
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title 状態空間探索におけるキャッシングに関する研究

Author(s) 小池, 憲史

Citation

Issue Date 1999-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/1318

Rights

Description Supervisor:平石 邦彦, 情報科学研究科, 修士



On E�cient Cache Management

in State Space Search

Satoshi Koike

School of Information Science,

Japan Advanced Institute of Science and Technology

August 13, 1999

Keywords: concurrency, state explosion, sleep sets, state-space caching.

Concurrent processes consist of several sequential subprocesses each of which acts con-

currently in cooperation with other subprocesses. The concept of concurrent process is an

abstraction of programs on parallel computers and network protocols on computer net-

works. Therefore, the consideration of concurrent process is very important in developing

these systems.

In developing concurrent processes, the following problems frequently occur, which are

not considered in a single process.

Dead lock A situation that a concurrent process cannot continue its execution any more.

Live lock A situation that a concurrent process repeats its execution in�nitely without

an e�ective evolution for its purposes.

Inadequate termination a situation that a concurrent process terminates without an

achievement of its purposes.

It is a hard task to �nd and solve these problems during the development of concurrent

programs. This makes their development more di�cult than that of programs with a

single process. For this reason, various methods for developing concurrent program have

been studied.

State-space searching is one of supporting methods for developing concurrent pro-

grams. It generates the state space of concurrent processes by executing each transition

one by one, and searches the state-space for �nding problems.

In searching the state space, it stores all visited states in a memory to avoid double

works, a situation that some states are explored more than once. When creating a new

state, it is compared with stored states to check that it is already visited. However, it is

Copyright c 1999 by Satoshi Koike

1



hard to store all visited states because of largeness of the state space. To overcome this

problem, several methods to reduce the number of states to be explored are proposed.

Sleep sets is one of these methods. It uses the following fact. Considering a sequence of

transitions, we exchange the position of a transition with one of its neighbors when it is

independent, and obtain a sequence which is also executable, and gives the same result

as the original one.

Empirically, it is known that the double work can be avoided su�ciently by storing a

part of visited states. State-space caching uses this fact. It stores a part of visited states

on high-speed main memory, called cache. When the cache overows, one of states in the

cache is selected, and is deleted. Therefore, it is desirable that states which will be visited

repeatedly have priority in this selection. By this reason, a decision in selecting states

from the cache is very important. Godefroid and Holzmann proposed several heuristics

for the selection, which are discovered through experiments. But they did not study

theoretically.

In this research, we study the mechanism of an occurrence of double works, and obtain

the following results.

A double work occurs when a sequence translated by the following rules gives

a state that is already visited.

Rule1 If one of neighbors of a transition is independent, then they can be

exchanged.

Rule2 If two sequences have the same start and end state in all engaging

processes, then they can be exchanged.

We propose a new algorithm for cache management and prove its correctness. The

proposed algorithm stores states whose local states are in one of the following.

� A joining local state

� The successor of a branching local state

Where joining local states and branching local states are de�ned as follows.

Joining local state a local state whose input degree is greater than one.

Branching local state a local state whose output degree is greater than one.

2


