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Chapter 1

Introduction

In Artificial Intelligence (AI), we attempt to use mathematics models for representing
and formalizing knowledge so that the computer able to adopt its computational ability
to execute useful tasks. In recent year, with the advancement of science and technology,
we have achieved a certain success in this field. Particularly, we have applications such
as face recognition and image processing in Computer Vision area, voice synstudy or
voice recognition in Signal Processing field, and do text mining with vast amount of
unstructured data set for extracting practical information which is unable to handle by
human.

Besides the efforts of making computer performed some abilities as human such as
seeing, hearing, or understanding language in documents, music is also a compelling
field that worthily consider to study. Achievements in music with combination of other
fields such as psychology, linguistics, and cognitive science have been proven in practice
[21], [22], [24], [28], [32], [33]. In addition, if we could generate cognitive model of how
human conceive the music by using language of mathematics [3], [36], [35], [34], we could
simulate mechanism of these processes so that we can make the computer able to handle
more helpful functions.

1.1 Literature review

In music analysis, we attempt to answer the question of how the music works. Specifically,
in this study, how we can formalize the chord sequences so that the computer able to
analyse the structure of music. To answer this question, we need to understand the music
so that we can analyse them. In this section, we take an overview of some researches
related to formalism of music [10], [25], [17], [14], [13], [16], [12], [1].

A Generative Theory of Tonal Music (GTTM)

GTTM is a theory developed by Fred Lerdahl and Ray Jackendoff in 1983. This theory
try to describe the musical intuitions of an experienced listener in musical idiom. GTTM
provides two theories. The first one is grouping analysis, which attempt to group music
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pieces in boundaries. The second one is the metric analysis, which identifies the rhythmic
structures of music. Time-span analysis and Prolongational analysis are composed by two
theories above. For time-span analysis, we will get the representation of metric structure.
For prolongational analysis, we will get the representation of harmonic stability [17].

The Cognition of Basic Musical Structures

This is an interesting book talking about music cognition. David Temperley provides
us the way to extract musical information, such as meter, phrase structure, counterpoint,
pitch spelling, harmony, and key from music as we hear it. From this model, we can build
computations on computer by generating aspects of musical structure [13].

Tonal Pitch Space

In this book, Lerdahl extended GTTM with multidimensional model of diatonic and
chromatic spaces that interest to music theorists, musicologists, composers, computer
musicians, and cognitive psychologists. This model quantifies listeners’ intuitions of the
relative distances of pitches, chords, and keys from a given tonic. Also, the model repre-
sents paths through the space for analyzing harmony.[16].

The language of music

In the book was published in 1959 written by Deryck Cooke, he provides various exam-
ples for expressing the characteristics of music. The same tonal basis, melodic phrases,
harmonies, and rhythms can express and evoke the same emotions. In addition, this book
provides the expressive function of musical form of two complete symphonies by Mozart
and Vaughan Williams [9].

Implementing “A Generative Theory of Tonal Music”

In this research, the authors proposed a system which can generate automatic time-
span tree analyser (ATTA). This study demonstrates the ability of implementing a music
analyzing system from formalism theory called Generative Theory of Tonal Music. Al-
though the system cannot cover all 26 GTTM rules, we hope this tool can be extended
for further research area [19].

1.2 Challenge

In those approaches mentioned above, there exists one approach from AI capable of ap-
plying for analyzing music. If we considered music as language, we can implement some
methods and techniques into parsing musical grammar structure. This is because music
and language have something in common. When we listen to a music piece, we able to
realize the meaning behind the transmission of musicians. Similarly, we can understand
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Figure 1.1: Two ways of interpreting a passage from Autumn Leaves: (a) as two separate
cadences; (b) as a single cadence, in which the Em7 has a dominant function [18].

each other by using language in communication. Besides, we both use utter in music and
speaking to create sound into the air so that we can hear the transmit vibration.

Unfortunately, in analyzing music, we also get trouble of ambiguity when interpreting
the structure of musical grammar. With the same chord progression, we can derive more
than one musical structure. For instance, given a chord sequence from part of Autumn
Leaves, we can analyse it in two ways as Figure 1.1. This is the challenge in improving
the precision and accuracy when analyzing musical structure.

1.3 Goal

In a study of Mark Granroth-Wilding [27], he had proved that the methods of parsing
grammar structure in Natural Language Processing (NLP) can efficiently analyse musical
structure. With 92.29% in precision and 92.79% recall in PCCG and St+PCCG corre-
spondingly, we can see the prospects in applying other improving methods of NLP into
music.

However, in this approach, recall value in PCCG get only 88.78%, and precision value
in St+PCCG only get 90.18%. The reason is that the final parse result of each chord
progression is the highest parsing probability but not the correct candidate of n-best
parse results.

In this paper, we aim to adapt Reranking model [5], [8], [2], [11] from NLP to improve
the performance of CCG parsers [7], [20], [6], [37] for Jazz chord sequences [31], [23],
[29], [4]. In addition, if we manually pick up the correct candidate for the final result
of 5000-best, we can get 97.07% in f -score for PCCG parser, and 94.12% in f -score for
St+PCCG parser.

1.4 Thesis organization

My thesis is organized in 5 chapters: Introduction, Background, Reranking model, Eval-
uation and Conclusion.

In Chapter 2, we introduce various background knowledge related to our research. At
first, basic concepts about harmony are mentioned to help us understanding the relation-
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ship between harmony and chord progression in analyzing music. Then, we cover some
definitions of Combinatorial Category Grammar and show how we apply this grammar
into interpreting chord progression.

In Chapter 3, we describe the Reranking model framework. Then, we will cover basic
definitions and notations in the model. Next, we will define list of feature template that
are used to extract features from the candidates of baseline parsers. Finally, we apply
perceptron algorithm to find the optimal weighted vector for Reranking model.

In Chapter 4, we show the structure of Jazz corpus. Then, we talk about evaluation
of model consist of calculating the precision, recall, and f -score. Finally, we analyze the
current results of proposed method.

In Chapter 5, we summarize the current results in our study and mention some future
works.
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Chapter 2

Background

In this chapter, we introduce various background knowledge relating to our research.
Basic concepts about harmony that used in music. The relationship between harmony
and chord progression. Some visualization techniques to describe chord progression. How
to apply Combinatory categorial grammar to interpret chord progression. In addition,
table of lexicon is provided for helping analyze chord progression.

2.1 Harmony

Harmony, as its name implies, is a way to harmonize sounds together to form a song. Even
sounds simple but this is a large part of the immensity and diversity of music. However,
we will not go too deep in this section. Instead, we will cover some basic concepts of how
harmony is.

Consonance

Consonance is the way that composers, musicians, the orchestra initiated on the tone
that makes you feel consonant. This is because our brain can distinguish between the
consonant and dissonant sounds. For example, when we try to hear one person playing
wrong notes. No need to be a musician, you also easily recognize the feeling of “something
is wrong” in the music. The interesting part is that this principle apply independently on
every region of the world. Whether in European, African, or Asian, our brain “preferred”
the way sound combines. Therefore, to analyze music, we seek to derive correctly musical
structure of how a person conceive music piece.

Harmony

Harmony bases on principle mentioned above. The harmonic principle that we learn
was found by the Gregorian monks centuries ago in Europe and still continue used these
day. For instance, a symphony orchestra is composed of four groups of instruments,
strings (violin, viola, violoncello, contrabass), instruments that made of wood was blown
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when playing (flute, oboe, castanet, basso), instruments that made of brass (trumpet,
trombone, tuba) and percussion (drums, gongs, percussion). A symphony requires an
absolute consonance between all the instruments. That means at a certain moment, a
hundred instruments were played in different musical notes, different tones from the bass
to the treble notes that could combine together and make up a band.

2.2 Chord sequences

Chord is a set of notes that sound up together and form a harmonious timbre. This
combination has rules and clear principles. Otherwise, we cannot generate consonant
sound. The most important thing of a chord is quality of that chord. Each chord makes
listeners different feelings and emotions. If we do not follow the rules, it will be very
difficult to bring such feelings. The number of each group of chords are diverse. There
can be three, four, five, six, etc., chords for each group but the principle of constructing
them is only one. Fortunately, these group of chords are not combined randomly so we
have very clear principles. Usually, a chord is a combination of three or four pitches.

Chord progression

In a song, to express the flow of melody, the musician have to use multiple chords and
mix them together. Of course, a piece of music is not only one chord. Otherwise, it is
similar to cook a soup with only salt. You need to combine many different spices, different
types of ingredients to make a delicious dish with flavor.

In practice, we cannot mix the chords in an arbitrary way to create chord sequences.
We need to follow groups of rules that we should obey. For example, the C major will
come with A minor, F major and G7. These group of chords will form a block of harmony.
In most music piece, we just play the chords in a block that can describe the songs or
compositions.

2.3 Cadence

Cadence is a sequence of chords telling us the ending of the music piece. There are different
types of cadence such as authentic cadence, half cadence, plagal cadence, interrupted
cadence, inverted cadence, etc. As we can see in the Figure 2.1, half cadence is the
progression from I(tonic) to V (dominant) that makes us feel a tension, and authentic
cadence is the progression from V (dominant) to I(tonic) that makes us feel a relaxation.

Cadence is the key component of harmonic structure which built from expectation-
resolution patterns. The larger structure which made up of successive expectation-
resolution patterns called extended cadences. The example of this extended cadences
will show in Figure 2.11.

There are different types of cadences but the common cadences are authentic cadence
and plagal cadence. The authentic cadence consists of a chord rooted a perfect fifth above

12



Figure 2.1: Half cadence (HC) and authentic cadence (AC).

its expected resolution. And plagal cadence consists of a tension chord rooted a perfect
fourth above its resolution. The occurrence of particular chord shows its function on that
occasion of use.

2.4 Harmonic Interpretation

In this section, we talk about some visualization techniques to describe chord progression.
This is the way we define the musical syntax and semantics in tonal pitch space so that
we can apply Combinatory categorial grammar in later section.

Just Intonation

This is the harmonic relation which is based on ratios of 2, 3, and 5 (the octave, perfect
fifth, and major third). The interval between two notes are defined as the product 2x·3y·5z,
where x, y, z are positive or negative integers. The harmonic relation can be visualized as
an infinitely extending, discrete, three dimensional space with these three prime factors
as generators [15].

In Figure 2.2, each point represent the tonal relation to the point labeled I which are
degrees of the scale written in Roman numerals. The plus and minus sign are used for
distinguishing the notational ambiguity of the syntonic comma. For example, the minor
seventh interval ([V II) from the dominant seventh ([V II−).

Longuet-Higgins Steedman (1971) [26] show that harmony can be calculated by a Man-
hattan distance metric over this space. In Figure 2.3, we see that major triad (CEG),
minor triads (CE[G), and major seventh tetrad are close together in this metric space.

Equal Temperament

This is the tonal harmonic space which approximated by slightly equate all the positions
that have the same names in Figure 2.4 and then by even further distorting the major
thirds, to equate C with B],D[[. In the system of equal temperament, this is done by
spacing the 12 tones of the diatonic octave evenly, so that all the semitones are (mis)tuned
to the same ratio of 12

√
2.
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Figure 2.2: Part of the space of tonal relations [25].

Figure 2.3: The tonal relations of the notes of the major (a) and minor (b) triads and the
major seventh tetrad (c) [18].

Figure 2.4: Example of equal temperament space. The circled points form a C major
triad. [18].
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Interpretation of Tonics

By using a 4 × 3 enharmonic block, we can describe the logical form in coordination
space as Figure 2.5. The notation 〈x, y〉 denotes an enharmonic coordinate which is
different from vector (x, y) in full space. With these descriptions, the coordinate range is
between 〈0, 0〉 and 〈3, 2〉.

Consider Figure 2.6, chord CM7 is represented as [〈0, 0〉] which is the root of the chord
progression. Chord A[6 is actually the chord G] so we can represent as [〈0, 2〉]. When
combine together, the chord sequence C A[M7 can be represented as [〈0, 0〉, 〈0, 2〉] with
A[6 is the point underneath the 〈0, 0〉.

15



Figure 2.5: Enharmonic blocks at the centre of the space. A position within one of these
4×3 blocks is equated by equal temperament with the same position in every other block.
[18].

Figure 2.6: Some interpretations of chords as tonics. [18].
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2.5 Combinatory Categorial Grammar (CCG)

Throughout the process of parsing musical structure, we use a grammar structure called
Combinatory Categorial Grammar (CCG, Steedman, 2000) [30]. This grammar consists
of two parts. First, the category used to associate words with specific categories which
define syntactic behavior. Second, the combinator includes a set of rules defines how
words and other constituents can be combined according to their categories.

2.5.1 Categories

The set of syntactic categories C is defined recursively as follows:

Atomic categories

Atomic categories are the grammar for each language is assumed to define a finite set
of atomic categories. In language, we have Subject (S), Noun (N), Noun phrase (NP), ...
∈ C. In chord progression, we have Tonic (T), Dominant (Dom), Subdominant (Subdom),
Diminished (Dim), ... ∈ C.

Complex categories

If X, Y ∈ C, then X/Y,X\Y ∈ C. X is a result, Y is an argument, X/Y,X\Y are
functors.

Given the following example, we want to see how to apply CCG from NLP into analyzing
chord progression in music. In NLP, we have statement flights to Boston as example.
In music, we have chord sequence C Dm7 G7 C.

Functors X/Y,X\Y have forward slash / represents directional variant of categorial
grammar with arguments to the right of the functor, backslash \ represents directional
variant of categorial grammar with arguments to the left of the functor.

For instance, a categorial lexicon for English of statement flights to Boston might
contain the following entries:

flights ` N
to ` (N\N)/NP

Boston ` NP

Meanwhile, the chord progression C Dm7 G7 C might contain the following entries:

17



C ` CT

Dm7 ` DD/GD|T

G7 ` GD/CD|T

C ` CT

As we can see, by using a finite set of these categories, CCG allows strong interaction
between the lexical categories of a language and the combinatory rules allowed in its
grammar.

Also, we can represent semantic interpretations in the language of the λ-calculus in each
syntactic category. Each syntactic category has a type semantic interpretation correspond
to that syntactic category. For complex functor category, we can use λ-term to represent
the form of a semantic bound variable as examples below:

Predicate-argument structures for statement flights to Boston

flights := N : λx.fight(x)

to := (N\N)/NP : λy.λf.λx.f(x) ∧ to(x, y)

Boston := NP : Boston

Predicate-argument structures for chord progression C Dm7 G7 C

C := CT : [〈0, 0〉]
Dm7 := DD/GD|T : λx.leftonto(x)

G7 := GD/CD|T : λx.leftonto(x)

C := CT : [〈0, 0〉]

2.5.2 Combinatory rules

There are four rules can be used to build derivations. Rules allow the combination between
the syntactic categories and the logical forms simultaneously. We define a symbol for each
rule to identify its use in derivations. The following rules below are written as productions.
The left hand side of =⇒ are the inputs, the right hand side of =⇒ are the results of
derivations.

The application combinator, often denoted by > for forward application and < for
backward application. The composition combinator, often denoted by >B for forward
composition and <B for backward composition.

18



Application rule

Forward(>) X/Y : f Y − Z : x =⇒ X − Z : f(x)

Backward(<) X − Y : x Z\Y : f =⇒ X − Z : f(x)

The development rule joins together fully resolved passages. It requires its inputs to
be atomic categories which need to be combined with something by function application
before they can be considered resolved. This rule simply concatenate the two lists [18].

Development rule

(dev) V −W : l0 X − Y : l1 =⇒ V − Y : l0 ⊕ l1

Composition rules permit complex categories to be combined before their argument is
available. The final outcome is the same as function application. The different is this rule
allows the outcome to be produced by a different order of combinations.

Composition rule

Forward(>B) X/Y : f Y/Z : g =⇒ X/Z : f ◦ g
Backward(<B) X\Y : g Z\X : f =⇒ Z\Y : f ◦ g

The coordination rule combines two unresolved cadences to behave as a single unre-
solved cadence and requires that they are expecting the same resolution. The two cadences
are required to be either both authentic (dominant) or both plagal (subdominant) [18].

Coordination rule

(&) XF/Y : f ZF/Y : g =⇒ XF/Y : f ∧ g where F ∈ D,S

2.5.3 Examples for applying combinatory rules

The following examples describe how combinatory rules derive based on given lexicons.

Application rule

First example 2.7 uses forward > and backward < application rule to derive simple
statement flights to boston.
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Figure 2.9: CCG derivation for chord sequence using composition and cooridnation rules.
L stands for leftonto predicate [27].

flights

N : λx.flight(x)

to
(N\N)/NP : λy.λf.λx.f(x) ∧ to(x, y)

boston
NP : boston

(N\N) : λf.λx.f(x) ∧ to(x, boston)
>

N : λx.flight(x) ∧ to(x, boston)
<

Figure 2.7: CCG derivation for flights to boston

Application rule and development rule

Second example 2.8 uses forward > application rule and development rule dev to derive
simple chord sequence C Dm7 G7 C.

C

CT : [〈0, 0〉]

Dm7

DD/GD|T : λx.leftonto(x)

G7

GD/CD|T : λx.leftonto(x)

C

CT : [〈0, 0〉]
GD − CT : [leftonto(〈0, 0〉)]

>

DD − CT : [leftonto(leftonto(〈0, 0〉))]
>

CT : [〈0, 0〉, leftonto(leftonto(〈0, 0〉))]
dev

Figure 2.8: CCG derivation for chord sequence

Composition rule and coordination rule

The example 2.9 uses forward >B composition rule and coordination rule & to derive
simple cadence V I7 IIm7V 7 IIm7V 7 I.

Applying four rules

An example derivation using all four rules is shown in Figure 2.10
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Figure 2.11: A tonal space path for the extended cadence: CA7D7G7C

2.6 Domain for analysis

In this research, we use tonal space as the semantic domain of harmonic analysis. The
harmonic interpretation of a piece is the path through the tonal space traced by the roots
of the chords.
The relationship of expectation-resolution between two chords can be described as a single
step to the left in the space. Meanwhile, the relationship of subdominant-tonic is a
rightward step.
Figure 2.11 is an example of tonal space path for an extended cadence. The perfect fifth
relationship between the dominants and their resolutions is reflected in the path.
By identifying the syntactic structure of the harmony, that is the recursive structure of
expectation-resolution relationships between pairs of chords, we produce the path through
the space that this dictates for the chord roots of the progression, including those that
have been substituted for.

2.6.1 Extracting tonal space path

The logical form of categories are the semantics represent the path through the tonal
space. The tonic points can be ambiguous in the representation but every point of a path
can be inferred from a full logical form.
There are two types of predicates that used in this study. The left movement in space
denoted in the semantics by leftonto predicate and right movement in space denoted in the
semantics by rightonto. If the point (x, y) is specified, the path leftonto(leftonto((x, y)))
is unambiguous.
From derivation of CCG analysis structure, we can visualize this result in tonal space as
example 2.12. Given a chord sequence Dm7 G7 C, we can analyze this sequence by using
CCG grammar. Then, we we can use this result to visualize as tonal space path.
A simple algorithm is constructed for recursive transformation of the logical predicates to
produce the flat tonal space path represented by a logical form produced by parsing.
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Figure 2.12: Interpretation of an extended cadence with two dominants the familiar
IIm7 V 7 I derived from the logical forms of the individual chords. The resulting tonal
space path movements are shown to the right. [18].

2.6.2 Harmony as dependency graph

In NLP, we often use dependency graph to represent the syntactic relations between words
in a sentence. Similarly, when analyzing the harmonic relations between chords, we can
use dependency graph to express the musical logical forms of sequences. Dependencies
can be drawn from the tonal space path where exists logical form relations between them.
Each tension chord is marked as dependent on its resolution. The arcs are used in this
thesis is labeled with the name of the predicate (leftonto or rightonto).
The dependency graph consists of root which is denote as 〈0, 0〉 symbol. In addition, each
dependency is a pair (h,m) where h is the index of a head, m is the index of a modifier.
From example 2.8 we can illustrate dependency graph for harmonic interpretation of CCG
derivation

CT : [〈0, 0〉, leftonto(leftonto(〈0, 0〉))]
as Figure 2.13. In this figure, we represent a dependency (h,m) by a directed edge from
h to m.

C Dm7 G7 C

(0,0)

leftonto leftonto

(0,0)

Figure 2.13: Harmonic interpretation of C Dm7 G7 C represented as a dependency graph.

These graphs express the the logical forms (the semantics) of the harmonic interpreta-
tion. By using the dependency graph we can visualize the functional expectations and
resolutions of the harmonic relations. Then evaluation metrics which is edit distance can
be calculated.
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Table 2.1: Definitions of the chord types included in each chord class, as used in the
lexicon. This component of the grammar is flexible and may be altered to suit notational
conventions and genre-specific chord function conventions. The definitions in this table
are those that I have used to parse Jazz chord sequences [18].

Class Chord types

X X,XM7, X7, Xaug,M7, X[5,M7, Xsus4, Xsus4,7

Xm Xm,Xm7, XmM7

X7 X7, Xaug, Xaug,7, X,X[5,7, X[5, Xsus4, Xsus4,7

Xm7 Xm7, Xφ7, X◦7, Xm,Xm[5, XmM7

X◦ X◦7, Xφ7

2.7 The lexicon

Table 2.2 summarize all lexicon of grammar of jazz chord sequences. First column is
mnemonic label which indicates the identifier of lexical schema. Second column is cat-
egory schema which generalize as X chord root and followed by syntactic type using
Roman numeral notation. Table 2.1 shows generalized syntactic type and a logical form
of harmonic interpretations.
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Table 2.2: The lexicon for the jazz grammar. For each schema, a typical example is given
of a chord in the key of C and the syntactic type of the category that would be assigned
to that chord [18].

Mnemonic label Category schema Chord Syntactic type

Ton. X(m) := IT : [〈0, 0〉] CM7 CT

Ton-III. Xm := [V IT : [〈0, 2〉] Em CT

Ton-bVI. X := IIIT : [〈0, 1〉] A[M7 CT

Dom. X(m)7 := ID/IV D|T : λx.leftonto(x) G7 GD/CD|T

Dom-backdoor. X(m)7 := V ID/IID|T : λx.leftonto(x) B[7 GD/CD|T

Dom-tritone. X(m)7 := [V D/V IID|T : λx.leftonto(x) D[7 GD/CD|T

Dom-bartok. X(m)7 := [IIID/[V ID|T : λx.leftonto(x) E7 GD/CD|T

Subdom. X(m) := IS/V S|T : λx.rightonto(x) F F S/CS|T

Subdom-bIII. X := V IS/IIIS|T : λx.rightonto(x) A[ F S/CS|T

Dim-bVII. X◦ := IV D/[V ID|T : λx.leftonto(x) D◦7 GD/CD|T

Dim-V. X◦ := IID/V D|T : λx.leftonto(x) F◦7 GD/CD|T

Dim-III. X◦ := V IID/IIID|T : λx.leftonto(x) A[◦7 GD/CD|T

Dim-bII. X◦ := [V ID/[IID|T : λx.leftonto(x) B◦7 GD/CD|T

Pass-I. X◦ := IT/IT : λx.x
X◦ := ID/ID : λx.x

C◦7
G◦7

CT/CT

GD/GD

Pass-VI. X◦ := V IT/V IT : λx.x
X◦ := V ID/V ID : λx.x

A◦7
E◦7

CT/CT

GD/GD

Pass-bV. X◦ := [V T/[V T : λx.x
X◦ := [V D/[V D : λx.x

G[◦7
D[◦7

CT/CT

GD/GD

Pass-bIII. X◦ := [IIIT/[IIIT : λx.x
X◦ := [IIID/[IIID : λx.x

E[◦7
B[◦7

CT/CT

GD/GD

Aug-bII. X7 := [V ID/[IID|T : λx.leftonto(x) Baug GD/CD|T

Aug-VI. X7 := [IIID/[V ID|T : λx.leftonto(x) E[aug GD/CD|T

Colour-IVf. X(m) := V T/V T : λx.x F CT/CT

Colour-IVb. X(m) := V T\V T : λx.x F CT\CT

Colour-IIf. X(m) := [V IIT/[V IIT : λx.x Dm CT/CT

Colour-IIb. X(m) := [V IIT\[V IIT : λx.x Dm CT\CT

Dom-IVm. Xm := IID/V T : λx.leftonto(x) Fm(6) GD/CT
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Chapter 3

Reranking model

In this section we talk about reranking model, which are used in natural language pro-
cessing to improve parsing performance. A key advantage of Reranking models is their
flexibility. As we will see, they allow a very rich set of features to be used in a model,
arguably much richer representations than the simple estimation techniques. In this sec-
tion we will give basic definitions, and describe how parameters can be estimated in this
model.

3.1 Basic Definitions

Definition 1 (Reranking Model) A Reranking model consists of the following compo-
nents:

• A set X of possible input chord sequences.

• A set Y of possible dependency graphs. The set Y is assumed to be finite.

• A positive integer d specifying the number of features and parameters in the model.

• A function f : X × Y → Rd that maps any (x, y) pair to a feature-vector f(x, y).

• GEN is a function that maps an input x to a set of candidates GEN(x)

• A parameter vector w ∈ Rd.

3.2 Reranking framework

Consider Reranking framework in figure 3.1. For any given input chord sequence x we
use a baseline parser to produce top N parses for each chord sequence in training and
test data. That means we apply function GEN(x) to generate the top N parses for
x under the baseline model (PCCG and Supertagging+PCCG parsers). Then for each
candidates dependency parse y, we apply function feature f(x, y) to extract the feature
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for each candidate. Finally, we choose the highest scoring candidate as the most plausible
structure which satisfied F (x) = argmaxy∈GEN(x)w · f(x, y).
In more details, Reranking model only considers a small number of parses per sequence
so it is not necessary to use dynamic programming. For each sequence x the n-best
dependency graph from baseline parsers returns n highest probability dependency graphs
Y (x) = y1(x), ..., yn(x).
A feature extractor is a vector of m functions f = (f1, ..., fm), where each fj maps
any (x, y) pair to a real number fj(x, y), which is the value of the jth feature on y.
So a feature extractor maps each pair (x, y) to a vector of feature values f(x, y) =
(f1(x, y), ..., fm(x, y)).
Our Reranking model associates a parse with a score vw(y) which is a linear function of
the feature values f(x, y). That is, each feature fj is associated with a weight wj, and the
feature values and weights define the score vw(y) of each dependency graph y as follows:

vw(y) = w · f(x, y) =
m∑
j=1

wjfj(x, y).

Given a sequence x, the Reranking model output F (x) on sequence x is the highest scoring
dependency graph in the n-best dependency graphs Y (x) for x, i.e.,

F (x) = arg max
y∈GEN(x)

w · f(x, y).

The feature weight vector w is estimated from the annotated jazz corpus by using percep-
tron algorithm. Because we used annotated training data we know the correct dependency
graph y∗(x) for each sequence x in the training data. The correct dependency graph y∗(x)
is not always a member of the n-best parser’s output Y (x). In addition, there are some
cases the n-best parser could not find any parses which reduce the coverage score in
evaluation phase.
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3.3 Features

As described in the previous section, for any pair (x, y), f(x, y) ∈ Rd is a feature vector
representing that pair. Each component fk(x, y) for k = 1...d in this vector is referred to
as a feature. The features allows us to represent different properties of the input x, in
conjunction with the dependency graph y. Each feature has an associated parameter, wk

, whose value is estimated using a set of training examples. The training set consists of a
sequence of examples (x(i), y(i)) for i = 1...n, where each x(i) ∈ X , and each y(i) ∈ Y .
Features belong to feature template, which are abstract template from which specific
features are instantiated. The rest of this section outlines the feature template used in
the experiment. These feature template used here were developed using the n-best parses
provided by Mark Granroth-Wilding.

3.3.1 Features template

In this thesis, we defined feature templates for n-gram feature. These features include
unigram model, bigram statistical model, and trigram statistical model. We consider all
possible unigrams, bigrams and trigrams seen in the training data. To do this, we use
feature templates to generate sets of features.
Given chord sequence 13 from corpus C7 C7 F 7 F C7 Gm7 Abm7 Gm7 C7. We define ci
to be the ith coordination in the chord sequence, si to be the name of a lexical category
schema for the ith coordination, pi to be the ith position of chord in the sequence. Coor-
dination dependency graph for this chord sequence illustrated in figure 3.2 and position
dependency graph of each chord is illustrated in figure 3.3.

T D T S T D D D T
I I IV IV I V II V I

(0,0)

leftonto

(3,2)

rightonto

(0,0)

leftonto

leftonto leftonto

(0,0)

Figure 3.2: Coordination dependency graph.

0 1 2 3 4 5 6 7 8

(0,0)

leftonto

(3,2)

rightonto

(0,0)

leftonto

leftontoleftonto

(0,0)

Figure 3.3: Coordination dependency graph is converted to position number.

Using Jazz chord sequence corpus, there are 1760 features that meet the feature template.
Based on these definitions, we define our feature templates for n-gram feature followed
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by the number of features in that template and a brief description of the instances of the
template as follow:

• Unigram features (381): Identity of ch . Identity of cm . Identity of sh . Identity
of sm. Identity of ph. Identity of pm.

• Bigram features (1103): Identity of the 4-tuple 〈ch, cm, sh, sm〉. Identity of sub-
sets of this 4-tuple, e.g, identity of 〈ch, cm〉. Identity of 〈ph, pm〉.

• Trigram features (276): Identity of the 6-tuple 〈ch, c, cm, sh, s, sm〉. Identity of
〈ph, p, pm〉.

Given sequence 13 from corpus with dependency graphs above, we apply feature template
for extracting features from annotated gold standard. The total features achieve 174
features consist of 64 features from unigram, 94 features from bigram, and 16 features
from trigram. The example for feature extraction shown in table 3.1, 3.3, and 3.2.
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Table 3.1: Unigram feature extraction for sequence 13.

Unigram features example (total 64 features)

UNIGRAM:1; UNIGRAM:2; UNIGRAM:3; UNIGRAM:4; UNIGRAM:5
UNIGRAM:6; UNIGRAM:7; UNIGRAM:8; UNIGRAM:9; UNIGRAM:10
UNIGRAM:11; UNIGRAM:12; UNIGRAM:13; UNIGRAM:14; UNIGRAM:15
UNIGRAM:16; UNIGRAM:17; UNIGRAM:18; UNIGRAM:19; UNIGRAM:20
UNIGRAM:21; UNIGRAM:22; UNIGRAM:23; UNIGRAM:24; UNIGRAM:25
UNIGRAM:26; UNIGRAM:27; UNIGRAM:28; UNIGRAM:29; UNIGRAM:30
UNIGRAM:31; UNIGRAM:32; UNIGRAM:33; UNIGRAM:34; UNIGRAM:35
UNIGRAM:36; UNIGRAM:37; UNIGRAM:38; UNIGRAM:39; UNIGRAM:40
UNIGRAM:II; UNIGRAM:VI+; UNIGRAM:V; UNIGRAM:I; UNIGRAM:VII
UNIGRAM:III; UNIGRAM:VI; UNIGRAM:II-; UNIGRAM:V-; UNIGRAM:I-
UNIGRAM:bVII–; UNIGRAM:IV-; UNIGRAM:bIII–; UNIGRAM:bVI–
UNIGRAM:bII–; UNIGRAM:bV—; UNIGRAM:bI—; UNIGRAM:bIV—
UNIGRAM:bbVII—; UNIGRAM:bbIII—-; UNIGRAM:bbVI—-
UNIGRAM:bbII—-; UNIGRAM:D; UNIGRAM:T

Table 3.2: Trigram feature extraction for sequence 13.

Trigram features example (total 16 features)

TRIGRAM:7:6:5; TRIGRAM:17:16:15; TRIGRAM:26:25:24
TRIGRAM:29:28:27; TRIGRAM:40:39:38; TRIGRAM:I:V:II
TRIGRAM:I-:V-:II-; TRIGRAM:bVI–:bIII–:bVII–
TRIGRAM:bV—:bII–:bVI–; TRIGRAM:bbII—-:bbVI—-:bbIII—-
TRIGRAM:T:D:D; TRIGRAM:I:T:V:D:II:D; TRIGRAM:I-:T:V-:D:II-:D
TRIGRAM:bVI–:T:bIII–:D:bVII–:D; TRIGRAM:bV—:T:bII–:D:bVI–:D
TRIGRAM:bbII—-:T:bbVI—-:D:bbIII—-:D
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Table 3.3: Bigram feature extraction for sequence 13.

Bigram features example (total 94 features)

BIGRAM:1:6; BIGRAM:2:3; BIGRAM:3:6; BIGRAM:4:5
BIGRAM:5:6; BIGRAM:6:7; BIGRAM:7:ROOT; BIGRAM:8:9
BIGRAM:9:10; BIGRAM:10:11; BIGRAM:11:16
BIGRAM:12:13; BIGRAM:13:16; BIGRAM:14:15
BIGRAM:15:16; BIGRAM:16:17; BIGRAM:17:ROOT
BIGRAM:18:25; BIGRAM:19:20; BIGRAM:20:25
BIGRAM:21:22; BIGRAM:22:23; BIGRAM:23:24
BIGRAM:24:25; BIGRAM:25:26; BIGRAM:26:ROOT
BIGRAM:27:28; BIGRAM:28:29; BIGRAM:29:ROOT
BIGRAM:30:31; BIGRAM:31:32; BIGRAM:32:33
BIGRAM:33:34; BIGRAM:34:39; BIGRAM:35:36
BIGRAM:36:39; BIGRAM:37:38; BIGRAM:38:39
BIGRAM:39:40; BIGRAM:40:ROOT; BIGRAM:II:V
BIGRAM:VI+:II; BIGRAM:V:I; BIGRAM:I:ROOT
BIGRAM:VII:III; BIGRAM:III:VI; BIGRAM:VI:II-
BIGRAM:II-:V-; BIGRAM:V-:I-; BIGRAM:I-:ROOT
BIGRAM:bVII–:bIII–; BIGRAM:IV-:bVII–
BIGRAM:I-:IV-; BIGRAM:bIII–:bVI–
BIGRAM:bVI–:ROOT; BIGRAM:bVI–:bII–
BIGRAM:bII–:bV—; BIGRAM:bV—:ROOT
BIGRAM:bV—:bI—; BIGRAM:bI—:bIV—
BIGRAM:bIV—:bbVII—; BIGRAM:bbVII—:bbIII—-
BIGRAM:bbIII—-:bbVI—-; BIGRAM:bbVI—-:bbII—-
BIGRAM:bbII—-:ROOT; BIGRAM:D:D; BIGRAM:D:T
BIGRAM:T:ROOT; BIGRAM:II:D:V:D; BIGRAM:VI+:D:II:D
BIGRAM:V:D:I:T; BIGRAM:I:T:ROOT; BIGRAM:VII:D:III:D
BIGRAM:III:D:VI:D; BIGRAM:VI:D:II-:D
BIGRAM:II-:D:V-:D; BIGRAM:V-:D:I-:T
BIGRAM:I-:T:ROOT; BIGRAM:bVII–:D:bIII–:D
BIGRAM:IV-:D:bVII–:D; BIGRAM:V-:D:I-:D
BIGRAM:I-:D:IV-:D; BIGRAM:bIII–:D:bVI–:T
BIGRAM:bVI–:T:ROOT; BIGRAM:bVI–:D:bII–:D
BIGRAM:bII–:D:bV—:T; BIGRAM:bV—:T:ROOT
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Table 3.4: Perceptron algorithm for finding optimal parameters of Reranking model.

Perceptron algorithm

Inputs: Training set (xi, yi) for i = 1...n
Initialization: w = 0
Define: F (x) = argmaxy∈GEN(x)w · f(x, y)
Algorithm: For t = 1...T, i = 1...n

zi = F (xi)
if (zi 6= yi) w = w + f(xi, yi)− f(xi, zi)

Output: Parameters w

3.4 Finding the Optimal Parameters

In this section, we talk about method for parameter estimation. This is the method for
finding w parameters which is called perceptron algorithm. We will see that it is a very
simple algorithm, but empirically it turns out to work really quite well on Reranking
model.

3.4.1 Perceptron algorithm

Given the training data D = (x1, ..., xn′) is a sequence of chord progression. We used 10-
fold cross validation technique to compute the n-best dependency graphs Y (x) for each
chord progression x in D.
Consider perceptron algorithm below, we have some training set of examples xi, yi for i =
1...n′, and functionGEN and function f which are described early section. FunctionGEN
enumerates candidates for an input, and function f defines a feature vector mapping.

The task is going to to learn our parameters w by using training examples as information.
Firstly, we initialize parameters w equals the vector of zeros. Then, we define function F
which takes input x and pick the highest scoring member of GEN as the final output of
this model.
After T number of iterations, the algorithm will finish and return the final parameters w.
In this implementation, we choose T equals 10. For each training example the perceptron
algorithm does two things. Firstly, it calculates the current output zi from the model
which is the highest scoring structure under current parameters. Then, if zi is equal to yi,
that means we have correctly recovered the correct structure on this particular example.
And in that case, I do nothing to the parameters. Otherwise, if zi is not equal to yi, then
the structure we have produced is somehow different from the target structure yi. In that
case, we make an update to the parameters w by adding the feature vector for xi, yi and
subtracting the feature vector for xi, zi.
Intuitively, any features which are seen in the true structure have their parameter value

33



increased, whereas any features seen in the incorrectly proposed structure have their
parameter values decreased. So this is kind of a reinforcing step which pushes up the
parameter values for things seen in the truth and pushes down the parameter values for
features seen in zi which was the incorrectly produced structure.
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Chapter 4

Evaluation

In this chapter, we will evaluate our Reranking model for analyzing music. First, we
will cover some information about Jazz corpus which is the dataset for evaluating the
performance. Next, we will show evaluation indexes include precision, recall, and f -score
for Jazz chord sequence analysis. Finally, the current results of Reranking model will be
shown and analyzed.

4.1 Corpus

In this thesis, we use the Jazz corpus for training and testing our Reranking model. There
are 76 annotated sequences and about 3000 chords which are indicated in the Table 4.1
and 4.2.
Table 4.2 shows data structure of each chord. Root is an integer pitch class of transcribed
chord root (0, ..., 11), relative to the main key. Type is the main chord type (tetrad)
symbol, chosen from a small vocabulary (e.g. ‘’, ‘m’, ‘M7’). Addition is any further
transcribed tones added to the chord, but not included in the type symbol (e.g. ‘[13’).
Bass is the pitch class of a bass note, if one is given in the chord symbol (e.g. the B in
‘CM7/B’). Duration is duration of the chord in beats. Jazz corpus can be downloaded
by links below.
Links download

• Download the corpus in a human-readable format: http://jazzparser.

granroth-wilding.co.uk/JazzCorpus?action=AttachFile&do=get&target=

chord_corpus.txt

• Download the corpus in a CSV format: http://jazzparser.granroth-wilding.

co.uk/JazzCorpus?action=AttachFile&do=get&target=corpus.tar.gz

4.1.1 Annotating a Unique Gold-Standard Interpretation

Each chord in the corpus is annotated by a category from the lexicon identified by
mnemonic label defined in Table 2.2. With a small set of combinatory rules and strongly
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Table 4.1: First 10 rows in song corpus (76 sequences).

ID Key Bar length First chord

2 F minor 4 0
4 C major 4 70
7 A minor 4 114
8 Eb major 4 165
9 F minor 4 191
10 C major 4 228
12 C major 3 295
13 G major 2 361
14 C major 4 370
16 Ab major 4 416

Table 4.2: First 10 rows in chord corpus (3085 rows).

Root Type Additions Bass Duration Lexical schema Coord middle Coord end

0 m 4 T False False
5 m7 4 TC_IVb False False
7 7 b9 4 T False False
0 m 4 T False False
0 7 b9 4 T False False
5 m7 4 T False False
10 7 b9 4 T False False
3 M7 4 T False False
8 M7 4 TC_IVb False False
2 %7 4 D_Rep False False
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Figure 4.1: Algorithm for annotating a unique gold standard [18].

lexicalized grammar formalism of CCG, we have enough information to construct a unique
logical form for each sequence.
Algorithm for annotating a unique gold standard is showed in Figure 4.1. This algorithm
specifies a procedure which is sufficient to annotate a choice of lexical category for each
chord and the locations of coordination in order to achieve a full annotation of a gold-
standard tonal space path for each sequence.

4.2 Evaluation

In this thesis, we use Tonal space edit distance (TSED) metric to compare the output
of a parse result to the annotated gold-standard harmonic structure. This metric is the
closeness of the interpretation as a path through the tonal space.

4.2.1 Tonal space edit distance

The tonal space distance metric is computed as the edit distance between two path.
That is the smallest number of insertions, deletions or substitutions of points on one
path required to transform it into the other. Edit distance (also known as Levenshtein
distance) can be computed using a dynamic programming algorithm described by Wagner
& Fischer (1974) with a scoring function gives a penalty of 1 for deletion, insertion or
substitution.

4.2.2 Accuracy evaluation

Once the alignment algorithm has found the optimal alignment between the two paths,
we can compute the accuracy of the alignment using this scoring system.
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The precision P (proportion of points in the output matched in the gold standard) is
defined as the number of matching category choices Catm plus the number of matching
points of coordination Coordm, divided by the total number of chords N and annotated
points of coordination in the re-annotation Coordr.

P =
Catm + Coordm
N + Coordr

The recall (proportion of points on the gold-standard path matched in the output) is
defined as the same count of matching annotations, divided by the total number of chords
N and annotated points of coordination in the original annotation Coordo.

R =
Catm + Coordm
N + Coordo

f -score F is the harmonic mean of R and P

F =
2RP

R + P

Consider two examples (4.2, 4.3), we see that when using PCCG parser, the total parses
is 59. Meanwhile, when using St+PCCG parser, we only get 30 total parses. That con-
firms the competency of supertagging model compares with normal PCCG parser which
generate more parse results that can reduce the performance of the algorithm. Among
the parse results generated by PCCG, although using perfect Reranking (i.e., manually
pick up best candidate without using Reranking model), the distance between the best
candidate and gold standard only 3.5 compare with 3.0 generated from St+PCCG.
When applying Reranking model, they gained quite high results. Before Reranking, the
distance between parse result generated by PCCG and St+PCCG parsers both get 4.5.
However, after Reranking, we get the distance 3.5 for PCCG parser and 4.0 for St+PCCG
parser. From two examples, we confirm the improvement in performance when using
Reranking model for baseline parsers.
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Gold standard (Total parses: 59)

Sequence-69: “Cm GbM7 Gb7 B7 F7 Bb7 Eb Ab7 F7 Bb7 Eb Ab7 G7 Cm”
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Before Reranking (Distance to gold standard: 4.5)
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After Reranking PCCG (Distance to gold standard: 3.5. Found at index: 40)
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Perfect Reranking (Distance to gold standard: 3.5, Found at index: 38)
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Figure 4.2: Demo Reranking with PCCG parser for sequence 69.
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Gold standard (Total parses: 30)

Sequence-69: “Cm GbM7 Gb7 B7 F7 Bb7 Eb Ab7 F7 Bb7 Eb Ab7 G7 Cm”
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After Reranking St+PCCG (Distance to gold standard: 4.0, Found at index: 1)
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Perfect Reranking (Distance to gold standard: 3.0, Found at index: 3)
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Figure 4.3: Demo Reranking with St+PCCG parser for sequence 69.
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Table 4.3: Evaluation of each model’s prediction using 10-fold cross-validation on the jazz
corpus.

Model P(%) R(%) F(%)

PCCG (Baseline) 92.29 88.78 90.50
Supertagging+PCCG (Baseline) 90.18 92.79 91.46

Perfect Reranking 5000-best PCCG 97.18 96.96 97.07 (+6.57)
Perfect Reranking 5000-best Supertagging+PCCG 93.06 95.20 94.12 (+2.66)

Reranking 10best PCCG (n-gram features) 93.09 92.34 92.71*(+2.2)
Reranking 1000best PCCG (n-gram features) 90.69 90.10 90.39 (-0.11)
Reranking 5000best PCCG (n-gram features) 89.07 89.54 89.30 (-1.2)

Reranking 10best Supertagging+PCCG (n-gram features) 90.53 92.30 91.40 (-0.06)
Reranking 1000best Supertagging+PCCG (n-gram features) 90.42 91.51 90.96 (-0.5)
Reranking 5000best Supertagging+PCCG (n-gram features) 90.38 92.18 91.75*(+0.29)

4.3 Current results

The following results are based on Reranking model with parameters w which is found by
perceptron algorithm. The settings for the experiment as follow.

Implementation settings:

• Iteration T = 10

• Feature vector: n-gram

• 10-fold cross validation with 90% training set and 10% testing set

4.4 Results analysis

Table 4.3 shows that Reranking for 10best PCCG parser with n-gram features obtains
the highest performance. The current f -score for this parser is 92.71%. Unfortunately,
the performance drops down dramatically when increasing n-best parse results. This is
because with more candidates and simple feature templates, the perceptron algorithm is
easy to make mistake when picking the correct result.
According to Figure 4.4 and 4.5, we see that the probability of picking the right parse
result from PCCG parser higher than Supertagging+PCCG parser. In PCCG parser,
the parse results are generated by this parser have small distance distribution to gold-
standard. Then, with TSED metric for calculate precision, recall, and f -score, the per-
formance for PCCG parser is higher than Supertagging+PCCG parser. We can see that
histogram of 5000-best PCCG distance between best parse result and gold standard with
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Figure 4.4: Histogram of 5000-best PCCG distance between best parse result and gold
standard with min = 0.0,max = 9.0,mean = 1.26

maximum distance only 9 units. Meanwhile, the maximum distance between best parse
result and gold standard of Supertagging+PCCG is 19 units. In general, we will have
higher performance when applying Reranking model for PCCG parser.
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Figure 4.5: Histogram of 5000-best Suppertagging+PCCG distance between best parse
result and gold standard with min = 0.0,max = 19.0,mean = 2.74.
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Chapter 5

Conclusions

This thesis presented reranking model which is a discriminative approach. The feature
template support for this model are quite simple. In current research, we only use n-gram
model extracted from dependency graph of gold standard Jazz corpus. The advantage of
Reranking model is easy to understand and implement with high speed in training. The
drawback also exists in defining more useful feature template for the enhancement of the
system.
We have used Reranking model to improve CCG parser for Jazz Chord Sequences. Our
contribution is that with simple feature setting and perceptorn algorithm, we have im-
proved performance of the system by 2.2% in PCCG parse results. This current result is
not really high and good enough. However, Reranking model approach is really promising
with the highest performance can be reach by manually picking the right result from list
of parsing instances.
In current study, we see that the distribution of parsing results which may match the
gold standard not enough to reach the higher performance. In PCCG parse results, the
chance of finding match structure analysis higher than St+PCCG parse results which
cause higher accuracy in final results.

5.1 Future work

In the future, we may try other methods which appropriate for chord sequence character-
istics such as Conditional Random Fields. This is another log-linear model which is also
define a set of feature vector in d dimension. Dynamic programming algorithm can be
used for estimating the parameter for this model.
The current features are extracted from dependency graph only provide
leftonto, rightonto relation information between chords. In the next study, we try
to extract feature from parse tree instead of dependency graph.
Consider figure 5.1, it is added more information about combinatory rules such as appli-
cation rules (appf), composition rules (compf) and coordination rules (coord). With more
information, we can extract more useful feature for Reranking model and might achieve
more higher accuracy for the system.
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Figure 5.1: Parse tree for sequence C7 C7 F7 F C7 Gm7 Abm7 Gm7 C7.

From this parse tree, we can define feature template such as tree topology feature which
describe the shape of parse tree (preference for right-branching, parallelism in conjunc-
tions), local context feature which are ancestor paths of nodes in the tree, CCG which is
combination of unary rule applications, and heads of conjunctive structures.
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