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New Integrated Long-Term Glimpse of RC4

Ryoma Ito and Atsuko Miyaji
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1-1 Asahidai, Nomi-shi, Ishikawa, 923-1292, Japan
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Abstract. RC4, which was designed by Ron Rivest in 1987, is widely
used in various applications such as SSL/TLS, WEP, WPA, etc. In 1996,
Jenkins discovered correlations between one output keystream and a
state location, known as Glimpse Theorem. In 2013, Maitra and Sen
Gupta proved Glimpse Theorem and showed correlations between two
consecutive output keystreams and a state location, called long-term
Glimpse. In this paper, we show a new long-term Glimpse and integrate
both the new and the previous long-term Glimpse into a whole.

Keywords: RC4, correlation, long-term Glimpse

1 Introduction

RC4, which was designed by Ron Rivest in 1987, is widely used in various ap-
plications such as Secure Socket Layer/Transport Layer Security (SSL/TLS),
Wired Equivalent Privacy (WEP) and Wi-fi Protected Access (WPA), etc. Due
to its popularity and simplicity, RC4 has become a hot cryptanalysis target since
its specification was made public on the internet in 1994. For example, typical
attacks on RC4 are distinguishing attack [3, 4, 10], state recovery attack [1, 6, 9]
and key recovery attack [2, 8, 11].

In 1996, Jenkins discovered correlations between one output keystream and a
state location, which is known as Glimpse Theorem [5]. These correlations have
biases with the probability about 2

N higher than that of random association 1
N

using the knowledge of one output keystream. In 2013, Maitra and Sen Gupta
presented the complete proof of Glimpse Theorem and showed Sr[r+1] = N −1
occurs with the probability about 2

N when two consecutive output keystreams
Zr and Zr+1 satisfies Zr+1 = Zr, where Sr[r + 1] is the r + 1-th location of
the state array in the r-th round as usual. They also showed the probability of
Sr[r + 1] = N − 1 is further increased to about 3

N when Zr+1 = r + 2 as well
as Zr+1 = Zr occurs. Here, we call correlation with a probability significantly
higher or lower than 1

N (the probability of random association) positive bias
or negative bias, respectively. Then, their results of Sr[r + 1] = N − 1 with the
probability about 2

N correspond to cases with positive biases. Note that Theorem
2 implicitly means that there exists a value of Sr[r+ 1] with negative bias since
Sr[r + 1] varies in [0, N − 1] when Zr+1 = Zr has happened. We often assume
uniform randomness of other certain events to prove bias of a certain event.
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Therefore, it is important to prove the existence of a value with negative bias
explicitly. We also call such a case with negative bias to dual case of a positive
bias.

In this paper, we first show a dual case of Sr[r+1] = N−1, that is Sr[r+1] =
0, occurs with the probability about 1

N2 when Zr+1 = Zr, which will be shown
as Theorem 4. Then, Theorem 5 will give each probability of Sr[r+1] = 0 when
Zr+1 = r + x (∀x ∈ [0, N − 1]) as well as Zr+1 = Zr occurs. Furthermore,
during our careful observation of the dual case, we also find a new positive
bias on Sr[r + 1], which will be shown in Theorem 6. Our results show that,
giving two consecutive keystreams Zr and Zr+1 satisfying with Zr+1 = Zr and
Zr+1 = r + 1 + x (x ∈ [2, N − 1]), the probability of Sr[r + 1] = N − x is
about 2

N , which is significantly higher than random association 1
N . Note that

the previous results are limited to a value of Sr[r + 1] = N − 1, but our results
varies Sr[r+1] ∈ [0, N −2]. Furthermore, both our new and the previous results
are integrated into long-term Glimpse of Zr+1 = Zr in Theorem 7.

This paper is organized as follows. Section 2 briefly summarizes notation and
RC4 algorithms. Section 3 presents the previous works on Glimpse Theorem [5]
and long-term Glimpse [7]. Section 4 first discusses positive and negative biases,
and shows Theorems 4 to 7. Section 5 demonstrates experimental simulations.
Section 6 concludes this paper.

2 Preliminary

The following notation is used in this paper.

K, l : secret key, the length of secret key (bytes)

r : number of rounds

N : number of arrays in state (typically N = 256)

SK
r or Sr : state of KSA or PRGA after the swap in the r-th round

ir, jr : indices of Sr for the r-th round

Zr : one output keystream for the r-th round

tr : index of Zr

RC4 consists of two algorithms: Key Scheduling Algorithm (KSA) and Pseudo
Random Generation Algorithm (PRGA). KSA generates the state SK

N from a
secret key K of l bytes as described in Algorithm 1. Then, the final state SK

N in
KSA becomes the input of PRGA as S0. Once the state S0 is computed, PRGA
generates one output keystream Zr of bytes as described in Algorithm 2. The
output keystream Zr will be XORed with a plaintext to generate a ciphertext.

Algorithm 1 KSA

1: for i = 0 to N − 1 do
2: SK

0 [i]← i
3: end for
4: j ← 0
5: for i = 0 to N − 1 do
6: j ← j + SK

i [i] +K[i mod l]
7: Swap(SK

i [i], SK
i [j])

8: end for

Algorithm 2 PRGA
1: r ← 0, i0 ← 0, j0 ← 0
2: loop
3: r ← r + 1, ir ← ir−1 + 1
4: jr ← jr−1 + Sr−1[ir]
5: Swap(Sr−1[ir], Sr−1[jr])
6: tr ← Sr[ir] + Sr[jr]
7: Output: Zr ← Sr[tr]
8: end loop
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In this paper, we focus on PRGA and investigate correlations between two
consecutive output keystreams and a state location. The probability of one lo-
cation by random association is 1

N and uniform randomness of the RC4 stream
cipher is assumed if there are no significant biases.

3 Previous works

In 1996, Jenkins discovered correlations between one output keystream and a
state location [5], which is proved as Glimpse Theorem in [7]. Glimpse Theorem
is given as follows.

Theorem 1. [7] After the r-th round of PRGA for r ≥ 1, we have

Pr(Sr[jr] = ir − Zr) = Pr(Sr[ir] = jr − Zr) ≈ 2
N .

In 2013, Maitra and Sen Gupta discovered other correlations between two con-
secutive output keystreams and the r + 1-th location of the state array in the
r-th round, which is called long-term Glimpse [7]. Long-term Glimpse is given
as follows. Note that Theorem 3 is a special case of Theorem 2.

Theorem 2. [7] After the r-th round of PRGA for r ≥ 1, we have

Pr(Sr[r + 1] = N − 1|Zr+1 = Zr) ≈ 2
N .

Theorem 3. [7] After the r-th round of PRGA for r ≥ 1, we have

Pr(Sr[r + 1] = N − 1|Zr+1 = Zr ∧ Zr+1 = r + 2) ≈ 3
N .

4 New results on long-term Glimpse

4.1 Observation

Let us investigate the previous results (Theorems 2 and 3) in detail. Here, we
call correlation with a probability significantly higher or lower than 1

N (the
probability of random association) to positive bias or negative bias, respectively.
Theorems 2 and 3 give cases with positive biases. Then, Theorem 2 implicitly
means that there exists a value of Sr[r + 1] with negative bias since Sr[r + 1]
varies in [0, N−1] even when Zr+1 = Zr has happened. We often assume uniform
randomness of other certain events to prove bias of a certain event. Therefore,
it is important to prove the existence of a value in Sr[r + 1] with negative bias
explicitly. We also call such a case with negative bias a dual case of a positive
bias.

One of our motivation is to find a dual case of Theorem 2, which will be
shown as Theorem 4. Then, we will also prove a special case of Theorem 4 in
the same way as Theorem 3 to Theorem 2, which will be shown as Theorem 5.
Furthermore, during our careful observation of the dual case, we also find a new
positive bias on Sr[r+1], which will be shown in Theorem 6. Our new results can
integrate long-term Glimpse when Zr+1 = Zr. The previous results are limited
to the case of Sr[r+1] = N − 1 when Zr+1 = Zr. Our results are not limited to
Sr[r + 1] = N − 1 but varies Sr[r + 1] ∈ [0, N − 2]. Finally, both results can be
integrated in Theorem 7.
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4.2 New negative biases

First, Theorem 4 shows a dual case of Theorem 2 as follows.

Theorem 4. After the r-th round of PRGA for r ≥ 1, we have

Pr(Sr[r + 1] = 0|Zr+1 = Zr) ≈
2

N2

(
1− 1

N

)
.

Proof. We define main events as follows:

A := (Sr[r + 1] = 0), B := (Zr+1 = Zr).

We first compute Pr(B|A), and apply Bayes’ theorem to prove the claim. As-
suming that event A happened, we get

jr+1 = jr + Sr[ir+1] = jr + Sr[r + 1] = jr.

Then, Pr(B|A) is computed in three paths: jr = r (Path 1), jr = r+1 (Path 2)
and jr 6= r, r + 1 (Path 3). These paths include all events in order to compute
Pr(B|A). Let X = Sr[r] and Y = Sr[jr].

Path 1. Fig. 1 shows a state transition diagram in Path 1. First, we prove
tr 6= tr+1. After the r-th round, tr = 2X holds since ir = jr = r. In the next
round, tr+1 = X holds since jr+1 = jr = r and ir+1 = r + 1. Thus, we get
tr 6= tr+1 with probability 1 since X 6= 0. Then, if event B occurs, tr+1 must
be swapped from tr. This is why Pr(Path 1) = Pr(B|A∧jr = r) is computed
in two subpaths: ir = 1 ∧ tr+1 = 1 (Path 1-1) and ir = 254 ∧ tr+1 = 255
(Path 1-2).
Path 1-1. Fig. 2 shows a state transition diagram in Path 1-1. Then, we

get event B since Zr+1 = Sr+1[1] = 0 and Zr = Sr[2] = 0. Thus, we can
compute the probability of Path 1-1 as follows.

Pr(Path 1-1) = Pr(Path 1 ∧ ir = 1 ∧ tr+1 = 1) = 1.

Path 1-2. Fig. 3 shows a state transition diagram in Path 1-2. Then, we get
event B since Zr+1 = Sr+1[255] = 255 and Zr = Sr[254] = 255. Thus,
we can compute the probability of Path 1-2 as follows.

Pr(Path 1-2) = Pr(Path 1 ∧ ir = 254 ∧ tr+1 = 255) = 1.

Therefore, the probability of Path 1 is computed as follows.

Pr(Path 1) = Pr(Path 1-1) · Pr(ir = 1 ∧ tr+1 = 1)

+ Pr(Path 1-2) · Pr(ir = 254 ∧ tr+1 = 255)

≈ 1 ·
(

1

N
· 1

N

)
+ 1 ·

(
1

N
· 1

N

)
=

2

N2
.
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Fig. 1. Path 1 Fig. 2. Path 1-1

Fig. 3. Path 1-2

Path 2. Fig. 4 shows a state transition diagram in Path 2. We get tr 6= tr+1

in the same way as Path 1. Then, event B never occurs because tr+1 can
not be swapped from tr. Therefore, the probability of Path 2 is computed
as follows.

Pr(Path 2) = Pr(B|A ∧ jr = r + 1) = 0.

Path 3. Fig. 5 shows a state transition diagram in Path 3. We get tr 6= tr+1

in the same way as Path 1. Then, if event B occurs, tr+1 must be swapped
from tr. This is why Pr(Path 3) = Pr(B|A ∧ jr 6= r, r + 1) is computed in
two subpaths: tr = jr ∧ tr+1 = r+1 (Path 3-1) and tr = r+1∧ tr+1 = jr+1

(Path 3-2).
Path 3-1. Fig. 6 shows a state transition diagram in Path 3-1. Then, we

get event B since Zr+1 = Sr+1[r + 1] = r + 1 and Zr = Sr[jr] = r + 1.
Thus, we can compute the probability of Path 3-1 as follows.

Pr(Path 3-1) = Pr(Path 3 ∧ tr = jr ∧ tr+1 = r + 1) = 1.

Path 3-2. Fig. 7 shows a state transition diagram in Path 3-2. Then, we
get event B since Zr+1 = Sr+1[jr+1] = 0 and Zr = Sr[r + 1] = 0. Thus,
we can compute the probability of Path 3-2 as follows.

Pr(Path 3-2) = Pr(Path 3 ∧ tr = r + 1 ∧ tr+1 = jr) = 1.

Therefore, the probability of Path 3 is computed as follows.

Pr(Path 3) = Pr(Path 3-1) · Pr(tr = jr ∧ tr+1 = r + 1)

+ Pr(Path 3-2) · Pr(tr = r + 1 ∧ tr+1 = jr+1)

≈ 1 ·
(

1

N
· 1

N

)
+ 1 ·

(
1

N
· 1

N

)
=

2

N2
.
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Fig. 4. Path 2 Fig. 5. Path 3

Fig. 6. Path 3-1 Fig. 7. Path 3-2

From these results, Pr(B|A) is computed as follows.

Pr(B|A) = Pr(Path 1) · Pr(jr = r) + Pr(Path 2) · Pr(jr = r + 1)

+ Pr(Path 3) · Pr(jr 6= r, r + 1)

≈ 2

N2
· 1

N
+ 0 · 1

N
+

2

N2
·
(
1− 2

N

)
=

2

N2

(
1− 1

N

)
.

Pr(A|B) is computed as follows by applying Bayes’ theorem since events A and
B occur with the probability of random association 1

N .

Pr(A|B) =
Pr(B|A) · Pr(A)

Pr(B)
≈

2
N2

(
1− 1

N

)
· 1
N

1
N

=
2

N2

(
1− 1

N

)
. �

Next, Theorem 5 shows a special case of Theorem 4 as follows.

Theorem 5. After the r-th round of PRGA for r ≥ 1 and ∀x ∈ [0, N − 1], we
have

Pr(Sr[r + 1] = 0|Zr+1 = Zr ∧ Zr+1 = r + x) ≈



1

N

(
1− 2

N2

)
if x = 1

2

N2

(
1− 1

N

)
if x = 255

1

N2

(
1− 2

N

)
if x = N − r
(x 6= 1, 255).

Proof. We define main events as follows.

A := (Sr[r + 1] = 0), B := (Zr+1 = Zr), C := (Zr+1 = r + x).
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Pr(A|B∧C) is difficult to compute because events B and C are not independent.
To avoid this problem, we define a new event B′ := (Zr = r+x). Then, Pr(A|B∧
C) = Pr(A|B′ ∧C) since B ∧C and B′ ∧C are the same event. Pr(A|B′ ∧C) is
decomposed as follows by using Bayes’ theorem:

Pr(A|B′ ∧ C) =
Pr(A ∧B′ ∧ C)

Pr(B′ ∧ C)
=

Pr(C|B′ ∧A) · Pr(B′|A) · Pr(A)

Pr(B′ ∧ C)
.

We first compute Pr(C|B′ ∧A) in three paths: jr = r (Path 1), jr = r+1 (Path
2) and jr 6= r, r + 1 (Path 3). These paths are the same as in Theorem 4, and
thus the proof itself is similar to Theorem 4. Let X = Sr[r] and Y = Sr[jr].

Path 1. Fig. 1 shows a state transition diagram in Path 1. Note that tr 6= tr+1

from the discussion of Path 1 in Theorem 4, and that event C is limited to
two subpaths: ir = 1 for r+x = 0 (Path 1-1) and tr+1 = 255 for r+x = 255
(Path 1-2).
Path 1-1. Fig. 2 shows a state transition diagram in Path 1-1. Then, event

C holds under event B′∧A since Zr+1 = Sr+1[1] = 0 and Zr = Sr[2] = 0.
Note that ir = 1 and r+x = 0 hold if and only if x = 255. Thus, we can
compute the probability of Path 1-1 as follows.

Pr(Path 1-1) = Pr(Path 1 ∧ ir = 1) = 1 if x = 255.

Path 1-2. Fig. 3 shows a state transition diagram in Path 1-2. Then, event
C holds under event B′ ∧ A since Zr+1 = Sr+1[255] = 255 and Zr =
Sr[254] = 255. Note that ir = 254 (see Fig. 3) and r + x = 255 hold if
and only if x = 1. Thus, we can compute the probability of Path 1-2 as
follows.

Pr(Path 1-2) = Pr(Path 1 ∧ tr+1 = 255) = 1 if x = 1.

Therefore, the probability of Path 1 is computed as follows.

Pr(Path 1) =


Pr(Path 1-1) · Pr(ir = 1) ≈ 1

N
if x = 255

Pr(Path 1-2) · Pr(tr+1 = 255) ≈ 1

N
if x = 1

0 otherwise.

Path 2. Event C never occurs in Path 2 from the discussion of Path 2 in The-
orem 4. Therefore, the probability of Path 2 is computed as follows.

Pr(Path 2) = Pr(C|B′ ∧A ∧ jr = r + 1) = 0.

Path 3. Fig. 5 shows a state transition diagram in Path 3. Note that tr 6= tr+1

from the discussion of Path 3 in Theorem 4, and that event C is limited to
two subpaths: tr+1 = r+1 for x = 1 (Path 3-1) and tr = r+1∧ tr+1 = jr+1

for r + x = 0 (Path 3-2).
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Path 3-1. Fig. 6 shows a state transition diagram in Path 3-1. Then, event
C holds under event B′ ∧ A since Zr+1 = Sr+1[r + 1] = r + 1 and
Zr = Sr[jr] = r + 1. Thus, we can compute the probability of Path 3-1
as follows.

Pr(Path 3-1) = Pr(Path 3 ∧ tr+1 = r + 1) = 1 if x = 1.

Path 3-2. Fig. 7 shows a state transition diagram in Path 3-2. Then, event
C holds under event B′ ∧ A since Zr+1 = Sr+1[jr+1] = 0 and Zr =
Sr[r + 1] = 0. Note that r + x = 0 (∀r ∈ [0, N − 1]) means x = N − r.
Thus, we can compute the probability of Path 3-2 as follows.

Pr(Path 3-2) = Pr(Path 3 ∧ tr = r + 1 ∧ tr+1 = jr+1) = 1.

Therefore, the probability of Path 3 is computed as follows.

Pr(Path 3) = Pr(Path 3-1) · Pr(tr+1 = r + 1)

+ Pr(Path 3-2) · Pr(tr = r + 1 ∧ tr+1 = jr+1)

≈


1 · 1

N
+ 1 ·

(
1

N
· 1

N

)
=

1

N

(
1 +

1

N

)
if x = 1

0 · 1

N
+ 1 ·

(
1

N
· 1

N

)
=

1

N2
if x = N − r (x 6= 1).

From these results, Pr(C|B′ ∧A) is computed as follows.

Pr(C|B′ ∧A) = Pr(Path 1) · Pr(jr = r) + Pr(Path 2) · Pr(jr = r + 1)

+ Pr(Path 3) · Pr(jr 6= r, r + 1)

≈



1

N
· 1

N
+

1

N
·
(
1 +

1

N

)
·
(
1− 2

N

)
=

1

N

(
1− 2

N2

)
if x = 1

1

N
· 1

N
+

1

N2
·
(
1− 2

N

)
=

2

N2

(
1− 1

N

)
if x = 255

0 · 1

N
+

1

N2
·
(
1− 2

N

)
=

1

N2

(
1− 2

N

)
if x = N − r
(x 6= 1, 255).

Pr(A|B ∧C) is computed as follows by applying Bayes’ theorem since events A,
B′, C and B′|A occur with the probability of random association 1

N .

Pr(A|B ∧ C) =
Pr(C|B′ ∧A) · Pr(B′|A) · Pr(A)

Pr(B′ ∧ C)
≈

Pr(C|B′ ∧A) · 1
N · 1

N
1
N · 1

N

= Pr(C|B′ ∧A) ≈



1

N

(
1− 2

N2

)
if x = 1

2

N2

(
1− 1

N

)
if x = 255 �

1

N2

(
1− 2

N

)
if x = N − r (x 6= 1, 255).
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4.3 New positive biases and their integration

Theorem 6 shows a new positive bias on Sr[r + 1] as follows.

Theorem 6. After the r-th round of PRGA for r ≥ 1 and ∀x ∈ [2, N − 1], we
have

Pr(Sr[r + 1] = N − x|Zr+1 = Zr ∧ Zr+1 = r + 1 + x) ≈ 2

N

(
1− 1

N
+

1

N2

)
.

Proof. We define main events as follows.

A := (Sr[r + 1] = N − x), B := (Zr+1 = Zr),

B′ := (Zr = r + 1 + x), C := (Zr+1 = r + 1 + x).

The proof itself is similar to Theorem 5. We first compute Pr(C|B′∧A) in three
paths: jr = r (Path 1), jr = r + 1 (Path 2) and jr 6= r, r + 1 (Path 3). Let
X = Sr[r], Y = Sr[jr] and W = Sr[jr+1].

Path 1. Both tr and tr+1 are independent since we get tr = 2X and tr+1 =
N − x+W . Then, event C is limited to three subpaths: tr+1 = r + 1 (Path
1-1), N − x = r+ 1+ x∧ tr+1 = jr+1 (Path 1-2) and tr+1 = tr except when
tr equals either r+1 or jr+1 (Path 1-3). We can compute the probability of
each subpath as follows.

Pr(Path 1-1) = Pr(Path 1 ∧ tr+1 = r + 1) = 1,

Pr(Path 1-2) = Pr(Path 1 ∧N − x = r + 1 + x ∧ tr+1 = jr+1) = 1,

Pr(Path 1-3) = Pr(Path 1 ∧ tr+1 = tr) = 1− 2
N .

Therefore, the probability of Path 1 is computed as follows.

Pr(Path 1) = Pr(Path 1-1) · Pr(tr+1 = r + 1)

+ Pr(Path 1-2) · Pr(N − x = r + 1 + x ∧ tr+1 = jr+1)

+ Pr(Path 1-3) · Pr(tr+1 = tr)

≈ 1 · 1

N
+ 1 ·

(
1

N
· 1

N

)
+

(
1− 2

N

)
· 1

N
=

1

N

(
2− 1

N

)
.

Path 2. We get tr 6= tr+1 since tr = N−x+X, tr+1 = N−x+W and X 6= W .
Then, event C is limited to two subpaths: tr+1 = r + 1 (Path 2-1) and
N −x = r+1+x∧ tr+1 = jr+1 (Path 2-2). We can compute the probability
of each subpath as follows.

Pr(Path 2-1) = Pr(Path 2 ∧ tr+1 = r + 1) = 1,

Pr(Path 2-2) = Pr(Path 2 ∧N − x = r + 1 + x ∧ tr+1 = jr+1) = 1.

Therefore, the probability of Path 2 is computed as follows.

Pr(Path 2) = Pr(Path 2-1) · Pr(tr+1 = r + 1)

+ Pr(Path 2-2) · Pr(N − x = r + 1 + x ∧ tr+1 = jr+1)

≈ 1 · 1

N
+ 1 ·

(
1

N
· 1

N

)
=

1

N

(
1 +

1

N

)
.
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Path 3. Both tr and tr+1 are independent since we get tr = X + Y and tr+1 =
N − x+W . Then, event C is limited to three subpaths: tr+1 = r + 1 (Path
3-1), N − x = r+ 1+ x∧ tr+1 = jr+1 (Path 3-2) and tr+1 = tr except when
tr equals either r+1 or jr+1 (Path 3-3). We can compute the probability of
each subpath as follows.

Pr(Path 3-1) = Pr(Path 3 ∧ tr+1 = r + 1) = 1,

Pr(Path 3-2) = Pr(Path 3 ∧N − x = r + 1 + x ∧ tr+1 = jr+1) = 1,

Pr(Path 3-3) = Pr(Path 3 ∧ tr+1 = tr) = 1− 2
N .

Therefore, the probability of Path 3 is computed as follows.

Pr(Path 3) = Pr(Path 3-1) · Pr(tr+1 = r + 1)

+ Pr(Path 3-2) · Pr(N − x = r + 1 + x ∧ tr+1 = jr+1)

+ Pr(Path 3-3) · Pr(tr+1 = tr)

≈ 1 · 1

N
+ 1 ·

(
1

N
· 1

N

)
+

(
1− 2

N

)
· 1

N
=

1

N

(
2− 1

N

)
.

From these results, Pr(C|B′ ∧A) is computed as follows.

Pr(C|B′ ∧A) = Pr(Path 1) · Pr(jr = r) + Pr(Path 2) · Pr(jr = r + 1)

+ Pr(Path 3) · Pr(jr 6= r, r + 1)

≈ 1

N

(
2− 1

N

)
· 1

N
+

1

N

(
1 +

1

N

)
· 1

N
+

1

N

(
2− 1

N

)
·
(
1− 2

N

)
=

2

N

(
1− 1

N
+

1

N2

)
.

As a result, Pr(A|B ∧ C) is computed as follows.

Pr(A|B ∧ C) ≈ Pr(C|B′ ∧A) ≈ 2

N

(
1− 1

N
+

1

N2

)
. �

Finally, we can integrate long-term Glimpse on Sr[r + 1] as Theorem 7.

Theorem 7. After the r-th round of PRGA for r ≥ 1 and ∀x ∈ [0, N − 1], we
have

Pr(Sr[r + 1] = N − x|Zr+1 = Zr ∧ Zr+1 = r + 1 + x)

≈



1

N

(
1− 2

N2

)
if x = 0

1

N

(
3− 6

N
+

2

N2

)
if x = 11

2

N

(
1− 1

N
+

1

N2

)
otherwise.

1 The probability of correlation when x = 1 can be precisely revised to 1
N
(3− 6

N
+ 2

N2 )
from [7] in the same way as our other cases of x 6= 1, whose precise proof will be
given in the final paper.
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5 Experimental results

In order to check the accuracy of biases shown in Theorems 4 to 6, the experi-
ments are executed using 224 randomly chosen keys of 16 bytes and 224 output
keystreams for each key, which mean 248(= N6) trials of RC4. Note that O(N3)
trials are reported to be sufficient to identify the biases with reliable success prob-
ability since each correlation here is of about 1

N with respect to a base event of
probability 1

N . Our experimental environment is as follows: Linux machine with
2.6 GHz CPU, 3.8 GiB memory, gcc 4.6.3 compiler and C language. We also
evaluate the percentage of relative error ε of experimental values compared with
theoretical values:

ε =
|experimental value− theoretical value|

experimental value
× 100(%).

Table 1. Comparison between experimental and theoretical values

Results Experimental value Theoretical value ε(%)

Theorem 4 0.000030522 0.000030398 0.406

Theorem 5
for x = 1 0.003922408 0.003906131 0.415
for x = 255 0.000030683 0.000030398 0.929
for x = N − r (x 6= 1, 255) 0.000015259 0.000015140 0.780

Theorem 6 0.007812333 0.007782102 0.387

Table 1 shows experimental, theoretical values and the percentage of relative
errors ε, which indicates ε is small enough in each case such as ε ≤ 0.929. There-
fore, we have convinced that theoretical values closely reflects the experimental
values.

6 Conclusion

In this paper, we have shown dual cases of the previous long-term Glimpse. We
have also shown a new long-term Glimpse. We note that the previous long-term
Glimpse is limited to Sr[r + 1] = N − 1 but that our results varies Sr[r + 1] ∈
[0, N − 2]. As a result, these long-term Glimpse can be integrated to biases of
Sr[r+1] ∈ [0, N − 1]. These new integrated long-term Glimpse could contribute
to the improvement of state recovery attack on RC4, which remains an open
problem.
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