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Abstract—In many video games such as role playing games
(RPGs) or sports games, computer players act not only as the
opponents of the human player but also as team-mates. But
computer players as team-mates often behave in a way that
human players do not expect, and such mismatches cause bigger
dissatisfaction than in the case of computer players as opponents.

One of the reasons for such mismatches is that there are
several types of sub-goals or play-styles in these games and the AI
players act without understanding the human player’s preference
about them. The purpose of this study is to propose a method
for developing computer team-mate players that estimate the
sub-goal preferences of the team-mate human player and act
according to these preferences.

For this purpose, we modeled the preferences of sub-goals as
a function and decided the most likely parameters by a multi-
strategy Monte-Carlo method, by referring to the past actions
selected by the team-mate human player.

Additionally, we evaluated the proposed method through
two series of experiments, one by using artificial players with
various sub-goal preferences and another one by using human
players. The experiments showed that the proposed method can
estimate their preferences after a few games, and can decrease
the dissatisfaction of human players.

I. INTRODUCTION

A simple and ultimate goal of computer intelligence for
games is to entertain human players. To reach this goal,
strength of computer game players have been investigated first,
and a lot of methods have been developed. Currently computer
players of many two-player board games such as Chess or Go
are stronger than almost all human players. In the case of
games where several players play in a team such as football,
many approaches have also been proposed to make strong
computer team members [1]. Such strong computer players
may be good enough opponents to human players.

However, there are still few researches for making good
computer team-mates. In many video games such as role
playing games (RPGs) or sports games, computer players are
needed not only as opponents of the human players but also
as team-mates. Frequently, computer players as team-mates
behave in a way that the human player does not expect, and
such mismatches cause bigger dissatisfaction than in the case
where computers are the opponents.

One of the reasons for such mismatches is that such games
has not only the main goal of “winning” but also several “sub-

goals”, then the best action for winning is not necessarily the
best action for satisfying the human player. We believe that
to be a good team-mate, computer players should understand
which sub-goals are preferred by the player by referring to the
past actions selected by the player, and act according to that
preference.

Our purpose is to implement team-mate computer players
which can estimate human players’ preference and decrease
their dissatisfaction. For this purpose, preference of sub-goals
is modeled by a function, and the most likely parameters are
decided by a multi-strategy Monte Carlo method.

The structure of this paper is as follows. We introduce
some related works in Section II and show an overview of
the proposed method in Section III. The general algorithm is
shown in Section IV. The target game is described in Section
V, and then Section VI and VII describe respectively the
preference function and the strategies specific to the game.
Two series of experiments are done and shown in Section VIII
and IX, and Section X concludes this paper.

II. RELATED WORKS

Compared to conventional researches which aim to make
strong computer players in two-player board games, this paper
deals with a different situation, that is (1) a behavior sat-
isfactory to the player is pursued, (2) target games are role
playing games (3) team playing is needed, and then (4) player
modeling is needed.

Since a natural behavior of computer players is an impor-
tant factor for player satisfaction, many researches have been
done, and many competitions have been held [3]. For example,
Fujii et al. proposed a method to produce human-like behaviors
by introducing biological constraints in the search and learning
algorithms, and showed its effectiveness on an action game
Infinite Mario Bros. [2]. Believability is a similar but more
complex concept than naturalness, Bernacchia et al. suggested
that consistency based on character’s purpose or personality is
very important for believability [5].

Team playing is needed in multi-player games such as
football, and many approaches have been tried for making
strong computer teams. For example, Bakkes et al. proposed
an evolutionary approach which can adapt the team strategy
dynamically to the opponent team, and its ability to exploit
the opponent patterns was shown in a shooting game Quake
III [1].



Fig. 1. Approach overview

Our target game is also a kind of multi-player games, called
command-based role playing video games (RPGs), such as
Wizardry series or Final Fantasy series. In such games, the
player team is usually stronger than the opponent (monster)
team, but the player team must fight against many teams in a
row, and its status at the end of a battle is kept for the start
of the next one. Then, players seek not only to just “win” but
also to reach a “desirable win”, for example they try to avoid
injuries to their characters, to spend less magic powers, or to
avoid a loss of time. We call such elements for a desirable win
the sub-goals. It must be noted that the preferences on such
sub-goals strongly depend on each human player, for example
some players may prefer speedy but risky battles, while others
may prefer safe but slow battle. Hence, there is a need to
estimate such preferences.

While Bakkes’s approach tried to exploit the tendency of
opponents, we try in this research to estimate the preference
of a team-mate, by referring to the past actions selected by
the team-mate human player, and then we try to adjust the
actions of computer team-mates to such preferences. Modeling
of human player’s behavior by referring to the selected actions
itself is popular also in board games, especially for making
strong players by referring to some professional game records.
It is well known that αβ tree search or Monte-Carlo tree search
can be enhanced by such modeled action evaluation functions
[14][16][6]. Also, modeling actions of the current opponent
for exploitation have been widely tried [8][9][10]．

Modeling of preferences on states (game/board situations)
is also popular. Hoki et al. proposed a sophisticated method
for learning state evaluation functions from game records
[11], or Namai et al. tried to produce the play style of a

specific player by using his game records [15]. We also try
modeling preferences of each player, but two difficulties should
be considered, i.e. there are many sub-goals and the state
transition is stochastic. In the field of reinforcement learning,
inverse reinforcement learning methods proposed by Y. Ng et
al. try to suggest reward functions for agents by analyzing
their policies [12].

For dealing with human complex preference on stochastic
events, the concept of “utility” is frequently used [13]. For
example, someone could reasonably want to do a gamble
where he wins 100 dollars at 70% probability and loses 100
dollars otherwise, but he would probably refuse to do a similar
gamble where he wins 100,000 dollars at 75% probability and
loses 100,000 dollars otherwise. Such cases cannot be well
explained by considering only plain average rewards, but can
be well explained by the utility theory. Winning 100 dollars
and losing 100 dollars have roughly the same absolute impacts
for almost all people, but losing 100,000 dollars has a much
bigger (negative) impact compared to winning 100,000 dollars.
Such non-linear impacts can be described by using utility
functions, and the “average utility” can be compared. Multiple
features of an event or a matter, for example {price, speed,
cornering, toughness, fuel efficiency} for a car, can also be
included in the utility function. In this paper, we propose a
method to learn and use a utility function of a human player
in order to cooperate with him as a team-mate.

III. APPROACH

The goal of this research is to make an entertaining
computer player for RPGs who can cooperate with a human
player as a team-mate. In such games, computer players often
behave in a way that the human player does not expect, and
such mismatches cause big dissatisfaction.

There are many possible reasons of such mismatches, for
example the best action for winning may be difficult to find
in complex games, or the human player can misunderstand
the situation even though the computer player selects the best
action. But we believe that the main reason of such mismatches
is the existence of sub-goals. For example, if the computer
player selects the most probable action for winning, it is
reasonable in a sense, but the human player may feel that the
action is too slow or too magic-power consuming, and may
prefer more speedy or magic-power saving action, even if it
is a bit risky. So, estimation of preferences and adaptation to
them are needed.

Figure 1 shows the overview of the proposed method. In
this section, each procedure is briefly described in the order
of the numbers on the figure.

1) Target games: In this research we focus on multi-player
games where two teams battle against each other, and
each team is composed of several characters. We consider
games with discrete time-step and discrete action space,
mainly command-based RPGs. The main goal of the
players is to win each battle, but in addition, players try to
achieve a “desirable win”, in other words there are some
sub-goals. The definition of a “desirable win” is unclear
and depends on each player.

2) Recording states and actions: We assume one character
is controlled by a human player. Each action of the



character is recorded, in a pair with the state (situation)
in which the action is selected.

3) Starting estimation: It is impossible to estimate the
preference of a player only by one selected action. The
estimation is started after storing several pairs of states
and actions. The estimation can be updated and used at
any time through the battles.

4) Calculation of averaged results: In each state, the human
player selects an action from some candidates, knowing
that each different action will lead the team to a different
result. Such expected result is estimated for each possible
action, using Monte-Carlo simulations. Many simulations
are done for each possible action in the given state, and
the averaged result is calculated for each.

5) Interpretation: It is reasonable to consider that each
human player selects the action which will lead the team
to the best result according to his own preference. In
other words, we can interpret the fact that “an action was
selected” as “the averaged result of the selected action
was more desirable than that of any other action.”.

6) Preference estimation: We assume that each human
player implicitly has his own preference function, which
we model as a parameterized function that takes the
averaged results of the Monte-Carlo simulations as inputs
and returns a preference value. The parameters of this
preference function are optimized so that the conditions
interpreted in 5) are satisfied as well as possible.

7) Action selection: After estimating the preference func-
tion, the computer team-mate computes the averaged
results of each possible action, computes the preference
values, and selects the best desirable action.

In this way, desirable actions of team-mate computer
player are suggested from observing only the humnan player’s
actions. Of course, there are cases in which a human player’s
preferences to actions of his team-mate and of his own, seem
different (e.g. the human player choose attack actions eagerly
to obtain some rewards by killing enemies while he want
his team-mates to hold off from killing). However, we can
suggest preferable team-mate’s actions even in those situations
by interpreting the simulated results precisely enough (e.g.
we can focus on the killing player in each simulation results
and estimate the preference to team-mates’ holding off from
killing).

IV. ALGORITHM

In this section, the whole algorithm is shown according
to the stream of our approach (Figure 1). The notations of
symbols are summarized in Table I.

A. Recording states and actions

In this research we employ Markov Decision Process
(MDP) [7] as the model of target games, because almost all
command-based RPGs can be modeled as a MDP. Let S be
the discrete state space, and A the discrete action space. When
a computer player needs to estimate the preference of a human
player, the actions selected by the human player are recorded.
The j-th state for the player is noted by sj , the possible actions
at that time are noted by Asj ⊂ A, and the selected action is
noted by aj ∈ Asj . The recorded information is a set of pairs
of such states and actions, noted by {(sj , aj)}j .

Fig. 2. Calculation of averaged results

B. Calculation of averaged results

To know the averaged results of each action, we use
Monte-Carlo simulations. Each simulations is run from the
state obtained just after the evaluated action is executed, until
the end of the battle, using an action selection strategy π：
S → R|A| which decides the selection probability of each
possible action. We note the result (state) of the i-th simulation
for a state s and an action a as si(s, a, π).

Since a state includes too many values, an n-dimensional
feature vector x⃗i(s, a, π) is extracted by using a function S →
Rn. After the extraction, the averaged result of m simulations
is calculated as follows:

x⃗(s, a, π) =
1

m

m∑
i=1

x⃗i(s, a, π) (1)

Instead of random simulations where all legal actions are
selected at the same probability, biased simulations are often
employed to improve the performance of Monte-Carlo methods
[16]. In such biased simulations, “good actions” are selected
at higher probabilities. In the case of Chess or the game of Go,
it is relatively easy to define “good actions” and so to employ
a biased single simulation strategy.

However, in the case of RPGs, many sub-goals exist,
then the “good actions” depend on the preference of each
player. Therefore, we employ multiple simulation strategies,
and calculate multiple averaged results x⃗(s, a, π) for each
strategy π respectively. The procedure is shown in Figure 2.

This procedure for calculating averaged results is used in
this paper not only for estimating preference, but also for
selecting the actual action.

C. Preference estimation

Being inspired by the utility theory, we assume that each
human player has his own preference function and selects the
best action for maximizing it. Since the preference function is
hidden, it is needed to employ a parameterized function model
and optimize the parameters.

As there are many candidates for such function u : x⃗ → R,
in this paper we employ a simple linear-sum model as follows:

u(x⃗(s, a, π), w⃗) = x⃗(s, a, π) · w⃗ (2)



TABLE I. NOTATIONS OF SYMBOLS

s ∈ S current state
As ⊂ A possible actions at state s
a ∈ As a possible action
a∗ ∈ As action selected by the human player
π : S → R|A| ∈ Π a simulation strategy
n number of features
m number of simulations

si(s, a, π)
the result (state) of i-th simulation using strategy π,
from state s and action a

x⃗i(s, a, π) ∈ Rn feature vector of state si(s, a, π)
x⃗(s, a, π) ∈ Rn average of {x⃗i(s, a, π)}i

w⃗ parameter vector of preference function
u(x⃗, w⃗) ∈ R preference value of x⃗ when using w⃗

Algorithm 1 Optimization of parameter w⃗ for preference
function

for each w⃗ ∈ W do
pw⃗ = 0

end for
for each (s, a∗) ∈ {(sj , aj)}j do

for each w⃗ ∈ W do
u∗ = maxπ∈Π u(x⃗(s, a∗, π), w⃗)
for each a ∈ As \ a∗ do

if u∗ < maxπ∈Π u(x⃗(s, a, π), w⃗) then
pw⃗+ = 1

end if
end for

end for
end for
return arg min

w⃗∈W
pw⃗

x⃗(s, a, π) ∈ Rn is an averaged result, and w⃗ ∈ Rn is a
parameter vector.

We can interpret the fact that “an action a∗ was selected”
as “the averaged result of a∗ was more desirable than that
of any other action”. Considering that the simulation strategy
π can be selected from a possible set Π, we can expect the
following inequality to hold:

max
π∈Π

u(x⃗(s, a∗, π), w⃗) ≥ max
π∈Π,a∈As

u(x⃗(s, a, π), w⃗) (3)

In other words, if this inequality does not hold, it is probable
that the preference function, and then also the parameters w⃗,
are inadequate. Then, we try to find the best parameters which
minimize the number of violations of the inequality.

At first, the possible parameters are limited to a finite set
W . When an action a∗ is observed, each candidate w⃗ ∈ W
is tested, and if the inequality (3) does not hold, a penalty pw⃗
for w⃗ is increased. Finally, the parameter with the minimum
penalty pw⃗ is selected and considered to be the most adequate
parameter (See algorithm 1). If there are several vectors which
have the minimum penalty, the average vector is adopted.

The gradient descent method is another feasible approach
for this estimation. We think the gradient descent method
works better in case of using feature vectors in higher di-
mensions. Because, our discrete space approach increases
computational cost exponentially as the dimension grows.

D. Action selection

How to calculate the averaged results x⃗(s, a, π) and how
to estimate the preference function u(x⃗, w⃗), have been already
described. In order to cooperate with the human player by
selecting the action that he is expecting, the action that max-
imizes the preference, arg max

a∈As,π∈Π
u(x⃗(s, a, π) · w⃗), is selected.

We call such player “MC player” in this paper.

V. GAME SETTINGS

The proposed algorithm is evaluated by using a command-
based RPG designed for academic research so that the result
is reproducible. This game is modeled by a MDP, and we
describe in the following subsections its state space, action
space and transition rules.

A. State: parameters of characters

This game consists of one battle between two teams, and
each team consists of several characters. There are several
parameters for each character, which are all observable from
each other. In usual commercial RPGs, such information of
the opponent team is hidden or incomplete, but it is possible
to estimate them by repeating battles. In this paper, this state
estimation phase is skipped in order to focus on the problem
of the preference estimation.

• Vitality (HP): HP of a character is decreased by
the opponent’s attack. If HP becomes below 0, the
character is beaten. Variable parameter.

• Maximum Vitality (MHP): HP can be increased
by some skills, but it is limited by MHP. Constant
parameter.

• Magic Power (MP): MP is necessary for using some
powerful skills, decreased by using them. Variable
parameter.

• Offensive Power (ATK): Character with higher ATK
can give more damage to the opponent’s HP. Constant
parameter.

• Defensive Power (DEF): Character with higher DEF
will take less damage from the opponent’s attack.
Constant parameter.

B. Action

Each character selects a skill and its target, for example
“single attack to enemy-1” or “greater heal to team-mate-2”.
The set of possible skills differ between the characters. The
list of skills is as follows:

• Single attack: one opponent is selected, and he re-
ceives (attacker’s ATK - opponent’s DEF) damage to
his HP.

• Group attack: one group of enemies is selected, and
each of them receive 30 damage to their HP. MP of
the user is decreased by 8.

• Lesser heal: one team-mate (or oneself) is selected,
and target’s HP is increased by 42, at most to MHP.
Instead, MP of the user is decreased by 4.



Fig. 3. Progress of a game. Turn-based with random order of the actions.

• Greater heal: the amount of healing and spent MP
are bigger than lesser healing, 88 and 8 respectively.

• Group heal: all HPs of team-mates are increased by
160 at most to their MHPs, instead, MP of the user is
decreased by 18.

• Defense: the damages taken are decreased by 50%,
until the next action of the character is selected.

C. State transition

The overview of the state transitions is shown in Figure 3.
Every alive characters act once in a turn. The order of actions
is randomly decided, and the players cannot know the order.

In many games such as Wizardry series or Dragon Quest
series, the actions of the human team are selected at the
beginning of each turn. But in such case more complex
decision making such as Nash Equilibrium is needed. For now,
a simpler case is considered as the first step. The characters
select their action not at the beginning of the turn, but when
it is their time to act, and their action is executed soon after
being selected.

After each selection of an action, a state transition is
executed and the control is given to the next character. This
loop is repeated until all characters of either team are beaten.

D. Settings

Compared to conventional two-player board games such as
Chess, in RPGs usually two teams are completely asymmetric,
and the parameters are not fixed but can vary widely. Then, we
prepared five settings of battles, from easy ones to a difficult
one corresponding to a “boss battle”.

Table II shows the parameters of setting-2, in this setting
there is no group including multiple enemies. It is easy to win
in this setting, but it is a bit difficult to preserve MP because
there is an enemy who can heal. In such case, sometimes
players should select MP spending skill for preserving MP.
It sounds paradoxical, this is a case where it is difficult for
computers to learn the human player’s preference.

VI. FEATURE VECTOR AND WEIGHT VECTOR

In the proposed algorithm, an n-dimensional feature vector
x⃗ is extracted from the result (state) of each simulation, and
then an n-dimensional weight vector w⃗ is used to evaluate it.
In this section, we describe the features used in this paper, and
how the weights affect the computer player’s behavior.

TABLE II. SETTING-2, PARAMETERS AND AVAILABLE SKILLS OF 5
CHARACTERS

Character group HP MP ATK DEF Available skills

Hero-1 134 30 60 28 single attack, lesser heal, defense

single attack, group attack,

Hero-2 108 60 44 34 lesser heal, greater heal,

group heal, defense

Enemy-1 1 52 0 40 26 single attack

Enemy-2 2 82 32 38 32 single attack, lesser heal

Enemy-3 3 70 0 50 30 single attack

A. Feature vector

While the result after a simulation includes many values,
only three features are temporarily extracted and used in this
paper. Richer features may be required to represent human
preference accurately, especially in the case of more complex
RPGs, but it should be noted that higher dimensional optimiza-
tions require a bigger optimization cost.

The feature vector employed in this paper is as follows:

x⃗ = (xHP , xMP , xTurn) (4)

Each feature element is calculated as follows:

xHP =
averaged HP of player’s team members

averaged MHP of player’s team members
(5)

xMP =
averaged MP of player’s team members

averaged initial MP of player’s team members
(6)

xTurn = b− (number of elapsed turns) × a (7)

a and b are constant values for normalization. When the
player’s team wins with less final damages, a bigger xHP is
achieved. When the player’s team wins after spending less
MPs, a bigger xMP is achieved. And when the player’s team
wins within less turns, a bigger xTurn is achieved. It must
be noted that the main goal of each battle, i.e. “winning”, is
embedded in xHP , because xHP has the lowest possible value
(0) if the battle is lost.

B. Weight vector

In this setting, since the feature vector x⃗ is 3-dimensional,
the weight vector w⃗ is also 3-dimensional. The elements of
w⃗ represent the weight for xHP , xMP , xTurn, respectively.
Since a linear weighting model is employed in this paper, the
weight for xHP can be fixed to 1. For example, a weight vector
(1, 10, 0.1) represents a preference for preserving MP, and a
weight vector (1, 0.1, 0.1) represents a preference for avoiding
damages.

For the proposed algorithm, a candidate set of parameters
W should be prepared. We consider a two-dimensional 31×31
logscale matrix with xMP and xTurn as the axis, and where
the minimum value and maximum value are set to 1

32 and
32 respectively. In other words, W consists of a set of 961
candidate weight vectors.



TABLE III. BATTLE RESULTS WHEN USING THREE TYPICAL WEIGHTS

strategy weight vector HP (sum) MP (sum) Turn
multi HP-preserving: (1, 0.1, 0.1) 238 41 8.8
multi MP-preserving: (1, 10, 1) 150 80 11.5
multi Turn-oriented: (1, 1,10) 160 56 6.2
single MP-preserving: (1, 10, 1) 159 63 6.9

C. Effect of preference

In this subsection, we investigate how weights affect the
computer player’s behavior. It is expected that different weights
produce different behaviors, so we want to check that for
example MP-oriented weights really produce an MP preserving
behavior.

Here a “matching rate” is calculated to compare two
players, by the following procedure.

1) Player-1 plays several games as a character (such as hero-
1), k pairs of states and actions {(si, ai)} are recorded.

2) Each state si is also given to Player-2 playing the same
character, and the chosen actions a′i are recorded.

3) The number of matches between ai and a′i in the k states
is counted, and the rate of matches is what we call the
“matching rate”.

It should be noted that the matching rate can be under 1.0
even if Player-1 and Player-2 are exactly the same, because
randomness is used in the Monte-Carlo method algorithm.

Figure 4 shows the matching rates for varied w⃗ ∈ W ,
compared to a fixed MC player using w⃗ = (1, 1

8 ,
1
16 ). Battle

setting-2 was used, hero-2 is controlled by the fixed MC player
with these weights, and other characters were controlled by
a fixed rule. Also Figure 5 shows the matching rates when
comparing to another fixed MC player using w⃗ = (1, 4, 8).
Please note that the directions of axes are opposite in the two
figures, for the sake of visibility of the landscape.

In the case of the comparison with the fixed player using
w⃗ = (1, 1

8 ,
1
16 ), the highest matching ratio is achieved when

w⃗ = (1, 1
8 ,

1
16 ) itself, but there is a hill around it where

the matching rate is over 70%. On the other hand, in the
case of comparing with the fixed player using w⃗ = (1, 4, 8),
there is a sharp ridge, (1, 4, 8), (1, 8, 16) or (1, 16, 32) have
good matching rates but (1, 8, 8) or (1, 4, 16) have significantly
worse matching rates. It shows that different weight vectors
can produce significantly close behaviors, so the accuracy of
the preference estimation should be evaluated through this
matching ratio of the behavior, instead of the values of the
learned vector itself.

Next, to confirm if a weight for achieving something such
as preserving MP really achieves it, simple experiments are
done. Three typical weight vectors are prepared, and hero-2
in setting-2 is controlled by an MC player with one of them.
1000 battles were done, averaged results are summarized in
Table III. It confirms that at least in this case, HP-preserving
vector really achieved the best (highest) result about HP, MP-
preserving vector really achieved the best (highest) result about
MP, and Turn-oriented vector really achieved the best (fastest)
result about Turn.

VII. MULTI-STRATEGY MONTE-CARLO

It is an important characteristic of the proposed method
that several simulation strategies are used. Compared with

Fig. 4. Matching rates to a player using (1, 1
8
, 1
16

), logscale.

Fig. 5. Matching rates to a player using w = (1, 4, 8), logscale.

a single-strategy (random-strategy) Monte-Carlo method, the
multi-strategy Monte-Carlo method will allocate less number
of simulations for each strategy but make the simulations
more realistic. In this section, we explain the seven employed
strategies, and the effect is shown through some experiments.

A. Employed strategies

Several strategies should be prepared according to the
target game. The best combination of an action and a strategy
is finally selected by a Monte-Carlo method, then it is not
necessary to prepare the candidate set so carefully. A foolish
strategy can be included, because it will not be selected finally
by the algorithm. Of course, considering the computational
cost, foolish strategies should be removed if possible.

The candidate set used in this paper is as follows:

1) Random: all actions have the same selection probability.
2) Timely heal: the selection probability of healing skills is

decreased when HPs of the team are not low. Usually,
healing is a bad action (MP-spending and slow) if both
team-mates are safe.

3) Offensive: attack skills are selected with a 5 times higher
probability than other actions.

4) Single attacking: single attack is selected with a 5 times
higher probability than other actions. This strategy is
especially effective for MP-preserving purpose.



TABLE IV. WINNING RATES, MULTI-STRATEGY VS SINGLE-STRATEGY,
HP-PRESERVING VS MP/TURN ORIENTED

weight vector multi-strategy single-strategy
HP-preserving: (1, 0.1, 0.1) 98.8% 96.0%
MP/Turn-oriented: (1, 10, 10) 83.6% 70.2%

5) Group attacking: group attack is selected with a 5 times
higher probability than other actions. This strategy is
especially effective for Turn-oriented purpose.

6) Timely heal + Single attacking
7) Timely heal + Group attacking

B. Effect of multi-strategy

It is well known in board games that using good simula-
tions is effective for strong playing [16]. Here we show briefly
that using multiple strategies is effective not only for strong
playing, but also to obtain characteristic behaviors.

Firstly, the winning rates of two cases were compared by
using battle setting-5 shown in Table V, assuming a boss-battle.
In one case hero-2 was controlled by a single-strategy MC
player, and in another case by a multi-strategy MC player.
Characters except hero-2 were controlled by a fixed rule. Two
preference weight vectors were also compared. Table IV shows
the percentage (in 1000 games each) when both hero-1 and
hero-2 were alive at the end of the battle. If we consider
the winning performance, it is clear that HP-preserving (safer)
preference can achieve better result, and that the multi-strategy
MC player plays better than the single-strategy MC player.

Secondly, we compared the single-strategy and the multi-
strategy to see whether characteristic behaviors according to
the preferences were generated or not. The single-strategy MC
player with MP-preserving preference (1, 10, 1) was tested
as shown in the last section, the result is also shown in
Table III. Compared to the case of the multi-strategy MC
player with MP-preserving preference, the remaining MP was
significantly lower, and instead the number of elapsed turns
was significantly fewer.

In particular, the single-strategy MC player often use
group-attack, especially in the early stage of each battle.
Because MP-consuming skills are often used in completely
random simulations, then the small difference (of MP) caused
by the first action can be easily cancelled by good/bad luck.
On the other hand, in the case of the multi-strategy MC player,
some of the prepared strategies (such as Timely-heal + Single
attacking) can preserve MP also in simulations, then the small
difference caused by the first action can be detected.

It is reasonable to consider that such advantages of a multi-
strategy MC also contribute to the accuracy of preference esti-
mation. Through some preliminary experiments, we observed
that the accuracy when using a multi-strategy MC is about 10
points better (at most) than when using a single-strategy MC.

VIII. EVALUATION EXPERIMENTS USING ARTIFICIAL
PLAYERS

The proposed preference estimation algorithm was evaluat-
ed through two series of experiments. In this section, the first
series is shown. Artificial players were employed as the target
players to be estimated, so that we can compare the preference

TABLE V. SETTING-1, 3, 4, 5. PARAMETERS AND AVAILABLE SKILLS
OF CHARACTERS

Setting 1 (many enemies)
Character group HP MP ATK DEF Available skills
Hero-1 134 30 60 28 single attack, lesser heal, defense

single attack, group attack,
Hero-2 102 80 44 32 lesser heal, greater heal,

group heal, defense
Enemy-1, 2, 3 1 52 0 38 26 single attack
Enemy-4, 5, 6 2 52 0 38 26 single attack
Enemy-7, 8 3 52 0 38 26 single attack
Enemy-9, 10 4 52 0 38 26 single attack

Setting 3 (easier situation)
Character group HP MP ATK DEF Available skills
Hero-1 138 30 62 30 single attack, lesser heal, defense
Hero-2 110 62 46 34 (the same as setting 1)
Enemy-1, 2 1 52 0 40 26 single attack
Enemy-3 2 56 0 56 56 single attack

Setting 4 (harder situation)
Hero-1 142 32 66 36 single attack, lesser heal, defense
Hero-2 112 64 48 38 (the same as setting 1)
Enemy-1 1 84 0 84 20 single attack
Enemy-2 2 84 0 44 60 single attack
Enemy-3 3 60 0 48 26 single attack

Setting 5 (boss battle)
Hero-1 160 36 74 48 single attack, lesser heal, defense
Hero-2 122 72 52 44 (the same as setting 1)
Enemy-1 1 120 0 54 26 single attack
Enemy-2 2 222 0 80 40 single attack
Enemy-3 3 102 32 52 24 single attack, lesser heal

of the target players and the estimated preference, and so
that we can conduct many and various experiments easily. We
employed 4 weight vectors (1, 0.071, 0.071), (1, 0.143, 18),
(1, 12, 0.167) and (1, 10, 10) for the target MC player, because
human players often have various preferences in such RPGs.
Also 5 battle settings were prepared and employed, as shown
in Table II and Table V, because various situations are given
in such RPGs. Totally, 20 combinations were tested.

In all settings, only hero-2 selects the action according
to the given preference vector, and the other characters play
by a fixed rule. The proposed method records the states
and actions of hero-2, and estimates his preference vector.
Battles are done 8 times in a row (but HPs and MPs are
initialized in each game), the proposed method estimates the
preference after a half, 1, 3, 5 and 8 games, and the progress
of estimation (accuracy improvement) is checked. Since results
can be fairly affected by the randomness of the game itself and
the algorithm, 20 trials (160 battles) are done using different
random seeds, for each combination of target vector and battle
setting.

First, Figure 6 shows the estimated weights after 1 game
(left) and that after 8 games (right), when the target weight
vector is (1, 10, 10) and the battle setting-2 is used. In the
case of only 1 game, the estimated weight vectors are widely
distributed. On the other, hand after 8 games, the estimated
weight vectors are almost all near the target vector (1, 10, 10),
and they seem to be on an edge, such as the one in Figure 5.

Evaluations should be done not only by the estimated
vectors, but also by the matching rate defined in VI-C. In the
above case, the averaged matching rate of the target MC player
(to himself) is 84.2%. The averaged rate of the MC player with
the estimated weight vectors is 69.9% after a half game, 77.5%
after 1 game, and 83.5% after 8 games, respectively. It shows
that the estimation accuracy was improved gradually, finally
reaching almost the same level as the target player itself.



Fig. 7. Progress of averaged matching rate, total.

Fig. 6. Estimated weights after 1 game (left) and 8 games (right), when the
target vector is (1, 10, 10).

Figure 7 shows the averaged values of 20 combinations
of battle settings and weight vectors (total of 400 trials). The
averaged matching rate of the target MC player to himself
is 72.4%, that of the proposed method is under 60% after a
half game but over 70% after 8 games. Also Figure 8 shows
the averaged values, separated between each battle setting.
Though in some cases matching rates are relatively lower and
in some cases higher, the gap between the matching rate of
the target player itself and that of the proposal method after
8 games is only about 3% at max. It can be concluded that
the performance of the proposed method is robust to the battle
settings.

Fig. 8. Progress of averaged matching rate, for each battle setting. With
different 5 battle settings, 4 target weight vectors and 160 battles (3200 battles
totally).

IX. EVALUATION EXPERIMENT USING HUMAN SUBJECTS

The experiment in the previous section was done in an ideal
case where the target players had the same forms of preference
funsctions as we had assumed.

Thus, we did the experiments with subjects in order to
evaluate the performance of our method for human players.

A. Design

Firstly, each subject plays two battles only for becoming
familiar to the rules and settings of the game. Secondly, the
subject plays four sets of battles and each set consists of eight
battles. At the start of each set, a direction is ordered to the
subject:

1) Please win while keeping as much HPs as possible
2) Please win while preserving as much MPs as possible
3) Please win quickly
4) Please win quickly, and while preserving MPs

The former four battles of each set are the “learning phase”.
Here the subject controls both hero-1 and hero-2, the actions
are recorded, and the preference vector is estimated by the
proposed method.

The latter four battles of each set are the “evaluation
phase”, where the subject controls hero-1, and an MC player
controls hero-2 without incremental learning. The MC player
uses the estimated preference vector only in two games, and
uses two fixed vectors (1, 0.3, 3) and (1, 4, 0.25) in the other
two games, for comparison. At the end of each battle, the
subject evaluates the degree of his/her satisfaction with the
team-mate computer player, on a evaluation scale of five
grades.

B. Results

Setting-2 (Table II) was employed through all the battles.
The calculation of the feature xHP was slightly modified in
this experiment. It is measured not from the final HPs from
the averaged HPs among the simulations.

10 human subjects attended this experiment. All of them
are experienced at playing command-based RPGs. They used
a Windows GUI, and about 1 to 2 hours were needed for the
total of 34 battles.

The results are summarized in Table VI. For all the
four kinds of given directions, the evaluation scores for
the estimated preferences were better than that for the two
fixed preferences (Speedy/MP-preserving). In the case of HP-
keeping direction, since the fixed preferences were unsuitable
for the direction, then the result is reasonable. In the case
of MP-preserving direction, the fixed preference (1, 4, 0.25)
was better than (1, 0.3, 3), but the estimated preference was
much better. Probably, the fixed preference (1, 4, 0.25) was not
enough, and more extreme preference such as (1, 20, 0.05) was
preferred.

The last direction was intentionally designed to be mixed
and vague. Human subjects understood the direction in differ-
ent ways, then the estimated vectors were widely distributed
for example (1, 11, 24) and (1, 23, 23). We believe that the
proposed method is useful because such individual differences
are very frequent in actual RPGs.



TABLE VI. SATISFACTION FOR TEAMMATE COMPUTER PLAYERS

Direction MC player Average scores

Keeping HPs
Proposed method 3.8

MP-preserving: (1, 4, 0.25) 2.9
Speedy: (1, 0.3, 3) 3.2

Preserving MPs
Proposed method 3.4

MP-preserving: (1, 4, 0.25) 3.0
Speedy: (1, 0.3, 3) 2.1

Speedy
Proposed method 4.2

MP preserving: (1, 4, 0.25) 2.5
Speedy: (1, 0.3, 3) 4.0

Speedy and preserving MPs
Proposed method 4.0

MP-preserving: (1, 4, 0.25) 3.0
Speedy: (1, 0.3, 3) 2.7

X. CONCLUSION

In some games such as RPGs, not only “winning” but also
many sub-goals are implicitly sought by human players. In this
paper, we proposed a method to estimate the preferences about
such sub-goals from the player’s actions, and to cooperate
well as a team-mate by respecting these preferences. The
preferences were modeled by a parameterized function, and
the parameters were optimized to each player, by using a
multi-strategy Monte-Carlo method. The effectiveness of the
proposed method was confirmed through several series of
experiments, using artificial players and using human subjects.
We showed that the proposed method can estimate almost the
exact preferences of the artificial players after only 8 games,
and that the proposed method can play with human players
without generating dissatisfaction.
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