. In: Proceedings of the conference on
Data Compression - DCC’04, pp. 302-311 (2004).

[147] V. Stankovic, A. D. Liveris, Z. Xiong Z and C. N. Georghiades, “On code design for
the Slepian-Wolf problem and lossless multiterminal networks”. In: IEEE Transac-
tions on Information Theory, vol. 52, no. 4, pp. 1495-1507 (2006).

[148] J. Chen, H. Dake and A. Jagmohan, “Slepian-Wolf Code Design via Source-Channel
Correspondence”. In: Proceedings of the 2006 IEEE International Symposium on
Information Theory - ISIT’06, pp. 2433-2437 (2006).

176

BIBLIOGRAPHY

[149] S. Cheng, “Slepian-Wolf Code Designs”, (2010), Available at:
http://tulsagrad.ou.edu/samuel cheng/ information theory 2010/swcd.pdf.

[150] S. Li and A. Ramamoorthy, “Algebraic codes for Slepian-Wolf code design”. In:
Proceedings of the 2011 IEEE International Symposium on Information Theory -
ISIT’11, pp. 1861-1865 (2011).

[151] N. Gehrig and P. L. Dragotti, “Symmetric and A-Symmetric Slepian-Wolf Codes
with Systematic and Non-Systematic Linear Codes”. In: IEEE Communications
Letters, vol. 9, no. 1, pp. 61-63 (2005).

[152] S. S. Pradhan and K. Ramchandran, “Distributed source coding using syndromes
(discuss): design and construction”. In: Proceedings of the Data Compression Con-
ference - DCC’99, pp. 158-167 (1999).

177

Publications

JOURNAL

[1] Kazumasa Omote and Thao Phuong Tran, “ND-POR: A POR based on Network
Coding and Dispersal Coding”. In: IEICE Transactions on Information and Sys-
tems, vol. E98-D, no. 8, pp.-, Aug 2015 (to appear) (authors in alphabetical order)
[ISI-indexed, SJR-indexed].

[2] Kazumasa Omote and Thao Phuong Tran, “MD-POR: Multi-source and Direct Re-
pair for Network Coding-based Proof of Retrievability”. In: International Journal
of Distributed Sensor Networks (IJDSN) on Advanced Big Data Management and
Analytics for Ubiquitous Sensors, vol. 2015, article ID. 586720, Jan 2015 (authors
in alphabetical order) [ISI-indexed, SJR-indexed].

INTERNATIONAL CONFERENCE

[1] Kazumasa Omote and Thao Phuong Tran, “DD-POR: Dynamic Operations and
Direct Repair in Network Coding-based Proof of Retrievability”. In: Proceedings
of the 21th Annual International Computing and Combinatorics Conference - CO-
COON’15, Aug 2015, Springer-Verlag (authors in alphabetical order) [CORE rank
A].

[2] Kazumasa Omote and Thao Phuong Tran,“SW-SSS: Slepian-Wolf Coding-based Se-
cret Sharing Scheme”, In: Proceedings of the 8th conference on Computational Intel-
ligence in Security for Information Systems - CISIS’15, June 2015, Spain, Springer-
Verlag (authors in alphabetical order) [CORE rank B].

[3] Kazumasa Omote and Thao Phuong Tran, “A New Efficient and Secure POR Scheme
based on Network Coding”. In: Proceedings of the 28th IEEE International Confer-
ence on Advanced Information Networking and Applications - AINA’14, May 2014,
Victoria, Canada (authors in alphabetical order) [CORE rank B].

[4] Kazumasa Omote and Thao Phuong Tran, ”POR-2P: Network Coding-based POR
for Data Provision-Payment System”. In: Proceedings of the 10th International
Conference on Risks and Security of Internet and Systems (CRISIS’10), Greece,
July 2015 (authors in alphabetical order) [CORE rank C].

178

[5] Thao Phuong Tran, Lee Chin Kho and Azman Osman Lim, “SW-POR: A Novel
POR Scheme using Slepian-Wolf Coding for Cloud Storage”. In: Proceedings of
the 11th IEEE International Conference on Autonomic and Trusted Computing -
ATC’14, December 2014, Indonesia [CORE rank C].

[6] Kazumasa Omote and Thao Phuong Tran, “MDNC: Multi-source and Direct Repair
in Network Coding-based Proof of Retrievability Scheme”. In: Proceedings of the
15th International Workshop on Information Security Applications - WISA’14, Aug
2014, Jeju, Korea, Springer-Verlag (authors in alphabetical order) [CORE rank C].

[7] Thao Phuong Tran, Kazumasa Omote, Nguyen Gia Luyen and Nguyen Dinh Thuc,
“Improvement of multi-user searchable encrypted data scheme”. In: Proceedings of
the 7th IEEE International Conference for Internet Technology and Secured Trans-
actions - ICITST’12, London, England, December 2012, pp. 396-401.

[8] Thao Phuong Tran, Luyen G. Nguyen, Thuc D. Nguyen and Hue T. B. Pham, “A
New Multi Multi-user Searchable Data Encryption Scheme”. In: Proceedings of the
9th IEEE International Conference on Computing and Communication Technologies
- RIVF’12, Ho Chi Minh, Vietnam, February 2012.

DOMESTIC CONFERENCE

[1] Kazumasa Omote and Thao Phuong Tran, “S-POR: An Extremely Simple Network
Coding-based Proof of Retrievability”, In: Computer Security - CSEC, IPSJ SIG
vol. 2015-CSEC68-No55, Tokyo, Japan, Mar 2015 (authors in alphabetical order).

[2] Kazumasa Omote and Thao Phuong Tran, “A practical and efficient network-coding-
based POR scheme”, In: Computer Security Symposium - CSS, Hokkaido, Japan,
October 2014 (authors in alphabetical order).

[3] Kazumasa Omote and Thao Phuong Tran, “Improvement of Network coding-based
System for Ensuring Data Integrity in Cloud Computing”, In: IPSJ SIG Technical
Report, vol. 2012-CSEC-58 No.21, Hokkaido, Japan (2012) (authors in alphabetical
order).

179

Appendix A

Appendix

A.1 The Algorithms of the SW-SSS Scheme

A.1.1 Share Generation

Algorithm 1 ShareGen
Input: m,n, S
Output: {c0, d0}, · · · , {cn−1, dn−1}
1: S = b0|| · · · ||bm−1
2: |b| = |S|/m
3: count← 0
4: for j ← 0 to m− 3 do
5: for t← j + 1 to m− 2 do
6: for z ← t+ 1 to m− 1 do
7: si ← bj ⊕ bt ⊕ bz
8: di ← si.count(

′1′)
9: ci ← FindShare(|b|, si, di)
10: count+ +
11: if (count == n− 1) then
12: return {c0, d0}, · · · , {cn−1, dn−1}
13: end if
14: end for
15: end for
16: end for

180

Algorithm 2 FindShare

Input: |b|, si, di
Output: ci

1: Mi ← list permutation(|b|, di)
2: ci ← index(Mi, si)
3: return ci

A.1.2 Secret Reconstruction

Algorithm 3 Reconst

Input: {ck0 , dk0}, · · · , {ckm−1 , dkm−1}
Output: {b0, · · · , bm−1}
1: for i← 0 to m− 1 do
2: ski ← FindXOR(|b|, dki , cki)
3: jki , tki , zki ← LocateIndices(m, ki)
4: vki ← []
5: for x← 0 to m− 1 do
6: if (x == jki) or (x == tki) or (x == zki) then
7: vki [x]← 1
8: elsevki [x]← 0
9: vki [m]← ski
10: end if
11: end for
12: end for
13: Q← [vk0 , vk1 , · · · , vkm−1]T

14: Q′ ← GaussEliminate(Q)
15: {b0, · · · , bm−1} ← filter(Q′)
16: S ← b0|| · · · ||bm−1
17: return S

Algorithm 4 FindXOR

Input: |b|, dki , cki
Output: ski
1: Mki ← list permutation(|b|, dki)
2: ski ←Mki [cki]
3: return ski

181

Algorithm 5 LocateIndices
Input: m, ki
Output: jki , tki , zki
1: count← −1
2: for j ← 0 to m− 3 do
3: for t← j + 1 to m− 2 do
4: for z ← t+ 1 to m− 1 do
5: count+ +
6: if (count == ki) then
7: jki ← j
8: tki ← t
9: zki ← z
10: end if
11: end for
12: end for
13: end for
14: return jki , tki , zki

A.1.3 Share Repair

Algorithm 6 ShareRepair
Input: Pcorr
Output: ccorr, dcorr

1: jcorr, tcorr, zcorr ← LocateIndices(m, corr)
2: Choose α, β ∈ {0, · · · ,m− 1} such that α, β 6= jcorr, tcorr, zcorr
3: {jr1 , tr1 , zr1} ← AscendingSort(jcorr, tcorr, α)
4: {jr2 , tr2 , zr2} ← AscendingSort(jcorr, zcorr, β)
5: {jr3 , tr3 , zr3} ← AscendingSort(jcorr, α, β)
6: Pr1 ← LocateParticipant(jr1 , tr1 , zr1)
7: Pr2 ← LocateParticipant(jr2 , tr2 , zr2)
8: Pr3 ← LocateParticipant(jr3 , tr3 , zr3)
9: Pr1 ,Pr2 ,Pr3 are required to provide {cr1 , dr1}, {cr2 , dr2}, {cr3 , dr3} to the dealer
10: sr1 ← FindXOR(|b|, dr1 , cr1)
11: sr2 ← FindXOR(|b|, dr2 , cr2)
12: sr3 ← FindXOR(|b|, dr3 , cr3)
13: scorr ← sr1 ⊕ sr2 ⊕ sr3
14: dcorr ← scorr.count(

′1′)
15: ccorr ← FindShare(|b|, scorr, dcorr)
16: return {ccorr, dcorr}

182

Algorithm 7 LocateParticipant
Input: jri , tri , zri
Output: Pri
1: count← −1
2: for j ← 0 to m− 3 do
3: for t← j + 1 to m− 2 do
4: for z ← t+ 1 to m− 1 do
5: count+ +
6: if (j == jri) and (t == tri) and (z == zri) then
7: return count
8: end if
9: end for
10: end for
11: end for
12: return count

A.1.4 Speeded Up Algorithms

Algorithm 8 FindShare New

Input: |b|, di, si
Output: ci

1: res = 0
2: mask = 1 << (|b| − 1)
3: for l← |b| to 1 do
4: if si&mask then
5: res = res+ gmpy2.Combination(l − 1, di)
6: di = di − 1
7: end if
8: mask >>= 1
9: l = l − 1
10: end for
11: return res

183

Algorithm 9 FindXOR New

Input: |b|, di, ci
Output: si

1: Z = di // number of ‘1’ bits
2: N = |b| − Z // number of ‘0’ bits
3: lst = [0...01...1] //list consisting of N ‘0’ bits and Z ‘1’ bits
4: l = lst
5: result =′′// empty string
6: for i← 0 to len(lst) do
7: K = gmpy2.Combination(len(l)− 1, Z)
8: if ci < K then
9: result+ =′ 0′

10: l.remove(′0′)
11: else
12: result+ =′ 1′

13: l.remove(′1′)
14: Z− = 1
15: ci = ci −K
16: end if
17: i = i− 1
18: end for
19: result+ = l[0]
20: return result

184

