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Abstract

Limit cycle walking which is proposed to measure and ensure stability by releasing the

constraints of walkers, has a high energy efficiency because of zero or low feedback gains

required for sustained local stability, and thus has more freedoms to increase versatility

in optimizing walking state generation. To increase the ability of handle disturbance,

however, limit cycle walking needs to bring high feed gains, which affects the energy

efficiency. Considering all closed-loop control systems, the energy consumption by the

feed-forward control system which can often significantly justify the extra cost, time and

effort required to implement the technology is substantially lower than others. Therefore,

if the mathematical model of limit cycle walking which is the requirement of the feed-

forward control can be built, the feed-forward control can be proposed as the solution.

In addition, the mathematical analysis of limit cycle walking can help to discover and

generate the optimal walking states.

First, a general method is proposed to build the mathematical model of limit cycle

walker driven by all the settling-time control systems. Through the analysis of discrete

control systems, the general formula is proposed for all discrete control systems. Thus

when the control input of the continuous control systems is discretized, the mathematical

model of the continuous control systems can be built by the general formula of the discrete

control systems. Based on the mathematical model, gait properties are analysed, critical

and optimal walking states are discovered mathematically and target walking states are

generated. All the results are verified by numerical simulations.

Second, feed-forward control is proposed based on the mathematical model of the

combined rimless wheel (CRW). Thus, gait properties of state error are analysed and limit

cycle walking at target constant walking speed is generated successfully. In addition, the

ability of handle disturbance of the feed-forward control is tested by numerical simulations.

Finally, the limit-cycle-walking-based feed-forward control system is extended to the

i



underactuated rimless wheel with torso (URW), a two-DoF limit cycle walker. The opti-

mal walking state, deadbeat mode, is analysed mathematically and generated by numeri-

cal simulations. In addition, a constant speed walking is generated on the uneven ground

by the feed-forward control system.

keywords:Feed-forward control, Limit cycle walking, Optimal state analysis, Target

walking states generation.
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Chapter 1

Introduction

1.1 Limit Cycle Walking

For robotic walking, the artificial constraints can help to stabilize the complex dynamic

walking motion, however, limit the optimizing gait generation. In previous research, the

static stability which means that the vertical projection of the Center of Mass (CoM) is

kept within the support polygon formed by the feet, was applied in bipedal walkers in early

70’s. It ensured walking stability, but limited the speed of the walking motions that could

be obtained [1]. Therefore, Zero Moment Point (ZMP) paradigm which constrains the

stance foot to remain in the contact with the ground during each step, was developed in

1970 to reduce the restrictive of static walking, and thus greatly enhanced the flexibility of

the robot [2–4]. Nevertheless, the robots are still cannot be compared with human walking

in terms of efficiency, disturbance handling, and natural appearance [5–7]. Therefore, to

release more constraints, limit cycle walking is proposed to measure and ensure stability

as follows.

• Limit cycle walking is a nominally periodic sequence of steps that is stable as a

whole but not locally stable at every instant in time [13].

Zero or low feedback gains required for sustained local stability makes energy efficiency

the most important advantage of limit cycle walking. In addition, few restrictive helps
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limit cycle walking to increase versatility in the ability to walk at different speeds [8, 9].

Hobbelen studied that walking speed could affect the walking stability in limit cycle walk-

ing. Therefore generating target steady walking states will be a progress on developing the

optimal control [10–12]. Zero feedback gains or low feedback, however, also leads to a low

ability of handle disturbances, which is the main disadvantage in limit cycle walking [13].

The rimless wheel (RW) is investigated as the most simplified model of passive dynamic

walking. When the RW walks passively on a slope, it establishes a steady single-step

cycle [14–18]. Based on the pioneering works of McGeer, the steady step period could

be evaluated by the initial and terminal boundary conditions [14]. Considering that

the steady walking speed can be calculated by the ratio between the step period and

step length of the RW, therefore, a target steady walking speed can be generated by

calculating the angle of the slope. Furthermore, Coleman found analytic approximations

for the minimum required slope for stable rolling in three dimensions [19,20], which helped

us to generate the lowest walking speed as a critical condition.

1.2 Closed-loop Control

A closed-loop control system is a control system which uses the concept of an open

loop system as its forward path but has one or more feedback loops or paths between

its output and input. In general, high feedback gains can help walkers to generate the

complex dynamic walking motion and improve the ability of handle disturbance. The PID

controller which calculates the error value as the difference between a measured process

variable and a desired point is a common closed-loop controller architecture. Relying only

on the measured process variable, not on knowledge of the underlying process, making

a PID controller a broadly useful controller [21, 22]. Nevertheless, optimal control is not

guaranteed in PID controllers. In addition, that processing high frequency measurement

or noise can cause large amounts of change in the output is another problem of PID

controllers.

Therefore, feed-forward controllers are considered as the solution [23, 24]. In a feed-
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forward system, the control variable adjustment is based on knowledge about the process

in the form of a mathematical model of the process or the process disturbances instead

of error-based. The disturbances can be measured and accounted for by feed-forward

control in advance, and thus the extra energy consumption can often significantly justified.

Therefore, the feed-forward control system typically generates the optimal state.

1.3 Motivation and Research Goals

Even though the limit cycle walkers driven by open-loop control systems generated the

target steady walking speed states, however, the gaits before the steady state can not be

kept at a target walking speed. Different from generating a target angular position or

a target angular velocity, a target walking speed for legged robot is based on an overall

planning for a discrete time period and a space segment in one step. Therefore, accurately

controlling the legged robot to keep a target walking speed is a complicated issue due to

the irreversibility of time and space. Several approaches to accurately control the walking

speed have been proposed. Kajita et. al. proposed a method by changing the foothold of

a biped walker to modify the initial condition of the support phase to control the walking

speed based on a PD feedback controller [25]. In addition, Juang et. al. proposed a

learning scheme which trains the neuro-fuzzy controller to follow the designed trajectory

as closely as possible for generating walking gaits at a certain speed [26]. The approach

of feed-forward control system which is based on the mathematical model of the process,

however, is still unclear.

Therefore, considering the advantage of limit cycle walking and feed-forward control,

a combination of both can make the robot have high energy efficiency and high ability of

handle disturbance, and obtain the optimal walking control based on the mathematical

analysis [27]. In previous research, the mathematical analysis of passive limit cycle walking

has been proposed and the critical and optimal walking states thus generated [19, 20].

When mathematical analysis is extended to the actuated limit cycle walker, target optimal

walking states can be generated by the control systems which can be designed flexibly
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and purposefully. In addition, analysing the gait properties based on the mathematical

analysis instead of numerical simulations also make a progress on generating critical and

optimal walking states. Different kinds of control systems, however, generate different

simplification of the boundary conditions. The more complex the control system is, the

more complex the boundary equations become. Therefore, developing a general method

of mathematical analysis for all kinds of control systems and thus developing the feed-

forward control based on it are the main topics in this thesis.

Four research goals should be achieved in this thesis.

• The discrete stepwise control systems should be developed, thus its the boundary

equations are mathematically analysed, and target walking states of limit cycle

walking can be generated. Finally, based on the analysis of some simple discrete

stepwise control systems, a general formula for all discrete stepwise settling-time

control systems should be derived.

• The mathematical model should be extended to continuous control systems. The

control input of continuous piecewise control systems are discretized, and thus the

continuous piecewise control systems are analysed by using the general formula of

discrete stepwise control systems. The general formula for all continuous piecewise

settling-time control systems should be proposed.

• The feed-forward control systems should be proposed based on the mathematical

analysis of the actuated walker model. Different control input torques for each un-

stable gait are designed to generate the target walking speed states at the beginning

of each step. In addition, the gait properties should be analysed mathematically

and the ability of handle disturbance should be tested by numeral simulations.

• The mathematical analysis is extended to a more complex model, the underactuated

limit cycle walker. Gait properties should be analysed and optimal walking states

should be proposed. Thus target walking states are generated and the feed-forward

control system is proposed for walking on uneven ground at target walking speed.
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1.4 Outline of Thesis

This thesis is organized as follows. In Chapter 2, the model of CRW, control system,

and Ridders’ method are introduced as the background. In Chapter 3, the mathemati-

cal analysis of discrete stepwise control systems is developed. The formula of the steady

step period and the target steady step period are derived, gait properties are analysed

mathematically and the results are verified through numerical simulations. In Chapter 4,

the method is extended to discrete stepwise control systems. The general formula of the

boundary conditions in (n + 1)-period stepwise control system are analysed mathemati-

cally and thus the general formula of steady step period are derived. In Chapter 5, the

mathematical analysis is extended to the continuous piecewise control system by discretiz-

ing the control input. In Chapter 6, The feed-forward control systems are proposed and

analysed based on the mathematical analysis of the actuated walker model. In Chapter

7, mathematical analysis is extended to a complex underactuated limit cycle walker for

generating the optimal walking states. Chapter 8 contains conclusions and future works.
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Chapter 2

Background

2.1 Actuated Combined Rimless Wheel

2.1.1 Modeling

Fig. 2.1 illustrates the model of a planar actuated CRW. It consists of two eight-legged

rimless wheels (RWs) combined by a body frame. A motor attached on the frame supplies

the joint torque, u, between the rear stance-leg and the body frame. The following

statements are assumed in the thesis.

Figure 2.1: A planar actuated combined rimless wheel
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• The fore and rear stance legs always contact with the ground without sliding.

• The inertia moments about the CoMs of all the frames can be neglected.

• The fore and rear RWs perfectly synchronize or rotate maintaining θ1 ≡ θ2.

2.1.2 Equations of Motion and Linearization

This model configures a four-bar linkage with the floor, and the joint torque, u, is thus

equivalent to exerting the ankle-joint torque. The dynamics of the rear RW then becomes

identical to that of an actuated RW with an ankle-joint torque, that is,

θ̈ = ω2 sin θ +
u

Ml2
, (2.1)

where M := mb + 2m [kg] is the total mass of the CRW, θ(= θ1 = θ2) is the stance-leg

angle, and ω :=
√
g/l [rad/s]. By linearizing this around θ = θ̇ = 0, the state-space

realization of the RW dynamics becomes

d

dt


 θ

θ̇


 =


 0 1

ω2 0




 θ

θ̇


+


 0

1/Ml2


 u. (2.2)

In the following chapters, we denote Eq. (2.2) as ẋ = Ax+Bu.

In addition, to verify our linearization calculation, all the comparisons are made with

the results of non-linearization simulation in the following chapters. There is an error due

to the linearization.

2.1.3 Collision Equation

We define the state vector immediately before the (i)th impact as x−

i and the state vector

immediately after the (i)th impact as x+
i . In the collision phase we assume that the rear

leg frame of each RW at impact (the previous stance leg) begins to leave the ground

immediately after the landing of the fore leg frame (the next stance leg) according to the

law of inelastic collision. Then the transition equation for the angular velocity becomes

θ̇+i = cosαθ̇−i . (2.3)
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The transition equation for angular position is also determined as

θ+i = −θ−i = −
α

2
.

2.2 Settling-time Control System

The settling-time control systems are considered in this thesis. The motor forces the

torque based on different control systems during the settling time, Tset, in each step.

We define the moment immediately after impact as 0 [s] and the time parameter will be

reset after every impact. Therefore, as the advantage of the settling-time, when and how

the input ends in one step can be known, which can help to develop the mathematical

model. During each settling time, we can design discrete or continuous control systems.

The discrete control systems are named as “stepwise” and the continuous ones are named

as “piecewise”. In addition, the torque must supply enough kinetic energy to make the

walkers overcome the potential barrier. In this thesis, we assume that the control is always

completed by the next impact.

2.3 Ridders’ Method

Considering that the feed-forward and feedback control system is based on the mathe-

matical model, Ridders’ method, a root-finding algorithm, is introduced in this thesis

to calculate the numerical solution of optimal walking states [28]. Ridders’ method is

based on the false position method and the use of an exponential function to successively

approximate a root of a function. In the following chapters, Ridders’ method is denoted

as Ridder(fR(xR), x1, x2), where xR is the root of the continuous function fR(xR) = 0

between x1 and x2 (x1 < xR < x2). The method can be summarized by the formula as

follows, where x3 =
x1 + x2

2
.

x4 = x3 + (x3 − x1)
sign(fR(x1)− fR(x2))fR(x3)√

fR(x3)2 − fR(x1)fR(x2)
(2.4)
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Chapter 3

Constant Control System

3.1 Equations of Motion of Constant Control System

First of all, the simplest control system, the constant (one-period) control torque, u(t) =

u0(t ≥ 0), is considered where u0 is the only parameter we can adjust. In this control

system, the motor keeps a constant torque (current mode) which can supply enough

kinetic energy to overcome the potential barrier at mid-stance. Similar with the passive

walking on a slope, it can establish a steady rolling cycle on level ground.

The equation of motion thus becomes as follows.

ẋ = Ax+Bu0 (3.1)

3.2 Boundary Conditions of Constant Control Sys-

tem

As the solution of Eq. (3.1) [29], if we define the (i)th step period as Ti, the state vector

immediately before the (i+1)th impact, x−

i+1, is written by the state vector immediately

after the (i)th impact, x+
i , as

x−

i+1 = eATix+
i +

∫ T−

i

0+
eA(Ti−s)Bu0 ds. (3.2)
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The state vector at t [s], x(t) can be written by the time t and the initial state vector

x(0+) as

x(t) =


 θ(t)

θ̇(t)


 = eAtx(0+) +

∫ t

0+
eA(t−s)Bu0 ds. (3.3)

Therefore, the steady equation also becomes

x−

eq = eAT ∗

x+
eq +

∫ T ∗

0+
eA(T ∗

−s)Bu0 ds, (3.4)

where the subscript “eq” means the steady state and T ∗ means the steady step period.

The initial and terminal boundary conditions in a steady step are as follows.

x+
eq = x∗(0+) =


 θ∗(0+)

θ̇
∗

(0+)


 =


 −

α

2

θ̇+eq


 (3.5)

x−

eq = x∗((T ∗)−) =


 θ∗((T ∗)−)

θ̇
∗

((T ∗)−)


 =




α

2

θ̇−eq


 (3.6)

According to the Eqs. (3.5), (3.6), and the transition equation, Eq. (2.3), in collision

phase, we can derive the terminal boundary condition in the steady step as follows.

x∗((T ∗)−) =


 θ∗((T ∗)−)

θ̇
∗

((T ∗)−)


 =




α

2

kθ̇+eq


 (3.7)

Where k = 1/ cosα denotes the coefficient of transition equation.

As a result, the initial and terminal boundary conditions are detailed as

−2u0 + A1 + A2

2l2Mω2
=

α

2
, (3.8)

θ̇+eq cosh(T
∗ω) + A3 sinh(T

∗ω) = kθ̇+eq, (3.9)

where

A1 =
(
2u0 − αl2Mω2

)
cosh(T ∗ω),

A2 = 2θ̇+eql
2Mω sinh(T ∗ω), A3 =

u0

l2Mω
−

αω

2
.
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Finally, T ∗ and θ̇+eq are the unknown parameters. After eliminating θ̇+eq in Eqs. (3.8)

and (3.9) to derive a single equation with T ∗, the result after simplification becomes

u0 (−2k + 2 cosh(T ∗ω) + 2k cosh(T ∗ω)− 2) =

αl2Mω2 (k − cosh(T ∗ω) + k cosh(T ∗ω)− 1) .
(3.10)

3.3 Formula of Steady Step Period of Constant Con-

trol Systems

When the control input, u0, is known, we can calculate the steady step period, T ∗, ac-

cording to Eq. (3.10). When all the common factors of T ∗ are extracted, the Eq. (3.10)

thus becomes

(2u0 + 2ku0 − λ(1− k)) cosh(T ∗ω) = 2u0 + 2ku0 + λ(1− k), (3.11)

where λ = αl2Mω2.

Since T ∗ is always a positive real number, we can solve the equation and choose correct

the solution as follows.

T ∗ =
1

ω
arccosh

(
2u0 + 2ku0 − λ(1− k)

2u0 + 2ku0 + λ(1− k)

)
(3.12)

3.4 Target Walking Period Generation of Constant

Control Systems

In addition, a target walking speed can also be generated based on the boundary equa-

tions. Considering the step length is constant in our model, the steady walking speed is

determined by the steady walking period. Therefore, u0 can be calculated for generating

the target T ∗ in the Eq. (3.10).

After being extracted all the common factors of u0, the Eq. (3.10) becomes

u0(2k + 2)(cosh(T ∗ω)− 1) = λ(k − 1)(cosh(T ∗ω) + 1). (3.13)
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Table 3.1: Physical parameters of CRW

Parameters Value Unit

l 1.0 [m]

g 9.81 [m/s2]

M 1.0 [kg]

α π
4

[rad]

The solution is thus as follows.

u0 =
λ(k − 1)(cosh(T ∗ω) + 1)

(2k + 2)(cosh(T ∗ω)− 1)
(3.14)

3.5 Verification of Constant Control System by Sim-

ulations

To verify our results, we made the simulation of CRW and checked the steady step period

in different simulations. The parameters were chosen as listed in Table 3.1.

First, we tested the calculation of T ∗ by Eq. (3.12) when u0 was chose as 2, 3, 4

[N×m] for three simulations. The step period converged to a steady value step by step

as shown in Fig. 3.1. The convergence values were recorded as the steady step period T ∗

in the simulation. Then we calculated the orbit of T ∗ when u0 is from 2 to 4 [N×m] by

Eq. (3.12). The red star points on the orbit of function in Fig. 3.2 were the calculation

results. The comparison between two sets of values in Table 3.2 showed that the error

was less than 0.4%.

Table 3.2: Verification results for T ∗ in constant control system

u0 [N×m] 2 3 4

T ∗ in simulation [s] 0.417 0.324 0.275

T ∗ in function [s] 0.418 0.325 0.275

12



In addition, the control inputs u0 for the target steady step periods of 0.4, 0.35, 0.3

[s] can also be calculated for these three cases. First, we calculated the value of u0 by

Eq. (3.14) for these three T ∗ values. The red star points on the orbit of function in Fig.

3.3 were the calculation results of control input. Second, we tested the three analytical

solutions as the control input in the simulations and the step period converged to the

steady value as shown in Fig. 3.4. Finally, we recorded the steady step periods in Table

3.3. The error is less than 0.4%.

In general, steady walking periods were calculated and the target walking speeds were

generated well in the constant control systems.

Table 3.3: Verification results for target T ∗ in constant control system

Target T ∗ [s] 0.4 0.35 0.3

Analytical u0 [N×m] 2.1413 2.6533 3.4445

T ∗ in simulation [s] 0.399 0.349 0.300

3.6 Critical Condition of Constant Control System

Since we have derived the formula of the steady step period, T ∗, we can find more details

of the gait property in the steady gait. According to Eq. (3.9), we can calculate the

steady angular velocity immediately after impact, ˙θ+eq, as

θ̇+eq =
−A3 sinh(T

∗ω)

cosh(T ∗ω)− k
. (3.15)

Therefore, time evolution of angular velocity in steady gait in Eq. (3.3) can also be

calculated as below, where θ̇+eq and T ∗ are in Eqs. (3.15) and (3.12).

θ̇(t) = θ̇+eq cosh(tω) + A3 sinh(tω) (3.16)

When u0 = 2.0 [N·m], we can calculate the analytical solution of angular velocity

in one steady step as Fig. 3.5 illustrates. It is almost the same with the step in the

simulation.
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Usually, when the input torque is large enough in the constant control system, there is

no doubt the model can overcome the vertical position. As Fig. 3.5 illustrates, however,

when the torque is low, the model has a deceleration and an acceleration. The boundary

input torque for limit cycle walking can help to check whether the control system can

supply enough kinetic energy or not. In addition, the boundary input torque will generate

the lowest walking speed, and thus any target walking speed which is lower than the

boundary speed is impossible to be generated. We can solve the boundary condition by

our equations.

First, we need to find the lowest angular velocity in one steady step. According to Eq.

(3.16), we could calculate its derivative function as follows.

θ̈(t) = ωθ̇+eq sinh(tω) + ωA3 cosh(tω) (3.17)

If the torque is low, there will be an inflection in the derivative function and the point

should be the lowest angular velocity in one steady step. We can find the point easily as

below if there is one.

t0 =
1

ω
arctanh

(
−
A3

θ̇+eq

)
(3.18)

We must control the input torque to make the lowest angular velocity high than 0,

which means the critical condition is as follows.

θ̇(t0) = 0 (3.19)

So according to the Eqs. (3.12), (3.15), (3.16), (3.18) and the critical condition, the

only unknown parameter, the input torque u0, can be calculated by the computer. The

final analytical result is u0 = 0.661 [N×m]. Because of some error in the linearization, the

critical input torque in the simulation is 0.6534 [N×m]. If the torque is lower than this

value, the model will not finish one step and fall backward. Fig. 3.6 illustrates the time

evolution of angular velocity when the input torque is 0.657 [N×m], in the simulation.
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Figure 3.1: Evolutions of step periods in the simulations of constant control system

Figure 3.2: Analytical solution of T ∗ in constant control system
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Figure 3.3: Analytical solution of u0 to generate a target steady step period in constant

control systems

Figure 3.4: Evolutions of step periods for target step period in the simulations in constant

control systems
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Figure 3.5: Evolutions of analytical solution and simulation of angular velocity in one

steady step in the constant control system

Figure 3.6: Evolution of angular velocity in the simulation under critical input in constant

control system
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Chapter 4

Discrete Stepwise Control System

4.1 Two-period Stepwise Control System

The constant control system is the simplest control system and we analysed the gait

properties by the equation of boundary conditions in the chapter above. When we define

the error between the steady walking state and a walking state before the steady ones as

the state error, however, we cannot control the linear transfer function of state error in

the constant control system [30]. Therefore, we need to consider some control systems

with more periods to solve this problem. For example, the two-period stepwise control

system as follows [30].

u(t) =





u0 (0 ≤ t < Tset)

0 (t ≥ Tset)
(4.1)

This control system can help us to analyse the state error step by step, and thus

calculate the transfer function of a state error. The steady step period, T ∗, is one of the

most important parameters in the experiments. We hope the two-period stepwise control

systems can also be analysed mathematically.
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4.1.1 Boundary Conditions of Two-period Stepwise Control Sys-

tem

According to the control system in Eq. (4.1), when the time is longer than Tset in one

step, the control torque is always 0. Therefore, the equation in the steady walking step

is arranged as follows.

x−

eq = eAT ∗

x+
eq +

∫ T ∗

0+
eA(T ∗−s)Bu(s) ds

= eAT ∗

x+
eq +

∫ Tset

0+
eA(T ∗−s)Bu0 ds

Similarly, the boundary conditions are the same as Eqs. (3.5) and (3.6). Thus we eliminate

the θ̇−eq and the terminal boundary condition in the steady step. After the simplification

of the initial and terminal boundary conditions according the properties of hyperbolic

functions, we derive the single equation as follows.

2u0k(cosh(T
∗ω) cosh(Tsetω)− sinh(T ∗ω) sinh(Tsetω)) =

λ(1− k) + 2ku0 cosh(T
∗ω) + λ cosh(T ∗ω)

−λk cosh(T ∗ω)− 2u0 + 2u0 cosh(Tsetω)

(4.2)

4.1.2 Formula of Steady Step Period of Two-period Stepwise

Control System

After the extraction of common factors, the result is thus as follows.

E1(2) cosh(T
∗ω) + E2(2) sinh(T

∗ω) = E3(2) (4.3)

Where E1(2) and E2(2) are coefficients of the hyperbolic cosine function and the hyperbolic

sine function and E3(2) is the constant term. The number in the brackets is the number

of the periods in the control system. Thus E1(n), E2(n) and E3(n) are used to express the

boundary equation of n-period control system in the following chapters. The details of
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E1(2), E2(2) and E3(2) are as follows.

E1(2) = 2u0k cosh(Tsetω)− 2ku0 − λ+ λk

E2(2) = −2u0k sinh(Tsetω)

E3(2) = λ(1− k)− 2u0 + 2 cosh(Tsetω)u0

Finally we can simplify the equation and derive the solution by computer. The positive

solution is chosen as follows [31].

T ∗(u0, Tset) =
1

ω
ln



E3(2) −

√
−E2

1(2) + E2
2(2) + E2

3(2)

E1(2) + E2(2)


 (4.4)

In addition, if −E2
1(2) + E2

2(2) + E2
3(2) < 0, it can be caused by two reasons. The first one

is that the motor cannot supply enough kinetic energy to make the CRW overcome the

potential barrier. The second one is that the model cannot generate a one-step limit cycle

walking [32]. This is an important topic and is left a future work.

4.1.3 Target Walking Period Generation of Two-period Step-

wise Control System

Similar with the constant control system, we can still develop two-period stepwise control

systems to generate a target walking speed. We can not only control the torque, u0, but

also the settling time, Tset, according to the boundary equation.

We extract all the common factors of u0 in the Eq. (4.2) as below.

2u0k cosh(T
∗ω − Tsetω) + 2u0

−2u0 cosh(Tsetω)− 2ku0 cosh(T
∗ω) =

λ(1− k) + λ cosh(T ∗ω)− λk cosh(T ∗ω)

(4.5)

The equation is solved and the solution is as follows.

u0 =
λ(1− k) + λ cosh(T ∗ω)− λk cosh(T ∗ω)

2k cosh(Tcω) + 2− 2 cosh(Tsetω)− 2k cosh(T ∗ω)
(4.6)

Where Tc = T ∗ − Tset.
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4.1.4 Verification of Two-period Stepwise Control System by

Simulations

Numerical simulations were developed to verify the calculation of the steady step period

and the analysis solution of target walking speed generation.

First, the formula of T ∗ in Eq. (4.4) was tested under different input parameters, u0,

when Tset was constant. We plotted the orbit of function T ∗ when Tset = 0.3 [s] and u0

is varied from 3 to 3.2 [N×m] in Fig. 4.1. The red star points on the orbit were the

calculation results of three cases when u0 were 3.0, 3.1, 3.2 [N×m]. Then, we conducted

three numerical simulations with the same conditions of the analytical solutions in Fig.

4.2 and recorded the convergence values. Finally, Table 4.1 listed the steady step period

obtained in the simulation and calculation. The error between two sets of value was less

than 0.4%.

In addition, generating a target walking speed by Eq.(4.6) was also tested. The control

torques under different Tset were analysed for generating target T ∗. First of all, we plotted

the analytical orbit of u0 by the Eq. (4.6) when target T ∗ = 0.4 [s] and Tset was varied

from 0.1 [s] to 0.3 [s] in Fig. 4.3. Then, the numerical simulations were conducted under

the analytical solutions of the control input and other control parameters for three cases.

The step periods converged to the steady step periods in Fig. 4.4, and recorded the steady

step periods in Table 4.2. The error between steady walking period and the target one

was less than 0.5%. As the result, the steady step periods were calculated and the target

walking states were generated well in the two-period stepwise control system.

Table 4.1: Verification results for T ∗ in two-period stepwise control system

u0 [N×m] 3.0 3.1 3.2

T ∗ in simulation [s] 0.356 0.341 0.327

T ∗in function [s] 0.357 0.342 0.328
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Table 4.2: Verification results for target T ∗ in two-period stepwise control system

Tset [s] 0.1 0.2 0.3

Analytical soultion u0 [N×m] 7.205 3.9158 2.7679

T ∗ in simulation [s] 0.398 0.398 0.398

4.1.5 Critical Condition of Two-period Stepwise Control Sys-

tem

Considering that we have calculated the steady step period, T ∗, more details of the gait

property in the steady gait can be found. According to Eqs. (3.3) and (3.5), we can

calculate the steady angular velocity after impact, ˙θ+eq as below.

θ̇+eq =
−λ sinh(T ∗ω) + 2u0(sinh(T

∗ω)− sinh(Tcω))

2l2Mω(k − cosh(T ∗ω))
(4.7)

Time evolution of angular velocity in steady gait can also be calculated by the Eq.

(4.8) as below.

θ̇(t) =





θ̇+eq cosh(tω) + A3 sinh(tω) (0 ≤ t < Tset)

2θ̇+eq cosh(tω)− αω sinh(tω)

2
+ Pint (t ≥ Tset)

(4.8)

Where Pint =
u0(sinh(tω)− sinh((t− Tset)ω))

l2Mω
.

For example, when Tset = 0.3 [s] and u0 = 2.0 [N×m], we can calculate the analytical

solution of angular velocity in one steady step as Fig. 4.5 illustrates. It is almost the

same as the step in the simulation.

In addition, when the Tset is very short, the analytical solution of angular velocity in

one steady step will have the inflection in the second period. For example, when Tset = 0.2

[s] and u0 = 2.4 [N×m], we can calculate the analytical solution of angular velocity in one

steady step as Fig. 4.6 illustrates.

Similar with the constant control system, the boundary input torque in two-period

stepwise control system to make the model generate a steady limit walking is also a topic.
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For the constant control system, the gait properties can be calculated easily. We hope

to use the same method to calculate the lowest angular in one step and make is as 0.

For the two-period stepwise control system or some more complex control system we

introduce in the following chapters, however, it is difficult to know in which period the

lowest angular velocity is. Thus the calculation process will be too complex to be analysed

on the computer. The case in Fig. 4.6 should be one of the boundary control systems.

4.2 (n + 1)-period Stepwise Control System

4.2.1 Boundary Conditions of (n + 1)-period Stepwise Control

System

Based on the analysis of two-period control systems, the general equation of the (n+ 1)-

period stepwise control system is considered as Eq. (4.9), where Ti is the end of (i)th

period and ui is the constant control torque in the (i)th period of the stepwise control

system.

u(t) =





u1 (0 = T0 ≤ t < T1)

u2 (T1 ≤ t < T2)

...

uj (Tj−1 ≤ t < Tj)

...

un (Tn−1 ≤ t < Tn = Tset)

0 (t ≥ Tn)

(4.9)

Considering the steady state in this control system, x(T ∗) = x−

eq becomes

x−

eq = eAT ∗

x+
eq +

n−1∑

j=0

∫ Tj+1

Tj

eA(T ∗−s)Buj+1 ds (4.10)

We can calculate the items in Eq. (4.10) one by one as below.

eAT ∗

x+
eq =




−
1

2
α cosh(T ∗ω) +

θ̇+eq sinh(T
∗ω)

ω

−
1

2
αω sinh(T ∗ω) + θ̇+eq cosh(T

∗ω)


 (4.11)
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∫ Tj+1

Tj

eA(T ∗
−s)Buj+1 ds =

uj+1

Ml2ω2


 cosh(T̂jω)− cosh(T̂j+1ω)

ω(sinh(T̂jω)− sinh(T̂j+1ω))




Where T̂j = T ∗ − Tj and T̂j+1 = T ∗ − Tj+1.

Therefore when we add all the items in every period together, the equations of initial

and terminal boundary conditions can be calculated as follows.

1

2l2Mω2
(−αl2Mω2 cosh(T ∗ω) + 2H1 + 2θ̇+eql

2Mω sinh(T ∗ω)) =
α

2
1

2l2Mω
(−αl2Mω2 sinh(T ∗ω))− 2H2 + 2θ̇+eql

2Mω cosh(T ∗ω)) = kθ̇+eq

(4.12)

Where

H1 = u1 cosh(T
∗ω)− un cosh(T

∗ω − Tnω)

+

n−1∑

j=1

(uj+1 − uj) cosh(T
∗ω − Tjω), (4.13)

H2 = u1 sinh(T
∗ω)− un sinh(T

∗ω − Tnω)

+
n−1∑

j=1

(uj+1 − uj) sinh(T
∗ω − Tjω).

In the end, we can eliminate θ̇+eq and derive the equation we want as follows.

2kH1 − 2(H1 cosh(T
∗ω)−H2 sinh(T

∗ω)) =

λ(−1 + k − cosh(T ∗ω) + k cosh(T ∗ω))
(4.14)

In detail, H3 := H1 cosh(T
∗ω)−H2 sinh(T

∗ω) is the constant term as follows:

H3 = u1 − un cosh(Tnω) +

n−1∑

j=1

(uj+1 − uj) cosh(Tjω) (4.15)

4.2.2 Formula of Steady Step Period in (n+ 1)-period Stepwise

Control System

Similarly, the formula of steady step period in (n+1)-period stepwise control systems can

be derived by extraction of common factors as follows.

E1(n+1) cosh(T
∗ω) + E2(n+1) sinh(T

∗ω) = E3(n+1) (4.16)
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Where E1(n+1) and E2(n+1) are coefficients and the E3(n+1) is the constant term as intro-

duced in Section 4.1.2. The details are as follows.

E1(n+1) = −λ(1− k)− 2kH3,

E2(n+1) = 2k(−un sinh(Tnω) +
n−1∑

j=1

ûj sinh(Tjω)),

E3(n+1) = λ(1− k)− 2H3. (4.17)

Where ûj = uj+1 − uj.

We choose the positive solution of the equation and the result is list as follows.

T ∗ =
1

ω
ln



E3(n+1) −

√
−E2

1(n+1) + E2
2(n+1) + E2

3(n+1)

E1(n+1) + E2(n+1)


 (4.18)
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Figure 4.1: Analytical solution of T ∗ in two-period stepwise control systems

Figure 4.2: Evolutions of step periods in the simulations in two-period stepwise control

systems
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Figure 4.3: Analytical solution of u0 for target T
∗ in two-period stepwise control systems

Figure 4.4: Evolutions of step periods in the simulations for target T ∗ in two-period

stepwise control systems
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Figure 4.5: Evolution of angular velocity in the analytical solution and simulation in one

steady step in two-period stepwise control system when Tset = 0.3 [s]

Figure 4.6: Evolution of angular velocity in analytical solution and simulation in two-

period stepwise control system in one steady step when Tset = 0.2 [s]

28



Chapter 5

Continuous Piecewise Control

System

5.1 Continuous Piecewise Control System

The (n+1)-period control stepwise system has been proposed and the general formula of

the steady step period has been derived. Some continuous control functions, especially,

the linear functions, are common in our experiments. Therefore, we hope to develop

a simple and convenient method to analyse the steady step state for the linear control

system, and even for all of the continuous time-settling systems.

In general, by calculating the integral of a function, we can divide the function into

many small constant periods. If the division number is large enough, we can calculate the

area of the discrete constant function exactly instead of the original continuous function.

Similarly, when we discretize the control input of the continuous control piecewise systems

and thus calculate the boundary conditions according to the general formula of the (n+1)-

period stepwise control systems, the mathematical model of continuous piecewise control

systems can be built.
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5.1.1 Formula of Steady Step Period in Continuous Piecewise

Control System

To explain our analysis method, we design a continuous piecewise control systems in Eq.

(5.1. fs(t) is the control system during the settling time, Tset.

u(t) =





fs(t) (0 ≤ t < Tset)

0 (t ≥ Tset)
(5.1)

Then we divide Tset into n periods, and design an (n+1)-period stepwise function. The

end time of the (j1)th period is Tj1 =
j1
n
Tset, where j1 ∈ {1, 2, 3, · · · , n}. In each period,

we set a constant value which is the middle point of the linear control function in the

corresponding period as the control input. Thus the constant torque uj1 in the discrete

function can be calculated as :uj1 = fs

(
(2j1 − 1)Tset

2n

)
. Fig. 5.1 illustrates a linear

control function and its 10-period discrete function when t < Tset.

Even though there are total (n+1) periods in the approximative discrete function (the

last period, un+1 = 0 [N×m] when t ≥ Tset, is included), we can still calculate the steady

step period according to Eq. (4.18) in the Chapter 4. E1(n+1), E2(n+1), E3(n+1) and H3

are the same as Eqs. (4.17) and (4.15).

In general, similar with the integral of a function, a large division number can reduce

the error of the integral. When the division number is 1000, however, there is only an

error of 0.5% between the result of numerical simulation and the analysis solution, which

is caused by the state-space realization, and the calculation can be finished immediately.

The error of calculation will be analysed in Section 5.2 in details.

5.1.2 Target Walking Speed in Continuous Piecewise Control

System

In the section above, we have introduced the analysis of steady walking state driven by

piecewise continuous control systems based on the discretizing control input. In addition,

we can also design different kinds of control systems to generate target walking speed
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according to the general formula of the boundary conditions. In detail, the calculation

of the control coefficient in the continuous piecewise control system will be proposed for

generating a target step period in this section.

First, we will design the continuous function as follows.

u(t) =





βf(t) (0 ≤ t < Tset)

0 (t ≥ Tset)
(5.2)

Where f(t) is the continuous function during the settling time, and β is the control

coefficient to generate the target walking speed.

Then we divide Tset into n periods, and thus design the approximative discrete function

of f(t). The end time of the (j)th period is Tj =
j

n
Tset, where j ∈ {1, 2, 3, · · · , n}. In each

period, we set the middle point in the corresponding period as the constant control input

in the period. The constant torque uj in the discrete function can thus be calculated as

follows.

uj = βfj = βf

(
(2j − 1)Tset

2n

)
(5.3)

Based on the Eqs. (4.13)and (4.15), we define G1 =
H1

β
and G3 =

H3

β
as follows.

G1 =f1 cosh(T
∗ω)− fn cosh(T

∗ω − Tnω) +
n−1∑

j=1

(fj+1 − fj) cosh(T
∗ω − Tjω),

G3 =f1 − fn cosh(Tnω) +

n−1∑

j=1

(fj+1 − fj) cosh(Tjω)

(5.4)

Therefore, we calculate the control coefficient, β, by Eq. (5.5) as follows.

β =
λ(−1 + k − cosh(T ∗ω) + k cosh(T ∗ω))

2kG1 − 2G3

(5.5)

In addition, Tset in this section is defined as a known parameter. For some continuous

piecewise control system, however, Tset is also a control coefficient we can adjust. As

a future work, the equation of boundary condition thus becomes much more complex,

and we need to use the Ridders’ method to solve the analytical solutions of the control

coefficient.

31



5.2 Linear Piecewise Control System and Error Anal-

ysis

First of all, the linear piecewise control system is considered as the most simplest contin-

uous system. The general formula of the steady step period will be derived and the error

of calculation will be analysed.

5.2.1 Simulate Linear Piecewise Control Systems by 11-period

Stepwise Control Systems

First we design a simple linear piecewise control systems as Eq. (5.6).

u(t) =





u0 − t (0 ≤ t < Tset)

0 (t ≥ Tset)
(5.6)

Where u0 is the initial control torque which we can adjust. The torque decreases

during the settling time, Tset. Then we divide Tset into 10 periods, and design an 11-

period stepwise function. The end time of the (j1)th period is Tj1 =
j1
10

Tset, where

j1 ∈ {1, 2, 3, · · · , 10}. In each period, we set a constant value which is the middle point

of the linear control function in the corresponding period. Thus the constant torque uj1

in the discrete function can be calculated as :uj1 = u

(
(2j1 − 1)Tset

20

)
. Fig. 5.1 illustrates

a linear control function and its 10-period discrete function when t < Tset.

Even though there are 11 periods in the approximative discrete function totally (the

last period, u11 = 0 [N·m] when t ≥ Tset, is included), we can still calculate the steady

step period according to Eq. (4.18) in the Chapter 4. E1(11), E2(11), E3(11) and H3 are the

same as Eqs. (4.17) and (4.15). Where

uj1 = u0 −
(2j1 − 1)Tset

20
,

Tj1 =
j1
10

Tset.

For verifying our result, we calculated the steady step period according to the equa-

tion above and verified the data by numerical simulations of the linear piecewise control
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Figure 5.1: Linear control function and its approximative discrete function when t < Tset

systems. The parameters were listed in Table 3.1 and Tset = 0.3 [s]. First we set the

control parameter, u0 to 2.5, 2.9, and 3.3 [N×m] for three cases. Second, we input all

the parameters in the equations and calculate the orbit of the steady step period. As the

result, the red star points on the orbit of function in Fig. 5.2 were the calculation results

in the three cases. Then, we conducted the simulations of the linear control system of

CRW with the same parameters. Fig. 5.3 illustrated step periods of every step in three

cases. When the step period did not change any more, we defined the value as the results

of steady step periods in the simulation. Finally, the comparison between two sets of

results of simulations and calculation were listed in Table 5.1 which illustrated that the

error was less than 1%. As a result, we could analyse the steady step state based on

the discretized control input when the model was driven by the linear piecewise control

systems.
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Figure 5.2: Orbit of analytical solutions T ∗ in the linear piecewise control systems

Table 5.1: Verification results of linear piecewise control systems

Control input u0 2.5 2.9 3.3

T ∗ in simulation [s] 0.518 0.400 0.333

T ∗ of calculation [s] 0.523 0.402 0.333

5.2.2 Target Walking Speed in Linear Piecewise Control Sys-

tems

Furthermore, we design a linear piecewise control function as Eq. (5.7) where β is the

control coefficient and bl are the parameters we can define in advance in the linear control

system. The torque changes during the settling time, Tset.

u(t) =





β(t− bl) (0 ≤ t < Tset)

0 (t ≥ Tset)
(5.7)

First we divide Tset into 10 periods. The end time of the (j1)th period is Tj1 =
j1
10

Tset,
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Figure 5.3: Evolutions of step periods in the simulations of linear piecewise control systems

where j1 ∈ {1, 2, 3, · · · , 10}. In each period, we set the middle point of the corresponding

period as the constant control input. We can calculate the analytical solution of β by Eq.

(5.5), where

fj1 =
(2j1 − 1)Tset

20
− bl,

Tj1 =
j1
10

Tset.

For verifying our result, we calculated the control coefficient β and verified the data

by numerical simulations. The parameters were listed in Table 3.1. First, we chose

Tset = 0.3, target T ∗ = 0.4 [s], and set the system parameter, bl,, to -1, 0, and 1 for three

cases. Second, we input all the parameters in the equations and calculated the orbit of

the analytical solution β in Fig. 5.4. We thus chose the three red star points on the orbit

to make comparison with the results of simulations. Then we conducted the simulations

of CRW when it was driven by the linear control system with the analytical solutions

of control coefficient and the same other conditions. Fig. 5.5 illustrated step periods of

every step in three cases. Finally, we recorded simulation results in Table 5.2. The target
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steady step periods were generated, and the error was less than 1.1%. As a result, we

could generate the target steady walking speed when the CRW was driven by the linear

piecewise control systems.

Figure 5.4: Orbit of control coefficient for a target T ∗ in linear piecewise control systems

Table 5.2: Verification results for a target T ∗ in linear piecewise control systems

System parameter bl -1 0 1

Control coefficient β 2.4277 19.787 -3.2172

T ∗ of simulations [s] 0.3981 0.3958 0.3980

5.2.3 Error Analysis

In general, when we calculate the integral of a function, if the division number is large

enough, the error of the integral will be small. Therefore, a linear piecewise control

system was analysed by increasing the period number and the constant torque in each
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Figure 5.5: Evolutions of step period in the simulations of linear piecewise control systems

for a target T ∗

period in our method to decrease the error. When the system was u(t) = 2.9−t during the

settling time and Tset = 0.3 [s], the CRW could thus generate a target steady step period,

T ∗ = 0.3996 [s] in the simulation. The calculation could also be finished in a second even

if we set the division number as 1000. Therefore we tested the error when division number

is from 10 to 1000. Furthermore, we chose the first, the middle and the last point on the

orbit of each period as the constant torque as Fig. 5.6 illustrated. Finally, the result

was shown as Fig. 5.7. We found that the first point case, the middle point case and

the last point case all converged to the same value when the division number was large

enough. Therefore the different point cases could not affect the calculation result when

the division number was large enough. When the division number was 1000, however,

there was still a small error of 0.5% between the result of numerical simulations, because

we used θ instead of sin θ for linearization.

For the linear control system, the 11-period discrete function of the middle point case
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can calculate the steady step period exactly. For most of the continuous control systems,

however, we need to increase the division number in the discrete functions to reduce the

error between continuous function and discrete functions. In some complex continuous

control systems, we will always choose 1001-period of the middle point case stepwise

control system to minimize the error.

Figure 5.6: Three cases of constant torque in one period

5.3 Cosine Piecewise Control Systems

Formula of Steady Step Period in Cosine Piecewise Control Systems

A cosine piecewise control function as Eq. (5.8) is proposed. The torque changes during

the settling time Tset. γ is the control coefficient we can adjust without any physical

significance. Fig. 5.8 plots the input in one step when γ = 4.0 and Tset = 0.3 [s].

u(t) =





γ cos

(
πt

2Tset

)
(0 ≤ t < Tset)

0 (t ≥ Tset)

(5.8)
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Figure 5.7: Calculation results of different division numbers and different constant torque

cases

First we divided Tset into 1000 periods and thus designed a 1001-period stepwise control

system to minimize the error. We set the middle point of the corresponding period as the

constant control input in this period. The steady step period thus could be calculated by

the Eq. (4.18) in Chapter 4. E1(1001), E2(1001), E3(1001) and H3 were as Eqs. (4.17) and

(4.15). Where

uj2 = γ cos

(
π(2j2 − 1)

4000

)
,

Tj2 =
j2

1000
Tset,

j2 ∈ {1, 2, 3, · · · , 1000}.

Then we calculated the steady step period according to the equations above, and

verified the result of calculation by numerical simulations. The value of γ was set from

4 to 5, Tset = 0.3 and the other parameters were chosen as listed in Table 3.1. We thus
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Figure 5.8: The cosine piecewise control system in one step

input all the parameters and calculated the orbit of the steady step periods in Fig. 5.9.

We chose the three red star points on the orbit to make comparison with the results of

simulations. Then we simulated the model of CRW driven by the cosine piecewise control

systems with the three same conditions of the analytical solutions. Fig. 5.10 plotted step

periods of every step in the three cases, and the convergence values were recorded as the

steady step periods in the numerical simulation. Finally we made comparison between

two sets of results in Table 5.3. The error between two sets of values was less than 0.4%.

Table 5.3: Verification results of T ∗ calculation of the cosine piecewise control systems

Control parameter γ 4 4.5 5

T ∗ in simulation [s] 0.417 0.355 0.311

T ∗ of calculation [s] 0.418 0.356 0.312
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Figure 5.9: Orbit of the analytical solutions T ∗ in the cosine piecewise control systems

Target Walking Speed in Cosine Piecewise Control Systems

Similarly, a target walking speed can also be generated by adjusting the control coefficient

of the cosine piecewise control systems. First, we design a cosine piecewise control function

as Eq. (5.9). The torque changes during the settling time, Tset, in each step. bc is the

system parameter, and β is the control coefficient we can adjust to generate the target

walking speeds.

u(t) =





β

(
cos

(
πt

2Tset

)
+ bc

)
(0 ≤ t < Tset)

0 (t ≥ Tset)

(5.9)

We divided Tset into 1000 periods, and designed the 1001-period discrete function.

The end time of the (j2)th period is Tj2 =
j2

1000
Tset, where j2 ∈ {1, 2, 3, · · · , 1000}. In

each period, we set the middle point of the corresponding period as the constant control
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Figure 5.10: Evolutions of step periods in the simulations of the cosine piecewise control

systems

input. The analytical solution of β were calculated by Eq. (5.5), where

fj2 = cos

(
π(2j2 − 1)

4000

)
+ bc,

Tj2 =
j2

1000
Tset.

For verifying our result, we verified the control coefficient, β by simulations to generate

the target walking speed. We chose Tset = 0.3, target T ∗ = 0.4 [s], and set the system

parameter bc to -1, 0, and 1 for three cases. The other parameters were chosen as listed

in Table 3.1. Then we input all the parameters and calculated the orbit of β in Fig.

5.11, and thus chose the three red star points on the orbit to generate simulations. Then

we conducted the simulations of CRW when it was driven by the analytical solutions of

control coefficient and the same other conditions with the calculation. Fig. 5.12 illustrated

evolutions of step periods in the three cases. Finally we recorded simulation results in

Table 5.4. The target steady step period was generated, and the error was less than 0.6%.
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In general, the steady step period were calculated and the target steady walking speed

were generated well when the CRW was driven by the cosine piecewise control systems.

Figure 5.11: Orbit of control coefficient for a target T ∗ in cosine piecewise control systems

Table 5.4: Verification results of target T ∗ generation of the cosine piecewise control

systems

System parameter bc -1 0 1

Control coefficient β -8.3924 4.1285 1.6568

T ∗ of simulations [s] 0.3977 0.3982 0.3981
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Figure 5.12: Evolutions of step period in the simulations of cosine piecewise control

systems for a target T ∗
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Chapter 6

Feed-forward Control System

Even though the limit cycle walkers driven by open-loop control systems generated the

target steady walking speed states, however, the gaits before the steady state could not

be kept at a target walking speed. Different from generating a target angular position or

a target angular velocity, a target walking speed for legged robot is based on an overall

planning for a discrete time period and a space segment in one step. Therefore, accurately

controlling the legged robot to keep a target walking speed is a complicated issue due to

the irreversibility of time and space. The feed-forward control systems are thus considered

as the solution because of the precise control and high energy efficiency.

6.1 Feed-forward Control System Based on Constant

Control System

We begin our feed-forward control by the simplest control system, the constant control

system. The torque in the (i)th step is u = ui (0 < t ≤ Ti), where Ti is the step

period of the (i)th step and input ui is calculated by the feed-forward control systems,

for generating the target walking period state, Ti = T ∗

s [35, 36]. As a result, the walker

will establish a steady rolling cycle on level ground.
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6.1.1 Feed-forward Solution of ui for Target Step Period State

Considering the boundary equations in Chapter 3, the details of Eq. (3.3), the terminal

boundary condition in the (i)th step, is derived as follows.

−2ui + A1 + A2

2l2Mω2
=

α

2
(6.1)

θ̇+i cosh(Tiω) + A3 sinh(Tiω) = θ̇−i+1 (6.2)

Where

A1 =
(
2ui − αl2Mω2

)
cosh(Tiω),

A2 = 2θ̇+i l
2Mω sinh(Tiω), A3 =

ui

l2Mω
−

αω

2
.

Based on Eq. (6.1), if θ̇+i can be measured at the beginning of the (i)th step, we can

derive ui for generating the target step period state, Ti = T ∗

s , as follows.

ui =
l2Mω(αω(1 + cosh(T ∗

s ω)− 2θ̇+i sinh(T ∗

s ω)))

2(cosh(T ∗
s ω)− 1)

(6.3)

We thus develop the feed-forward constant control system and use the function u(θ̇+i , T
∗

s )

to calculate the control torque ui for each step. As the result, the walker can generate a

limit cycle walking with the target step period T ∗

s [41].

6.1.2 Stability Analysis of Feed-forward Constant Control Sys-

tem

The convergence speed in limit cycle walker is the property which can affect the stability

of walking. If a limit cycle walker becomes stable in only one or two steps, then the walker

has a high convergence speed and thus has a high stability. In general, we analyse the

transition function of state error in one step to measure the convergence speed as follows.

First, by eliminating ui by Eq. (6.3) in the angular velocity of the terminal boundary

condition in the (i)th step in Eq. (6.2), the new equation becomes:

−θ̇+i + αω coth

(
T ∗

s ω

2

)
= θ̇−i+1. (6.4)
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As a result, θ̇+i + θ̇−i+1 is constant in the limit cycle walking with the target step period

T ∗

s . In addition, the condition θ̇+i ≤ αω coth

(
T ∗

s ω

2

)
should be satisfied to keep θ̇−i+1 ≥ 0.

Otherwise, the walker cannot finish the designed control input before the impact, and

thus cannot generate the target walking speed state in this step.

When we consider the steady steps, similarly, we can also derive the same result as

follows.

θ̇−eq + θ̇+eq = αω coth

(
T ∗

s ω

2

)
. (6.5)

Furthermore, we define the state error vector immediately after or before the (i)th

impact as ∆x±

i = x±

i − x±

eq. Thus, when we subtract Eqs. (6.4) and (6.5), we can

generate the transition function of state error as follows.

∆θ̇−i+1 = −∆θ̇+i (6.6)

In addition, in the collision phase, based on the collision equation in the (i + 1)th

step and in a steady step, ∆θ̇−i+1 = cosα∆θ̇+i+1 can be derived. Therefore, the transition

function of state error in the (i)th step is derived as

∆θ̇+i+1 = − cosα∆θ̇+i . (6.7)

In general, when the initial angular velocity satisfies 0 ≤ θ̇+0 ≤ αω coth

(
T ∗

s ω

2

)
, the

transition function of state error in one step is always (− cosα) when the walker is driven

by the feed-forward constant control systems.

6.1.3 Simulation and Verification of Feed-forward Constant Con-

trol System

Based on the function u(θ̇+i , T
∗

s ) in Eq. (6.3), the walker can generate a limit cycle

walking at a target walking speed by the feed-forward constant control systems. To verify

our results, we simulated the CRW driven by the feed-forward constant control systems

and checked whether each step period was the same with our target step period or not.

In the simulations, the physical parameters were chosen as listed in Table 3.1.
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Figure 6.1: Step-evolutions of step period in the simulations driven by the feed-forward

constant control systems

We chose T ∗

s as 0.3, 0.4, and 0.5 [s] for the three simulations. First, we substituted

T ∗

s in Eq. (6.3) and designed our feed-forward constant control systems. Second, the step

period of each step in the simulation were recorded in Fig. 6.1. The error between T ∗

s

and T ∗ were all less than 0.4%. As the result, the limit cycle walking at target walking

speeds were generated by our feed-forward constant control systems.

In detail, the time-evolutions of control input ui are showed in Fig. 6.2. The control

inputs keep the constant torque in each step, and become asymptotically and vibrationally

stable. When the control input becomes stable and constant, the walker generates the

limit cycle walking. Fig. 6.3 illustrates the time-evolutions of angular velocity. We set all

the initial angular velocities, θ̇+0 , as 0 [rad/s].

Fig. 6.4 illustrated the step-evolutions of the angular velocity immediately before

impacts. We discussed that the transition function of state error in one step was always

constant when the walker was driven by the feed-forward constant control systems. As a

result, all these three cases had the same convergence speed.
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Figure 6.2: Time-evolutions of control input in the simulations driven by the feed-forward

constant control systems

Figure 6.3: Time-evolutions of angular velocities in the simulations driven by the feed-

forward constant control systems

In addition, we also tested the range of our target step period. When the initial angular

velocities, θ̇+0 = 0 [rad/s], only 0 < T ∗

s < 1.4 [s] could be generated for the feed-forward

constant control systems.
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Figure 6.4: Step-evolutions of angular velocities immediately before impact in the simu-

lations driven by the feedforward constant control systems

6.2 Feed-forward Control System based on Two-period

Stepwise Control System

6.2.1 Feed-forward Two-period Stepwise Control System

We analysed the feed-forward constant control systems to calculate the control input ui

in each step for generating limit cycle walking at a target walking speed. The transition

function of state error which stands for the stability of the walker, however, is uncontrol-

lable. In the previous research [30], the two-period stepwise control system could help

us to control the transfer function of state error. Therefore, we need to reconsider the

two-period stepwise control system in Chapter 4 as follows to generate the limit cycle

walking at a target walking speed.

u(t) =





ui (0 ≤ t < Tset)

0 (t ≥ Tset)
(6.8)
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According to the control system in Eq. (6.8), when the time is longer than the settling

time, Tset, in one step, the control torque is always 0 until the next impact. Therefore,

the solution of Eq. (2.2) in the (i)th step is arranged as follows.

x−

i+1 = eATix+
i +

∫ Ti

0+
eA(Ti−s)Bu(s) ds (6.9)

= eATix+
i +

∫ Tset

0+
eA(Ti−s)Bui ds (6.10)

Similarly, the boundary conditions are the same as Eqs. (3.5) and (3.6). Therefore,

we can derive the details of Eq. (6.10), the terminal boundary condition in the (i)th step,

as follows.
−2ui cosh(Tiω − Tsetω) + A1 + A2

2l2Mω2
=

α

2
(6.11)

θ̇+i cosh(Tiω) + A3 sinh(Tiω)−
ui

l2Mω
A4 = θ̇−i+1 (6.12)

Where

A4 = sinh(Tiω − Tsetω).

For generating the target step period Ti = T ∗

s state, θ̇+i is measured at the beginning of

the (i)th step, and thus ui is derived as follows.

ui =
l2Mω(αω(1 + cosh(T ∗

s ω)− 2θ̇+i sinh(T ∗

s ω)))

2(cosh(T ∗
s ω)− cosh(T ∗

s ω − Tsetω))
(6.13)

As the result, we develop the feed-forward two-period stepwise control systems which

measure θ̇+i at the beginning of the (i)th step and then decide the control input torque for

each step. By this control system, the walker can generate the limit cycle walking with

the target step period T ∗

s .

6.2.2 Stability Analysis of Feed-forward Two-period Stepwise

Control System

We analyse the transition function of state error for controlling the convergence speed

in the feed-forward two-period stepwise control systems as follows. In order to ensure
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all the control must be finished in one step, Tset must be satisfied 0 < Tset ≤ T ∗

s , and

thus sinh

(
T ∗

s ω −
Tsetω

2

)
6= 0. Therefore, when we eliminate ui by in Eq. (6.13) in the

angular velocity of the terminal boundary condition in the (i)th step in Eq. (6.12), the

new equation becomes:

−k1θ̇
+
i + C2 = θ̇−i+1. (6.14)

Where

k1 =

sinh

(
Tsetω

2

)

sinh

(
T ∗
s ω −

Tsetω

2

) (6.15)

and C2 is the constant item as follows.

C2 =

αω

(
cosh

(
Tsetω

2

)
+ cosh

(
T ∗

s ω −
Tsetω

2

))

2 sinh

(
T ∗
s ω −

Tsetω

2

) (6.16)

As a result, k1θ̇
+
i + θ̇−i+1 is constant in our limit cycle walking with the target step

period T ∗

s . In general, the condition θ̇+i < C2/k1 should be satisfied to keep θ̇−i+1 ≥ 0.

Similarly, for the steady steps, we can also generate the same result as follows.

θ̇−eq + k1θ̇
+
eq = C2. (6.17)

Thus, when we subtract Eqs. (6.14) and (6.17), we can derive the transition function

of state error as follows.

∆θ̇−i+1 = −k1∆θ̇+i (6.18)

As a result, when Tset = T ∗

s , k1 = 1. The system just becomes the same case with the

feed-forward constant control system. Conversely, when Tset is close to 0, for example,

0.003 [s], k1 ≈ 0. The stability of the limit cycle walking is so high that the model can

become stable in one step.

In addition, in the collision phase, based on the collision equation in the (i + 1)th

step and in a steady step, ∆θ̇−i+1 = cosα∆θ̇+i+1 can be derived. Therefore, the transition

function of state error in the (i)th step is derived as

∆θ̇+i+1 = −k1 cosα∆θ̇+i . (6.19)
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As a conclusion, when the walker is driven by the feed-forward two-period stepwise

control systems, the transition function of state error can be controlled by the settling

time, Tset.

6.2.3 Simulation and Verification of Feed-forward Two-period

Stepwise Control System

We chose Tset as 0.1, 0.2, and 0.3 [s] for three simulations for generating the limit cycle

walking with T ∗

s = 0.4 [s]. First, we substituted T ∗

s and Tset into Eq. (6.13) and designed

our control systems in the simulations. Second, we generated the simulations and recorded

the step period of each step in the simulations in Fig. 6.5. The error between T ∗

s and T ∗

in the simulation were all less than 0.4%. Thus, we designed the feed-forward two-period

stepwise control systems for generating the limit cycle walking at a target walking speed.

Figure 6.5: Step-evolutions of step period in the simulations driven by the feed-forward

two-period stepwise control systems

In addition, the time-evolutions of control input ui were showed in Fig. 6.6. The

control inputs kept the constant torque during Tset in each step, and asymptotically

and vibrationally become stable. When the control input became stable and constant,
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the walker generated its limit cycle walking. Fig. 6.7 illustrated the time-evolutions of

angular velocity for 4 steps. We set all the initial angular velocities, θ̇+0 , as 0 [rad/s].

Figure 6.6: Time-evolutions of control input in the simulations driven by the feed-forward

two-period stepwise control systems

Figure 6.7: Time-evolutions of angular velocities in the simulations driven by the feed-

forward two-period stepwise control systems

Fig. 6.8 illustrated the step-evolutions of the angular velocity immediately before

impacts. We discussed that the transition function of state error in one step could be

controlled by Tset when the walker was driven by the feed-forward two-period stepwise

control systems. As a result, the case when Tset = 0.1 [s] had the best convergence speed.
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Furthermore, when Tset was very closed to 0, for example, 0.003 [s] as Fig. 6.9 illustrated,

the model in this case became stable in only one step. Therefore, the transition function

of state error in this case would be closed to 0. In addition, considering the condition

θ̇+0 ≤ C2/k1, the case that Tset was closed to 0 could deal with a fast initial angular

velocity, θ̇+0 , however, the input torque became large.

Figure 6.8: Step-evolutions of angular velocities immediately before impact in the sim-

ulations driven by the feed-forward two-period stepwise control systems whenTset = 0.1,

0.2 and 0.3 [s]

6.3 Feed-forward and Feedback Control System

In the sections above the information is fed at the beginning of each step, only for one

loop. The CRW thus designed the control parameters for generating a target state gait.

When a disturbance happens after the feed gain, the feed-forward control cannot deal with

it, and thus the target walking state cannot be generated in this step. In addition, the

persistent disturbance, especially, the friction, affects the walker all the time. Therefore,
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Figure 6.9: Step-evolutions of angular velocities immediately before impact in the sim-

ulations driven by the feed-forward two-period stepwise control systems whenTset =0.3,

0.03 and 0.003 [s]

as an extension, if the CRW can feed the walking state in every short moment for more

loops, and thus update the control parameters by real-time, a target walking state can

be generated even if there are disturbances during each step [39, 40]. In this section, we

designed a feed-forward and feedback control system and tested its robustness.

Based on Eq. (6.1), if the time t and the state at t [s], θ̇i(t), can be measured every

moment, and are fed to the model, the ui(t) can be derived for generating the target step

period state, Ti = T ∗

s , as follows.

ui(t) =
l2Mω(αω − 2ωθi(t) cosh((T

∗

s − t)ω)− 2θ̇i(t) sinh((T
∗

s − t)ω)))

2(cosh((T ∗
s − t)ω)− 1)

(6.20)

When t is closed to T ∗

s , however, cosh(Trω)− 1 ≈ 0 and it will cause a system error.

Therefore, two solutions are proposed to solve this problem. Solution 1 (S1) which is more

energy efficiency is designed for the no-disturbance case, and Solution 2 (S2) is designed

for the case with large disturbance.
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S1. When t is closed to T ∗

s (Tr < 0.001 [s]), we define ui(t) = 0.

S2. A upper bound of ui(t) as umax is defined. When the calculation of ui(t) is larger

than umax, we just define ui(t) = umax.

6.3.1 Simulation of Feed-forward and Feedback Control System

We chose T ∗

s as 0.4 [s], and conducted the three simulations with other parameters in

Table 3.1. First, we substitute T ∗

s in Eq. (6.20) and design our feed-forward and feedback

control systems. Then, the step period of each step in these simulations is recorded in

Fig. 6.10. The error between T ∗

s and T ∗ are all close 0 (2.5×10−7%), which was even less

than the feed-forward constant control system. Therefore the feed-forward and feedback

control system could even revise the error caused by the linearized equation of motion.

As the result, the limit cycle walking at target walking speeds are generated by our feed-

forward and feedback control systems. In detail, the evolution of control torque and

angular velocity are illustrated in Fig. 6.11 and Fig. 6.12.

6.3.2 Simulation with Disturbance

Unexpected sudden change in angular velocity

To verify the ability of handle disturbance, a simulation was conducted to test if the feed-

forward constant control system could deal with an unexpected sudden change in angular

velocity. The CRW was kept walking at the constant speed when T ∗

s = 0.4 [s]. Then we

pushed the CRW at t = 2.1 [s] and made the angular velocity increase 0.5 [rad/s] suddenly

without any other effect on CRW. As a result, the torque in Fig. 6.15 was changed at

2.1 [s] compared with Fig. 6.11 by feed-forward and feedback control system and thus

the CRW still could keep a perfectly constant speed in each step in Fig. 6.13. In detail,

the evolution of angular velocity and control torque were illustrated in Fig. 6.14 and Fig.

6.15.
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Joint viscosity

In the section above we have discussed the ability of handle an unexpected sudden distur-

bance. In addition, a persistent disturbance is also common and has a serious impact on

the precise control. In general, for the CRW, a viscous friction at the connection between

the rear RW and the body frame is inevitable and thus affects the walker all the time as

a persistent disturbance. Therefore, for generating the target walking speed, we need to

handle the viscous friction by the feed-forward and feedback control system. In detail,

the torque of the joint viscosity is defined as fv = −kvθ̇, and the equation of motion is

arranged as follows.

θ̈ = ω2 sin θ +
u

Ml2
−

kvθ̇

Ml2
(6.21)

Thus the state-space equation is revised as follows.

d

dt


 θ

θ̇


 =


 0 1

ω2 −kv/Ml2




 θ

θ̇


+


 0

1/Ml2


 u. (6.22)

Even though the equation of motion is changed, the formula of the feed-forward and

feedback control system is still the same as Eq. (6.20). Then the simulations were

conducted when kv = 5, T ∗

s = 0.4 [s] and umax of Solution 2 is set as 40 and 100 [N×m]

for two conditions. As a result, the step period of each step in these simulations is recorded

in Fig. 6.16. When umax = 40, the error between T ∗

s and T ∗ are around 1%, and when

umax = 100, the error is very closed to 0. Therefore, a higher torque boundary could

help the feed-forward control to perform better. In detail, the evaluation of control input,

ui(t), were illustrated in Fig. 6.17 and Fig. 6.18.
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Figure 6.10: Step-evolution of step period driven by the feed-forward and feedback control

systems

Figure 6.11: Evolution of control input driven by the feed-forward and feedback control

systems

59



Figure 6.12: Evolution of of angular velocities driven the feed-forward and feedback control

systems

Figure 6.13: Step-evolution of step periods driven by the feed-forward and feedback control

system and an unexpected disturbance
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Figure 6.14: Evolution of angular velocities driven by the feed-forward and feedback

control system and an unexpected disturbance

Figure 6.15: Evolution of control input driven by the feed-forward and feedback control

system and an unexpected disturbance
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Figure 6.16: Step-evolutions of step periods driven by the feed-forward and feedback

control system and joint viscosity

Figure 6.17: Evolutions of control input driven by the feed-forward and feedback control

system and joint viscosity when umax = 40
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Figure 6.18: Evolutions of control input driven by the feed-forward and feedback control

system and joint viscosity when umax = 100
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Chapter 7

Extension to the Complex Model

In previous chapters, mathematical analysis of the actuated CRW driven by time-settling

control systems was proposed. Gait properties were analysed mathematically and the op-

timal walking states were generated. In addition, the feed-forward control systems were

thus proposed based the mathematical model of actuated CRW. Optimal walking states

were analysed and generated by the feed-forward control systems. If the mathematical

method can be extended to some more complex model, more gait properties and opti-

mal walking states can be discovered. In previous research, underactuated rimless wheel

(URW) generated deadbeat mode and could walk on the uneven ground better than the

CRW. Therefore, URW is considered as an extension of our mathematical analysis model.

7.1 Underactuated Rimless Wheel

7.1.1 URW Model

Fig. 7.1 illustrates the model of an URW with a torso. This walker consists of an eight-

legged rimless wheel and a torso link. The radius of the RW which is equivalent to the

leg-frame length is l [m]. The relative angle between two adjacent leg frames, α, is π/4

[rad]. The mass of the RW is m1 [kg], and that of the torso is m2 [kg]. The total mass is
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Figure 7.1: An underactuated rimless wheel (URW) model

Mu := m1 +m2 [kg]. The torso link is connected to the RW at the central position, and

the moment of inertia about the joint is I [kg·m2]. The URW can exert a joint torque

between the torso and RW. We assume that the contact point of the stance leg with the

ground does not slide or jump during motion. The URW model then becomes a 2-DOF

system. We then define θ1 as the angular position of the stance leg with respect to vertical,

and θ2 as the angular position of the torso link with respect to horizontal, respectively.

7.1.2 Equations of Motion and Linearization of URW

Let θ = [θ1 θ2]
T be the generalized coordinate vector. The equation of motion then

becomes 
 Mul

2 0

0 I




 θ̈1

θ̈2


+


 −Mugl sin θ1

0


 =


 1

−1


 u. (7.1)

By linearizing Eq. (7.1) around θ = θ̇ = 02×1, we derive the equation as following Eq.

(7.2). 
 Mul

2 0

0 I




 θ̈1

θ̈2


+


 −Mugl 0

0 0




 θ1

θ2


 =


 1

−1


u (7.2)

We denote Eq. (7.2) as

M0θ̈ +G0θ = Su.
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To verify our linearization calculation, we make comparisons with the results of non-

linearization simulation in the following sections. There is an error due to the linearization.

7.1.3 Collision Equation of URW

We define the state vector immediately before the (i)th impact as θ−

(i) = [θ−1(i) θ−2(i)]
T and

the state vector immediately after the (i)th impact as θ+
(i) = [θ+1(i) θ+2(i)]

T. The subscript

“i” in the standard brackets denotes the step number. In the collision phase, we assume

that the rear leg frame at impacts (the previous stance leg) begins to leave the ground

immediately after the landing of the fore leg frame (the next stance leg) according to the

law of inelastic collision. We assume the following.

• The walker falls down as a 1-DOF rigid body or achieves the condition of θ̇−1(i) = θ̇−2(i)

immediately before the next impact.

• The torso is mechanically locked to the RW during the collision. This condition is

mathematically represented by θ̇+1(i) = θ̇+2(i).

Based on the above assumptions, we outline the collision dynamics. The transition equa-

tion for the angular velocity becomes

θ̇+1(i) = θ̇+2(i) = kuθ̇
−

1(i), ku =
Mul

2 cosα + I

Mul2 + I
. (7.3)

Here, the transition equation for the angular positions is also determined as

θ±1(i) = ∓
α

2
, θ+2(i) = θ−2(i) = 0. (7.4)

7.1.4 Control System of URW

Let

y := STθ = θ1 − θ2

be the control output. The second-order derivative of y with respect to time becomes

ÿ = STθ̈ = STM−1
0 (Su−G0θ) (7.5)
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We then control y from y+ = θ+1 − θ+2 = −α/2 to y− = θ−1 − θ−2 = α/2 during every

stance phase by strictly tracking to the following Eq. (7.6).

ÿd(t) =





4α

T 2
set

(0 ≤ t <
Tset

2
)

−
4α

T 2
set

(
Tset

2
≤ t < Tset)

0 (t ≥ Tset)

(7.6)

The control input, u, for achieving ÿ = ÿd(t) can be determined as

u =
ÿd(t) + STM−1

0 G0θ

STM−1
0 S

=
Mul

2I

Mul2 + I

(
ÿd(t)−

g

l
θ1

)
. (7.7)

7.2 Analysis of Boundary Conditions of URW

When we substitute the u in Eq. (7.2) by Eq. (7.7), we derive a new equation as follows.

θ̈1 = ω̂2θ1 + I0 ¨yd(t), ω̂ :=

√
Mugl

Mul2 + I
, I0 :=

I

Mul2 + I
. (7.8)

The state-space realization of Eq. (7.8) then becomes

d

dt


 θ1

θ̇1


 =


 0 1

ω̂2 0




 θ1

θ̇1


+


 0

I0


 ÿd(t). (7.9)

In the following sections, we denote Eq. (7.9) as

ẋ = Âx+ B̂ÿd(t).

As the solution of Eq. (5.1) [29], when we define the (i)th step period as Ti, the

state vector immediately before the (i+ 1)th impact, x−

i+1, is written by the state vector

immediately after the ith impact, x+
i , as

x−

i+1 = eÂTix+
i +

∫ T
−

i

0+
eÂ(Ti−s)B̂ÿd(s) ds. (7.10)
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The state vector at t [s], x(t), can be written by the time t and the initial state vector

x(0) as

x(t) =


 θ1(t)

θ̇1(t)


 = eÂtx(0) +

∫ t

0+
eÂ(t−s)B̂ÿd(s) ds. (7.11)

The equation in the steady state also becomes

x−

eq = eÂT ∗

x+
eq +

∫ T ∗

0+
eÂ(T ∗

−s)B̂ÿd(s) ds

= eÂT ∗

x+
eq +

∫ Tset
2

0+
eÂ(T ∗

−s)B̂
4α

T 2
set

ds

−

∫ Tset

Tset
2

eÂ(T ∗−s)B̂
4α

T 2
set

ds,

where the subscript “eq” means the steady state and T ∗ means the steady step period.

The initial and terminal boundary conditions in a steady step are as follows.

x+
eq = x∗(0+) =


 θ∗1(0

+)

θ̇
∗

1(0
+)


 =


 −

α

2

θ̇+1eq


 (7.12)

x−

eq = x∗((T ∗)−) =


 θ∗1((T

∗)−)

θ̇
∗

1((T
∗)−)


 =




α

2

θ̇−1eq


 (7.13)

Thus we eliminate the θ̇−1eq and θ̇+1eq in Eqs. (7.12) and (7.13) according to the transition

equation of impact. After the simplification of the initial and terminal boundary condi-

tions based on the properties of hyperbolic functions [31], we derive the single boundary

equation as follows.

T 2
setω̂

2

(
1

ku
− 1

)
(1 + cosh(T ∗ω̂))− 16I0 cosh(

Tset

2
ω̂)

+8I0

(
1−

cosh(Tsetω̂)

ku
+ cosh(Tsetω̂)

)
−

8I0
ku

F1 = 0

(7.14)

Where F1 is defined to simplify the formula as following equation.

F1 = cosh(T ∗ω̂ − Tsetω̂)− 2 cosh(T ∗ω̂ −
Tset

2
ω̂) (7.15)
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7.3 Steady Gait Property Analysis of URW

7.3.1 Steady Step Period, T ∗

To calculate T ∗, we need to extract the common factors in Eq. (7.14) and the result thus

becomes

Ecosh cosh(T
∗ω) + Esinh sinh(T

∗ω) = Ec. (7.16)

Where Ecosh and Esinh are coefficients of the hyperbolic cosine function and the hyperbolic

sine function, and Ec ( < 0) is the constant term. The details of Ecosh, Esinh and Ec are

as follows.

Ecosh =
8I0
ku

(
1− 2 cosh

(
Tsetω̂

2

)
+ cosh(Tsetω̂)

)
−

(
1

ku
− 1

)
T 2
setω̂

2

Esinh =
8I0
ku

(
2 sinh

(
Tsetω̂

2

)
− sinh(Tsetω̂)

)

Ec = 8I0

(
1− 2 cosh

(
Tsetω̂

2

)
+ cosh(Tsetω̂)

)
+

(
1

ku
− 1

)
T 2
setω̂

2

Finally we simplify the equation and solve the solution by computer. The positive solution

is chosen and the result is as follows [31].

T ∗ =
1

ω̂
ln

(
Ec −

√
−E2

cosh + E2
sinh + E2

c

Ecosh + Esinh

)
(7.17)

In addition, if −E2
cosh + E2

sinh + E2
c < 0, then the equation cannot be solved. There are

two possible causes for this. The first one is that the motor cannot supply enough kinetic

energy to make the URW overcome the potential barrier. The second one is the model

cannot generate a one-step-cycle limit cycle walking [32]. Multi-step-cycle limit cycle

walking is an important topic which is left as a future work.

7.3.2 Steady Angular Velocity Immediately after Impact, θ̇+eq

Since we have calculated the steady step period, T ∗, we can also find more details of the

gait property in the steady gait. According to Eq. (7.12), we can calculate the steady
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angular velocity immediately after impact, θ̇+1eq as follows.

θ̇+1eq =
α (T 2

setω̂
2 − (8I0 − T 2

setω̂
2) cosh(T ∗ω̂)− 8I0F1)

2T 2
setω̂ sinh(T ∗ω)

(7.18)

Where T ∗ are derived as Eq. (7.17) and F1 is defined as Eq. (7.15).

In addition, the steady angular velocity immediately before impact, θ̇−1eq can also be

calculated by θ̇−1(i) = θ̇+1(i)/ku based on the transition equation Eq. (7.3).

7.3.3 Verification Based on Numerical Simulations

To verify our results, we made the simulation of URW and checked whether the URW

generated the same steady step period with the result of the analytical solution of T ∗. The

physical parameters were chosen as listed in Table 7.1. With Eq. (7.17), we calculated

T ∗ where Tset is the input parameter.

We chose Tset as 0.5, 0.65, 0.8 [s] for the three cases. First we calculated the value of

T ∗ for these three cases. The red star points on the orbit of function in Fig. 7.2 were the

calculation results.

Table 7.1: Physical parameters of URW

Parameters Value Unit

l 1.0 [m]

g 9.81 [m/s2]

Mu 2.0 [kg]

α π
4

[rad]

I 1.0 [kg·m2]

Next, we made the simulations for these three cases. The step period converged to a

constant value as illustrated in Fig. 7.3. When the step period did not change any more,

it was the steady step period T ∗ in the simulation. Finally the comparison between two

sets of values in Table 7.2 illustrated that the error was about 1%. Our equation could

calculate the steady step period exactly.
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Table 7.2: Verification results for analytical solution of T ∗ on the URW model

Tset [s] 0.5 0.65 0.8

T ∗ in function [s] 0.8845 1.097 1.366

T ∗ in simulation [s] 0.8836 1.094 1.357

Figure 7.2: Analytical solution of T ∗ as a function of Tset on URW model

7.4 Analysis of Deadbeat Gait Generation

7.4.1 Transition Function of State Error

To drive the transition function of state error which can help us to generate a deadbeat

mode, first, we need to reconsider Eq. (7.9) which was denoted as ẋ = Âx+ B̂ÿd(t).

As we define, ÿd(t) = 0 when t > Tset. Thus the solution of Eq. (5.1) [29] is solved as

follows.

x−

i+1 = eÂTix+
i +

∫ Tset

0+
eÂ(Ti−s)B̂ÿd(s) ds. (7.19)

Here, we define

η =

∫ Tset

0+
e−ÂsB̂ÿd(s) ds (7.20)
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Figure 7.3: Evolutions of step periods in the simulations of URW model

. In this case, the Eq. (7.19) becomes

x−

i+1 = eÂTi
(
x+
i + η

)
. (7.21)

Furthermore, we define the state error vector immediately after or before the (i)th impact

as ∆x±

i = x±

i −x±

eq and the error of step period as ∆Ti = Ti−T ∗. Thus when we substitute

x+
i and Ti into the Eq. (7.21), the new equation after the simplification becomes

x−

i+1 = eÂ(T ∗+∆Ti)
(
x+
eq + η +∆x+

i

)

= eÂ∆Ti

(
eÂT ∗

(
x+
eq + η

)
+ eÂT ∗

∆x+
i

)

= eÂ∆Ti

(
x−

eq + eÂT ∗

∆x+
i

)
.

Based on the approximation of e ˆ
A∆Ti as following Eq. (7.22)

eÂ∆Ti ≈ I2 + Â∆Ti, (7.22)

we ignore the error term higher than second order and rearrange the equation as follows.

x−

i+1 ≈ x−

eq + Âx−

eq∆Ti + eÂT ∗

∆x+
i (7.23)

72



According to the boundary conditions, we can know

x−

i+1 =




α

2

θ̇−1(i+1)


 , x−

eq =




α

2

θ̇−1eq


 . (7.24)

Therefore, we define p = [1 0] and thus px−

i+1 = px−

eq = α/2. When we multiply Eq.

(7.23) by p, the result becomes

α

2
=

α

2
+ pÂx−

eq∆Ti + peÂT ∗

∆x+
i . (7.25)

Since pÂx−

eq = θ̇−1eq 6= 0 holds, finally we can solve ∆Ti as follows.

∆Ti = −
peÂT ∗

∆x+
i

pÂx−
eq

(7.26)

In addition, ∆x−

i+1 = x−

i+1 − x−

eq. Based on Eqs. (7.23) and (7.26), we can calculate the

transition function of state error as

∆x−

i+1 = Q∆x+
i , (7.27)

where

Q =

(
I2 −

Âx−

eqp

pÂx−
eq

)
eÂT ∗

. (7.28)

Since we only need to consider about the angular velocity, we define v = [0 1]T and

finally we can derive the transition function of angular velocity error as

∆θ̇−i+1 = Q̄∆θ̇+i , Q̄ := vTQv. (7.29)

7.4.2 Deadbeat Gait Generation

According to the previous research of McGeer, when 0 < Q̄ < 1, the walker is in the

speed mode, and when −1 < Q̄ < 0, the walker is in the totter mode. Asano and Xiao

proposed a new mode, deadbeat mode, when Q̄ = 0. In this mode, the walker can keep

the stable gait perfectly and recover from the disturbance only in one step. Obviously, a

deadbeat mode is a kind of optimal state.
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When we substitute the parameters into Eq (7.29), the equation of Q̄ becomes

Q̄ = cosh(ω̂T ∗)−
ω̂θ−1eq

θ̇−1eq
sinh(ω̂T ∗). (7.30)

In the section above, we derived the formulas of T ∗ and θ̇−1eq as Eqs. (7.17) and (7.18)

in the stable step state. Therefore, we can calculate Q̄ mathematically. When Q̄ = 0, the

value of Tset is solved as 0.751 [s] by Ridders’ Method.

We then tried to verify the result using simulations. We set all the parameters as

shown in Table 3.1 and plotted the figure of Tset-evolution of Q̄ in Fig. 7.4. Q̄ = 0 when

Tset was around 0.751 [s]. Thus we set Tset = 0.751 [s] and run the simulation. The model

generated a fast convergent gait; however, it did not generate a strict deadbeat mode since

there was an error due to the linearization. We also tested other value around 0.751, and

found the deadbeat mode when Tset = 0.753 [s]. In this case the walker reached stability

in only one step. Both the step-evolutions of θ̇−1 in the simulations were shown in Fig.

7.5.

7.5 Target Steady Walking Speed

For a URW model, the steady walking speed can also be calculated by the ratio of the

step length to the step period of the URW. Therefore, generating a target steady step

period is the equivalent of generating a target walking speed. We can calculate the steady

step period, T ∗, when we know the value of Tset. On the contrary, setting the value of Tset

to generate a target steady step period is still an unclear issue. We will solve this issue

in this section.

7.5.1 Target Steady Step Period

The mathematical analysis illustrates that there is a one-to-one relationship between Tset

and T ∗. Based on the expression on the left side of Eq. (7.14), we develop a function of

74



the boundary condition, Fc(Tset, T
∗) as follows.

Fc(Tset, T
∗) = 8I0

(
1−

cosh(Tsetω̂)

k − u
+ cosh(Tsetω̂)

)

+T 2
setω̂

2

(
1

ku
− 1

)
(1 + cosh(T ∗ω̂))

−16I0 cosh(
Tset

2
ω̂)−

8I0
ku

F1

Where F1 is defined in Eq. (7.15). For each pair of Tset and T ∗, Fc(Tset, T
∗) = 0.

7.5.2 Verification for Target Steady Step Period

To verify our results, we generated a target steady step period T ∗ = 1.6 [s]. The other

parameters were listed in the Table 7.1. Thus, the value of Tset was solved as Tset = 0.8976

by Ridders’ Method.

For the verification, Fig. 7.6 plotted the step-evolution of the step periods in the

numerical simulation when Tset = 0.8976 [s]. Through the root of Ridders’ Method, we

generated the target steady step period T ∗ = 1.584 [s] in the simulation. The error of 1%

was caused by the linearization of the equation.

7.6 Feed-forward Control on URW

Similar with the CRW, the Tset in the (i)th step can also be calculated by the feed-

forward control systems at the beginning of one step, for generating the target walking

period state, Ti = T ∗

s [39, 40].

7.6.1 URW Walks on Level Ground

Based on the boundary conditions introduced in Eqs. (7.12) and (7.13), the general

function is designed as follows.

FURW(Tset) =
1

T 2
setω̂

2

(
4αI0 + θ+URW(i)T

2
setω̂

2
)
cosh(T ∗

s ω̂)

+ 4αF1 + θ̇+URWT 2
setω̂ sinh(T ∗

s ω̂)− θ−URW(i+1)
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Where θ+URW(i) = −
alpha

2
and θ−URW(i+1) =

alpha

2
are the angular positions immediately

after and before impacts in the (i)th step on level ground. Therefore, FURW(Tset) = 0

means the URW arrivals to the angular position immediately before impacts in the (i+1)th

at T ∗

s , and the settling-time Tset can thus generate a target step period, T ∗

s in the (i)th

step. As a continuous function, FURW(Tset) = 0, the root of Tset in each step can be

calculated by Ridders’ method.

The simulation was conducted to verify the result. We set all the initial angular

velocities, θ̇+0 , as 0 [rad/s], and chose T ∗

s as 1.0 [s] for generating the target limit cycle

walking speed. First, we substituted T ∗

s into FURW(Tset) = 0 and generated the simulations

by solving the value of Tset by Ridders’ method at the beginning of each steps. Second, we

recorded the step period of each step in the simulations in Fig. 7.7. The error between T ∗

s

and Ti in the simulation were all less than 2%. Thus, we designed the feed-forward control

systems on the URW for generating the limit cycle walking at target walking speeds. In

addition, the time-evolutions of control input ui were showed in Fig. 7.8.

7.6.2 URW Walks on Uneven Ground

When the initial and terminal angular positions,θ+URW(i) and θ−URW(i+1) can also be known

and fed, we can even generate a target walking speed on uneven ground. In that case,

the general function is designed as follows.

FURW(Tset, θ
+
URW(i), θ

−

URW(i+1)) =
1

T 2
setω̂

2

(
4αI0 + θ+URW(i)T

2
setω̂

2
)
cosh(T ∗

s ω̂)

+4αF1 + θ̇+URW(i)T
2
setω̂ sinh(T ∗

s ω̂)− θ−URW(i+1)

(7.31)

Then, FURW(Tset, θ
+
URW(i), θ

−

URW(i+1)) = 0 is analysed and the solution of Tset is solved

by Ridder’s method at the beginning of each step. Thus, based on the condition of the

uneven ground, the URW derives the settling-time in each step and generates the target

walking speed on the uneven ground [38, 42].

The simulations were conducted for verifying the results. First, we designed a random

uneven ground. The slope in each step was a random value between -0.05 and 0,05 [rad] in
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each step. The initial condition of the URW was standing on level ground and the initial

angular velocity was 0.85 [rad/s]. The target step period, T ∗

s was set as 1.0 [s]. The other

parameters were the same with the Table 7.1. Then, we generated the simulations. To

make the comparison, a simulation of the URW driven by a no-feed control system which

generated a target constant step period 1.0 [s] (Section 7.5) was also conducted walking

on the same uneven ground. The evaluations of step period in both cases were recorded

in Fig. 7.9. As a result, the error between Ti and T ∗

s of the feed-forward case was only

around 3%, which was caused by the linearized equation of motion. Conversely, the URW

driven by no-feed control systems could not generate a steady gait.
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Figure 7.4: Analytical solution of Q̄ as a function of Tset on URW model

Figure 7.5: Step-evolutions of θ̇−1 for deadbeat mode generation in the simulations of

URW model
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Figure 7.6: Step-evolutions of step periods for target walking speed in the simulations of

URW model

Figure 7.7: Step-evolution of step period in the simulations driven by the feed-forward

control system on URW
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Figure 7.8: Evolution of control input in the simulations driven by the feed-forward control

system on URW

Figure 7.9: Step-evolutions of step periods driven by the feed-forward control system and

no-feed control system on URW
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this thesis, first, mathematical analysis of the actuated CRW driven by time-settling

control systems was proposed. Gait properties were analysed mathematically and the

optimal walking states were generated. Second, the feed-forward control systems were

thus proposed based the mathematical model of actuated CRW. Optimal walking states

were analysed and generated by the feed-forward control systems. Finally, the mathemat-

ical analysis was extended to an URW successfully by analysing and generating optimal

walking states and proposing the limit-cycle-walking-based feed-forward control systems.

The originality in this thesis are listed as follows.

• The thesis proposed a general method of analysing the mathematical model of ac-

tuated limit cycle walking. Through the analysis of discrete control systems, the

general formula was proposed for all discrete control systems. Thus when the control

input of the continuous control systems was discretized, the mathematical model of

the continuous control systems could be built by the general formula of the discrete

control systems.

• Feed-forward control which was based on the mathematical model of walkers could

inherit the high energy efficiency of limit cycle walking and improved the ability of
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handle disturbance of walkers by feed gains. In addition, the mathematical analysis

of limit cycle walking could help to discover and generate more optimal walking

states. The extension of the mathematical analysis to the complex model was suc-

cessful.

In general, the approximate mathematical model has a significant contribution to dy-

namics walking. Instead of the analysis of numerical simulations, the mathematical model

can provide us a better understanding of dynamics walking. Thus the correlation between

control system and gait properties can be discovered and the trend of the gait properties

can be analysed to discover the optimal walking states. Target walking states can be

generated precisely based on the mathematical analysis. In addition, the approximate

mathematical model also contributes to the non-linear dynamics on the research of bifur-

cation and chaos. Even though bifurcation and chaos have been discovered in dynamics

walking in many researches based on the analysis of numerical simulations, the physical

meaning and physical condition are still unclear. The approximate mathematical model

can help us to understand the physical meaning of bifurcation and chaos, thus we can

predict, avoid or recover from the chaos.

8.2 Future Work

As the most important future work, if the approximated mathematical models of bipedal

walkers or even 3-D walkers can be derived, the motion can be controlled precisely and

efficiently by the feedback control systems. As the limitations of the approximated math-

ematical models, however, the control systems and the computational complexity are the

most challenging topics. In my thesis, the method is mainly based on settling-time control

system, which means we know the control input can be finished by one step. Extending

the settling-time control system to a general control system will be a very important fu-

ture work. In addition, when we make the extension to the bipedal walkers or even 3-D

walkers, the boundary conditions will be much more complex. Therefore, reducing the

computational complexity will be the key of the precise control system. As the solution,
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we can only derive some main parts of the walkers or make the walkers derive their own

mathematical model by machine learning. In general, the extension of the mathematical

model to the complicated walker is challenging and promising.

In addition, the understanding of the physical meaning of dynamic walking and the

analysis of the non-linear dynamics are also promising future works. The physical meaning

of the items in boundary condition of dynamic walking are also important and interest-

ing topics, which can help us to understand the physical analysis of the dynamic walking.

Thus the physical meaning of bifurcation and chaos can be discovered and analysed math-

ematically.
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