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PAPR Constrained Power Allocation for
Multi-Carrier Transmission in Multiuser SIMO

Communications
Valtteri Tervo*, Member, IEEE, Antti Tölli, Senior Member, IEEE, Tad Matsumoto, Fellow, IEEE

Abstract—Peak-to-average power ratio (PAPR) constrained
power allocation for multicarrier transmission in multiuser
single-input multiple-output (SIMO) communications is consid-
ered in this paper. Reducing the PAPR in any transmission
system is beneficial because it allows the use of inexpensive,
energy-efficient power amplifiers. In this paper, we formulate
a power allocation problem for single-carrier (SC) frequency di-
vision multiple access (FDMA) and orthogonal FDMA (OFDMA)
transmission with instantaneous PAPR constraints. Moreover, a
statistical approach is considered in which the power variance
of the transmitted waveform is controlled. The constraints for
the optimization problems are derived as a function of transmit
power allocation and two successive convex approximations
(SCAs) are derived for each of the constraints based on a
change of variables (COV) and geometric programming (GP).
In addition, the optimization problem is constrained by a user-
specific quality of service (QoS) constraint. Hence, the proposed
power allocation strategy jointly takes into account the channel
quality and the PAPR characteristics of the power amplifier.
The numerical results show that the proposed power allocation
strategy can significantly improve the transmission efficiency
of power-limited users. Therefore, it is especially beneficial for
improving the performance for cell edge users.

Index Terms—Power minimization, soft interference cancella-
tion, MMSE receiver, multiuser detection, PAPR reduction

I. INTRODUCTION

Single-carrier (SC) frequency division multiple access
(FDMA) [1] has been selected as the uplink transmission
scheme for the 3GPP long term evolution (LTE) standard and
its advanced version (LTE-A) [2], due to its good peak-to-
average power ratio (PAPR) properties. SC-FDMA can be
viewed as a form of orthogonal FDMA (OFDMA) [3] in which
an additional discrete fourier transform (DFT) and an inverse
DFT (IDFT) are added at the transmitter (TX) and receiver
(RX) ends, respectively. A DFT precoder [1] spreads all the
symbols across the whole frequency band, forming a virtual
SC structure which is known to lead to a reduced PAPR.
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Ahlström Foundation, Ulla Tuominen foundation, KAUTE-foundation and
Tauno Tönning foundation. This work was also in part supported by the
Japanese government funding program, Grant-in-Aid for Scientific Research
(B), No. 23360170.

V. Tervo and A. Tölli are with the Centre for Wireless Communications,
University of Oulu, P.O. Box 4500, 90014 University of Oulu, Finland, email:
{valtteri.tervo, antti.tolli}@ee.oulu.fi. T. Matsumoto is with the Centre for
Wireless Communications, University of Oulu, and Japan Advanced Institute
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It is well known that power allocation in multi-carrier
transmission provides significant improvement in terms of
total power consumption [4]. In [5], [6], a power allocation
technique taking into account the convergence properties of an
iterative RX was derived for SC-FDMA showing substantial
improvement in terms of reducing the signal-to-noise ratio
(SNR) requirements for the desired quality of service (QoS)
target. However, the use of frequency domain power allocation
leads to an increased value of the PAPR. Motivated by this
fact, we have constructed a framework in this paper by which
the PAPR can be controlled via frequency domain power
allocation.

Reducing the PAPR in any transmission system is always
desirable as it allows the use of more efficient and inexpensive
power amplifiers (PAs) at the TX. In order to maximize the PA
efficiency (PAE), the operating point of the PA should be set
as close to the saturation as possible. However, in multi-carrier
systems, moving the operation point closer to the saturation
increases the probability that the amplified signal components
appear in the nonlinear region of the PA. Furthermore, this
probability is directly proportional to PAPR. Amplifying the
signal components in PAs nonlinear region, introduces out-
of-band distortion. Thus, reducing the PAPR induces the
following advantages: increased PAE with the same distortion
or, decreased distortion with the same PAE.

The problem of PAPR reduction in multi-carrier transmis-
sion has been an active research topic for several decades. In
the past, the PAPR problem has been addressed in many papers
and overview articles, e.g., [7]–[9]. Existing techniques, such
as selected mapping (SLM) [10], partial transmit sequences
(PTS) [11], [12] and constellation shaping [13]–[15] achieve
a reduced PAPR at the expense of a transmit signal power
increase, bit error rate (BER) increase, data rate loss, com-
putational complexity increase, etc. The most straightforward
solution for PAPR reduction is clipping the amplitude of the
OFDM signal. The drawback is that the clipping increases the
noise level.

Recent work on reducing the PAPR in SC-FDMA transmis-
sion can be found in [16]–[18], where the authors propose dif-
ferent precoding methods for PAPR reduction. In [16], the idea
is to use non-diagonal power allocation matrix in OFDMA
transmission to distribute the symbols across the subcarriers
such that the PAPR is minimized. The idea in the methods
presented in [17], [18] is finding the optimal weights for the
subcarriers, i.e., power allocation matrix, such that the power
variance of the transmitted time domain signal is minimized.
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However, the power allocation methods introduced in [16]–
[18] solely focus on the PAPR reduction, while the method
proposed in this paper considers joint PAPR reduction and sum
power minimization. Power allocation methods derived in this
paper take also into account a frequency selective channel and
an iterative RX.

The main objective in this paper is to improve the PAPR
characteristics of a multi-carrier transmission by introducing
a novel power allocation method taking into account the
properties of an iterative RX and the PAPR of the trans-
mitted signal. The contributions of this paper are summa-
rized as follows: Two approaches for a PAPR aware power
allocation in multi-carrier transmission are presented. The
first approach optimally restricts the PAPR below a preset
threshold value while guaranteeing the preset QoS target. The
second approach controls the PAPR statistically by controlling
the variance of the power of the transmitted signal. The
instantaneous PAPR and the variance are derived for both
SC-FDMA and OFDMA. The PAPR and power variance
derivations presented in this paper apply in any normalized
data modulation technique. The PAPR constraints are applied
to the optimization framework presented in [6], where the
objective is to minimize the sum power in uplink transmission
while guaranteeing the convergence of an iterative equalizer.
Two successive convex approximations (SCA) [19] commonly
existing in the power control problems are derived for the
PAPR constraints. Namely, successive convex approximation
via change of variables (SCACOV) [20] and successive convex
approximation via geometric programming (SCAGP) [21]. The
authors have published the first results on PAPR constrained
power allocation in [22], [23] where SCACOV has been
derived for instantaneous PAPR constraint and SCAGP has
been derived for the power variance constraint. This paper
provides a detailed derivation of the constraints and extends
the concept to OFDMA. Furthermore, SCAGP is derived for
the PAPR constraint and SCACOV is derived for the variance
constraint.

The rest of the paper is organized as follows: The system
model assumed throughout the paper is presented in Section II.
In Section II-A, the TX side of SC-FDMA and OFDMA uplink
transmission is described. In Section II-B, iterative equalizers
for SC-FDMA and OFDMA are presented. The optimization
problem is introduced in Section III. The user specific QoS
constraints are presented in Section IV. The PAPR constraints
with the SCACOV and SCAGP solutions are presented in Sec-
tion V and Appendices A-F. The power variance constraints
with the SCACOV and SCAGP solutions are presented in
Section VI and Appendices G-L. The numerical results are
given in Section VII and the conclusions are drawn in Section
VIII.

Nomenclature – Following notations are used throughout
the paper: Vectors are denoted by lower boldface letters and
matrices by uppercase boldface letters. The superscripts H and
T denote Hermitian and transposition of a complex vector
or matrix, respectively. C, R, B denote the complex, real
and binary number fields, respectively. IN denotes N × N
identity matrix. The operator avg{·} calculates the arithmetic
mean of its argument, diag(·) generates diagonal matrix of its

Fig. 1. Block diagram of the TX side of the system model.

arguments, bdiag{·} generates the block diagonal matrix from
its argument matrices, ⊗ denotes the Kronecker product and
∥ · ∥ is the Euclidean norm of its complex argument vector.
E[·] is the expectation operator. circ{·} constructs a circulant
matrix from its argument, in which each column of the matrix
is a cyclically shifted version of its successive column. A list
of the most relevant symbols used in the paper is shown in
Table I.

II. SYSTEM MODEL

In this section, the system model of uplink transmission
in a single-cell system with U single-antenna users and a
base station with NR antennas is presented. The channel state
information (CSI), including an instantaneous channel impulse
response and the second moment of additive thermal noise, is
assumed to be perfectly known both at the TX and RX.

A. Transmitter

The TX side of the system model is depicted in Fig. 1.
Each user’s data stream xu ∈ BRu

c NQNF , u = 1, 2, . . . , U ,
is encoded by a forward error correction (FEC) code Cu
with a code rate Ru

c ≤ 1. The symbol NQ denotes the
number of bits per modulation symbol and NF is the num-
ber of frequency bins in DFT. The encoded bits cu =
[cu1 , c

u
2 , . . . , cNQNF

]T ∈ BNQNF are bit-interleaved by mul-
tiplying cu by pseudo-random permutation matrix Πu ∈
BNQNF×NQNF resulting a bit sequence c′u = Πuc

u. After
the interleaving, the sequence c′u is mapped with a mapping
function Mu(·) onto a 2NQ -ary complex symbol bul ∈ C,
l = 1, 2, . . . , NF , resulting a complex data vector bu =
[bu1 , b

u
2 , . . . , b

u
NF

]T ∈ CNF . After the modulation, in SC-
FDMA each user’s data stream is spread across the subchan-
nels by multiplying bu by a DFT matrix F ∈ CNF×NF ,
∀u = 1, 2, . . . , U , where the elements of F are given by
fm,l = 1√

NF
e(i2π(m−1)(l−1)/NF ), m, l = 1, 2, . . . , NF . In

OFDMA, this spreading process is omitted. Each user’s data
stream is multiplied with its associated power allocation matrix
P

1
2
u , where Pu = diag([Pu,1, Pu,2, . . . , Pu,NF ]

T) ∈ RNF×NF ,
with Pu,l being the power allocated to the lth frequency
bin. Finally, before transmission, each user’s data stream is
transformed into the time domain by the IDFT matrix F−1

resulting in su = [su1 , s
u
2 , . . . , s

u
NF

]T, ∀u. A cyclic prefix is
appended to mitigate inter-block interference (IBI) in SC-
FDMA and inter-symbol interference (ISI) in OFDMA.
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TABLE I
LIST OF SYMBOLS.

b̃ul soft estimate of the uth user’s lth symbol bu transmitted symbol vector of user u
b̃u soft estimate vector of user u b̂u time domain estimate vector of user u
b̈l vector for the detected data stream of user u cu encoded bit vector of user u

with elements |b̃ul |
2

c′u interleaved encoded bit vector of user u Hu block circulant channel matrix of user u
NF number of bins in discrete Fourier transform NL length of the channel impulse response
NR number of receive antennas NQ number of bits per modulation symbol
Pu diagonal power allocation matrix of user u r̆u combination of the residual and the desired

signal associated with user u
r̃m received frequency domain signal vector r̂m the output vector of soft cancelation

associated with the mth frequency bin
su transmitted symbol vector of user u after IDFT U number of users
v vector of noise samples xu binary data stream of user u
γu,m channel vector for the mth frequency bin of user u Γu frequency domain channel matrix for user u
δu PAPR target for user u ∆u average residual interference of the soft

symbol estimates of user u
ζu the effective SINR of user u in SC-FDMA ζ̃u the effective SINR of user u in OFDMA
ξu,k auxiliary constant describing the required ξ̃u,k auxiliary constant describing the required

SINR for given MI target in SC-FDMA SINR for given MI target in OFDMA
σ2
v variance of noise σ̃2

u power variance target for user u
σ̊2
u,k the variance of the LLRs at the input of Σr̂,m interference covariance matrix of the

the decoder of the uth user at the kth MI index mth frequency bin of user u in SC-FDMA
Σr̂ covariance matrix of the output of the soft cancelation ωu,m receive beamforming vector for the mth

frequency bin of user u in SC-FDMA
ω̃u,m receive beamforming vector for the mth Ω̆u filtering matrix of user u

frequency bin of user u in OFDMA

B. Receiver

In this section, frequency domain soft cancelation minimum
mean squared error (MMSE) receiver is derived for SC-FDMA
and OFDMA.

1) SC-FDMA: For SC-FDMA, the RX presented in [6] is
used. After the soft cancelation, the residual and estimated
received signal of user u are summed in r̆u ∈ CNRNF as

r̆u =
U∑
l=1

ΓlP
1
2

l F(b
l − b̃l) + ΓuP

1
2
uFb̃

u + FNR
v, (1)

where b̃u ∈ CNF is a soft symbol estimate vector com-
posed by b̃u = [b̃u1 , b̃

u
2 , . . . , b̃

u
NF

]T with b̃un being the soft
symbol estimate of bun given in [6, Eq. (6)]. A matrix Γu =
bdiag{Γu,1,Γu,2, . . . ,Γu,NF

} ∈ CNRNF×NF is the space-
frequency channel matrix for user u expressed as Γu =
FNR

HuF
−1. The block diagonal DFT matrix FNR

is ex-
pressed as FNR = INR ⊗ F ∈ CNRNF×NRNF , and Γu,m ∈
CNR×NR is the diagonal channel matrix for the mth frequency
bin of the uth user. A matrix Hu = [H1

u,H
2
u, . . . ,H

NR
u ]T ∈

CNRNF×NF is the space-time channel matrix for user u and
Hr

u = circ{[hr
u,1, h

r
u,2, . . . , h

r
u,NL

,01×NF−NL ]
T} ∈ CNF×NF

is the time domain circulant channel matrix for user u at
receive antenna r. The operator circ{} constructs a circulant
matrix from its argument vector, NL denotes the length of
the channel impulse response, and hr

u,l, l = 1, 2, . . . , NL,
r = 1, 2, . . . , NR, is the fading factor of multipath channel.
A vector v ∈ CNRNF in (1) denotes white additive Gaussian
noise vector with variance σ2

v .
The time domain output of the receive filter for the uth

user can be written as b̂u = F−1Ω̆H
u r̆u, where Ω̆u =

[Ω̆1
u, Ω̆

2
u, . . . , Ω̆

NR
u ]T ∈ CNRNF×NF is the filtering matrix for

the uth user and Ω̆r
u ∈ CNF×NF is the filtering matrix for

the rth receive antenna of the uth user. The effective signal to
interference plus noise power ratio (SINR) of the prior symbol
estimates for the uth user can be expressed as

ζu =
1

NF

NF∑
m=1

Pu,mωH
u,mγu,mγH

u,mωu,m

ωH
u,mΣr̂,mωu,m

, (2)

where γu,m ∈ CNR consists of the diagonal elements
of Γu,m, i.e., γu,m is the channel vector for the mth

frequency bin of user u. The receive beamforming vec-
tor for the mth frequency bin of user u is denoted as

ωu,m =
[
[Ω̆1

u][m,m], [Ω̆
2
u][m,m] . . . , [Ω̆

NR
u ][m,m]

]T
∈ CNR ,

and Σr̂,m ∈ CNR×NR is the interference covariance matrix
of the mth frequency bin given by

Σr̂,m =
U∑
l=1

Pl,mγl,mγH
l,m∆l + σ2

vINR
. (3)

The average residual interference of the soft symbol esti-
mates is denoted as ∆l = avg{1NF

− b̈l}, where b̈l =
[|b̃l1|2, |b̃l2|2, . . . , |b̃lNF

|2]T ∈ CNF . Solving the optimal RX via
MMSE criterion yields [24]

Ω̆u =
1

avg{b̈u}ζu + 1
Σ−1

r̂ ΓuP
1
2
u , (4)

where Σr̂ ∈ CNRNF×NRNF is the covariance matrix of the
output of the soft cancelation given by

Σr̂ =
U∑
l=1

ΓlP
1
2

l ∆
lP

1
2

l Γ
H
l + σ2

vINRNF
, (5)

and ∆l = ∆lINF .
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2) OFDMA: The received signal at the mth subcarrier is

r̃m =
U∑

u=1

γu,m

√
Pu,mbum + ṽm ∈ CNR , (6)

where ṽm ∈ CNR denotes white additive Gaussian noise
vector with variance σ2

v . The frequency domain signal after
soft cancelation is expressed as

r̂m = r̃m −
U∑

u=1

γu,m

√
Pu,mb̃um. (7)

The filtered signal can be expressed as

b̂um = ω̃H
u,mr̆u,m, (8)

where r̆u,m = r̂ + γu,m

√
Pu,mb̃um, and ω̃u,m ∈ CNR is the

receive filter of the uth user at the mth subcarrier which can
be found by solving

minimize
ω̃u,m

Ebum,ṽm [(bum − b̂um)(bum − b̂um)H]. (9)

Substituting the solution of (9) to (8) gives the MMSE estimate
of the transmitted symbol as

b̂um =

[
(γu,mγH

u,mPu,m +
( U∑

l=1
l ̸=u

γl,mγH
l,mPl,m(1− |b̃l,m|2)

+ σ2
vINR

)−1

γu,m

√
Pu,m

]H

r̆u,m. (10)

Similarly to the case of SC-FDMA, the interference can-
celation term 1 − |b̃l,m|2 can be approximated by ∆l =
avg{1NF − b̈l}1 leading to a more compact notation

b̂um = [(γu,mγH
u,mPu,m +

(
Σu

r̂,m

)−1

γu,m

√
Pu,m]Hr̆u,m,

(11)

where

Σu
r̂,m =

U∑
l=1
l ̸=u

γl,mγH
l,mPl,m∆l + σ2

vINR
. (12)

The effective SINR after the MMSE filter is given by

ζ̃u,m =
Pu,m|γH

u,mω̃u,m|2∑U
l=1
l ̸=u

|γH
l,mω̃u,m|2Pl,m(1− |b̃l,m|2) + σ2

v∥ω̃u,m∥2
.

(13)
Thus, the fundamental differences to SC-FMDA are that the
received signal decouples such that all the operations can be
performed per subcarrier and there is no self interference in
the SINR equation unlike in (2).

1In fact, ∆l is an essential approximation in order to use higher order
modulations where the power of a symbol is not equal to one. In order to use
the approximation ∆l, the expectation of a symbol power has to be one and
the length of a block needs to be large enough.

1: Initialize P̂ = P̂(0)

2: repeat
3: Calculate the optimal Ω from (4).
4: Set Ω = Ω(∗) and solve problem (14) with variables

P. (SCA is employed here)
5: Update P̂ = P(∗)

6: until Convergence

Fig. 2. Alternating Optimization for SC-FDMA.

III. OPTIMIZATION PROBLEM AND SOLVING METHOD

The optimization problem considered in this paper is ex-
pressed as

minimize
P,Ω̆

tr{P}

subject to zi(P, Ω̆) ≤ 0, i = 1, 2, . . . , N
yk(P) ≤ 0, k = 1, 2, . . . ,K,

(14)

where zi(P, Ω̆) ≤ 0, i = 1, 2, . . . , N , is a set of QoS
constraints and yk(P) ≤ 0, k = 1, 2, . . . ,K, is a set of
constraints controlling the PAPR. Ω̆ denotes the set of receive
filters of all users and all frequency bins. In this paper, we
will derive yk(P) in the form of

yk(P) =
K̂∑

n=1

ρknP
qk1n
1 P

qk2n
2 · · ·P

qkNF n

NF
, ρkn, q

i
mk ∈ R, (15)

which can be split as yk(P) = yk(P)+ + yk(P)−, where

yk(P)+ =
∑K̂

n=1 ρ
k+
n P

qk1n
1 P

qk2n
2 · · ·P

qkNF n

NF
, and yk(P)− =∑K̂

n=1 ρ
k−
n P

qk1n
1 P

qk2n
2 · · ·P

qkNF n

NF
, with ρk+n = max{0, ρkn} and

ρk−n = min{0, ρkn}. Constraint yk(P) ≤ 0 can be rewritten as

yk(P)+ ≤ −yk(P)−, (16)

where the functions yk(P)+ and −yk(P)− are referred as
posynomials. Similarly to [6], posynomials can be transformed
into a convex form. However, the function −yk(P)− on the
RHS of (16) has to be approximated by a concave function
to make the overall constraint convex. In this paper, we will
show two type of approximations, which are guaranteed to
converge towards a local solution.

Note that the PAPR constraints depend only on the power
allocation P. Hence, the PAPR constraints derived in this
paper can be applied to any SC-FDMA or OFDMA opti-
mization framework. The joint optimization of TX P and
RX Ω̆ can be performed via alternating optimization [6]. The
alternating optimization in SC-FDMA is described in Fig. 2,
where P(∗) indicates a solution to problem (14) for fixed Ω
and Ω(∗) represents the optimal Ω for fixed P. The idea is to
perform joint optimization by alternating between the TX and
RX optimizations, where SCA is employed for TX optimiza-
tion. Local convex approximations for non-convex constraints
needed in SCA are described in forthcoming sections. After
solving the approximated convex problem, the solution is used
to update the approximation point. Then, the approximated
problem is solved again using the new approximation point.
This procedure is repeated until convergence.
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In the following three sections, we will derive QoS, PAPR
and power variance constraints for SC-FDMA and OFDMA.
Due to the non-convexity of the constraints, two alternative
SCAs are also presented.

IV. QOS CONSTRAINTS

The QoS constraint considered in this paper, is the conver-
gence constraint for iterative RX derived in [6]. Convergence
constrained power allocation (CCPA) [6] is a power allocation
method for an iterative RX that uses turbo equalization. CCPA
takes the convergence properties of the RX into account by
utilizing extrinsic information transfer (EXIT) charts. More
specifically, the idea is to sample the EXIT chart up to K
points and check the convergence condition at each sampled
MI value. This approach leads to a problem with several SINR
constraints, where each constraint is for a different value of a
priori information. In this section, the convergence constraint
for SC-FDMA and OFDMA is briefly presented.

A. Convergence Constraint for SC-FDMA
The convergence constraint for SC-FDMA can be written

as [6, Eq. 20]

1

NF

NF∑
m=1

Pu,m|γH
u,mωk

u,m|2∑U
l=1 |γH

l,mωk
u,m|2Pl,m∆k + σ2

v∥ωk
u,m∥2

≥ ξu,k,

u = 1, 2 . . . , U, k = 1, 2, . . . ,K,
(17)

where ωk
u,m is the receive beamformer of the uth user at the

mth frequency bin at the kth mutual information (MI) index
and ∆k is the cancelation factor at the kth MI index. Due to
the additional DFT spreading at the SC-FDMA TX the symbol
sequence is spread across the whole frequency band. Hence,
the left hand side (LHS) of (17) is the average SINR taken
over all subcarriers. The right hand side (RHS) of (17) is a
constant depending on the modulation coding scheme (MCS),
the required QoS and the amount of a priori information at
the kth MI index. (17) is not convex in general and hence,
convex approximations presented in [6, Secs. V.B. and V.C.]
should be used.

B. Convergence Constraint for OFDMA
Similarly to SC-FDMA, the convergence constraint for

OFDMA can be written as
Pu,m|γH

u,mω̃k
u,m|2∑U

l=1
l ̸=u

|γH
l,mω̃k

u,m|2Pl,m∆k + σ2
v∥ω̃k

u,m∥2
≥ ξ̃u,k,

u = 1, 2 . . . , U, m = 1, 2 . . . , NF , k = 1, 2, . . . ,K, (18)

where ξ̃u,k =
σ̊2
u,k

4 is a constant depending on the variance of
the a priori LLRs σ̊2

u,k. Constraint (18) is clearly convex with
respect to P. In OFDMA, the subcarriers are decoupled for
fixed SINR and hence, the constraint (18) is per subcarrier.
In practise, one could consider a rate constraint across the
subchannels resulting in a varying MCS and thus, bit and
power loading algorithms should be considered. However, in
this paper we consider fixed SINR target and constant MCS
across the subcarriers.

V. INSTANTANEOUS PAPR CONSTRAINT

In this section, we derive instantaneous PAPR constraints for
SC-FDMA and OFDMA. In addition, SCACOV and SCAGP
are presented for non-convex constraints.

A. PAPR constraint for SC-FDMA

Let sum be the mth output of the transmitted waveform for
the uth user after the IDFT. The PAPR constraint in general
form is expressed as

PAPR(su) =
maxm |sum|2

avg
[
E
{
|sum|2

}] ≤ δu, (19)

where δu ≥ 1 is a user specific parameter controlling the
PAPR. The max operator can be eliminated by requiring

|sum|2

avg[|sum|2]
≤ δu, ∀m = 1, 2, . . . , NF . (20)

Assuming E{|bun|} = 1, ∀u, n and E{bunbu∗i } = 0, ∀n ̸= i,
where bu∗n denotes the complex conjugate of bun, the average
can be calculated as

avg[|sum|2] = 1

NF

NF∑
m=1

E
{
|sum|2

}
=

1

NF

NF∑
m=1

Pu,m. (21)

The assumption E{|bun|} = 1 can be justified for any modula-
tion scheme with a proper normalization factor.

After a lengthy derivation of |sum|2, shown in Appendix A,
the instantaneous PAPR constraint (19) for SC-FDMA can be
expressed as

1

NF

NF∑
l=1

(
κu + 2dul

)
Pu,l +

2

NF

NF∑
n1,n2=1
n2>n1

η̂u+n1n2m

√
Pu,n1Pu,n2

≤ δu

NF∑
l=1

Pu,l +
2

NF

NF∑
n1,n2=1
n2>n1

(−η̂u−n1n2m)
√

Pu,n1Pu,n2 ,

∀m = 1, 2, . . . , NF , ∀u = 1, 2, . . . , U, (22)

where κu ∈ R, ∀u, dul ∈ R, ∀l, u, and η̂u+n1n2m, η̂u−n1n2m ∈
R, ∀n1, n2,m, u. It can be seen that both sides of (22) are
posynomials and hence, the constraint is in the form of (16).

The constraint (22) is a non-convex constraint and many
approximations can be applied. For example, the term√

Pu,n1Pu,n2 existing on both sides of (22) is actually a
geometric mean and thus a concave function. While we could
directly apply SCA by approximating

√
Pu,n1Pu,n2 on the

LHS of (22), we present two SCAs so that the reformulated
constraint can be incorporated to the optimization framework
introduced in [6, Secs. V.B. and V.C.]. In the following we
apply SCACOV and SCAGP for constraint (22).

1) SCACOV: For SCACOV, we reformulate the constraint
(22) such that it has a convex and concave part. The concave
part can be locally approximated by a linear function and
similarly to [6, Algorithm 2], a local solution can be found
iteratively by updating the approximation point.
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1: Set α̂u,m = α̂
(0)
u,m, ∀u,m.

2: repeat
3: Solve Eq. (14) with constraints (17) and (23).
4: Update α̂u,m = α

(∗)
u,m,∀k.

5: until Convergence.

Fig. 3. Successive convex approximation via change of variables.

Denoting Pu,l = eαu,l , u = 1, 2, . . . , U , l = 1, 2, . . . , NF ,
constraint (22) can be approximated at a point α̂u as

NF∑
l=1

(κu + 2dul )e
αu,l +

2

NF

NF∑
n1,n2=1
n2>n1

η̂u+n1n2me
1
2 (αu,n1+αu,n2 )

≤ T̂m(αu, α̂u), u = 1, 2, . . . , U,m = 1, 2, . . . , NF ,
(23)

where T̂m(αu, α̂u) is a local linear approximation of the RHS
of (22) after the change of variables (COV). Details are shown
in Appendix B.

The SCA algorithm starts by a feasible initialization α̂u,m =

α̂
(0)
u,m,∀u,m. After this, (14) is solved with constraints (17)

and (23) and with appropriate change of variables to obtain
a solution α

(∗)
u,m which is used as a new point for the linear

approximation. The procedure is repeated until convergence.
The SCACOV is summarized in Fig. 3. Because the linear
approximation T̂m(αu, α̂u) is always below the approxi-
mated convex function (RHS of (22)), the points satisfying
the approximated constraint (23) always satisfy the original
constraint (22). By projecting the optimal solution from the
approximated problem to the original convex function (RHS
in (38)) the constraint becomes loose and thus, the objective
can always be reduced. Hence, the objective value of this type
of iterative algorithm converges monotonically towards a local
optimum of the original problem.

2) SCAGP: In a standard form of geometric programming
(GP) [25] constraint, the LHS is a posynomial and RHS is a
monomial. For SCAGP, the constraint needs to be in such a
form that it has a posynomial on both sides of the inequality
sign. Then, the RHS can be successively approximated by
a monomial using [6, Eq. (36)], and a local solution can
be found iteratively by updating the parameters in monomial
approximation.

Constraint (22) can be approximated ∀u,m using
NF∑
l=1

(κu + 2dul )Pu,l +
2

NF

NF∑
n1,n2=1
n2>n1

η̂u+n1n2m

√
Pu,n1Pu,n2

≤ Âm(Pu, b
u),

(24)

where Âm(Pu, b
u) is a monomial approximation of the RHS

of (22). Detailed derivation of SCAGP for PAPR constraint in
SC-FDMA is shown in Appendix C.

The LHS is a posynomial and RHS is a monomial and
hence, (24) is a valid GP constraint. Similarly to SCACOV,
(24) can be used updating the approximation point iteratively.
Because the monomial approximation is never above the

approximated summation, the same arguments describing the
convergence presented for SCACOV apply also in this case.
Hence, it is guaranteed that the objective value of the SCA
with (24) converges monotonically towards the local optimum
of the original problem.

B. PAPR constraint for OFDMA

Similarly to SC-FDMA, the PAPR constraint for OFDMA
can be written as

NF∑
l=1

|bul |2Pu,l +

NF∑
n1,n2=1
n2>n1

d̃u+mn2n1

√
Pu,n1Pu,n2

≤ δu

NF∑
l=1

Pu,l +

NF∑
n1,n2=1
n2>n1

(−d̃u−mn2n1
)
√
Pu,n1Pu,n2 , (25)

where d̃u+mn2n1
, d̃u−mn2n1

∈ R, ∀u,m, n1, n2. A detailed deriva-
tion can be found in Appendix D. The major difference
between the OFDMA’s PAPR constraint and the SC-FDMA’s
PAPR constraint presented in (22) is in the factors η̂u+n1n2m,
η̂u−n1n2m, d̃u+mn2n1

and d̃u−mn2n1
. Similarly to Sections V-A1 and

V-A2, constraint (25) can be successively approximated as
SCACOV or SCAGP. SCACOV and SCAGP derivation can
be found in Appendices E and F, respectively.

VI. POWER VARIANCE CONSTRAINT

Another way to reduce the PAPR is to reduce the variance
of the power of the transmitted time domain signal [17], [18].
The variance is taken over all possible symbol sequences
and therefore, unlike in instantaneous PAPR constraint, the
variance constraint does not depend on the transmitted symbol
sequence. Note that reducing the power variance leads to
statistically decreased PAPR. In this paper, we investigate
this relationship of PAPR and power variance by deriving a
constraint that restricts the power variance below a desired
threshold.

A. Power variance constraint for SC-FDMA

Assuming E{|bun|} = 1, ∀u, n and E{bun1
bu∗n2

} = 0, ∀n1 ̸=
n2, the power variance constraint can be written as

(NF − 1)(

NF∑
l=1

Pu,l)
2 ≤

NF∑
n1,n2∈S1

Pu,n1Pu,n2+

NF∑
n1,n2,n3,n4∈S2

√
Pu,n1Pu,n2Pu,n3Pu,n4 + (

NF∑
l=1

Pu,l)
2σ̃2

uN
3
F ,

(26)

where σ̃2
u is the preset upper bound of the variance of

transmitted power for the uth user. The details, including the
definition of the summation sets S1 and S2, can be found in
Appendix G. Both sides of (26) are posynomials. Thus, SCA is
needed for the RHS. Both, SCACOV and SCAGP are applied
for approximating (26) in Appendices H and I, respectively.
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B. Power variance constraint for OFDMA

In the case of OFDMA, the variance constraint is written
as

2

N2
F

NF∑
n1,n2=1
n2>n1

Pu,n2Pu,n1 ≤ σ̃2
u

(
NF∑
m=1

Pu,m

)2

. (27)

The details are shown in Appendix J. Again, both sides of (27)
are posynomials. Thus, SCA is needed for the RHS of (27).
Both, SCACOV and SCAGP are applied for approximating
(27) in Appendices K and L, respectively.

VII. NUMERICAL RESULTS

In this section, the results obtained in the simulations are
presented.

A. Simulation setup

The results are obtained with the following parameters:
NF = 8, quadrature phase-shift keying (QPSK) (NQ = 2) and
16-ary quadrature amplitude modulation (16QAM) (NQ = 4)
with Gray mapping, and systematic repeat accumulate (RA)
code [26] with a code rate of 1/3 and eight internal iterations.
Uniform diagonal sampling [6] is used for EXIT sampling in
the QoS constraint, and the number of samples is K = 5. The
SNR per user and per RX antenna averaged over frequency
bins is defined by SNR= tr{P}/(UNRNFσ

2
v). We consider

two different channel conditions, namely, a static 5-path chan-
nel, where path gains were generated randomly, and a quasi-
static Rayleigh fading 5-path average equal gain channel. The
stopping criterion of the optimization algorithms is that the
change in the objective function becomes less than or equal
to a small specific value between two successive iterations. In
simulations, the stopping threshold value was set at 0.05 for
TX-RX alternations and 0.01 for SCAs.

Let ÎE
u and I̊E

u denote the MI at the output of the equalizer
of the uth user and at the output of the decoder of the uth user,
respectively. The QoS target used in the simulations is the MI
target after the turbo iterations in the RX denoted as I̊E,target

u

and ÎE,target
1 . MI point can be converted to bit error probability

(BEP) by using [27, Eq. (31)].
The PAPR cannot be considered as the only performance

metric since there is often a tradeoff between the PAPR
and the average power, i.e., a decrease in PAPR may lead
to an increase of the average power and vice versa. The
peak power of the transmission is defined as Pmax(dB) =
Pavg(dB) + PAPR(dB), where Pavg = SNR×NR × σ2

v

denotes the average power of user u. If the peak power can
be reduced, the average power can be increased and thus, we
can use the metric SNR(dB) + PAPR(dB) to compare the
algorithms in terms of the range of the transmission.

B. Initialization

To employ the SCAs presented in this paper, it is necessary
to find a feasible starting point for the iterative algorithm.
In the case of SC-FDMA, it can be found by setting the
power to be equal for all subcarriers. The power level has

1: Calculate the ZF matrix for the frequency domain channel.
2: Find the power allocation satisfying QoS constraint.
3: repeat
4: Set Pu,n = Pu,n + ϵ, for all u, for some n ∈

{1, 2, . . . , NF }, and ϵ > 0.
5: Calculate PAPR for all the users PAPRu.
6: until PAPR≤ δu

Fig. 4. Initialization of the optimization algorithm in OFDMA.

to be high enough to satisfy the QoS constraints and it can be
found by using a bisection algorithm [25]. In equal allocation,
the PAPR is 0 dB and 2.55 dB for QPSK and 16QAM,
respectively, which are the modulation schemes considered in
the simulations. As long as the target PAPR is above this value,
the result obtained by equal allocation satisfies the PAPR
constraint for SC-FDMA.

In the case of OFDMA, a feasible starting point for the
iterative algorithm can be found, for example, with the help
of spatial zero forcing (ZF) [4] RX. It is straightforward to
show that, for OFDMA, maxm |sum|2

avg[|sum|2] → 1 when Pu,n → ∞
for some n. Increasing Pu,n does not violate the SINR
constraint because ZF RX removes all the interference. The
feasible initialization method is summarized in Fig. 4. Step
2 can be performed by allocating the same power for all
the subcarriers. The power level can be found by using a
bisection algorithm [25]. This initialization method presented
above applies also with appropriate modifications for a power
variance-constrained problem. Numerical results revealed that
in this particular case the optimization is not highly sensitive
to initializations. It is worthwhile to notice that in all results
presented in this paper, SCACOV and SCAGP converge to-
wards the same objective value.

C. PAPR constraint

To demonstrate the operational principle of the PAPR con-
straint, EXIT simulations were carried out in a static channel
for a fixed symbol sequence. The EXIT curve of the decoder is
obtained by using 200 blocks for each a priori value, with the
size of a block being 6000 bits. The EXIT chart of the turbo
equalizer when precoding with instantaneous PAPR constraint
is presented in Fig. 5. SC-FDMA and OFDMA denote the
schemes without the PAPR constraint, i.e., with the QoS
constraint only. The SC-FDMA result is obtained via SCAGP
approximation. Clipping denotes the case where the signal is
clipped when the power exceeds the peak value calculated
from the PAPR threshold. The minimum gap between the
EXIT curves of the equalizer and the decoder of user u can
be controlled by changing the parameter ϵu2.

It can be also seen from Fig. 5 that, with SC-FDMA, the
minimum gap between the EXIT curves can be suppressed
down to ϵu according to the convergence constraint. For
OFDMA, the gap is larger than ϵu, which results in signifi-
cantly larger SNR requirements compared to SC-FDMA. This
can be seen in Table II, where the corresponding SNR and

2The reader is guided to [6] for more detailed information on CCPA.
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ÎAu,k/I̊
E

u,k

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Î
E u
,k
/
I̊
A u
,k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Decoder
OFDMA without PAPR constr.
OFDMA with clipping 3 dB
OFDMA SCAGP 3 dB
OFDMA SCACOV 3 dB
SC-FDMA without PAPR constr.
SC-FDMA with clipping 3 dB
SC-FDMA SCAGP 3 dB
SC-FDMA SCACOV 3 dB

Fig. 5. EXIT chart for δu = 3 dB. U = 2, NR = 2, NQ = 2, ÎE,target
u =

0.7892, u = 1, 2, I̊
E,target
u = 0.9998, u = 1, 2, ϵu = 0.02, u = 1, 2,

b1 = 1/
√
2[−1 − i,−1 − i,−1 − i, 1 + i,−1 − i, 1 + i, 1 − i, 1 + i]T,

b2 = 1/
√
2[−1+ i,−1+ i, 1− i,−1+ i,−1+ i,−1− i,−1+ i,−1+ i]T.

PAPR are listed together with the summation of SNR and
PAPR for each algorithm used. The larger SNR requirement
of OFDMA compared to SC-FDMA is due to the difference
in convergence constraints. In the case of OFDMA, the SINR
requirement is the same for all subcarriers, unlike in SC-
FDMA where the average of SINRs over the subcarriers is
used. On the other hand, there is no intra-user interference in
OFDMA, unlike in SC-FDMA for which the starting point in
the EXIT chart is interference-limited. Hence, the target point
in the case of OFDMA can be achieved even with linear RX
by simply increasing the power in all the subcarriers. Clipping
reduces the SNR but convergence to the desired MI point is not
guaranteed. In the case of SC-FDMA with clipping, the EXIT
curves intersect at MI point (I̊E

u, Î
E
u) = (0.1936, 0.2254),

which corresponds to BEP value 0.2053.
It can be seen from Table II that the PAPR threshold used

in Fig. 5 is not exceeded with the PAPR constraint. The sum
of SNR and PAPR describes the actual power gain achieved
by the proposed algorithms, which helps to improving the
QoS for cell edge users. It can be seen that in the case of
OFDMA the improvement when using the PAPR constraint is
9.31 dB − 8.44 dB = 0.87 dB. In the case of SC-FDMA,
the improvement is 3.16 dB and 3.17 dB for SCAGP and
SCACOV, respectively.

In Fig. 6, the required SNR versus BEP is presented,
where the results are obtained by averaging over 200 channel
realizations. Four different BEP target values are considered
for u = 1, 2, namely 10−3, 10−4, 10−5 and 10−6. It can
be seen that for SC-FDMA, the required SNR is roughly the
same with and without the PAPR constraint, i.e., the PAPR
can be suppressed to 3 dB without a significant increase in
transmit power. For OFDMA, the required SNR is increased
by 1.19-1.83 dB, depending on the BEP target and algorithm
used.

Complementary cumulative distribution functions (CCDF)
Prob(PAPR > δ) for SC-FDMA and OFDMA without PAPR
constraints and with a BEP target of 10−5 are plotted in

SNR (dB)
2 4 6 8 10 12 14

B
E

P

10-6

10-5

10-4

10-3

OFDMA without PAPR constr
OFDMA SCAGP 3 dB
OFDMA SCACOV 3 dB
SC-FDMA without PAPR constr.
SC-FDMA SCAGP 3 dB
SC-FDMA SCACOV 3 dB

Fig. 6. BEP comparison with δu = 3 dB. U = 2, NR = 2, NQ = 2,
ϵu = 0.1, u = 1, 2.

δ (dB)
0 1 2 3 4 5 6 7 8 9 10

Pr
ob

(P
A

PR
(s

u )>
δ
)

10-6

10-5

10-4

10-3

10-2

10-1

100

OFDMA
SC-FDMA

Fig. 7. CCDFs for SC-FDMA and OFDMA with BEP target 10−5. U = 2,
NR = 2, NQ = 2, Î

E,target
u = 0.7892, u = 1, 2, I̊

E,target
u = 0.9998,

u = 1, 2, ϵu = 0.1, u = 1, 2.

Fig. 7. CCDFs are calculated such that 105 randomly generated
symbol sequences of length NF for each user are sent over
200 channel realizations. Obviously, for the algorithms with
PAPR constraint, the CCDF is 0 when the PAPR is larger
than the PAPR threshold. For a CCDF value of 10−5, the
corresponding PAPRs are 7.66 dB and 8.52 dB for SC-
FDMA and OFDMA, respectively. From Figs. 6 and 7, we can
calculate the SNR+PAPR gains for SC-FDMA to be 4.63 dB
and 4.29 dB for SCAGP and SCACOV, respectively. Similarly
for OFDMA, the gains are 4.29 dB and 4.00 dB, respectively.

D. Power variance constraint

CCDFs for the OFDMA scheme when precoding with a
variance constraint is shown in Fig. 8. It can be seen that
the PAPR can be significantly reduced by decreasing the
variance. In fact, the PAPR approaches the theoretical limit„
i.e., 2.55 dB for 16 QAM when the variance target approaches
zero. However, because the per-subcarrier SINR constraint is
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TABLE II
SNR AND PAPR COMPARISON IN A STATIC CHANNEL

Algorithm SNR (dB) PAPR (dB) SNR + PAPR (dB)
OFDMA 4.97 4.34 9.31
OFDMA with clipping 4.37 3.00 7.37
OFDMA SCAGP 5.44 3.00 8.44
OFDMA SCACOV 5.46 2.98 8.44
SC-FDMA 1.38 6.22 7.60
SC-FDMA with clipping 0.49 3.00 3.49
SC-FDMA SCAGP 1.44 3.00 4.44
SC-FDMA SCACOV 1.44 2.99 4.43

δ (dB)
0 2 4 6 8 10 12

P
ro
b
(P
A
P
R
(s

u
)
>

δ
)

10-6

10-5

10-4

10-3

10-2

10-1

100
OFDMA, SNR=6.33 dB

SCAGP, σ̃2
u
= 0.01,

SNR=9.07 dB

SCACOV, σ̃2
u
= 0.01,

SNR=9.82 dB

SCAGP, σ̃2
u
= 0.001,

SNR=21.12 dB

SCAGP, σ̃2
u
= 0.0001,

SNR=31.43 dB

SCAGP, σ̃2
u
= 0.00001,

SNR=51.51 dB

Fig. 8. CCDFs for OFDMA with variance constraint. BEP target=10−5,
U = 4, NR = 4, NQ = 4, ÎE,target

u = 0.7892, ∀u, I̊E,target
u = 0.9998, ∀u,

ϵu = 0.1, ∀u.

used as a QoS constraint, the SNR increase is high compared
to the PAPR reduction.

CCDFs for the SC-FDMA scheme when precoding with a
variance constraint are shown in Fig. 9. It can be seen that
the PAPR can be significantly reduced with a minor increase
in SNR by decreasing the power variance. Similarly to the
OFDMA case, the PAPR approaches the theoretical limit when
the variance target approaches zero.

VIII. CONCLUSIONS

In this paper, we have formulated PAPR constrained power
allocation problem for multicarrier transmission with iterative
MMSE multiuser multiantenna RX. We derived an analytical
expression of PAPR as a function of transmit power allocation
for SC-FDMA and OFDMA. The derived PAPR constraints
are applicable for any normalized data modulation format. In
addition, a statistical approach considering the transmission
power variance constrained power allocation was derived.
Two different successive convex approximations were derived
for all the proposed constraints. Numerical results indicate
that instead of amplitude clipping, the PAPR constraint is of
crucial importance to guarantee the convergence of an iterative
equalizer. It was also observed that the proposed techniques
can significantly improve the efficiency of the transmission
of power limited users. Hence, the constraints derived in this
paper are especially beneficial for the users on the cell edge

δ (dB)
0 1 2 3 4 5 6 7 8 9 10

P
ro
b
(P
A
P
R
(s

u
)
>

δ
)

10-6

10-5

10-4

10-3

10-2

10-1

100
SC-FDMA, SNR=4.05 dB

SCAGP, σ̃2
u
= 0.001,

SNR=4.43 dB

SCACOV, σ̃2
u
= 0.001,

SNR=4.44 dB

SCAGP, σ̃2
u
= 0.0001,

SNR=4.79 dB

SCACOV, σ̃2
u
= 0.0001,

SNR=4.99 dB

SCAGP, σ̃2
u
= 0.00001,

SNR=5.00 dB

SCAGP, σ̃2
u
= 0.000001,

SNR=5.02 dB

Fig. 9. CCDFs for SC-FDMA with variance constraint. BEP target=10−5,
U = 4, NR = 4, NQ = 4, ÎE,target

u = 0.7892, ∀u, I̊E,target
u = 0.9998, ∀u,

ϵu = 0.1, ∀u.

because the coverage area of the cell can be increased for a
given QoS target.

The PAPR and the variance constraints depend only on the
local information, i.e., the power allocation and the transmitted
symbol sequence in the case of instantaneous PAPR constraint,
and the power allocation only in the case of the power
variance constraint. If the QoS constraint requires centralized
processing, the intuition is that the power variance constraint
is a better alternative because it does not require information
about the transmitted symbol sequence. However, if the QoS
constraint can be handled by using the local information,
instantaneous PAPR constraint can be used because the in-
formation about the symbol sequence is available.
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APPENDIX A
THE INSTANTANEOUS POWER OF THE TRANSMITTED

SIGNAL IN SC-FDMA

The power of the transmitted waveform of user u at time
instant m is calculated as

|sum|2 = |
NF∑
n=1

gum,nb
u
n|2

=
1

N2
F

(
NF∑
n=1

(
bunb

u∗
n

( NF∑
l=1

√
Pu,lalnm

)2)

+

NF∑
n1,n2=1
n1 ̸=n2

(
bun1

bu∗n2

( NF∑
l=1

√
Pu,laln1m

)( NF∑
l=1

√
Pu,laln2m

)))

=
1

N2
F

(
NF∑
n=1

|bun|2
NF∑
l=1

Pu,l+

NF∑
n=1

|bun|2
NF∑

n1,n2=1
n1 ̸=n2

√
Pu,n1Pu,n2ann1n2a

∗
mn1n2

+

NF∑
n1,n2=1
n1 ̸=n2

bun1
bu∗n2

NF∑
l=1

Pu,laln1q

+

NF∑
n1,n2=1
n1 ̸=n2

bun1
bu∗n2

NF∑
n′
1,n

′
2=1

n′
1 ̸=n′

2

√
Pu,n′

1
Pu,n′

2
an′

1n1ma∗n′
2n2m

)
,

(28)

where gum,n = 1
NF

∑NF

q=1

√
Pu,qaqmn and aqmn =

e
j2π(q−1)(m−n)

NF . The second term of (28) can be rewritten as

NF∑
n=1

|bun|2
NF∑

n1,n2=1
n1 ̸=n2

√
Pu,n1Pu,n2ann1n2a

∗
mn1n2

=

NF∑
n1,n2=1
n1 ̸=n2

βu
mn1n2

√
Pu,n1Pu,n2 , (29)

where

βu
mn1n2

=

NF∑
n=1

|bun|2
(
R[ann1n2 ]R[amn1n2 ]+

I[amn1n2 ]I[ann1n2 ]
)
. (30)

Operators R and I in (30) take the real and imaginary part
of a complex argument, respectively.

The third term of (28) can rewritten as

1

N2
F

NF∑
n1,n2=1
n1 ̸=n2

bun1
bu∗n2

NF∑
l=1

Pu,laln1n2 =
1

N2
F

NF∑
l=1

Pu,l2d
u
l , (31)

where

dul =

NF∑
n2,n1=1
n1>n2

(
R[aln1n2 ](R[bun1

]R[bun2
] + I[bun1

]I[bun2
])+

I[aln1n2 ](R[bun1
]I[bun2

]− I[bun1
]R[bun2

])
)
. (32)

Denoting

ηun1n2m =

NF∑
n4,n3=1
n3>n4

(
(R[bun3

]R[bun4
] + I[bun3

]I[bun4
])

(R[an1n3ma∗n2n4m] +R[an1n4ma∗n2n3m])−
(I[bun3

]R[bun4
]−R[bun3

]I[bun4
])(I[an1n3ma∗n2n4m]

− I[an1n4ma∗n2n3m])
)
, (33)

the last term of (28) can be expressed as

1

N2
F

NF∑
n1,n2=1
n1 ̸=n2

bun1
bu∗n2

NF∑
n′
1,n

′
2=1

n′
1 ̸=n′

2

√
Pu,n′

1
Pu,n′

2
an′

1n1ma∗n′
2n2m

= 2

NF∑
n1,n2=1
n2>n1

ηun1n2m

√
Pu,n1Pu,n2 .

(34)

Substituting (29), (31) and (34) to (28), the signal power is
expressed as

|sum|2 =
1

N2
F

NF∑
l=1

(
κu + 2dul

)
Pu,l+

2

N2
F

NF∑
n1,n2=1
n2>n1

(
βu
mn1n2

+ ηun1n2m

)√
Pu,n1Pu,n2 , (35)

where κu =
∑NF

n=1 |bun|2.
The term κu + 2dul can be rewritten as

κu + 2dul =
( NF∑

n=1

bunaln1

)( NF∑
n=1

bunaln1

)∗
≥ 0. (36)

However, the factor βu
mn1n2

+ ηun1n2m can be negative, de-
pending on the symbol sequence and the power allocation.
Let η̂u+n1n2m = max{0, βu

mn1n2
+ ηun1n2m} and η̂u−n1n2m =

min{βu
mn1n2

+ ηun1n2m, 0}. In such a case, the instantaneous
PAPR constraint can be written as

1

NF

NF∑
l=1

(
κu + 2dul

)
Pu,l +

2

NF

NF∑
n1,n2=1
n2>n1

η̂u+n1n2m

√
Pu,n1Pu,n2

≤ δu

NF∑
l=1

Pu,l +
2

NF

NF∑
n1,n2=1
n2>n1

(−η̂u−n1n2m)
√

Pu,n1Pu,n2 ,

∀m = 1, 2, . . . , NF , ∀u = 1, 2, . . . , U, (37)

where all the terms in each summation are non-negative. It
should be noted that the number of summation terms in (35)
increases in the order of N4

F −N2
F (1 + 2

∑NF−1
n=1 n) +NF +

(
∑NF−1

n=1 n)2, where the negative term is due to the inequality
sign in summation limits in (35).
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APPENDIX B
SCACOV FOR PAPR CONSTRAINT IN SC-FDMA

Denoting Pu,l = eαu,l , u = 1, 2, . . . , U , l = 1, 2, . . . , NF ,
constraint (22) becomes

1

NF

NF∑
l=1

(κu + 2dul )e
αu,l +

2

NF

NF∑
n1,n2=1
n2>n1

η̂u+n1n2me
1
2 (αu,n1+αu,n2 )

≤ δu

NF∑
l=1

eαu,l +
2

NF

NF∑
n1,n2=1
n2>n1

(−η̂u−n1n2m)e
1
2 (αu,n1+αu,n2 ).

(38)

The summation of exponentials is convex, and hence both
sides of (38) are convex functions.

Let

Tm(αu) =δu

NF∑
l=1

eαu,l+

2

NF

NF∑
n1,n2=1
n2>n1

(−η̂u−n1n2m)e
1
2 (αu,n1+αu,n2 ),

where αu = [αu,1, αu,2, . . . , αu,NF
]T. The best concave

approximation of Tm(αu) at a point α̂u is given by

T̂m(αu, α̂u) = Tm(α̂u)+

NF∑
k=1

∂Tm

∂αu,k
(α̂u)(αu,k−α̂u,k). (39)

The partial derivative ∂Tm

∂αu,k
is derived as

∂Tm

∂αu,k
= δue

αu,k + 1
NF

∑NF

n=k+1(−η̂u−knm)e
1
2 (αu,k+αu,n)

+ 1
NF

∑k−1
n=1(−η̂u−nkm)e

1
2 (αu,n+αu,k). (40)

The best convex approximation of (38) at a point α̂u is
written as

NF∑
l=1

(κu + 2dul )e
αu,l +

2

NF

NF∑
n1,n2=1
n2>n1

η̂u+n1n2me
1
2 (αu,n1+αu,n2 )

≤ T̂m(αu, α̂u), u = 1, 2, . . . , U,m = 1, 2, . . . , NF .
(41)

APPENDIX C
SCAGP FOR PAPR CONSTRAINT IN SC-FDMA

Let

Am(Pu) = δu

NF∑
l=1

Pu,l+

2

NF

NF∑
n1,n2=1
n2>n1

(−η̂u−n1n2m)
√
Pu,n1

Pu,n2
. (42)

Applying [6, Eq. (36)]3 to Am(Pu) yields a lower bound (43),
where

θ
(1)
ul =

Pu,l∑NF

l′=1 Pu,l′
,

θ(2)n1n2mu =
−η̂u−n1n2m

√
Pu,n1Pu,n2∑NF

n′
1,n

′
2=1

n′
2>n′

1

−η̂u−n′
1n

′
2m

√
Pu,n′

1
Pu,n′

2

, (44)

and τ
(1)
um and τ

(2)
um are given in (45). Hence, constraint (22) can

be approximated ∀u,m using (46).

APPENDIX D
PAPR CONSTRAINT FOR OFDMA

Similarly to SC-FDMA, the average power in the case of
OFDMA is

avg[|sum|2] = 1

NF

NF∑
l=1

Pu,l, (47)

i.e., the same as in the case of SC-FDMA.
The power of the mth transmitted waveform can be calcu-

lated as

|sum|2 =
1

NF

NF∑
l=1

|bul |2Pu,l +
1

NF

NF∑
n1,n2=1
n2>n1

d̃umn2n1

√
Pu,n1Pu,n2 ,

(48)

where

d̃umn2n1
= 2

(
R[amn2n1 ]

(
R[bun2

]R[bun1
] + I[bun2

]I[bun1
]

)

− I[amn2n1 ]

(
R[bun2

]I[bun1
]− I[bun2

]R[bun1
]

))
.

(49)

The number of summation terms in (48) increases in the order
or N2

F −
∑NF−1

n=1 n. The PAPR constraint for OFDMA can be
written as

NF∑
l=1

|bul |2Pu,l +

NF∑
n1,n2=1
n2>n1

d̃u+mn2n1

√
Pu,n1Pu,n2

≤ δu

NF∑
l=1

Pu,l +

NF∑
n1,n2=1
n2>n1

(−d̃u−mn2n1
)
√
Pu,n1Pu,n2 , (50)

where d̃u+mn2n1
= max{0, d̃umn2n1

} and d̃u−mn2n1
=

min{d̃umn2n1
, 0}.

APPENDIX E
SCACOV FOR PAPR CONSTRAINT IN OFDMA

Changing the variables as Pu,m = eαu,m , ∀u,m, the
approximation of (25) is written as
NF∑
l=1

|bul |2eαu,l +

NF∑
n1,n2=1
n2>n1

d̃u+mn2n1
e

1
2 (αu,n1+αu,n2 ) ≤ T̂m(αu, α̂u),

(51)

3This bound is derived using the inequality of weighted arithmetic mean
and weighted geometric mean.
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Am(Pu) ≥

(δu
∏NF

l=1

(
Pu,l

θ
(1)
ul

)θ
(1)
ul

τ
(1)
um

)τ
(1)
um
( 2

NF

∏NF
n1,n2=1
n2>n1

(
(−η̂u−

n1n2m)
√

Pu,n1Pu,n2

θ
(2)
n1n2mu

)θ
(2)
n1n2mu

τ
(2)
um

)τ
(2)
um

(43)

τ (1)
um =

δu
∏NF

l=1

(
Pu,l

θ
(1)
ul

)θ
(1)
ul

δu
∏NF

l=1

(
Pu,l

θ
(1)
ul

)θ
(1)
ul

+ 2
NF

∏NF
n1,n2=1
n2>n1

(
(−η̂u−

n1n2m)
√

Pu,n1Pu,n2

θ
(2)
n1n2mu

)θ
(2)
n1n2mu

τ (2)
um =

2
NF

∏NF
n1,n2=1
n2>n1

(
(−η̂u−

n1n2m)
√

Pu,n1Pu,n2

θ
(2)
n1n2mu

)θ
(2)
n1n2mu

δu
∏NF

l=1

(
Pu,l

θ
(1)
ul

)θ
(1)
ul

+ 2
NF

∏NF
n1,n2=1
n2>n1

(
(−η̂u−

n1n2m)
√

Pu,n1Pu,n2

θ
(2)
n1n2mu

)θ
(2)
n1n2mu

(45)

NF∑
l=1

(κu + 2dul )Pu,l +
2

NF

NF∑
n1,n2=1
n2>n1

η̂u+
n1n2m

√
Pu,n1Pu,n2 ≤

(δu
∏NF

l=1

(
Pu,l

θ
(1)
ul

)θ
(1)
ul

τ
(1)
um

)τ
(1)
um
( 2

NF

∏NF
n1,n2=1
n2>n1

(
(−η̂u−

n1n2m)
√

Pu,n1Pu,n2

θ
(2)
n1n2mu

)θ
(2)
n1n2mu

τ
(2)
um

)τ
(2)
um

(46)

where T̂m(αu, α̂u) is given in (39), Tm(αu) is the RHS
of (25) after change of variables (COV), and the partial
derivatives are given as

∂Tm

∂αu,k
=δue

αu,k +
1

2

NF∑
n=k+1

(−d̃u−mkn)e
1
2 (αu,k+αu,n)+

1

2

k−1∑
n=1

(−d̃u−mnk)e
1
2 (αu,n+αu,k). (52)

APPENDIX F
SCAGP FOR PAPR CONSTRAINT IN OFDMA

Applying [6, Eq. (36)] to RHS of (25) yields a constraint
(53). where

θ
(1)
ul =

Pu,l∑NF

l′=1 Pu,l′
,

θ(2)mn2n1u =
−d̃u−mn2n1

√
Pu,n1Pu,n2∑NF

n′
1,n

′
2=1

n′
2>n′

1

−d̃u−mn′
2n

′
1

√
Pu,n′

1
Pu,n′

2

, (54)

and τ
(1)
um and τ

(2)
um are given in (55). Hence, constraint (25) can

be approximated ∀u,m using SCA with (53). The LHS is a
posynomial and RHS is a monomial and hence, (53) is a valid
GP constraint.

APPENDIX G
POWER VARIANCE CONSTRAINT FOR SC-FDMA

Let the average power of the transmitted signal of the uth

user be denoted as µu = 1
NF

∑NF

l=1 Pu,l. Assuming E{|bun|} =

1, ∀u, n and E{bun1
bu∗n2

} = 0, ∀n1 ̸= n2, the variance of the
output power is given by

Σ2(Pu) =
1

NF

NF∑
k=1

(E[|suk |4]− µ2
u)

=
1

NF

NF∑
k=1

[2(

NF∑
m=1

|guk,m|2)2 −
NF∑
m=1

|guk,m|4]− µ2
u.

(56)

The first term reduces to

1

NF

NF∑
k=1

(

NF∑
m=1

|guk,m|2)2 = µ2
u. (57)

The second term can be expressed as a function of power
allocation as

1

NF

NF∑
k=1

NF∑
m=1

|guk,m|4 =
µ2
u

NF
+

1

N3
F

NF∑
n1,n2∈S1

Pu,n1Pu,n2+

1

N3
F

NF∑
n1,n2,n3,n4∈S2

√
Pu,n1Pu,n2Pu,n3Pu,n4 ,

(58)

where S1 =
{
n1, n2 ∈ {1, 2, . . . , NF } : n1 ̸= n2, n1 − n2 =

±NF /2
}

and S2 =
{
n1, n2, n3, n4 ∈ {1, 2, . . . , NF } : n1 ̸=

n2, n3 ̸= n4, (n1, n2) ̸= (n3, n4), n4 − n3 ∈ {n1 − n2, NF +

n1−n2,−NF +n1−n2}
}

. Substituting (57) and (58) in (56)
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NF∑
l=1

|bul |2Pu,l +

NF∑
n1,n2=1
n2>n1

d̃u+mn2n1

√
Pu,n1Pu,n2 ≤

(δu
∏NF

l=1

(
Pu,l

θ
(1)
ul

)θ
(1)
ul

τ
(1)
um

)τ
(1)
um
(∏NF

n1,n2=1
n2>n1

(
(−d̃u−

mn2n1
)
√

Pu,n1Pu,n2

θ
(2)
mn2n1u

)θ
(2)
mn2n1u

τ
(2)
um

)τ
(2)
um

(53)

τ (1)
um =

δu
∏NF

l=1

(
Pu,l

θ
(1)
ul

)θ
(1)
ul

δu
∏NF

l=1

(
Pu,l

θ
(1)
ul

)θ
(1)
ul

+
∏NF

n1,n2=1
n2>n1

(
(−d̃u−

mn2n1
)
√

Pu,n1Pu,n2

θ
(2)
mn2n1u

)θ
(2)
mn2n1u

τ (2)
um =

∏NF
n1,n2=1
n2>n1

(
(−d̃u−

mn2n1
)
√

Pu,n1Pu,n2

θ
(2)
mn2n1u

)θ
(2)
mn2n1u

δu
∏NF

l=1

(
Pu,l

θ
(1)
ul

)θ
(1)
ul

+
∏NF

n1,n2=1
n2>n1

(
(−d̃u−

mn2n1
)
√

Pu,n1Pu,n2

θ
(2)
mn2n1u

)θ
(2)
mn2n1u

(55)

we get

Σ2(Pu) =
NF − 1

N3
F

(

NF∑
l=1

Pu,l)
2 − 1

N3
F

NF∑
n1,n2∈S1

Pu,n1Pu,n2−

1

N3
F

NF∑
n1,n2,n3,n4∈S2

√
Pu,n1Pu,n2Pu,n3Pu,n4 . (59)

The number of summation terms in
∑NF

n1,n2,n3,n4∈S2
is N3

F −
N2

F − NF . Hence, the number of summation terms in (59)
increases in the order of N3

F −N2
F +NF . The objective is to

control the variance of the normalized power, and hence Pu,l

in (59) is divided by
∑NF

n=1 Pu,n, ∀l. Hence, the constraint for
power variance is written as

Σ2(Pu) ≤ σ̃2
u(

NF∑
l=1

Pu,l)
2, (60)

where σ̃2
u ∈ R+ is the preset upper bound of the variance of

transmitted power for the uth user. Plugging (59) into (60) the
constraint can be written as

(NF − 1)(

NF∑
l=1

Pu,l)
2 ≤

NF∑
n1,n2∈S1

Pu,n1Pu,n2+

NF∑
n1,n2,n3,n4∈S2

√
Pu,n1Pu,n2Pu,n3Pu,n4 + (

NF∑
l=1

Pu,l)
2σ̃2

uN
3
F .

(61)

APPENDIX H
SCACOV FOR POWER VARIANCE CONSTRAINT IN

SC-FDMA

Changing the variables as Pu,m = eαu,m , ∀u,m, both LHS
and RHS of (26) are convex functions. The linear upper bound
of the convex RHS is approximated a convex constraint

(NF − 1)(

NF∑
l=1

eαu,l)2 ≤ T̂ (αu, α̂u), (62)

where T̂ (αu, α̂u) is given in (39), T (α̂u) is the RHS of (26)
after change of variables, and the partial derivatives are given
as

∂T

∂αu,k
=2

NF∑
n=1
n ̸=k

n−k=±NF /2

eαu,n+αu,k+

2

NF∑
n1,n2,n3=1
n1 ̸=n2,n3 ̸=k

(n1,n2 )̸=(n3,k)
k−n3∈S

e
1
2 (αu,n1+αu,n2+αu,n3+αu,k)

+ 2σ̃2
uN

3
F (

NF∑
l=1

eαu,l+αu,k)2, (63)

where S = {n1 − n2, NF + n1 − n2,−NF + n1 − n2}.

APPENDIX I
SCAGP FOR POWER VARIANCE CONSTRAINT IN

SC-FDMA
Similarly to Appendix C, applying [6, Eq. (36)] to the RHS

of (26) yields a constraint (64), where the weights are given
in (65) and

θ(1)un1n2
=

Pu,n1Pu,n2∑
n′
1,n

′
2∈S1

Pu,n′
1
Pu,n′

2

,

θ(2)un1n2n3n4
=

√
Pu,n1Pu,n2Pu,n3Pu,n4∑

n′
1,n

′
2,n

′
3,n

′
4∈S2

√
Pun′

1
Pu,n′

2
Pu,n′

3
Pu,n′

4

,

θ
(3)
ul =

P 2
u,l∑NF

l′=1 P
2
u,l′

, θ(4)un1n2
=

Pu,n1Pu,n2∑NF

n′
1,n

′
2=1

n′
2>n′

1

Pu,n′
1
Pu,n′

2

. (66)

APPENDIX J
POWER VARIANCE CONSTRAINT FOR OFDMA

In the case of OFDMA, the first term of (56) reduces to

1

NF

NF∑
k=1

(

NF∑
m=1

|guk,m|2)2 = 2µ2
u, (67)
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(NF − 1)(

NF∑
l=1

Pu,l)
2 ≤

(∏
n1,n2∈S1

(
Pu,n1Pu,n2

θ
(1)
un1n2

)θ(1)un1n2

τ
(1)
u

)τ
(1)
u
(2σ̃2

uN
3
F

∏NF
n1,n2=1
n2>n1

(
Pu,n1Pu,n2

θ
(4)
un1n2

)θ(4)un1n2

τ
(4)
u

)τ
(4)
u

×

(∏
n1,n2,n3,n4∈S2

(√
Pu,n1Pu,n2Pu,n3Pu,n4

θ
(2)
un1n2n3n4

)θ(2)un1n2n3n4

τ
(2)
u

)τ
(2)
u
( σ̃2

uN
3
F

∏NF
l=1

(
P2
u,l

θ
(3)
ul

)θ(3)
ul

τ
(3)
u

)τ
(3)
u

(64)

τ (1)
u =

∑
n1,n2∈S1

Pu,n1Pu,n2∑
n1,n2∈S1

Pu,n1Pu,n2 +
∑

n1,n2,n3,n4∈S2

√
Pu,n1Pu,n2Pu,n3Pu,n4 + (

∑NF
l=1 Pu,l)2σ̃2

uN
3
F

τ (2)
u =

∑
n1,n2,n3,n4∈S2

√
Pu,n1Pu,n2Pu,n3Pu,n4∑

n1,n2∈S1
Pu,n1Pu,n2 +

∑
n1,n2,n3,n4∈S2

√
Pu,n1Pu,n2Pu,n3Pu,n4 + (

∑NF
l=1 Pu,l)2σ̃2

uN
3
F

τ (3)
u =

σ̃2
uN

3
F

∑NF
l=1 P

2
u,l∑

n1,n2∈S1
Pu,n1Pu,n2 +

∑
n1,n2,n3,n4∈S2

√
Pu,n1Pu,n2Pu,n3Pu,n4 + (

∑NF
l=1 Pu,l)2σ̃2

uN
3
F

τ (4)
u =

2σ̃2
uN

3
F

∑NF
n1,n2=1
n2>n1

Pu,n1Pu,n2∑
n1,n2∈S1

Pu,n1Pu,n2 +
∑

n1,n2,n3,n4∈S2

√
Pu,n1Pu,n2Pu,n3Pu,n4 + (

∑NF
l=1 Pu,l)2σ̃2

uN
3
F

(65)

while the second term is simplified to

1

NF

NF∑
k=1

NF∑
m=1

|guk,m|4 =
1

N2
F

NF∑
m=1

P 2
u,m. (68)

Substituting (67) and (68) in (56) we get

Σ2(Pu) =
2

N2
F

NF∑
n1,n2=1
n2>n1

Pu,n2Pu,n1 . (69)

The summation terms in (69) increases in the order of
NF (NF − 1) −

∑NF

n=1 n. After normalization, the variance
constraint is written as

2

N2
F

NF∑
n1,n2=1
n2>n1

Pu,n2Pu,n1 ≤ σ̃2
u

(
NF∑
m=1

Pu,m

)2

. (70)

APPENDIX K
SCACOV FOR POWER VARIANCE CONSTRAINT IN OFDMA

Changing the variables to Pu,m = eαu,m , ∀u,m, constraint
(27) can be approximated as

2

N2
F

NF∑
n1,n2=1
n2>n1

eαu,n2+αu,n1 ≤ T̂ (αu, α̂u), (71)

where T̂ (αu, α̂u) is given in (39), T (α̂u) is the RHS of (26)
after COV, and the partial derivatives are given as ∂T

∂αu,k
=

2σ̃2
u

∑NF

m=1 e
αu,m+αu,k .

APPENDIX L
SCAGP FOR POWER VARIANCE CONSTRAINT IN OFDMA

Applying [6, Eq. (36)] to the RHS of (27) yields a constraint
(72), where the weights are given in

τ (1)u =

∏NF

m=1

(
P 2

u,m

θ
(1)
um

)θ(1)
um

∏NF

m=1

(
P 2

u,m

θ
(1)
um

)θ(1)
um

+ 2
∏

n1,n2=1
n2>n1

N

F

(
Pu,n1Pu,n2

θ
(2)
un1n2

)θ(2)
un1n2

τ (2)u =

2
∏

n1,n2=1
n2>n1

N

F

(
Pu,n1Pu,n2

θ
(2)
un1n2

)θ(2)
un1n2
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and
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