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A Lower Bound Analysis of Hamming Distortion
for a Binary CEO Problem with Joint

Source-Channel Coding
Xin He, Xiaobo Zhou, Member, IEEE, Petri Komulainen, Member, IEEE, Markku Juntti, Senior Member, IEEE

and Tad Matsumoto Fellow, IEEE

Abstract—A two-node binary chief executive officer (CEO)
problem is investigated. Noise-corrupted versions of a binary
sequence are forwarded by two nodes to a single destination
node over orthogonal additive white Gaussian noise (AWGN)
channels. We first reduce the binary CEO problem to a binary
multiterminal source coding problem, of which an outer bound
for the rate-distortion region is derived. The distortion function
is then established by evaluating the relationship between the
binary CEO and multiterminal source coding problems. A lower
bound approximation on the Hamming distortion (HD) is ob-
tained by minimizing a distortion function subject to constraints
obtained based on the source-channel separation theorem. Encod-
ing/decoding algorithms using concatenated convolutional codes
and a joint decoding scheme are used to verify the lower
bound on the HD. It is found that the theoretical lower bounds
on the HD and the computer simulation based bit error rate
performance curves have the same tendencies. The differences in
the threshold signal-to-noise ratio between the theoretical lower
bounds and those obtained by simulations are around 1.5 dB in
AWGN channel. The theoretical lower bound on the HD in block
Rayleigh fading channel is also evaluated by performing Monte
Carlo simulation.

Index Terms—Hamming distortion lower bound, binary CEO
problem, binary multiterminal source coding, rate-distortion
outer bound.

I. INTRODUCTION

THE chief executive officer (CEO) problem where a CEO
aims at reproducing a common source which cannot

be directly observed was first introduced by Berger et al.
in [1]. The CEO problem has attracted a lot of attention,
not only from pure information theoretic interest but also
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from practical application viewpoint such as wireless sensor
networks (WSNs).

The quadratic Gaussian CEO problem, a particular case
of the CEO problem, where the source and the multiple
observations are assumed to be jointly Gaussian distributed,
was studied in [2], [3], where an explicit form of the rate-
distortion function was derived. Chen et al. derived an upper
bound on the sum-rate for the CEO problem and proposed
rate allocation schemes by exploiting the contra-polymatroid
structure of the achievable rate region in [4]. Besides the
theoretical work, the performance on minimum achievable
distortion of a successive coding strategy [5] based on a
generalization of Wyner-Ziv source coding was evaluated in
[6], and the optimal rate allocation scheme to achieve the
minimum distortion under a sum-rate constraint was further
proposed in [7] for the successively structured Gaussian CEO
problem.

In this work, we focus on a binary CEO problem, in which
a binary source is estimated by the CEO through multiple
deployed nodes. There are many practical applications of the
binary CEO problem, for example, a binary data gathering
sensor network, distributed detection using multiple sensors
[8], power-distortion tradeoff in sensor networks [9], and
wireless mesh network (WMN) with lossy forwarding (LF)
[10].

An iterative joint decoding algorithm for the binary data
gathering WSN, which is a direct application of the binary
CEO problem, was proposed in [11], where a convolutional
code is applied at the sensor node. A coding scheme based on
the parallel concatenated convolutional codes was proposed
in [12], where the extrinsic log-likelihood ratios (LLRs) are
weighted by the observation error probabilities at the decoder.
Moreover, the capacity of the equivalent parallel channel
was derived to verify the bit error rate (BER) performance
taking into account the error probability of the observed data
sequence. In [13], an adaptive bi-modal decoder for a binary
source estimation involving two sensors was proposed based
on the modified extrinsic information transfer (EXIT) chart
analysis. A convergence property analysis of the iterative
decoding algorithm was presented based on the modified EXIT
chart analysis for binary data gathering WSNs in [14]. It shows
that iterative process is less useful if the channel quality is very
good or the observation accuracy is very low. In [10], we pro-
posed an encoding/decoding technique which can significantly
improve the BER performance by exploiting the correlation
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knowledge through the LLR updating function [15], for both a
binary independently and identically distributed (i.i.d.) source
and a binary Markov source. In [16], we proposed a non-
negative constrained iterative algorithm for estimating the
observation error probabilities in a WSN having an arbitrary
number of sensors.

For the binary CEO problem, most of the previous works
focus on the design of practical encoding/decoding algorithms.
This motivates us to analyze a problem that how small a
distortion level the CEO can achieve from the rate-distortion
perspective. Hence, the primary goals of this work are to
theoretically provide a lower bound on the Hamming distortion
(HD), corresponding to the bit error probability (BEP), and to
verify the lower bound by making performance comparison
with a practical encoding/decoding algorithm.

The major contribution is the derivation of a HD approxima-
tion based on an information-theoretic outer bound resulting
in a lower bound (approximation) on the HD (or BEP) for a
two-node communication network with joint source-channel
(JSC) coding. Its objective is to estimate a single binary
source over two orthogonal additive white Gaussian noise
(AWGN) channels. For the simplicity of analysis, we focus on
orthogonal transmissions from two nodes to the destination,
and we sperate the stages for JSC decoding and the final
decision on the common source [14], [17], [18]. Hence,
deriving the theoretical lower bound on the HD is equivalent
to minimizing a distortion function subject to a series of
inequalities obtained based on the source-channel separation
theorem for lossy source coding.

In order to solve the minimization problem, we first model
the source coding of this two-node network by the binary CEO
problem. We then reduce the binary CEO problem to a binary
multiterminal source coding problem, which plays the core
role in solving the main problem. An outer bound for the rate-
distortion region of the binary multiterminal source coding
problem is then derived by providing the converse proof. We
establish the relationship between the binary CEO problem
and the binary multiterminal source coding problem in terms
of the distortion function. Finally, the minimization problem
is formulated in the framework of convex optimization. It
should be emphasized here that our purpose is not to derive
a tight rate-distortion bound for the binary CEO problem.
Instead, we focus on the derivation of a lower bound that
can be used as a reference of the BER performance curves
of the encoding/decoding algorithms, including the technique
proposed in [10] and [16].

The rest of the paper is organized as follows. In Section II,
the system model and the problem to be solved are described.
The derivation of the outer bound and its proof for the binary
multiterminal source coding problem is detailed in Section III.
The problem of how to obtain the lower bound on the HD is
formulated in Section IV. Section V provides the numerical
results of simulations as well as their corresponding lower
bounds. Finally, we conclude this work in Section VI with
several concluding statements.

II. PROBLEM STATEMENT

Notation. The uppercase and lowercase letters are used to

Fig. 1. The abstract system model of estimating a single source through two
independent nodes with joint source-channel coding.

denote random variables and their realizations, respectively.
The alphabet set of a random variable X is denoted by X .
Let Xn and xn represent a random vector and its realization,
respectively, with the superscript n being the length of the
vector (block length). We use t to denote the time index and
i to denote the index of a node.

The system model of estimating a single source through
two nodes is depicted in Fig. 1. A common i.i.d. source X
produces a sequence xn = {x(t)}nt=1 by taking values from
a binary set X = {0, 1} with equal probability. Source X is
observed by two nodes and forwarded to a single destination.
Due to the inaccuracy of the estimation and/or limited received
signal power at nodes, such as in WSN and WMN, the
sequences received by the nodes may contain errors1, and the
nodes still forward the erroneous sequences to the destination,
which is referred as LF [20], [21]. The error probabilities
Pr(x1(t) ̸= x(t)) and Pr(x2(t) ̸= x(t)) are denoted as p1
and p2, respectively, i.e., Pr(zi(t) = 1) = pi for the binary
noise sequence zni = {zi(t)}nt=1, i = 1, 2. At the nodes, the
noisy versions xn

1 = {x1(t)}nt=1 and xn
2 = {x2(t)}nt=1 of

xn are separately encoded by two JSC encoders to generate
symbol sequences sk1

1 = {s1(t)}k1
t=1 and sk2

2 = {s2(t)}k2
t=1

with coding rates ri = n/ki, i = 1, 2. The symbol sequences
sk1
1 and sk2

2 are then transmitted to the destination over two
orthogonal AWGN channels, as

yki
i = hi · ski

i +wki
i , i = 1, 2, (1)

where hi and wki
i = {w(t)}ki

t=1 represent the channel gain
and the AWGN sequence at the destination, respectively. The
orthogonality can be achieved by any scheduled multiple ac-
cess scheme, like time division multiple access (TDMA), i.e.,
sk1
1 and sk2

2 can be transmitted at different time intervals. The
destination performs JSC decoding to form estimates x̂n

i of
the sequences xn

i , i = 1, 2. We define the expected Hamming
distortion measures E[ 1n

∑n
t=1 d(xi(t), x̂i(t))] ≤ Di + ϵ to

evaluate the error probability Pr(xi(t) ̸= x̂i(t)) with

d(xi(t), x̂i(t)) =

{
1, if xi(t) ̸= x̂i(t),
0, if xi(t) = x̂i(t),

(2)

and ϵ representing an arbitrarily small positive number.
Finally, the destination reconstructs the source information

xn of which the estimate is denoted as x̂n based on a decision
rule from x̂n

1 and x̂n
2 . Therefore, the distortion measure

E[ 1n
∑n

t=1 d(x(t), x̂(t))] ≤ D + ϵ can be formulated as a

1In WMN applications, the nodes correspond to the transceivers in the
multiple routes. In a WMN, a source communicates with a destination
through multiple intermediate nodes if they are not within the communication
coverage. If errors are allowed in the messages forwarded by the intermediate
nodes, the WMN can be also modeled as the model shown in Fig. 1 [19].
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Fig. 2. The abstract model of the binary CEO problem with two independent
nodes.

function of Di, i = 1, 2, as D = f(D1, D2), where function
f(·) is detailed in subsection IV-A. It should be emphasized
here that function D = f(D1, D2) limits the decoding scheme
to which first reconstructs xn

1 and xn
2 and then makes the

decision on xn from those reconstructions (it is referred to
as sequential decoding), as shown in Fig. 1. The optimality of
such a decoding scheme is an open problem, but it is definitely
of interest for practical systems. Furthermore, f(D1, D2)
largely depends on the decision rule, i.e., there exists different
function f(D1, D2) for different decision rules2.

According to the source-channel separation theorem for
lossy source coding [23], distortions D1 and D2 can be
achieved if the following inequalities hold:{

R1(D1) · r1 ≤ C(γ1),
R2(D2) · r2 ≤ C(γ2),

(3)

where Ri(Di) is the rate-distortion function for the source
coding and C(γ) is the Shannon capacity using Gaussian
codebook3 with the argument γ denoting the signal-to-noise
ratio (SNR) of the channel. As stated above, r1 and r2
represent end-to-end coding rates of two links. Our goal is to
derive the theoretical lower bound on the HD for the system
shown in Fig. 1. It is equivalent to minimizing the expected
Hamming distortion D through a function f(D1, D2) under
constraints shown in (3), as

min
D1,D2

D = f(D1, D2) (4)

s.t. (3).

The minimization being performed in (4) is for a specific
system which maps the average distortions D1 and D2 to D,
since function f(D1, D2) is defined for designated decision
rules. To achieve this goal by solving (4), we turn to derive
the rate-distortion function Ri(Di) for the problem shown in
Fig. 1 and to establish the function D = f(D1, D2) for the
decision rule used at the destination.

III. RATE-DISTORTION REGION ANALYSIS

A. Source Coding
In network information theory, the source coding of the

communication system shown in Fig. 1 is modeled by the

2It has been assumed in this setup that 1) each encoder uses joint typicality
encoding and binning based on random coding arguments, and the decoder
performs joint typicality decoding with a sufficiently large n to achieve the
average distortion Di as in the Berger-Tung source coding problem [22]; 2)
the errors occurring in each sequence xn

i are i.i.d. In the practical system,
we use random interleavers to asymptotically make this assumption practical.
As shown in section V-B, the simulation results are consistent with the lower
bound calculation based on majority logic decision.

3For one dimensional signal, C(γ) = 1
2
log2(1 + 2γ), and for two

dimensional signal, C(γ) = log2(1 + γ) [24].

Fig. 3. The binary multiterminal source coding problem for two correlated
binary sources.

binary CEO problem. The abstract model of the binary CEO
problem is illustrated in Fig. 2. In order to derive the rate-
distortion function Ri(Di), we first reduce the binary CEO
problem to a binary multiterminal source coding problem. An
outer bound for the rate-distortion region which is determined
by the rate-distortion function Ri(Di) is then derived for
the binary multiterminal source coding problem through the
converse proof, as in the Gaussian case [25].

The binary multiterminal source coding problem which we
consider is depicted in Fig. 3. Since random sources Xn

1

and Xn
2 originate from the common source Xn, the random

variable pair (X1, X2) follows a joint probability distribution
PrX1,X2(x1, x2) given by

PrX1,X2(x1, x2) =

{
1
2 · ρ, if x1 ̸= x2,
1
2 · (1− ρ), otherwise ,

(5)

where ρ = Pr(x1 ̸= x2) is the correlation parameter between
the sources X1 and X2, i.e., X2 can be seen as the output
of a binary symmetric channel (BSC) with the crossover
probability ρ where X1 is the input. Two encoders separately
encode Xn

1 and Xn
2 at rates R1 and R2 as

φ1 :Xn → M1 = {1, 2, · · · , 2nR1},
φ2 :Xn → M2 = {1, 2, · · · , 2nR2}.

The encoder output sequences U1 = φ1(X
n
1 ) and

U2 = φ2(X
n
2 ) are transmitted to a common receiver. It

jointly decodes the received samples to construct the esti-
mates (X̂n

1 , X̂
n
2 ) of the source pair (Xn

1 ,X
n
2 ) denoted as

(X̂n
1 , X̂

n
2 ) = ψ(φ1(X

n
1 ), φ2(X

n
2 )).

For given distortion values D1 ∈ [0, 12 ] and D2 ∈ [0, 12 ], the
rate-distortion region R(D1, D2) is defined as

R(D1, D2) =
{
(R1, R2) : (R1, R2) is admissible such that

E
1

n

n∑
t=1

d(xi(t), x̂i(t)) ≤ Di + ϵ, i = 1, 2
}
.

B. Outer Bound for Rate-Distortion Region

We provide a bound Ro(D1, D2) of the rate-distortion
region R(D1, D2).

Definition 1:

Ro
1(D1) =

{
(R1, R2) : ∀R2 ≤ 1

R1 ≥ Hb[ρ ∗H−1
b (1−R2)]−Hb(D1)

}
, (6)



4

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

R2

R
1

Slepian−Wolf (ρ=0.15, D
1
=D

2
=0)

Berger−Tung inner bound (ρ=0.15, D
1
=D

2
=0.005)

Outer bound (ρ=0.15, D
1
=D

2
=0.005)

Fig. 4. The comparison of Ro(D1, D2), Berger-Tung inner bound and
Slepian-Wolf admissible rate region. The correlation ρ between two sources
is set at 0.15.

with Hb(a) = −a log2(a)− (1− a) log2(1− a) and H−1
b (a)

representing the binary entropy function and its inverse func-
tion, respectively4. The operator ∗ calculates the binary con-
volution of the two variables, i.e., a ∗ b = a(1− b)+ b(1− a).

Ro
2(D2) =

{
(R1, R2) : ∀R1 ≤ 1

R2 ≥ Hb[ρ ∗H−1
b (1−R1)]−Hb(D2)

}
, (7)

Ro
12(D1,D2) =

{
(R1, R2) :

R1 +R2 ≥ 1 +Hb(ρ)−Hb(D1)−Hb(D2)
}
. (8)

For every D1 ∈ [0, 12 ] and D2 ∈ [0, 12 ],

Ro(D1, D2) = Ro
1(D1)

∩
Ro

2(D2)
∩

Ro
12(D1, D2). (9)

In what follows, we prove that Ro
1(D1), Ro

2(D2) and
Ro

12(D1, D2) are the supersets of the regions of R(D1, D2).
It means that the following theorem holds.

Theorem 1: Ro(D1, D2) is an outer bound for the rate-
distortion region R(D1, D2); i.e., R(D1, D2) ⊆ Ro(D1, D2).

C. Proof

Proof of Theorem 1 (Converse): To prove Theorem 1,
the following three different cases of the binary multiterminal
source coding problem are considered.

Case 1. In order to prove that R(D1, D2) ⊆ Ro
1(D1), we

assume that the rate pair (R1, R2) ∈ R(D1, D2) and show that
this implies that (R1, R2) ∈ Ro

1(D1). In the proof, Xn
2 is first

reconstructed without constraint on D2 which results in (15),
and then X̂n

2 is regarded as the side information to recover

4The inverse function H−1
b (a) : [0, 1] → [0, 1

2
] only takes values from

the interval [0, 1
2
] since distortion is assumed to be within this range.
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R
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Fig. 5. The comparison of Wyner-Ziv rate-distortion region and derived outer
bound. The correlation ρ between two sources is set at 0.3.

Xn
1 . Assume that a rate pair (R1, R2) achieves distortion D1,

then

n · (R1 + ϵ) ≥ H(U1)

≥ H(U1|U2) (10)
= I(Xn

1 ;U1|U2) (11)
= I(Xn

1 ;U1, U2)− I(Xn
1 ;U2) (12)

≥ I(Xn
1 ; X̂

n
1 )− I(Xn

1 ;U2), (13)

where the steps are justified, because
(10) conditioning reduces entropy,
(11) U1 is a function of Xn

1 ,
(12) the chain rule of mutual information,
(13) Xn

1 → (U1, U2) → X̂n
1 forms a Markov chain.

Now our aim is to lower bound I(Xn
1 ; X̂

n
1 ) and upper bound

I(Xn
1 ;U2). Since I(Xn

1 ; X̂
n
1 ) = H(Xn

1 )−H(Xn
1 |X̂n

1 ) = n−
H(Xn

1 |X̂n
1 ), to lower bound I(Xn

1 ; X̂
n
1 ) is equivalent to upper

bound H(Xn
1 |X̂n

1 ). According to the Fano’s inequality, we
have

H(Xn
1 |X̂n

1 ) ≤ n ·Hb(D1) + n ·D1 · log(|X | − 1)

= n ·Hb(D1). (14)

On the other hand, since I(Xn
1 ;U2) = H(Xn

1 ) −
H(Xn

1 |U2) = n−H(Xn
1 |U2), an upper bound on I(Xn

1 ;U2)
corresponds to the lower bound on H(Xn

1 |U2). Observing
that Xn

1 → Xn
2 → U2 forms a Markov chain, it can be

shown that H(Xn
1 |U2) ≥ nHb(ρ ∗ β) by [26, Corollary 4],

where β = 1
nH

−1
b [Hb(X

n
2 |U2)]. A more detailed explanation

is given in Appendix A. Since the binary convolution ∗ is
monotonically increasing with respect to β if ρ is fixed,
we need to find the minimizing value of β to lower bound
Hb(ρ ∗ β)5. We also have the rate constraint on R2 as

n · (R2 + ϵ) ≥ H(U2)

= I(Xn
2 ;U2). (15)

5The binary entropy function is a monotonically increasing function in the
interval [0, 1

2
].
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Letting ϵ → 0, we have n · R2 ≥ I(Xn
2 ;U2) = H(Xn

2 ) −
H(Xn

2 |U2) = n − nHb(β), and hence β ≥ H−1
b (1 − R2).

Therefore, the lower bound on H(Xn
1 |U2) is given by

H(Xn
1 |U2) ≥ n ·Hb[ρ ∗H−1

b (1−R2)]. (16)

From (13), (14) and (16), we can obtain

n · (R1 + ϵ)

≥ n− n ·Hb(D1)− n+ n ·Hb[ρ ∗H−1
b (1−R2)]

= n ·Hb[ρ ∗H−1
b (1−R2)]− n ·Hb(D1). (17)

The rate-distortion region Ro
1(D1) shown in (6) is obtained

by letting ϵ→ 0 in (17). Thus, the rate pair (R1, R2) satisfies
condition (6); i.e., (R1, R2) ∈ Ro

1(D1).
Case 2. The source Xn

1 acts as a helper to reconstruct
Xn

2 under the required distortion level D2. This is the case
symmetric with Case 1. The rate-distortion region shown in
(7) can be proved in the same way as in Case 1.

Case 3. Here, we prove that (R1, R2) ∈ R(D1, D2) implies
(R1, R2) ∈ Ro

12(D1, D2). To this end, assume that the rate
pair (R1, R2) achieves distortion D1 for X1 and D2 for X2.
In the following proof, decoder ψ jointly reconstructs the
sources Xn

1 and Xn
2 under required distortions D1 and D2.

The following inequalities are obtained:

n · (R1 +R2 + ϵ) ≥ H(U1) +H(U2)

≥ H(U1, U2)

= I(Xn
1 ,X

n
2 ;U1, U2) (18)

= I(Xn
1 ;U1, U2) + I(Xn

2 ;U1, U2|Xn
1 )

= I(Xn
1 ;U1, U2) + I(Xn

2 ;X
n
1 , U1, U2)

− n · I(X1;X2)

≥ I(Xn
1 ; X̂

n
1 ) + I(Xn

2 ; X̂
n
2 )

− n · I(X1;X2), (19)

where (18) holds since Ui is a function of Xn
i , i = 1, 2. Simi-

larly, by utilizing Fano’s inequality to lower bound I(Xn
1 ; X̂

n
1 )

and I(Xn
2 ; X̂

n
2 ), we have

n·(R1+R2+ϵ) ≥ n+n·Hb(ρ)−n·Hb(D1)−n·Hb(D2). (20)

Letting ϵ → 0 in the above inequality, we conclude that (8)
holds. That is, (R1, R2) ∈ Ro

12(D1, D2).
Through these three cases, it can be concluded that the ad-

missible rate pair (R1+ϵ, R2+ϵ) ∈ Ro(D1, D2). Furthermore,
the monotonicity of the outer bound Ro(D1, D2) [27] implies
that Ro(D1, D2) ⊆ Ro(D1 + ϵ,D2 + ϵ). Since (R1, R2) is
admissible, we conclude that R(D1, D2) ⊆ Ro(D1, D2) by
letting ϵ→ 0.

Remark 1: If either R1 = 0 or R2 = 0, Ro(D1, D2) is
consistent with the rate-distortion function 1−Hb(Di) for the
binary source.

Remark 2: Ro(D1, D2) reduces to the Slepian-Wolf rate
region [28] for correlated binary sources if we set D1 → 0
and D2 → 0. The Slepian-Wolf rate region and Ro(D1, D2)
are shown in Fig. 4. It can be found that by allowing nonzero
distortion values, the sources can be further compressed com-
pared to the Slepian-Wolf lossless case.

Remark 3: If we are interested in reconstructing only one
source of the two sources, say X1, and there is no rate limit
on describing Xn

2 , i.e., R2 ≥ 1
nH(Xn

2 ), then it is equivalent to
the Wyner-Ziv compression problem [22]. Fig. 5 plots the rate-
distortion bound of the Wyner-Ziv source coding [29] and our
derived outer bound. In this case, Ro

1(D1) is not tight, since
it can be found from Fig. 5 that the rate-distortion region of
the Wyner-Ziv problem lies inside of Ro

1(D1).
Remark 4: As it is known that the exact rate-distortion

bound of lossy multiterminal source coding problem lies
between the Berger-Tung inner and outer bounds [22]. We also
derived the rate-distortion region Ri(D1, D2) based on the
Berger-Tung inner bound [30] after several steps of elementary
calculation in information theory, as

Ri(D1, D2) = Ri
1(D1)

∩
Ri

2(D2)
∩

Ri
12(D1, D2) (21)

with
Ri

1(D1) = {(R1, R2)|R1 ≥ Hb(ρ ∗D1 ∗D2)−Hb(D1)},
Ri

2(D2) = {(R1, R2)|R2 ≥ Hb(ρ ∗D1 ∗D2)−Hb(D2)},
Ri

12(D1, D2) = {(R1, R2)|
R1 +R2 ≥ 1 +Hb(ρ ∗D1 ∗D2)−

∑2
i=1Hb(Di)},

for every 0 ≤ D1, D2 ≤ 1
2 . In Fig. 4, the Berger-Tung

inner bound for binary case Ri(D1, D2) is also presented as
a reference to verify how close the bounds Ro(D1, D2) and
Ri(D1, D2) are. It can be seen from the figure that they are
very close to each other for small values of D1 and D2, i.e.,
the outer bound can be considered as a useful reference in the
evaluation of the BER performance, even though there exists
a small gap. However, to resolve this gap, further insightful
discussions are still needed [25].

Remark 5: The outer bound Ro(D1, D2) is obtained by
assuming that the code length n is sufficiently large. However,
the penalty on the rate-distortion function is unavoidable if the
code length is finite [31], where the rate-distortion function
taking into account n is derived for a conventional point-to-
point communication system. According to [31], the impact
of n is not significant when n is large enough. Therefore, this
work focuses on the infinite code length, while the outer bound
Ro(D1, D2) of finite code length is left as a future study.

In summary, the rate-distortion function Ri(Di) is given by
R1(D1) ≥ Hb[ρ ∗H−1

b (1−R2(D2))]−Hb(D1),

R2(D2) ≥ Hb[ρ ∗H−1
b (1−R1(D1))]−Hb(D2),

2∑
i=1

Ri(Di) ≥ 1 +Hb(ρ)−
2∑

i=1

Hb(Di).

(22)

IV. HAMMING DISTORTION LOWER BOUND

A. Function D = f(D1, D2)

As stated in Section II, distortion D is a function of
distortions Di, i = 1, 2. Function f(D1, D2) is obtained
by evaluating the relationship between the binary CEO and
the binary multiterminal source coding problems in terms of
distortions, where the model of the relationship is shown in
Fig. 6. The estimate X̂ is obtained based on the decision
rule from the outputs of two parallel BSCs with crossover
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Fig. 6. The distortion model of the binary CEO problem. BMTSC represents
binary multiterminal source coding.

probabilities p1 ∗D1, p2 ∗D2 and input X . The distortion D
largely depends on the decision rule used by the destination.
Here we only consider two decision rules. One is the weighted
majority decision and the other the optimal decision.

1) Weighted majority decision: Distortion D is obtained by
evaluating the probability of an error event. Let θ1 = p1 ∗D1

and θ2 = p2 ∗ D2. Without loss of generality, we assume
that θ1 ≤ θ2. Hence, the error event is composed of two
independent events: node 1 makes a wrong decision and node
2 makes correct decision or both node 1 and node 2 make
erroneous decisions. Therefore, the distortion D in this case
is approximated by D ∼= θ1(1 − θ2) + θ1θ2 = θ1. It can be
found that the corner point θ1 or θ2 in the rate-distortion region
is achieved. Hence, the weighted majority decision rule can be
seen as being equivalent to that derived from the time sharing
method.

2) Optimal decision: Since the block length is assumed to
be infinite and the code is random, an optimal lower bound on
the distortion D is determined by utilizing the rate-distortion
function for the binary source [24], as

1−Hb(d̃) = I(X; X̂) (23)

≤ I(X; X̂1, X̂2)

= H(X) +H(X̂1, X̂2)−H(X, X̂1, X̂2)

= 1 + 1 +Hb(θ1 ∗ θ2)
− [H(X) +H(X̂1|X) +H(X̂2|X)] (24)

= 2 +Hb(θ1 ∗ θ2)− [1 +Hb(θ1) +Hb(θ2)]

= 1 +Hb(θ1 ∗ θ2)−Hb(θ1)−Hb(θ2), (25)

where d̃ is the Hamming distortion measure between X and
X̂ , and the steps are justified as:
(23) rate-distortion function for the binary source,
(24) X̂1 → X → X̂2 forms a Markov chain.

Thus, it is obvious from (25) that for 0 ≤ d̃ ≤ 1
2 , d̃ ≥

H−1
b [Hb(θ1)+Hb(θ2)−Hb(θ1∗θ2)]. Therefore, the distortion

D is the minimum value of d̃, as

D = H−1
b [Hb(θ1) +Hb(θ2)−Hb(θ1 ∗ θ2)]. (26)

It should be emphasized here that the optimal decision acts
as a universal lower bound on the HD for specific schemes
which assume sequential decoding. However, in the design of
practical encoding/decoding algorithms, we do not consider
this decision rule.

+

Fig. 7. Block diagram of the encoding/decoding algorithm shown in [10]
and [16].

In summary, the distortion level D of the two decision rules
described above is given as

D =

{
min{θ1, θ2}, majority decision,
H−1

b [Hb(θ1) +Hb(θ2)−Hb(θ1 ∗ θ2)], optimal.
(27)

B. Distortion Minimization

By substituting the rate-distortion function (22) and (27)
into the minimization problem (4), we have

min
D1,D2

D (28)

s.t.

Hb[ρ ∗H−1
b (1− C(γ2)

r2
)]−Hb(D1) ≤

C(γ1)

r1
,

Hb[ρ ∗H−1
b (1− C(γ1)

r1
)]−Hb(D2) ≤

C(γ2)

r2
,

1 +Hb(ρ)−Hb(D1)−Hb(D2) ≤
C(γ1)

r1
+
C(γ2)

r2
,

Di ≤
1

2
, i = 1, 2,

Di ≥ 0, i = 1, 2.

The reason of using the derived outer bound, not the Berger-
Tung inner bound is that, the outer bound can be easily
formulated as a convex optimization. The Berger-Tung inner
bound includes term D1 ∗D2 in the binary entropy function
which cannot be easily handled in the minimization. It is found
that distortion D = f(D1, D2) is monotonically increasing
function on the intervals Di ∈ [0, 12 ], i = 1, 2 for both the
majority decision and optimal decision rules, and the proof
is detailed in Appendix B. Furthermore, since the sequential
decoding (first reconstructs Xn

1 and Xn
2 , then makes decision

on Xn) is applied, we first minimize the ℓ2-norm of a vector
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Fig. 8. Symmetric P and SNR. BPSK is used for both nodes.

[D1, D2] instead of directly minimizing D, as

min
D1,D2

∥[D1, D2]∥2 (29)

s.t.

−Hb(D1)−Hb(D2) ≤
C(γ1)

r1
+
C(γ2)

r2
− 1−Hb(ρ),

−Hb(D1) ≤
C(γ1)

r1
−Hb[ρ ∗H−1

b (1− C(γ2)

r2
)],

−Hb(D2) ≤
C(γ2)

r2
−Hb[ρ ∗H−1

b (1− C(γ1)

r1
)],

Di ≤
1

2
, i = 1, 2,

−Di ≤ −0, i = 1, 2,

to obtain the minimal values of D1 and D2, and then map
them to D by using function f(D1, D2).

It is easily found that the problem (29) is convex since
the objective function is convex and function −Hb(·) is also
convex. Therefore, it can be efficiently solved using convex
optimization tools. Assume that the minimum values of D1

and D2 obtained through the convex optimization are denoted
as D⋆

1 and D⋆
2 , respectively. Substituting D⋆

1 and D⋆
2 into (27),

the minimum distortion value D⋆ is then obtained through

D⋆ =

{
min{θ⋆1 , θ⋆2}, majority decision,
H−1

b [Hb(θ
⋆
1) +Hb(θ

⋆
2)−Hb(θ

⋆
1 ∗ θ⋆2)], optimal,

(30)
where θ⋆1 and θ⋆2 are p1∗D⋆

1 and p2∗D⋆
2 , respectively. It should

be emphasized here that the distortion D1 or D2 should be set
to 0 in the optimization problem (28) if C(γ1)

r1
or C(γ2)

r2
is larger

than or equal to 1, which is the binary entropy of the source
X1 and X2. The reason is that a source can be reconstructed
under an arbitrary small error probability if the source coding
rate is larger than its entropy even in the case the helper does
not exist [24].

V. BER EVALUATION

A. Coding and Decoding Algorithm

We briefly review the encoding/decoding algorithm [10],
[16] which is illustrated in Fig. 7. This algorithm is used
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Fig. 9. Asymmetric P and symmetric SNR. BPSK is used for both nodes.

to verify the theoretical HD lower bound. As illustrated in
Fig. 7, each node encodes its erroneous sequence by using
a serially concatenated memory-1 convolutional code and an
accumulator (ACC). The encoder output sequences are then
modulated and transmitted to the destination over statistically
independent AWGN and block Rayleigh fading channels,
where the channel gain hi is static within each block but varies
independently block-by-block. At the destination, iterative
decoding process is carried out between the decoders of the
convolutional code and the ACC, as well as between the two
decoders of the convolutional codes through the LLR updating
function fc to modify the extrinsic LLR, according to the error
probabilities p1 and p2.

B. Numerical Results
The lower bounds6 on the HD for different SNR values

γ1, γ2 are obtained through solving the convex optimization
problem which we presented in Section IV. The results are
shown in Figs. 8–11 for AWGN channels and Fig. 12 for block
Rayleigh fading channels. The common parameters used in the
simulations are

• Frame length: n = 10000 bits for AWGN channels and
n = 2048 bits for block Rayleigh fading channels.

• The number of frames: 1000 for AWGN channels and
10000 for block Rayleigh fading channels.

• Interleavers: random.
• Encoder Ci: half-rate nonrecursive systematic convolu-

tional code with generator polynomial G = [03, 02]8,
where [·]8 represents the argument is an octal number.

• Modulation: binary phase-shift keying (BPSK) and
quadrature phase-shift keying (QPSK) with coherent de-
tection, where channel state information is assumed to
be known to the receiver. Natural mapping is used as the
mapping rule in QPSK [32, Example 18.2].

• Doping ratio of ACC: 1 for BPSK and 8 for QPSK.
• Decoding algorithm for DCCi and ACC−1: log-

maximum a posteriori (MAP).

6The terminology ”lower bound” used here is due to the HD is calculated
based on the derived outer bound, even though the approximation of the
objective functions is used.
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2

, respectively. The transmit power of two nodes are the same. BPSK is
used for both nodes.

• The number of iterations: 30 times.
Fig. 8 shows the error probability lower bounds and the

BER versus SNR when p1, p2 and SNRs of the two nodes
are set identically; this is referred as the symmetric case. It
can be found that, the BER curves obtained by simulations
and the theoretical lower bounds on the HD (or BEP) exhibit
a similar tendency. Furthermore, it is clearly found that the
error floor of the BER obtained by the simulation and the
lower bound on the HD based on majority decision match
exactly. The reason is that if the SNRs of two nodes are
large enough, the distortion levels D1 and D2 are almost 0,
which results in the error floor being determined completely
by the error probabilities p1 and p2. A gap clearly appears
between the HD lower bounds using the majority and optimal
decision rules. The reason is twofold: 1) the optimality of the
majority decision can not be guaranteed; 2) optimal decision is
derived based on the assumption of the binary rate-distortion
function without considering any loss during processing the
information. To find a better decision rule than majority
decision rule is left as a future study. However, it is clear
that the HD lower bound deriving from the optimal decision
cannot be exceeded.

The impact of the variation of the error probabilities p1,
p2 and the coding rates ri are evaluated in AWGN channels.
Fig. 9 shows the results for asymmetric p1 and p2 but
symmetric SNRs. When the coding rates7 r1 and r2 are set as
1
4 and 1

2 , respectively, the BER performance shown in Fig. 10
is obtained. We further consider using different modulation
schemes for the nodes to achieve different rates of the channel
code in Fig. 11, where QPSK is used for node 1 and BPSK for
node 2. Even in these asymmetric cases, the theoretical lower
bounds on the HD can still provide us with a useful reference
when we evaluate the BER performance of practical systems.
Furthermore, the theoretical lower bounds on the HD obtained
based on our derived outer bound exhibit similar behaviors to
those of the BER curves found by simulations.

7We simply transmit the output of ACC without doping to achieve rate 1
4

.
No optimized design of the channel code is considered.
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Fig. 11. Asymmetric r1 and r2. The coding rates r1 and r2 are set at 1
and 1

2
, respectively. The transmit power of two nodes are the same. QPSK is

used for node 1 and BPSK for node 2.

In both the symmetric and asymmetric cases, the threshold
SNR value at which turbo cliff in the BER obtained by
the simulation is around 1.5 dB larger than that observed
in the theoretical lower bounds in static AWGN channels.
In addition, since the lower bounds on the HD plateaus at
a certain level even if the power is increased at high SNR
regime, increasing the number of nodes is a proper way to
improve performance in the practical deployment.

In Fig. 12, the channels between two nodes and the destina-
tion experience independent block Rayleigh fading. Therefore,
the instantaneous SNRs of two nodes are different while the
average SNRs of the two channels are the same. The lower
bounds on the HD shown in Fig. 12 are calculated as

D⋆
fading =

∫ +∞

0

∫ +∞

0

D⋆(γ1, γ2) · Pr(γ1) · Pr(γ2)dγ1dγ2,
(31)

where D⋆(γ1, γ2) is the result of (30), obtained for static
AWGN channels. Pr(γi) is the probability density function
of the SNR γi, which follows the Rayleigh distribution. We
use Monte Carlo method to obtain the lower bounds on the
average HD D⋆

fading instead of theoretically calculating (31).
In the Rayleigh fading case, the shape of the BER curves and
the lower bounds on the HD are almost the same.

VI. CONCLUSION

We examined theoretically the lower bound on the HD
for the binary CEO problem, where two independent nodes
forward the erroneous versions of a common binary source to
the destination over static AWGN and block Rayleigh fading
channels. The binary CEO problem was first formulated as the
binary multiterminal source coding problem, which is the core
part of the binary CEO problem. The outer bound for rate-
distortion region of the binary multiterminal source coding
problem was then derived based on the converse proof of the
bound. The relationship between the binary CEO problem and
the binary multiterminal source coding problem in terms of
the distortion function has been established. According to the
lossy source-channel separation theorem, the lower bound on
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the HD was formulated by minimizing the distortion function
subject to the inequalities between the derived outer bound and
the channel capacities. The problem of obtaining the lower
bound on the HD was solved in the framework of convex
optimization, and the results of HD lower bounds only apply
to schemes which use sequential decoding. Through a series of
simulations, it has been shown that the BER curves obtained
with a practical encoding/decoding algorithm is consistent
with the result of the theoretical lower bounds on the HD. Even
though we only solved the binary CEO problem having two
nodes in this work, it shed light on fully theoretically analyzing
the performance of more generic binary CEO problems such
as that with an arbitrary number of nodes.
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APPENDIX A
LOWER BOUNDED H(Xn

1 |U2)

For the completeness of the paper, we briefly provide the
core of [26, Corollary 4]. Let (Xn,Yn,W ) be a triple of
random variables, where Xn and Yn take values from a set
Xn = {0, 1}n, and W belongs to an arbitrary discrete set W .
The joint probability mass function of this triple is given by

PrX,Y,W (x, y, w) = Pr{X = x, Y = y,W = w}

=
n∏

t=1

Pr(y(t)|x(t)) · PrX,W (x,w). (32)

In other words, Yn can be seen as the output of a BSC channel
with crossover probability p0 when Xn is the input, and W
is conditionally independent of Yn given Xn. Then Corollary
4:

If H(Xn|W ) ≥ n · v, then H(Yn|W ) ≥ n ·Hb[p0 ∗H−1
b (v)].

When we substitute Xn
1 , Xn

2 and U2 into the corollary, we
have H(Xn

1 |U2) ≥ nHb(ρ ∗ β) since Xn
1 and Xn

2 is the input
and the output of a BSC with crossover probability ρ, and as
we assumed H(Xn

2 |U2) ≥ Hb(β).

APPENDIX B
MONOTONICITY OF DISTORTION D

Majority decision. D = min{θ1, θ2}. Since θi, i = 1, 2
is the result of the binary convolution on pi and Di, θi is
obviously increasing as Di is increasing, when pi is fixed.

Optimal decision. D = H−1
b [Hb(θ1)+Hb(θ2)−Hb(θ1∗θ2)].

In this case, D is a composite function of H−1
b (·) and

Hb(θ1) + Hb(θ2) − Hb(θ1 ∗ θ2). Since the function H−1
b (·)

is monotonically increasing, we only need to prove that
g(θ1, θ2) = Hb(θ1)+Hb(θ2)−Hb(θ1∗θ2) is also an increasing
function of θ1 and θ2.

Assume θ2 is fixed. The partial derivative ∂g(θ1,θ2)
∂θ1

on θ1 is

∂g(θ1, θ2)

∂θ1
= log

1− θ1
θ1

− (1− 2θ2) · log
1− θ1 ∗ θ2
θ1 ∗ θ2

. (33)

In order to prove that (33) is nonnegative, we should prove

1− θ1
θ1

≥ (
1− θ1 ∗ θ2
θ1 ∗ θ2

)(1−2θ2). (34)

The above always holds according to the monotonically in-
creasing property of function log(·). As 0 ≤ θi ≤ 1

2 , i = 1, 2
and 0 ≤ θ1 ∗θ2 ≤ 1

2 is assumed, the following inequalities are
obtained after several steps of elementary calculation

1− θ1
θ1

≥ (
1− θ1
θ1

)(1−2θ2) ≥ (
1− θ1 ∗ θ2
θ1 ∗ θ2

)(1−2θ2). (35)

Therefore, it is found that (33) can not take negative values
according to (35). Symmetrically, we can assume θ1 is fixed,
and show that the partial derivative ∂g(θ1,θ2)

∂θ2
on θ2 is also

nonnegative. Hence, g(θ1, θ2) is increasing in the dimension
of θ1 and θ2, respectively. Based on the above two cases, it is
concluded that the distortion D is increasing with respect to
D1 and D2.
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