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Performance of an ℓ1 Regularized Subspace-based
MIMO Channel Estimation with Random Sequences

Yasuhiro Takano, Student Member, IEEE, Markku Juntti, Senior Member, IEEE, and
Tad Matsumoto, Fellow, IEEE

Abstract—The conventional ℓ2 multi-burst (MB) channel es-
timation can achieve the Cramér-Rao bound asymptotically by
using the subspace projection. However, the ℓ2 MB technique
suffers from the noise enhancement problem if the training
sequences (TSs) are not ideally uncorrelated. We clarify that the
problem is caused by an inaccurate noise whitening process. The
ℓ1 regularized MB channel estimation can, however, improve
the problem by a channel impulse response length constraint.
Asymptotic performance analysis shows that the ℓ1 MB can
improve channel estimation performance significantly over the ℓ2
MB technique in a massive multiple-input multiple-output system
when the TSs are not long enough and not ideally uncorrelated.

Index Terms—Subspace-based channel estimation, noise
whitening, massive MIMO, pilot contamination, compressive
sensing.

I. INTRODUCTION

CONVENTIONAL ℓ2 multi-burst (MB) channel estima-
tion techniques (e.g., [1]) can achieve the Cramér-Rao

bound (CRB) asymptotically under the following two as-
sumptions: 1) channel impulse responses (CIRs) follow the
subspace channel model assumption [1]; and 2) the training
sequences (TSs) are ideally uncorrelated between transmission
(TX) streams. However, finding optimal TS combinations is a
non-polynomial (NP) hard problem in a massive multiple-input
multiple-output (MIMO) system, since binomial coefficients
increase in factorial orders. Moreover, the number of the
ideally uncorrelated sequences with a given bandwidth is
limited, which can cause the pilot contamination problem [2].

This letter studies, therefore, performance of the MB algo-
rithm where the assumption 2) is not always correct. Specif-
ically, random TS is assumed as a typical moderately uncor-
related sequence. This letter shows that the ℓ2 MB technique
with the random TS can suffer from the noise enhancement
problem due to inaccurate noise whitening process. However,
the ℓ1 MB algorithm [3] can improve the problem by a CIR
length constraint. The main objective of this letter is to clarify
the reason for the improvement.

This letter is organized as follows. Section II defines the
signal model and summarizes the ℓ1 MB algorithm. Section
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III describes analytical MSE performance by taking account
of the noise whitening accuracy. Section IV verifies the
analytical performance via computer simulations. Section V
shows concluding remarks.

Notations: The bold lower-case x and upper-case X de-
note a vector and a matrix, respectively. For matrix X, its
transpose and transposed conjugate are denoted as XT and
XH, respectively. X−1 and X† denote the matrix inverse
and the Moore-Penrose pseudoinverse of X, respectively. The
Cholesky decomposition of X is denoted by XH/2X1/2. X|i:j
is a submatrix composed of the the i-th to j-th column vectors
in the matrix X. The expectation and covariance matrices
of X(l) are denoted as EL

l [X(l)] = 1
L

∑l
j=l−L+1 X(j)

and KL
l [X(l)] = 1

L

∑l
j=l−L+1 X

H(j) X(j), respectively.
Moreover, E[X(l)] and K[X(l)] are E∞

l [X(l)] and K∞
l [X(l)],

respectively. IN denotes the N ×N identity matrix.

II. PRELIMINARIES

A. System Model

The same MIMO system as that in [3] is used. This letter
assumes that, however, channel estimation is performed with
TSs only. The received signal corresponding to the transmitted
TSs can be described, as Y(l) = H(l)X(l) + Z at the burst
timing l, where

Y(l) = [y1(l), · · · ,yNR
(l)]T ∈ CNR×Ñt ,

X(l) = [XT
1 (l), · · · ,XT

NT
(l)]T ∈ CWNT×Ñt ,

H(l) = [H1(l), · · · ,HNT
(l)] ∈ CNR×WNT ,

Z = [z1, · · · , zNR
]T ∈ CNR×Ñt ,

with Ñt = Nt + W . NT and NR denote the number of
transmit (Tx) and receive (Rx) antennas, respectively. Matrix
Xk(l) ∈ CW×Ñt is a Toeplitz matrix whose first row vector
is [xT

k (l),0
T
W ] ∈ C1×Ñt , where xk(l) denotes a length Nt

TS vector. The NR × W matrix Hk(l) describes the CIRs
between the k-th Tx and NR Rx antennas, where the channel
lengths are assumed at most W symbols. Noise vector zn at
the n-th Rx antenna follows CN(0, σ2

zIÑt
) with the variance

σ2
z depending on the average signal-to-noise ratio (SNR).

B. ℓ1 regularized MB Channel Estimation Algorithm

The ℓ1 MB algorithm [3] performs CIR length regularized
ℓ2 MB channel estimation under an assumption that significant
CIR taps are distributed over the first w symbols according
to the received SNR. The ℓ1 MB estimation performs the
subspace projection per a TX stream and it obtains NR × w
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channel estimate matrices ĜMB
[w]k(l), 1 ≤ k ≤ NT , for each

TX stream. The w-th possible solution corresponding to the
length w CIR constraint is, hence, described as ĤMB

[w] (l) =

[ĜMB
[w]1(l), · · · , Ĝ

MB
[w]NT

(l)]PT
[w], where P[w] = INT

⊗P[w] with
the W ×w matrix P[w] = [Iw O]T. ⊗ denotes the Kronecker
product. The optimal solution ĤMB

[ŵ] (l) may be determined
by minimizing the Akaike information criterion (AIC) [4] as
ŵ = argmin1≤w≤W AIC(ĤMB

[w] (l)).
In the case the channel estimation is performed with TSs

only, the NR × w estimated matrix ĜMB
[w]k(l) is given by

ĜMB
[w]k(l) = ˆ̃GLS

[w]k(l) ·
ˆ̃Π[w]k · Q̄−H

[w]kk (1)

for the k-th TX stream, where the w × w matrix Q̄[w]ij

denotes the (i, j)-th block matrix of R̄
1/2
XX[w] with R̄XX[w] =

EL
l [P

T
[w]RXX(l)P[w]] and RXX(l) = X(l)XH(l). Moreover,

ˆ̃GLS
[w]k(l)

∆
= ĜLS

[w]k(l) · Q̄
H
[w]kk

+

NT∑
i=k+1

{
ĜLS

[w]i(l)−G[w]i(l)
}
Q̄H

[w]ki.
(2)

with G[w]i(l) = ĜMB
[w]i (l), where ĜLS

[w]k(l) is the LS chan-
nel estimate corresponding to an NR × w CIR matrix
G[w]k(l) = Hk(l)P[w]. The projection matrix ˆ̃Π[w]k denotes
ˆ̃V[w]k|1:rk(

ˆ̃V[w]k|1:rk)†, where the unitary matrix ˆ̃V[w]k is the

singular vectors of the covariance matrix KL
l [

ˆ̃GLS
[w]k(l)]. The

parameters rk and L denote the number of paths for the k-th
TX stream and the sliding window length in the MB algorithm,
respectively.

Notice that (2) is performed for the noise whitening.
Let us denote ∆ ˆ̃GLS

[w]k(l) = ˆ̃GLS
[w]k(l) − G̃[w]k(l) with

G̃[w]k(l) = G[w]k(l)Q̄
H
[w]kk and concatenate the NT resid-

ual matrices into an NR × wNT matrix as ∆
ˆ̃
GLS
[w](l) =

[∆ ˆ̃GLS
[w]1(l), · · · ,∆

ˆ̃GLS
[w]NT

(l)]. Suppose G[w]i(l) = G[w]i(l)
in (2), we observe that

KL
l [∆

ˆ̃
GLS
[w](l)] = σ2

zNRR̄
1/2
XX[w]E

L
l

[
R−1

XX[w](l)
]
R̄

H/2
XX[w]

≈ σ2
zNRIWNT (3)

holds when the TSs are fixed to a consistent sequence or the
TSs are ideally uncorrelated RXX(l)/Nt ≈ IWNT for ∀l.

III. MSE ANALYSIS

The burst index l is omitted for the sake of simplicity.

Theorem 1. Denote the channel estimation error ĤMB
[w]k −

H[w]k by ∆ĤMB
[w]k. The MSE for the ℓ1 MB estimate ĤMB

[w]k

can be decomposed into the following three terms:

E
[
∥∆ĤMB

[w]k∥
2
]

= E
[
∥H⊥

[w]k∥
2
]

+ E
[
∥ϵZ,k(w)∥2

]
+ E

[
∥ϵΠ,k(w)∥2

]
, (4)

where the discarded part of CIR H⊥
[w]k due to the CIR length

constraint, the residual noise ϵZ,k(w) and the projection error

ϵΠ,k(w) are respectively defined as

H⊥
[w]k = Hk(IW −P[w]P

T
[w]), (5)

ϵZ,k(w) = ∆ ˆ̃GLS
[w]k · ˆ̃Π[w]k · Q̄−H

[w]kk, (6)

ϵΠ,k(w) = G̃[w]k ·∆ ˆ̃Π[w]k · Q̄−H
[w]kk. (7)

Furthermore, ∆ ˆ̃Π[w]k = ˆ̃Π[w]k − Π̃[w]k, where Π̃[w]k is
obtained from the first rk singular vectors of K[G̃[w]k].

Proof. E
[
∥∆ĤMB

[w]k∥
2
]

= E
[
∥H⊥

[w]k∥
2
]
+ E

[
∥∆ĜMB

[w]k∥
2
]
,

where ∆ĜMB
[w]k = ϵZ,k(w)+ϵΠ,k(w). Moreover, tr{E[ϵHΠ,k(w)·

ϵZ,k(w)]} = 0 since E[G̃H
[w]k ·∆ ˆ̃GLS

[w]k] = O.

Remark: For TSs satisfying EL
l [RXX(l)]/Nt = IWNT

, we
have Q̄

−1/2
[w]kk = Iw/

√
Nt. Hence,

E[∥ϵZ,k(w)∥2] =
1

Nt
tr
{
KL

l

[
∆ ˆ̃GLS

[w]k(l)
]} rk

w

= σ2
zNR

ω(w)

Nt
rk, (8)

where we define whitening ratio ω(w) as

ω(w) = tr
{
R̄XX[w] · EL

l [R
−1
XX[w](l)]

}
/ tr{IwNT }

= Nt · tr
{
EL
l [R

−1
XX[w](l)]

}
/ wNT . (9)

It should be noted that EL
l [R

−1
XX[w](l)] = IwNT /Nt is not

always satisfied although R̄XX[w] ≈ NtIwNT . This is because
(A + B)−1 = (A−1 + B−1) does not hold in general for
arbitrary invertible matrices A and B.

IV. NUMERICAL EXAMPLES

A. Simulation Setups

The CIRs are generated with the spatial channel model
(SCM) [5]. This letter assumes 4 × 4 and 16 × 16 MIMO
channels, where the antenna element spacing at the base
station and the mobile station are, respectively, set at 4 and
0.5 wavelength. Spatial parameters such as the direction of
arrival (DoA) are randomly chosen. Moreover, six path fading
channel realizations based on the Vehicular-A model [5] with
a 30 km/h (VA30) mobility is assumed. The path positions are
set at {1 3.2 6 8.6 13.1 18.6} symbol timings assuming that a
TX bandwidth is 7 MHz with a carrier frequency of 2 GHz.
However, the CIRs observed at the receiver can be distributed
over more than 19 symbol duration due to the effect of the
matched filtering. The maximum CIR length W is, hence, set
at 31. Moreover, the path number rk is assumed to be known
in order to focus on analysis of the residual error (6).

B. Normalized MSE (NMSE) Performance of the ℓ1 MB

Fig. 1(a) shows NMSE performance with random TSs in a
4×4 MIMO system with the parameters (Nt, L) = (127, 50).
The NMSE is defined by E[∥ĤMB

[ŵ] − H∥2]/E[∥H∥2].
The TSs are re-generated every burst timing so that
R̄XX/Nt = IWNT

holds. As shown in Fig. 1(a), the
NMSE with the ℓ2 MB is 8 dB away from the performance
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bound, normalized CRB (NCRB), given by NCRB(σ2
z) =

NRσ
2
z

∑NT

k=1 rk/(NtE[∥H∥2]). This is because the whitening
ratio with the random TSs becomes ω(W ) = 6.4 ≫ 1 and,
thereby, the ℓ2 MB suffers from the noise enhancement in (8).
As observed from Fig. 1(a), the NMSE with the ℓ1 MB can
be improved significantly over that of the ℓ2 MB. The reason
for the improvement is detailed in Section IV-C.

It should be noticed that the noise whitening problem can
be avoided by using a fixed TS pattern so that EL

l [R
−1
XX(l)] =

R̄−1
XX. However, the NMSE with the ℓ2 MB is not im-

proved significantly from that shown in Fig. 1(a) due to
R̄XX[W ]/Nt = RXX[W ](l)/Nt ̸= IWNT

for a fixed random
TS. After all, ideally uncorrelated TSs are needed to essentially
solve the noise whitening problem. Fig. 1(b) shows the NMSE
performance using the pseudo noise (PN) sequences. As
observed from Fig. 1(b), both the ℓ1 MB and ℓ2 MB channel
estimation techniques achieve the NCRB asymptotically, if
the PN sequences are selected so that the cross-correlations
between TX streams are ideally low.1

In a large-scale MIMO system, nevertheless, finding the
optimal sequence combinations is an NP hard problem. The
Gold sequence [6] is known as one of the most promising
solutions to the problem, although it can be inferior to the
ideally chosen PN sequence. It is worth noting that, as shown
in Fig. 1(c), the NMSE improvement of the ℓ1 MB over the
ℓ2 MB technique becomes significant in a large-scale 16× 16
MIMO system, where Nt = 511 is assumed.

C. Error Analysis

Figs. 2 show the NMSE performance in the 4 × 4 MIMO
system for possible CIR lengths w, rk < w ≤ W , where
the random and PN TSs are used in Figs. 2(a) and (b),
respectively. The received SNR is set at 15 dB. As ob-
served from Figs. 2, δ̄(w) = δ̄⊥(w) + δ̄Z(w) + δ̄Π(w) is
satisfied, according to Theorem 1, where we define δ̄(w) =∑NT

k=1E[∥∆ĤMB
[w]k∥

2]/E
[
∥H∥2

]
. δ̄⊥(w), δ̄Z(w) and δ̄Π(w)

are defined similarly corresponding to the variances of (5),
(6) and (7), respectively.

In the case the random TSs are used, as shown in Fig. 2(a),
the ℓ1 MB can improve the NMSE of channel estimates sig-
nificantly by selecting the CIR length as argminw{δ̄⊥(w) ≪
δ̄(w)}. In the case the TSs are generated with the PN
sequences, however, the improvement by the CIR length
constraint is very slight as shown in Fig. 2(b). This is because
the whitening ratio becomes ω(w) = 1 for ∀w when the TSs
are ideally uncorrelated sequences.

It should be emphasized that the NMSE of channel estimates
is dominated by δ̄Z(w) in the CIR length range {w | δ̄⊥(w) ≪
δ̄(w)}. Furthermore, in that CIR length range, the NMSE
δ̄Z(w) follows the analytical curve given by (8). In other
words, the NMSE performance of the ℓ1 MB algorithm can
be described via the whitening ratio (9). The next subsection
shows, therefore, asymptotic property of the whitening ratio
for system setups assuming very long training lengths and/or
massive TX streams.

1The MB techniques with the PN sequences do not always achieve the
NCRB if the sequence combination is not correctly chosen.

D. Asymptotic Property of the Whitening Ratio

Fig. 3(a) illustrates asymptotic property of the whitening
ratio for the length Nt of random TSs. The maximum CIR
length W and the number of TX streams NT are fixed at 31
and 4, respectively. As observed from Fig. 3(a), the whitening
ratio becomes much grater than 1 for a short training length
Nt = WNT . However, the whitening ratio can be decreased
significantly by the CIR length constraint. This is because, as
discussed in [3], the following holds by [7, Theorem 7.7.8]:

∃w ≤ W, tr{R−1
XX[w](l)}/w ≤ tr{R−1

XX[W ](l)}/W. (10)

When long TSs are utilized, nevertheless, the ℓ1 MB cannot
improve NMSE performance over the ℓ2 MB algorithm since
ω(w) ≈ 1 for any CIR length constraint ∀w.

Fig. 3(b) depicts the whitening ratio (9) for massive numbers
of the TX streams. The training length is set at Nt = WNT for
the number NT of TX streams, where the the maximum CIR
length W is fixed at 31. As shown in Fig. 3(b), the whitening
ratio is deteriorated as NT increases. Therefore, the ℓ1 MB
algorithm is expected to improve NMSE performance signifi-
cantly in a massive MIMO system when ideally uncorrelated
TSs are not used. In the case NT = 24 for example, the ℓ1 MB
has a possibility to achieve up to 14 dB of NMSE gain over
the ℓ2 MB. However, in a SISO or SIMO system, the NMSE
gain becomes at most 3 dB since ω(w) ≤ 2 for ∀w ≤ W .

V. CONCLUSIONS

When the ideally uncorrelated TSs are not used, the
subspace-based ℓ2 MB technique can suffer from the noise
enhancement problem due to the inaccurate noise whitening
process. The ℓ1 MB algorithm can, however, mitigate the
problem according to the property (10), if the length w of
the effective CIRs above the noise level is shorter than the
maximum CIR length W assumed in the system.

Furthermore, this letter has discussed the asymptotic NMSE
performance of the ℓ1 MB algorithm via the whitening ratio
ω(w). The whitening ratio is deteriorated as the TS length
decreases or the number of TX streams increases. The ℓ1 MB
algorithm can, therefore, improve the NMSE performance over
the conventional ℓ2 MB technique in a massive MIMO system
when the TSs are not long enough and not ideally uncorrelated.
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Fig. 1. The NMSE performance in the VA30 scenario by using the random (a), the PN (b) and the Gold (c) sequences. The subfigures (a) and (b) assume
the 4× 4 MIMO system, whereas the subfigure (c) shows comparison between the 4× 4 and 16× 16 MIMO systems. TS lengths are Nt = 127 and 511
for the 4× 4 and 16× 16 MIMO systems, respectively. The PN sequences with the generator polynomial 1 + x6 + x7 are obtained by initializing the shift
register with the least significant 7 bits of hexadecimal initial values shown in (b) so that the cross-correlations between TX streams are ideally low. The Gold
sequences are generated by initializing the two shift registers with the indexes of the frame timing and the TX stream, where the generator polynomials are
{1 + x3 + x7, 1 + x+ x2 + x3 + x7} and {1 + x4 + x9, 1 + x3 + x4 + x6 + x9} for Nt = 127 and 511, respectively.
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Fig. 2. The NMSE performance for possible CIR lengths w, where the random and ideally uncorrelated PN TSs are respectively used in (a) and (b). The
4×4 MIMO system and the VA30 scenario are assumed. δ̄(w) denotes the NMSE of the channel estimate ĤMB

[w]
. δ̄⊥(w), δ̄Z(w) and δ̄Π(w) are normalized

variances of (5), (6) and (7), respectively. The red dotted curve Analytical δ̄Z(w) is the NMSE normalized (8) with E[∥H∥2].
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Fig. 3. The whitening ratio ω(w) (9) for the TS length(a) and the number of the TX streams(b). Random TSs are assumed.


