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Chapter 1

Introduction

Theoretical computer science is the mathematical study of models of computation. As

such, it originated in the 1930's, well before the existence of modern computers, in work

of the mathematical logicians. They would like to grips with the notion e�ective compu-

tation. They knew various algorithms for computing things e�ectively, but they weren't

quite sure how to de�ne e�ective computable in a general way that would allow them to dis-

tinguish between the computable and the noncomputable. Several alternative formalisms

evolved, each with its own peculiarities, in the attempt to nail down this notion:

� Turing machines (Alan Turing);

� Post systems (Emil Post);

� �-recursive functions (Stephen C. Kleene, Kurt G�odel, Jacques Herbrand);

� �-calculus (Alonzo Church); and

� combinatory logic (Moses Sch�on�nkel, Haskell B. Curry).

All of these systems embody the idea of e�ective computation in one form or another. They

work on various types of data; for example, Turing machines treat strings over a �nite

alphabet, �-recursive functions manipulate the natural numbers, the �-calculus handles

�-terms, and combinatory logic manipulates terms built from combinator symbols.

Because these vastly dissimilar formalisms are all computationally equivalent, the

common notion of computability that embody is extremely robust, which is to say that it is

invariant under fairly radical perturbations in the model. All these mathematical logicians

with their pet systems turned out to be looking at the same thing from di�erent angles.

This was too striking to be mere coincidence. They soon came to the realization that the

commonality among all these systems must be the elusive notion of e�ective computability

that they had sought for so long. Computability is not just Turing machines, nor the

�-calculus, nor the �-recursive functions, nor the \C" programming language, but the

common spirit embodied by them all.

Alonzo Church gave voice to this thought, and it has since become known as the

Church's thesis (or the Church-Turing thesis). It is not a theorem, but rather a declara-

tion that all these formalisms capture precisely our intuition about what it means to be
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e�ectively computable in principle, no more and no less. Church's thesis may not seem

like such a big deal in retrospect, since by now we are thoroughly familiar with the capa-

bilities of modern computers; but keep in mind that at the time it was �rst formulated,

computers and programming languages had yet to be invented. Coming to this realization

was an enormous intellectual leap.

One would discover that the resources required for computing computable function

is �nite. No one knows how much time or memory is required. However if a function is

computable in principle, a function is not always computable feasibly. Computer problems

come in di�erent varieties; some are easy and some hard. For example, the sorting problem

is an easy one. Say that you need to arrange a list of numbers in ascending order. Even a

small computer can sort a million numbers rather quickly. Compare that to a scheduling

problem. Say that you must �nd a schedule of class for the entire university to satisfy some

reasonable constraints, such as that no two classes take place in the same room at the same

time. The scheduling problem seems to be much harder than the sorting problem. If you

have just a thousand classes, �nding the best schedule may require centuries, even with

a supercomputer. Computational complexity deal with the cost or di�culty of computing

the computable functions. The �eld of structural computational complexity de�nes the

class corresponding to the di�culty, and study the including relation of some classes. By

showing di�culty, structural complexity theory is applicable to cryptography. Structural

complexity theory provides the way to gain evidence for a code's security.

To study structural computational complexity theory, we utilize the methods of pro-

viding computable functions. A Turing machine gives the notion time and space to de�ne

complexity class. For instance the class of polynomial time computable functions, loga-

rithm space computable functions, and so on. Also, to do so, we introduce a few kinds

of Turing machines for example the nondeterministic, oracle, alternating, probabilistic,

genetic Turing machine. Using some recursions, the derivation of primitive recursion is

also useful method. By restricting the scheme of primitive recursion to allow only lim-

ited summations and limited products, the elementary functions were introduced in 1934

by L. Kalm�ar. In 1953, A. Grzegorczyk studied the class Ek obtained by closing certain

fast growing \diagonal" functions under composition and it bounded recursion or bounded

minimization. Our recurring theme in recursion theory is that of a function algebra| i.e.

a smallest class of functions containing certain initial functions and closed under certain

operations. A number of machine depending complexity classes have been characterized

by function algebra, such as linear space by R.W. Ritchie in 1963, polynomial time by A.

Cobham in 1965, logspace by J.C. Lind in 1974, polynomial space by D.B. Thompson in

1972, some signi�cant circuit complexity classes by P. Clote in 1990. It clearly emerges

that function algebras and computation models are intimately related as the software

(class of programs) and hardware (machine model) counterparts of each other.

Although the author does not treat in this paper, certain important topics still remain.

Quantum computation would cause new current to the theory of computation. And the

another is type 2 functional complexity, since many programming languages allow func-

tions to be passed as parameters to other functions or procedures.

The aim of this paper is the establishment of the notion of \feasible" computable.

In this paper, we use mainly the method of recursion schemes and function algebra is
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a smallest class of functions containing certain initial functions and closed under certain

operations. The class of polynomial time computable functions and Constable's class

K are considered as the feasibly computable class. Then for a quick look at the table

of contents, Chapter 2 introduces certain machine models. Turing machines and circuit

families are especially mentioned. A Turing machine is a much more accurate model of

general computer, and a Turing machine can do everything that a real computer can do.

Hence we can understand intuitively the classes by Turing machines. Circuit families

are the most simple parallel machine model and the model of electronic devices wired

together in a design called a digital circuit. In chapter 3, we focus polynomial time

computable functions. Historically, Cobham's machine independent characterization of

the polynomial time computable functions by bounded recursion on notation was the start

of modern complexity, theory, indicating a robust and mathematically interesting �eld.

Recently various techniques of characterizing polynomial time computable functions are

invented for example safe recursion on notation by S. Bellantni and S. Cook in 1992,

rami�ed recurrence by D. Leivant in 1993, full concatenation recursion on notation by H.

Ishihara in 1998, etc. the author explain full concatenation recursion on notation and

mention safe recursion on notation. In chapter 4, we discuss the Constable's class K

which de�ned polynomial analogously Kalm�ar elementary functions. Despite that K is

very natural for arithmetic, the equivalent class withK in machine model is not discovered.

Then the author would like to �nd the class corresponding to K.

Note that, in this paper, we follow the notations and the de�nitions in Clote [6].
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Chapter 2

Machine Models

Although there is the enormous diversity of abstract machine models and complexity

classes, the author will treat only the most natural and robust models and classes as

preliminaries.

2.1 Turing machines

We introduce Turing machines named after Alan Turing who invented them in 1936.

Turing machines are invented in the 1930s, long before real computers appeared. However

modern computers are based on the notion of the Turing machine. Considering the

\computer" as an idealized human clerk, Turing argued that the \behavior of computer

at any moment is determined by the symbols which he is observing, and his `state of

mind' at that moment" and speci�ed that the number of \state of mind" should be �nite,

since \human memory is necessarily limited". Turing also introduced nondeterministic

and oracle Turing machine. Formally, we have the following.

De�nition 2.1 A multitape Turing machine (tm) M is speci�ed by (Q;�;�; �; q0; k)
where k 2 N,

� Q is a �nite set of states containing the accept and reject states qA; qR; as well as

the start state q0,

� � is a �nite read-only input tape alphabet not containing the blank symbol B,

� � is a �nite read-write work tape alphabet,

� � is the transition function and maps

(Q� fqA; qRg)� (� [ fBg)� (� [ fBg)k

into

Q� (� [ fBg)k � f�1; 0; 1gk+1:
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B w1 w2 � � � wn B B � � �

6

& Q

Figure 2.1: Turing machine

A Turing machine is assumed to have a one-way in�nite input tapes and k one-way

in�nite work tape. The work tapes are initially blank, while on input w = w1 � � �wn with

wi 2 �, the initial input tape is of the form above.

Each work tape has a tape head (above indicated by an arrow) capable of reading the

symbol in the currently scanned square, writing a symbol in that square and remaining

stationary or moving one square left or right. The left most cell is the 0-th cell. Since the

input tape is read-only, the input tape head can scan a tape cell and remain stationary

or move one square left or right.

A Turing machine does the following actions according to the current state and the

symbols scanned by tape heads at the same time:

� enters new state,

� rewrites a new symbol on that tape cell, and

� leaves its head at the same position or moves it either left or right one cell.

A Turing machine is di�erent from tow-way �nite automata since a Turing machine can

rewrite tape symbols.

A con�guration is a member of Q� (� [ fBg)� � (� [ fBg)�k �Nk+1, and indicates

the current state, tape contents, and head positions.1 Alternately, a con�guration can be

abbreviated by underscoring the symbols currently by a tape head, in order to indicate the

current tape head position. For instance, (q; BabaB;BbbB) abbreviates the con�guration
of a tm in state q, with an input tape, whose head currently scans an a, and one work

tape, whose head currently scans a b. A halted con�guration is one whose state is qA or

qR.

Let

� = (q; BxB; �1; . . . ; �k; n0; n1; . . . ; nk)

� = (r;BxB; �1; . . . ; �k;m0;m1; . . . ;mk)

1A�
= fx1x2 � � �xn j n � 0 and xi 2 A; 1 � i � ng: Note that n can be 0; thus the null string � is in

A�
for any A.
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be con�gurations for M on input x. The � is the next con�guration after � in M 's

computation on x, denoted � `M �, if the following conditions are satis�ed:

1. the n0-th cell of the input tape BxB contains symbol a,

2. for 1 � i � k the following hold:

� �i; �i 2 � [ fBg and ui; vi; wi 2 (� [ fBg)�

� �i = ui�ivi and �i = ui�iwi

� juij = ni (Recall that the leftmost cell is the 0-th cell, so the n-th cell has n

cells to its left. This implies that �i [resp. �i] is the contents of the ni-th cell

of the i-th tape in con�guration � [resp. �].)

3. �(q; a; �1; . . . ; �k) = (r; �1; . . . ; �k;m0�n0;m1�n1; . . . ;mk�nk), where for 1 � i � k:

� mi < j�ij

� either vi = wi or vi = � (the empty word), wi = B, and mi = ni + 1.

The reexive, transitive closure of `m is denoted by `�

M , and a con�guration C is said

to yield a con�gurationD in n-th steps, denoted C `nM D, if there are C1; . . . ; Cn such that

C = C1 `M C2 `M � � � `M Cn = D, while C yields D if C `�

M D. A Turing machine M
accepts a language L � ��, denoted by L = L(M), if L is the collection of words w such

that the initial con�guration (q0; BwB;B; . . . ; B) yields (qA; BwB;B; . . . ; B); a word w
is accepted in n steps if (q0; BwB;B; . . . ; B) `

�

M (qA; BwB;B; . . . ; B). The machine M

accepts L � �� in time T (n) (resp. space S(n)) if L = L(M) and for each word w 2 L(M)

of length n, w is accepted in at most T (n) steps (resp. the maximum number of cells

visited on each of M 's work tapes is S(n)). A language L � �� is decided by M in

time T (n) (resp. space S(n)) if L [resp. �� � L] is the collection of words for which M

halts in state qA [resp. qR], and for each word w 2 �� of length n,M halts in at most T (n)

steps (resp. the maximum number of cells visited on each of M 's work tapes is S(n)).
This article concerns complexity classes, so for the most part we identify the notions of

acceptance and decision (for most of the complexity classes here considered, machines of

a certain complexity class can be clocked so as to reject a word if they don't accept it).

De�nition 2.2

O(f) = fg : (9c > 0)(9n0)(8n � n0)[g(n) � c � f(n)]g

Hence nO(1) denotes the set of all polynomially bounded functions. We de�ne some

complexity class by tm.

De�nition 2.3 If T; S are one-place functions, then2

dtime(T (n)) = fL � �� : L accepted by a tm in time O(T (n))g

dspace(S(n)) = fL � �� : L accepted by a tm in space O(S(n))g

2
Logarithms are with respect to base 2.
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ptime = P = dtime(nO(1))

logspace = dspace(O(log n))

etime = [c�1dtime(2
c�n) = dtime(2O(n))

exptime = [c�1dtime(2
nc) = dtime(2n

O(1)

):

Nondeterminism is an important abstraction in computer science. It refers to situa-

tions in which the next state of a computation in not uniquely determined by the current

state. Nondeterminism is also important in the design of e�cient algorithms. The fa-

mous P 6= NP problem|whether all problems solvable in nondeterministic polynomial

time can be solved in deterministic polynomial time|is major open problem in computer

science and arguably one of the most important open problems in all of mathematics.

De�nition 2.4 A nondeterministic multitape Turing machine (ntm) M is speci�ed by

(Q;�;�;�; q0; k) where Q;�;�; q0; k are as in De�nition 2.1 and the transition relation

� is contained in

((Q� fqA; qRg)� (� [ fBg)� (� [ fBg)k)� (Q� (� [ fBg)k � f�1; 0; 1gk+1):

If �; � are con�gurations in the computation of the nondeterministic Turing machine

(ntm) M on input x, then write � `M � if

(q; a; �1; . . . ; �k; r; �1; . . . ; �k;m0 � n0;m1 � n1; . . . ;mk � nk) 2 �;

where �i; �i; a; ni;mi are as in the deterministic case.

With this change, the notions of con�guration, yields and acceptance analogous to

previously de�ned notions. A nondeterministic computation corresponds to a computa-

tional tree whose root is the initial con�guration, whose leaves are halted computations,

and whose initial nodes � have as children those con�gurations � obtained in one step

from �, � `M �. A word w 2 �� is accepted if there is an accepting path in the compu-

tation tree, though many non-accepting paths may exist. A ntm M accepts a word of

length n in time T (n) [resp. space S(n)] if the depth of the associated computation tree

is at most T (n) [resp. for each con�guration � in the computation tree the number of

cells used on each word tape is at most S(n)]. ntime(T (n))[resp. nspace(S(n))] is the

collection of languages L � �� accepted by a ntm in time O(T (n)) [resp. O(S(n))]; NP

= ntime(nO(1)).

De�nition 2.5 A Turing machine M with random access (ratm) is given by a �nite set

Q of states, an input tape having no tape head, k work tapes, an index query tape and

an index answer tape. To permit random access, the alphabet � is always assumed to

contain the symbols 0; 1. Except for the input tape, all other tapes have a tape head. M

contains a distinguished input query state qI , in which state M writes into the leftmost

cell of the index answer tape that symbol which appears in the k-th input tape cell, where

k-th input tape cell, where k =
P

i<m ki � 2
i is the integer whose binary representation

is given by the contents of the query index tape. Unlike the oracle Turing machine in

De�nition 2.9, the query index tape is not automatically erased after making an input bit

query.
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With previous de�nitions, to scan k-th cell to move, a tape head moves to k-th cell and

we require time k. However ratm can scan k-th cell ifM writes the binary representation

of k and enters special state qI , then we require time jkj = dlog(k + 1)e. From now on,

unless otherwise indicated, the indicated machine model is ratm.

An alternating Turing machine (atm) is the generalization of ntm. When used with

random access, this model allows sublinear runtimes and can be viewed as a kind of

parallel computation model, can be related to atm's.

De�nition 2.6 An alternating multitape Turing machine (atm)M is speci�ed by (Q;�;�;
�; q0; k; `) where ` : (Q� fqA; qRg)! f^;_g and Q;�;�;�; q0; k are as in De�nition 2.4

of a nondeterministic machine.

The function ` labels non-halting states as universal (^) and existential (_). An

accepting computation tree T is a subtree of M on x such that for any con�guration

� 2 T ,

� the root of T is the initial con�guration of M on x,

� if � is a leaf of T , then � if an accepting con�guration,

� if � if universal, then for all �, � `M � ) � 2 T , and

� if � if existential, then there exists � 2 T for which � `M �.

The atm M accepts input x if there is a non-empty accepting computation tree of

M on x; otherwise x is rejected. L(M) denotes the set of x 2 �� accepted by M . The

language L(M) is accepted by M in time T (n) [resp. space S(n)] if for each w 2 L(M) of

length n, there is an accepting computation tree T of depth at most T (n) [resp. in which

at most S(n) cells are used for each of the work tapes and input tapes at any node in

the tree T ]. The number of alternations M makes in an accepting computation tree T

is de�ned to be the maximum number of alternations between existential and universal

nodes in a path from the root to a leaf.

De�nition 2.7

atime(T (n)) = fL � �� : L accepted by an atm in time O(T (n))g

aspace(S(n)) = fL � �� : L accepted by an atm in space O(S(n))g

alogtime = atime(O(log n)):

De�nition 2.8 The logtime hierarchy lh [resp. the polynomial time hierarchy ph] is

the collection of languages L � ��, for which L accepted by an atm in time O(log n)
[resp. nO(1)] with at most O(1) alternations. �k-time(T (n)) is the collection of languages

accepted by an atm in time O(T (n)) with at most k alternations, beginning with an

existential state.
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De�nition 2.9 Let B � ��. An oracle Turing machine (otm) with oracle B is a Turing

machine M which in addition to a read-only input tape, a distinguished output tape and

�nitely many work tapes, has a one-way in�nite oracle query tape. The machine M has

oracle answer states qyes; qno as well as a special oracle query state q? in which it queries

whether the current contents of the oracle query tape belongs to oracle B. The transition

function � of M is a mapping from

(Q� fqA; qR; q?g)� (� [ fBg)� (� [ fBg)k+1

into

Q� (� [ fBg)k+1 � f�1; 0; 1gk+2:

A computation is de�ned as previously, except that if M is in state q? then the machine

queries whether the word given by the current contents of the oracle query tape belongs

to B. Dependent on the outcome of the oracle query, M goes into state qyes or qno, and

simultaneously erases the query tape and places the oracle tape head at the leftmost

square. This entire sequence of events takes place in one step. Finally, nondeterministic

oracle Turing machines are analogously de�ned by adding the oracle apparatus to the

ntm model.

�P
1 = P

�� �NP = �P
1 �P

1 = NP

�P
2

�P
2 �P

2

�P
3

�P
3 �P

3

�P
4

...

...

HH
HH ��

��

HH
HH�

�
��

HH
HH ��

��

HH
HH�

�
��

HH
HH �

�
��

HH
HH�

�
��

Figure 2.2: Polynomial time hierarchy

Then we show the another equivalent de�nition of the polynomial time hierarchy(ph).

For A � �� and B � �� if A can be decided by an oracle Turing machine with oracle B.

Similarly write A �P
T B [resp. A �NP

T B] if A can be computed by a deterministic [resp.

nondeterministic] oracle Turing machine with oracle B in polynomial time. We de�ne

�P
i ;�

P
i ;�

P
i such as,

�P
0 = �P

0 = �P
0 = P
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�P
n+1 = fA : (9B 2 �P

n )(A �P
T B)g

�P
n+1 = fA : (9B 2 �P

n )(A �NP
T B)g

�P
n+1 = �� � �P

n+1:

Since �P
1 = P , �P

1 = NP then ph is of the �gure 2.2.

In the �gure 2.2, classes is larger as the upper part. For instance

�P
i � �P

i+1; �P
i � �P

i+1; �P
i � �P

i+1; �P
i � �P

i+1:

It is still unknown that whether ph is strict or not and P 6= NP problem is a typical case.

However it is known that exptime contains ph properly.

De�nition 2.10 A function f(x; 1; . . . ; xn) has polynomial growth if

jf(x1; . . . ; xn)j = O(max
1�i�n

jxij
k); for some k:

The graph Gf satis�es Gf(~x; y) i� f(~x) = y. The bitgraph Bf satis�es Bf(~x; i) i� the i-th

bit of f(~x) is 1. If C is a complexity class, then FC is the class of functions of polynomial

growth whose bitgraph belongs to C.

2.2 Circuit families

Circuit families is the most simple model of the parallel computation machines. In this

section, we consider the computation of the circuit families.

De�nition 2.11 A directed graph G is given by a set V = f1; . . . ;mg of vertices (or

nodes) and a set E � V �V of edges. The in-degree or fan-in [resp.out-degree or fan-out]

of node x is the size of fi 2 V : (i; x) 2 Eg [resp. fi 2 V : (x; i) 2 Eg]. A circuit Cn is a

labeled, directed acyclic graph whose nodes of in-degree 0 are called input nodes and are

labeled by one of 0; 1; x1; . . . ; xn, and whose nodes v of in-degree k > 0 are called gates

and are labeled by a k-place function from a basis set of boolean functions. A circuit has

a unique output node of out-degree 0.3 A family C = fCn : n 2 Ng of circuits has bounded

fan-in if there exists k, for which all gates of all Cn have in-degree at most k; otherwise

C has unbounded or arbitrary fan-in.

De�nition 2.12 Boolean circuits have basis ^;_;:; where ^;_ may have fan-in larger

than 2 (as described blow, the ack [resp. nck] model concerns unbounded fan-in [resp.

fan-in 2] boolean circuits). A threshold gate thk;n outputs 1 if at least k of its n inputs is

1.

3
The usual convention is that a circuit may have any number of output nodes, and hence compute

a function f : f0; 1gn ! f0; 1gm. In this paper, we adopt the convention that a circuit computes

a boolean function f : f0; 1gn ! f0; 1g. An m-input circuit C computing function g : f0; 1gn !
f0; 1gm can then be simulated by a circuit computing the boolean function f : f0; 1gn+m ! f0; 1g where

f(x1; . . . ; xn; 0
m�i

1
i
) = 1 i� the i-th bit of g(x1; . . . ; xn) is 1.
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De�nition 2.13 An input node v labeled by xi computes the boolean function

fv(x1; . . . ; xn) = xi:

A node v having in-edges from v1; . . . ; vm; and labeled by the m-place function g from the

basis set, computes the boolean function

fv(x1; . . . ; xn) = g(fv1(x1; . . . ; xn); . . . ; fvm(x1; . . . ; xn)):

De�nition 2.14 A circuit Cn accepts the words x1 � � �xn 2 f0; 1g
n if fv(x1; . . . ; xn) = 1,

where fv is the function computed by the unique output node v of Cn. A family (Cn :

n 2 N) of circuits accepts a language L � f0; 1g� if for each n, Ln = L \ f0; 1gn consists

of the words accepted by Cn.

De�nition 2.15 The depth of a circuit is the length of the largest path form an input to

an output node, while the size is the number of gates. A language L � f0; 1g� belongs

to SizeDepth(S(n); D(n)) over basis B if L consists of those words accepted by a family

(Cn : n 2 N) of circuits over basis B, where size(Cn) = O(S(n)) and depth(Cn) =

O(D(n)).

Example 2.16 We can easily construct exclusive-or. Let

x1 � x2 =

(
0 if x1 = x2
1 if x1 6= x2

And exclusive-or is explained by :(:(x1 ^:(x1 ^ x2))^:(:(x1 ^ x2)^ x2)). This binary

operator � satisfy the following properties.

� x� (y � x) = (x� y)� z (associativity)

� x� y = y � x (commutativity)

Then parity is the n-ary function such that x1 � x2 � � � � � xn�1 � xn. If the sum of the

inputs (x1+x2+ � � �+xn) is even, then parity(x1; � � � ; xn) = 1, else parity(x1; � � � ; xn) = 0.

A boolean circuit which computes the function f(x1; x2) = x1 � x2 is as in Figure 2.3.

Without a uniformity condition, circuit families of depth 2 and size 1 can accept non-

recursive languages (e.g. all inputs are accepted [resp. rejected] if the n-th circuit is of

the form x1 _ :x1 [resp. x1 ^ :x1]). Various notions of uniformity have bee suggested,

(ptime-uniformity, logspace-uniformity, UE�-uniformity, etc.), but the most robust (and

strictest) appears to be that of logtime-uniformity, which is adopted in this paper.

De�nition 2.17 (Barrington-Immaerman-Straubing [1]) The direct connection lan-

guage (dcl)of a circuit family (Cn : n 2 N) is the set of (a; b; `; 0n), where a is the parent

of b in the circuit Cn, and the label of gate a is `. A circuit family is logtime-uniform if

its associated dcl belongs to dlogtime.

12



m_
m̂ m_

m: m:
� �
x1 x2

�� \\

"
"" b

bb

,
,
,
,
,,l
l
l
l
ll

Figure 2.3: Exclusive-or

De�nition 2.18 For k � 0, ack [resp. nc
k] is the class of languages accepted by

logtime-uniform SizeDepth(nO(1); O(logk n)) over the boolean basis, where ^;_ have

arbitrary fan-in [resp. fan-in 2], and nc = [knc
k = [kac

k (= ac). And tc
0 is the class

of languages in logtime-uniform SizeDepth(nO(1); O(1)) over the boolean basis thk;n.

Remark 2.19 In this paper, circuit classes such as ack, nck, nc, and tc
0 sometimes

denote both language classes, though more often function classes, where the intended

meaning is clear from context. That is, we write nc in place of Fnc, etc. NC is an

acronym for \Nick's Class", as this class was �rst studied by N. Pippenger. ACk was

studied by W.L. Ruzzo [16], using the alternating Turing machine model.

Fact 2.20 The following containments are known:

nc
k � ac

k � nc
k+1

for any k:

Proof. The �rst inclusion is trivial for the de�nitions.The second inclusion follows from

that we simulate every ^ and _ gate of fan-in 2 by increasing the depth with O(log n),

and its size is bounded by polynomial.

None of the inclusions are known to be strict or not without ac0 6= nc
1.

Theorem 2.21

parity(x1; � � � ; xn) 2 nc
1;

parity(x1; � � � ; xn) =2 ac
0:

13



Chapter 3

Function Algebras

C. Kleene formalized the notion of �-recursive functions being based on the study by K.

G�odel and J. Herbrand. Modern programming languages such as \PASCAL" or \C" can

be viewed as an implementation of �-recursive functions.

De�nition 3.1 An operator (here also called operation) is a mapping from function to

functions. If X is a set of functions and op is a collection of operators, then [X ; op]

denotes the smallest set of functions containing X and closed under the operations of op.

The set [X ; op] is called a function algebra. In a straightforward inductive manner, de�ne

representations or names for functions in [X ; op]. The characteristic function cP (~x) of a
predicate P satis�es

cP (~x) =

(
1 if P (~x)
0 else,

where P is often written in place of cP . If F is a class of functions denoted F =

[f1; f2; . . . ;O1; O2; . . .], then F� is the class of predicates whose characteristic function

belongs to F .

De�nition 3.2 The successor function s(x) = x + 1; the n-place projection functions

Ink (x1; . . . ; xn) = xk; I denotes the collection of all projections.

De�nition 3.3 The function f is de�ned by composition (comp) from the functions

h; g1; . . . ; gm if

f(x1; . . . ; xn) = h(g1(x1; . . . ; xn); . . . ; gm(x1; . . . ; xn)):

De�nition 3.4 The function f is de�ned by primitive recursion (pr) from functions g; h
if

f(0; ~y) = g(~y);

f(s(x); ~y) = h(x; ~y; f(x; ~y)):

The collection PR of primitive recursive functions is [0; I; s;comp,pr].

14



De�nition 3.5 The function f is de�ned by unbounded minimization (min) from the

function g, denoted by f(x1; . . . ; xn) = �i[g(i; x1; . . . ; xn)], if

f (x1; . . . ; xn) =

(
minfi : g(i; x1; . . . ; xn) = 0g if such exists

? otherwise.

The �-recursive functions is the algebra [0; I; s;comp,pr,min].

3.1 An algebra for the logtime hierarchy

Primitive recursion de�nes f(x + 1) in terms of f(x), so that the computation of f(x)

requires approximately 2jxj many steps, an exponential number in the length of x. To

de�ne smaller complexity classes of functions, Bennet introduced the scheme of recursion

on notation, which Cobham [8] later used to characterize the polynomial time computable

functions. The scheme of recursion on notation requires jxj steps to compute f(x).

De�nition 3.6 The binary successor functions s0; s1 satisfy s0(x) = 2 �x; s1(x) = 2 �x+1.

De�nition 3.7 Assume that h0(x; ~y); h1(x; ~y) � 1. The function f is de�ned by concate-

nation recursion on notation (crn) from g; h0; h1 if

f(0; ~y) = g(~y)

f(s0(x); ~y) = sh0(x;~y)(f(x; ~y)); if x 6= 0

f(s1(x); ~y) = sh1(x;~y)(f(x; ~y)):

This scheme can be written in the abbreviated form

f(0; ~y) = g(~y)

f(si(x); ~y) = shi(x;~y)(f(x; ~y)):

The scheme crn was �rst introduced by P. Clote [4].

De�nition 3.8 The length of x in binary satis�es jxj = dlog(x + 1)e; jjxjj is de�ned

as j(jxj)j, etc.; mod2(x) = x � 2 � bx
2
c; the function bit(i; x) = mod2(b x

2i
c) yields the

coe�cient of 2i in the binary representation of x; the smash function satis�es x#y = 2jxj�jyj.

The algebra A0 is de�ned to be

[0; I; s0; s1;bit; jxj;#;comp,crn]:

Notice that by �nitely many applications of 0; s0; s1 we may suppose that all constant

functions belong to A0. For instance, the constant function 1 can be de�ned by s1(0), the
constant function 2 can be de�ned by s0(s1(0)), and in general the constant function k

can be de�ned by

sk0(sk1(. . . skn�2(skn�1(0))) . . .))

15



where the binary representation of k is kn�1 . . . k0 (bit(i; k) = ki); i.e.

k =
X
i<n

ki � 2i:

We de�ne reverse function rev by crn. The auxiliary reverse function rev0(x; y) gives

the jyj many least signi�cant bits of x written in reverse. Let

rev0(x; 0) = 0

rev0(x; si(y)) = sbit(jyj;x)(rev0(x; y)):

The reverse of the binary notation for x is given by rev(x) = rev0(x; x). For instance the

integer 14 has binary notation 1110 whose reverse is 111, corresponding to the integer 7,

so rev(14) = 7.

Let

ones(0) = 0

ones(si(x)) = s1(ones(x))

so that ones(x) = 2jxj � 1 whose binary representation contains of jxj many 1's. Let

pad(x; 0) = x

pad(x; si(y)) = s0(pad(x; y))

so that pad(x; y) = 2jyj � x whose binary representation is that of x with jyj many 0's

appended to the right. Kleene's signum functions sg; sg, which satisfy sg(x) = min(x; 1)

and sg(x) = 1� sg(x), are de�ned by

sg(x) = bit(0; ones(x))

sg(x) = bit(0; pad(1; x)):

The conditional function

cond(x; y; z) =

(
y if x = 0

z else

is here de�ned using the auxiliary functions cond0, cond1, cond2. De�ne

cond0(0; y) = 0

cond0(si(x); y) = sbit(0;y)(cond0(x; y))

cond1(x; y) = sg(cond0(x; y))

cond2(x; 0) = 0

cond2(x; si(y)) = scond1(x;si(y))(cond2(x; y))

16



so that

cond0(x; y) =

(
0 if bit(0; y) = 0

2jxj�1 else

cond1(x; y) =

(
0 if x = 0

bit(0; y) else

cond2(x; y) =

(
0 if x = 0

y else.

The concatenation function x � y = 2jyj � x+ y is de�ned by

x � 0 = x

x � si(y) = si(x � y):

Then the conditional function cond is de�ned by

cond(x; y; z) = cond2(sg(x); y) � cond2(x; z):

Example 3.9 With cond one can form (characteristic functions of) predicates by apply-

ing boolean operations and, or, not to other predicate.

and � � � cond(x; 0; cond(y; 0; 1))

or � � � cond(x; cond(y; 0; 1); 1)
not � � � cond(x; 1; 0)

Additionally, using cond, one can introduce functions using de�nition by cases

f (~x) =

8>>>><
>>>>:

g1(~x) if P1(~x)

g2(~x) if P1(~x)
...

gn(~x) if P1(~x)

where predicate P1; . . . ; Pn are disjoint and exhaustive.

The sharply bounded quanti�er is of the form (9x � jyj) or (8x � jyj).

Lemma 3.10 (A0)� is closed under sharply bounded quanti�ers.

Proof. Suppose that the predicate R(x; ~z) belongs to A0 and that P (y; ~z) is de�ned by

(9x � jyj)R(x; ~z). De�ne

f(0; ~z) = 0

f (si(x); ~z) = sR(jxj;~z)(f(x; ~z)):

Then P (y; ~z) = sg(f(s1(y); ~z)) belongs to A0. Bounded universal quanti�cation can be

derived from bounded existential quanti�cation using sg.
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De�nition 3.11 The function f is de�ned by sharply bounded minimization (sbmin)

from the function g, denoted by f(x; ~y) = �i � jxj[g(i; ~y) = 0], if

f(x; ~y) =

(
minfi � jxj : g(i; ~y) = 0g if such exists

0 else.

Lemma 3.12 (A0)� is closed under sbmin.

Proof. Let

k(0; x; ~y) = 0

k(si(z); x; ~y) = sh(z;x;~y)(k(z; x; ~y))

where

h(z; x; ~y) =

(
0 if (9x � jzj)[g(x; ~y) = 0]

1 else.

Then f(x; ~y) = �i � jxj[g(i; ~y) = 0] is de�ned by

f(x; ~y) =

(
0 if g(0; ~y) = 0 or :(9i � jxj)[g(i; ~y) = 0]

jrev(k(s1(x); x; ~y))j else.

The integer x is a beginning of y, denoted xBy, if the binary representation of x is

an initial segment (from left to right) of the binary representation of y; formally xBy i�

x = 0 or x; y > 0 and

(8i � jxj)[bit(i; rev(s1(x))) = bit(i; rev(s1(y)))]:

Thus the predicate B 2 A0.

We specify useful functions. De�ne the most signi�cant part function msp by

msp(0; y) = 0

msp(si(x); y) = sbit(y;si(x))(msp(x; y))

and the least signi�cant part function lsp by

lsp(x; y) = msp(rev(msp(rev(s1(x)); jmsp(x; y)j)); 1):

These functions satisfy msp(x; y) = b x
2y
c and lsp(x; y) = x mod 2y, where x mod 1 is

de�ned to be 0. For later reference, de�ne the unary analogues msp, lsp by

msp(x; y) = bx=2jyjc = msp(x; jyj)

lsp(x; y) = x mod 2jyj = lsp(x; jyj);

and note that lsp is de�nable from msp, rev as follows

lsp(x; y) = msp(rev(msp(rev(s1(x));msp(x; y))); 1):
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Lemma 3.13 (A0)� is closed under part-of quanti�er (9xBy).

Proof. If the predicate R(x; ~z) is de�nable in A0, then (9xBy)R(x; ~z) is de�nable in A0

as following. De�ne f by

f(0; ~z) = cR(0;~z)

f(si(x); ~z) =

(
s1(f(x; ~z)) if R(msp(y; si(x)); ~z)

s0(f(x; ~z)) else.

Now it is clear that (9xBy)R(x; ~z) i� sg(f(y; ~z)) = 1.

Using part-of quanti�cation, the inequality predicate x � y can be de�ned by

jxj < jyj

or

jxj = jyj and (9uBx)[uBy ^ bit(jxj : jyj : 1; y) = 1 ^ bit(jxj : juj : 1; x) = 0]

where jxj < jyj has characteristic function sg(msp(y; jxj)). Note that jxj : juj : 1 can be

expressed by jmsp(msp(x; u); 1)j = jbmsp(x; u)=2cj.

Addition x + y can be de�ned in A0 by applying crn to sum(x; y; z), whose value is

the jzj-th bit of x + y. In adding x and y, the jzj-th bit of the sum depends whether a

carry is generated or propagated. De�ne the predicates gen, prop by having gen(x; y; z)
hold i� the jzj-th bit of both x and y is 1 and prop(x; y; z) hold i� the jzj-th bit of either

x of y is 1. De�ne carry(x; y; 0) = 0 and carry(x; y; si(z)) to be 1 i�

(9uBz)[gen(x; y; u) ^ (8uBz)[jvj > juj ! prop(x; y; v)]]:

Then sum(x; y; z) = x � y � carry(x; y; z) where the exclusive-or x� y is de�ned by

cond(x; cond(y; 0; 1); cond(y; 1; 0)). Modi�ed subtraction

x : y =

(
x� y if x� y � 0

0 else

is also belong to A0 by using the two's complement trick.

Two's complement is as a following.

Example 3.14 We consider the example 9 : 4.

� Flip the bits of the binary representation1 of 4 with the binary length of 9,

4 = 01002 =) 10112

� add 10112 and 1, then 11002,

1
If x = a2 then a is the binary representation of x.

19



� add 9(= 10012) and 11002,

10012 + 11002 = 101012

� and delete left-most bit

01012 = 5(= 9 : 4):

Let

flip(0) = 1

f lip(s0(x)) = s1(f lip(x))

f lip(s1(x)) = s0(f lip(x)):

Generally

x : y =

(
lsp(x+ flip(y) + 1; x) if x � y

0 else.

For many later applications, pairing and sequence encoding functions are needed. To

this end, de�ne the pairing function � (x; y) by

� (x; y) = (2max(jxj;jyj) + x) � (2max(jxj;jyj) + y)

Noting that 2max(jxj;jyj) = cond(msp(x; y); pad(1; y); pad(1; x)), this function is easily de-

�nable from msp, cond, pad, �;+ hence belongs to A0. For instance, if x = 4 and y = 9,

then max(j4j; j9j) = 4 and so the binary representation of � (4; 9) is 1010011001. De�ne

the functions tr [resp. tl] which truncate the rightmost [resp. leftmost] bit; tr(x) =

msp(x; 1) = bx
2
c and tl(x) =lsp(x; jtr(x)j) = tr(rev(tr(rev(s1(x))))), where the latter

de�nition is used later to show that tl belongs to a certain subclass of A0. The left �1
and right �2 projections are de�ned by

�1 = tl

 
msp

 
z;

$
jzj

2

%!!

�2 = tl

 
lsp

 
z;

$
jzj

2

%!!

and satisfy �(�1(z); �2(z)) = z; �1(� (x; y)) = x and �2(�(x; y)) = y. An n-tuple (x1; . . . ; xn)

can be encoded by �n(x1; . . . ; xn), where �2 = � and

�k+1(x1; . . . ; xk+1) = �(x1; �k(x2; . . . ; xk+1)):

We give following lemma to encoding a sequence e�ciently.

Lemma 3.15 (P. Clote [6]) If f 2 A0 then there exists sequence number g 2 A0 such

that for all x,

g(x; ~y) = hf(0; ~y); . . . ; f(jxj � 1; ~y)i:
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Proof. The sequence (a1; . . . ; ajxj) is encoded by z = ha1; . . . ; ajxji. Let

k(u) =

(
1 if juj mod bs = 0

bit((bs : 1) : (juj mod bs); abjuj=bsc+1) else:

where bs = maxf2jjaijj : 1 � i � jxjg, and de�ne

h(0) = 0

h(si(u)) = sk(u)(h(u)):

Let

z = � (t; jxj)

where t = h(N) and jN j = jxj �bs. Multiplication [resp. division] by power of 2 is possible

in A0 by using the function pad [resp. msp]. The binary representation of h(N) is of the

form
jxj�bsz }| {

10 � � � 0a1| {z }
bs

10 � � � 0a21 � � � � � � 0ajxj

Finally de�ne the function �(i; z) to extract the i-th element

`h(z) = �(0; z) =

(
�2(z) if z encodes a pair

0 else

and for 1 � i � �(0; z)

�(i; z) = lsp

 
msp

 
�1(z); (`h(z)

: i) �

$
�1(z)

`h(z)

%!
;

$
�1(z)

`h(z)

%
: 1

!
:

Remark 3.16 The class A0 has some equivalent classes, such as ac0, Flh, CRAM[1]

which is de�nable by concurrent parallel random access machine computing in constant

time, and FO de�nable functions.2 Each equations were proofed as following,

� FO =CRAM[1] (Immerman [11]),

� ac
0 =CRAM[1] (Stockmeyer and Vishkin [17]),

� FO = Flh (Barrington, Immerman and Straubing [1]),

� FO = A0 (Clote [4]), and

� Flh= A0 (Clote [6]).

2
See [1, 11] for de�nition of FO.

21



3.2 Polynomial time computable functions

In [8] A.Cobham �rst isolate the machine independent characterization of polynomial time

computable functions as using bounded recursion on notation.3 Although his character-

ization has yielded a number of applications, unsatisfying aspect of his characterization

arises in the bounded recursion on notation. The recursion operator is a powerful one

which, however, can only be applied when an explicit size bound is satis�ed by the re-

sulting function. Additionally, an initial function 2jxj�jyj is needed solely to provide a large

enough bound for making recursive de�nitions.

Recently, certain unbounded recursion schemes have been introduced to characterize

polynomial time functions, such as Leivant [13] introduced rami�ed recurrence, Immerman

[10] and others have characterized polynomial time computable relations in a way which is

also resource free in the sense that there are no explicit bounds in the de�ning expressions.

In this paper the author picks up the following two results, safe recursion by Bellantoni

and Cook [3] and full concatenation recursion by Ishihara [12].

3.2.1 Bounded recursion on notation

De�nition 3.17 The function f is de�ned by bounded recursion on notation (brn) from

g; h0; h1; k if

f(0; ~y) = g(~y);

f(s0(x); ~y) = h0(x; ~y; f(x; ~y)); if x 6= 0

f(s1(x); ~y) = h1(x; ~y; f(x; ~y))

provided that f(x; ~y) � k(x; ~y) for all x; ~y.

We de�ne the algebra [0; I; s0; s1;#;comp, brn] and name it L. To show that L has the

properties of A0, the following lemma is needed.

Lemma 3.18

A0 � [0; I; s0; s1;#;comp,brn]

Proof. It su�ces to show that the function algebra on the right-hand side contains jxj
and bit, and is closed under crn. crn is easily simulated by brn using # function to

bound. And the function jxj is de�ned by

j0j = 0

jsi(x)j = s(jxj);

3
Ritchie's work [14] of the machine independent characterization of the linear space computable func-

tions was actually prior to that of Cobham.
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where

s(0) = 1

s(s0(x)) = s1(x); if x 6= 0

s(s1(x)) = s0(s(x)):

s(x) is usual successor function. And let

mod2(0) = 0

mod2(s0(x)) = 0 if x 6= 0

mod2(s1(x)) = 1

tr(0) = 0

tr(si(x)) = x

msp(x; 0) = x

msp(s; si(y)) = tr(msp(x; y));

where jxj;mod2(x);tr(x);msp(x; y) are bounded by x, and s(x) � x#x. We have

bit(y; x) = mod2(msp(x;tr(Exp(y; x))));

where Exp(i; x) is the bounded exponential function, as follow

Exp(y; x) = 2min(y;jxj):

To show that Exp(y; x) is in the class L, de�ne pred(x) = x : 1 by

pred(0) = 0

pred(s0(x)) = s1(pred(x)) if x 6= 0

pred(s1(x)) = s0(x);

and pred(x) is bounded by x. De�ne y : jxj by

y : j0j = y

y : jsi(x)j = pred(y : jxj);

let

cond(0; y; z) = y

cond(si(x); y; z) = z

provided y : jxj � y, cond(x; y; z) � y#z. Let H(x; y; z) = cond(y : jxj; z; s0(z)) then

Exp(y; j0j) = 1

Exp(y; jsi(x)j) = H(x; y; Exp(y; jxj)):

23



Therefore one have a recursion theoretic characterization of Fptime. From previous

discussion, Turing machine con�gurations (tm and ratm) are easily expressed in A0.

Thus by Lemma 3.15 and 3.18 con�gurations are expressed in L. A con�guration of

ratm is of the form (q; u1; . . . ; uk+2; n1; . . . ; nk+2) where q 2 Q; ui 2 (� [ fBg)� and

ni 2N. The ui present the contents of the k work tapes and of the index query and the

index answer tapes, and the ni represent the head positions on the tapes (the input tapes

has no head). Since the input is accessed through random access, the input does not form

part of the con�guration of the ratm. Let `i [resp. ri] represent the contents of the left

portion [resp. the reverse of the right portion] of the i-th tape (i.e. tape cells of index � ni
[resp. > ni]). Assuming some simple binary encoding of � [ fBg, a ratm con�guration

can be represented using the tupling function by

�2k+5(q; l1; r1; . . . ; `k+2; rk+2)

Let initialM (x) be the function mapping x to the initial con�guration of ratmM on in-

put x. For con�gurations � in the computation of ratmM on x, let function nextM(x; �)

is next con�guration of � on input x.

Theorem 3.19 (A. Cobham [8], see H. Rose [15])

Fptime = [0; I; s0; s1;#;comp, brn]:

Proof. Consider �rst the inclusion from left to right. It is routine to show that initialM ,

nextM are de�nable in L (even A0). For instance, a move of the �rst tape head to the

right would mean that in the next con�guration `01 = 2 � `1 + mod2(r1) and r0 = br1=2c.

By suitably composing 0; s0; s1;# there is a function k 2 L satisfying p(jxj) � jk(x)j for
all inputs x. If p(jxj) = jxjc then k(x) is the function operating comp on # with c � 1

times. Using brn, de�ne

RunM (x; 0) = initialM (x)

RunM (x; si(y)) = nextM(x; RunM(x; y)):

Then the value computed by M on input x can by obtain from RunM (x; k(x)) by �1; �2.

The inclusion from right to left is proved by an induction on the derivation of the

function in L. Fptime contains the initial functions of L, and closed under comp and

brn.
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3.2.2 Full concatenation recursion on notation

De�nition 3.20 Assume that h0(x; ~y; z); h1(x; ~y; z) � 1. The function f is de�ned by

full concatenation recursion on notation (fcrn) from g; h0; h1 if

f(0; ~y) = g(~y)

f(s0(x); ~y) = sh0(x;~y;f(x;~y))(f(x; ~y)); if x 6= 0

f(s1(x); ~y) = sh1(x;~y;f(x;~y))(f(x; ~y)):

The scheme fcrn is strong version of crn. This scheme was �rst introduced by H.

Ishihara [12].

Theorem 3.21 (H. Ishihara [12])

Fptime = [0; I; s0; s1;bit; jxj;#;comp,fcrn]

Proof. By theorem 3.19 we will show that

L = [0; I; s0; s1;bit; jxj;#;comp,fcrn]

Consider the direction from right to left. According to the lemma 3.18, L contains bit,

jxj. It thus su�ces to show that L is closed under fcrn. Let

Hi(x; ~y; z) = cond(hi(x; ~y; z); s0(z); s1(z)) (i = 0; 1):

Hence, f is de�nable by brn as follows,

f(0; ~y) = g(~y);

f(s0(x); ~y) = H0(x; ~y; f(x; ~y)); if x 6= 0

f(s1(x); ~y) = H1(x; ~y; f(x; ~y)):

This function is bounded by 2jg(x)j+jxj = pad(g(~y)#1; x).

Consider now the direction from left to right. We will show that the function algebra

on the right-hand side, say C, is closed under brn. Since fcrn is strong version of crn,

trivially C contains A0, C has the property of A0.

Now suppose that a function f is de�ned by brn from g; h0; h1; k in C. We require the

function m(x; ~y) which bound k(x; ~y) always such that 8i � x[k(i; ~y) � m(x; ~y)]. De�ne

the characteristic function of jxj < jyj as

llt(x; y) = sg(msp(y; x)):

Let

p(0; z; x; ~y) = 0

p(si(w); z; x; ~y) = sllt(z;k(msp(x;w);~y))(p(w; z; x; ~y)):
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Then de�ne

P (z; x; ~y) = 8j � jxj[jk(msp(x; j); ~y)j � jzj]

has a characteristic function sg(p(s1(x); z; x; ~y)), and hence letting

p0(0; x; ~y) = 0

p0(si(w); x; ~y) = sP (k(msp(x;w);~y);x;~y)(p
0(w; x; ~y));

sg(p0(w; x; ~y)) is a characteristic function of

9i < jwjP (k(msp(x; i); ~y); x; ~y);

in brief

9i < jwj8j � jxj[jk(msp(x; j); ~y)j � jk(msp(x; i); ~y)j]:

We would like to seek the value assigning the maximum value of k in jxj. Let

l(0; x; ~y) = 0

l(si(w); x; ~y) = ssg(p0(w;x;~y))(l(w; x; ~y)):

Hence letting

m(x; ~y) = s1(k(msp(x; jxj
: jl(s1(x); x; ~y)j); ~y));

then the following predicate is true,

P (bm(x; ~y)=2c; x; ~y):

To simulate brn by fcrn, we would like construct the history of computing brn as binary

sequence which each block size is jm(x; ~y)j. De�ne G by

G(0; x; ~y) = 1

G(si(z); x; ~y) = sbit((jm(x;~y)j
:
1)

:
jzj;g(~y))(G(z; x; ~y)):

Then the binary representation of G(bm(x; ~y)=2c; x; ~y) is of the form

10 � � � 0g(~y)| {z }
jm(x;~y)j

:

Let

u(z; x; ~y) = msp(x; jxj : bjzj=jm(x; ~y)j);

j(z; x; ~y) = bit((jxj : bjzj=jm(x; ~y)jc) : 1; x);

the binary representation of x is following

jxjz }| {
u(z; x; ~y)| {z }
bjzj=jmjc

j(z; x; ~y)XX � � �X| {z }
jxj

:
bjzj=jmjc

;
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where X is one bit constructing x. Then

sj(z;x;~y)(u(z; x; ~y))

is the most signi�cant (bjzj=jm(x; ~y)jc + 1)-bits of x and is the concatenation u(z; x; ~y)

and j(z; x; ~y). Let

a(z; x; ~y; w) = lsp(msp(w; jxj mod jm(x; ~y)j); jm(x; ~y)j : 1);

a0(z; x; ~y; w) =

(
h0(u(z; x; ~y); ~y; a(z; x; ~y; w)) if j(z; x; ~y) = 0;

h1(u(z; x; ~y); ~y; a(z; x; ~y; w)) otherwise:

b0(z; x; ~y; w) = bit((jm(x; ~y)j : 1) : (jzj mod jm(x; ~y)j); a0(z; x; ~y; w));

b(z; x; ~y; w) =

(
1 if jzj mod jm(x; ~y)j = 0;

b0(z; x; ~y; w) otherwise:

then a(z; x; ~y; w) is of the form

jwjz }| {
XX � � �X a(z; x; ~y; w)| {z }

jmj
:
1

XX � � �X| {z }
jzj mod jm(x;~y)j

:

De�ne F by fcrn as follows:

F (0; x; ~y) = G(bm(x; ~y)=2c; x; ~y)

F (si(z); x; ~y) = sb(z;x;~y;F (z;x;~y))(F (z; x; ~y)):

Then

a(z; x; ~y; F (z; x; ~y)) = f(u(z; x; ~y); ~y);

a0(z; x; ~y; F (z; x; ~y)) = f (sj(z;x;~y)(u(z; x; ~y)); ~y);

and hence the binary representation of F (z; x; ~y), which is the history of brn, is of the

form

10 � � � g(~y)| {z }
jm(x;~y)j

jzjz }| {
10 � � � f(1; ~y)| {z }

jm(x;~y)j

� � � 10 � � � f(u(z; x; ~y); ~y)| {z }
jm(x;~y)j

10 � � � f(sj(z;x;~y)(u(z; x; ~y)); ~y)| {z }
jm(x;~y)j

� � � 10 � � � f(djzj=jmje; ~y)| {z }
jzj mod jm(x;~y)j

Therefore

f(x; ~y) = lsp(F (bx#m(x; ~y)=2c; x; ~y); jm(x; ~y)j : 1);

and so f is de�nable in C. Thus C closed under brn.

Using same recursion, we introduce the machine independent characterization of the

polynomial time hierarchy.
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De�nition 3.22 The function f is de�ned by bounded minimization (bmin) from the

function g, denoted by f(x; ~y) = �i � x[g(i; ~y) = 0] , if

f(x; ~y) =

(
minfi � x : g(i; ~y) = 0g if such exists

0 else.

Theorem 3.23 (Folklore)

Fph = [0; I; s;+; : ;�;#;comp,bmin]

= [0; I; s;+; : ;�;#;comp,brn,bmin]

= [0; I; s0; s1;#;comp,brn,bmin]:

Corollary 3.24

Fph = [0; I; s0; s1;bit; jxj;#;comp,fcrn,bmin]:

Proof. By theorem 3.21 and 3.23, it is trivial.

3.2.3 Safe recursion on notation

Bellantoni and Cook [3] introduced not using smash function 2jxj�jyj and certain unbounded

recursion schemes which distinguish between variables as to their position in a function

f(x1; . . . ; xn; y1; . . . ; ym). Variables xi occurring to the left of the semi-colon are called

normal, while variables yi to the right are called safe. By allowing only recursions of a

certain form, which distinguish between normal and safe variables, particular complexity

classes can be characterized. Normal values are considered as known in totality, while

safe values are those obtained by impredicative means (i.e. via recursion). Sometimes, to

help distinguish normal from safe positions, the letters u; v; w; x; y; z; . . . denote normal

variables, while a; b; c; . . . denote safe variables. If F and O are collections of initial func-

tions and operations which distinguish normal and safe variables, then normal\[F ;O]

denotes the collection of all functions f(~x; ) 2 [F ;O] which have only normal variables.

Similarly, (normal\[F ;O])� denotes the collection of predicates whose characteristic

function f(~x; ) has only normal variables and belongs to [F ;O]. Bellantoni and Cook

showed the machine independent characterization of the class of polynomial time com-

putable functions using this notion.

De�nition 3.25 De�ne the following initial functions by

(constant) 0 (a zero-ary function)

(projections) In;mj (x1; . . . ; xn; a1; . . . ; am) =

(
xj if 1 � j � n

aj�n if n � j � n+m

(successors) S0(; a) = 2 � a; S1(; a) = 2 � a+ 1

(binary predecessor) P (; a) = ba=2c

(conditional) C(; a; b; c) =

(
b if a mod 2 = 0

c else.
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De�nition 3.26 (Bellantoni-Cook [3]) The function f is de�ned by safe composition

(scomp) from g; u1; . . . ; un; v1; . . . ; vm if

f(~x;~a) = g(u1(~x; ); . . . ; un(~x;); v1(~x;~a); . . . ; vm(~x;~a)):

If h(x; y) is de�ned, then scomp allows one to de�ne

f(x; y; ) = h(I
2;0
1 (x; y; ); I

2;0
2 (x; y; )) = h(x; y):

However, one cannot similarly de�ne g(;x; y) = h(x; y).

De�nition 3.27 The function f is de�ned by safe recursion on notation
4 (srn) from the

functions g; h0; h1 if

f(0; ~y;~a) = g(~y;~a)

f(s0(x); ~y;~a) = h0(x; ~y;~a; f(x; ~y;~a)); provided x 6= 0

f(s1(x); ~y;~a) = h1(x; ~y;~a; f(x; ~y;~a)):

The function algebra B is de�ned by

[0; I; S0; S1; P; C; scomp,srn]:

Example 3.28 We can de�ne the function Smash(y; x; ) = 2jxj�jyj in B. Let

Pad(0; y) = y

Pad(si(x); y) = S1(;Pad(x; y))

De�ne

Smash(0; x; ) = 1

Smash(si(y); x; ) = Pad(x;Smash(y; x; ))

Theorem 3.29 (Bellantoni-Cook [3]) The polynomial time computable functions are

exactly those functions of B having only normal arguments, i.e.

Fptime = normal \ B:

Let 2P
i denote the class of functions computed in polynomial time on a Turing machine

with oracle A, for some set A 2 �P
i . With this notation, Fph= [i2

P
i .

Theorem 3.30 (S.Bellantoni [2]) Let �FPi be the Cobham class augmented by allow-

ing i applications of bmin. Then for i � 0,

2
P
i = �FPi:

4
In [3] this scheme is called predicative recursion on notation.
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De�nition 3.31 The function f is de�ned by safe minimization (smin) from the function

g, denoted f(~x;~b) = s1(�a[g(~x;a;~b) mod 2 = 0]), if

f(~x;~b) =

(
s1(minfa : g(~x;a;~b) = 0g); if such exists,

0 else.

The algebra �B = [0; I; S0; S1; P; C; scomp,srn,smin]. Let �Bi denote the set of func-

tions derivable in �B using at most i applications of safe minimization.

Theorem 3.32 (S.Bellantoni [2])

2
P
i = ff(~x; ) : f 2 �Big:

Remark 3.33 Bellantni characterized the other complexity classes by same notion; logspace,

nc and the class of linear space computable functions. Clote also has given the charac-

terization of etime functions by linear growth. S. Bloch characterized alogtime by this

notion.
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Chapter 4

Constable's Class K

4.1 The class K and some parallel complexity classes

R. Constable [9] de�ned the class K drawing on polynomial analogy with the class of

Kalm�ar elementary functions E . Since E embodies exponential function, we can not regard

E as feasible class. And Clote [5] showed the relation K and some parallel complexity

classes.

De�nition 4.1 The function f is de�ned by bounded summation (bsum) [resp. bounded

product (bprod)]1 from g if f(x; ~y) equals

xX
i=0

g(i; ~y) [resp.
xY
i=0

g(i; ~y)]:

De�nition 4.2 (R. Constable [9]) The function f is de�ned by sharply bounded sum-

mation (sbsum) [resp. sharply bounded product (sbprod)]2 from g if f(x; ~y) equals

jxjX
i=0

g(i; ~y) [resp.

jxjY
i=0

g(i; ~y)]:

The elementary functions were �rst introduced by Kalm�ar.

De�nition 4.3 The class E of elementary functions is the algebra

[0; I; s;+; : ;comp,bsum,bprod]:

De�nition 4.4 We de�nethe class K by

[0; I; s0; s1;+;
: ;�; bx=yc;comp,sbsum,sbprod]:

1
Bounded summation [resp. product] is sometimes called limited summation [resp. product].

2
Sharply bounded summation [resp. product] is sometimes called weak summation [resp. weak

product].
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Recently, function algebra have been found for small parallel complexity classes. Con-

sider the following variant of recursion on notation.

De�nition 4.5 The function f is de�ned by weak bounded recursion on notation (wbrn)

from g; h0; h1; k if F (x; ~y) is de�ned by brn and f(x; ~y) = F (jxj; ~y); i.e.

F (0; ~y) = g(~y)

F (s0(x); ~y) = h0(x; ~y; F (x; ~y)); if x 6= 0

F (s1(x); ~y) = h0(x; ~y; F (x; ~y))

f(x; ~y) = F (jxj; ~y)

provided that F (x; ~y) � k(x; ~y) holds for all x; ~y.

Though one needs jxj times recursion to de�ne f(x) by brn, one requires jjxjj times
recursion in the case of wbrn.

Theorem 4.6 (Clote [4]) Let the algebra

A = [0; I; s0; s1; jxj;bit;#;comp,crn,wbrn];

then

nc = A:

Theorem 4.7 (Clote-Takeuti [7])

tc
0 = [0; I; s0; s1; jxj;bit;�;#;comp,crn]:

Lemma 4.8 A is closed under sbsum.

Proof. Let f(x; ~y) =
P

i�jxj g(i; ~y), where g 2 A. We must show that f(x; ~y) 2 A. Since

if we added g one by one, jxj steps would be needed. Make binary tree where values g(i; ~y)
are placed at the leaves and internal nodes have as values the sum of their two children.

Addition is executed the number of nodes. And for instance jxj = 3, binary tree is given

as follows.

g(0; ~y) g(1; ~y) g(2; ~y) g(3; ~y)
�
�
��

A
A
AA

�
�
��

A
A
AA

g(0; ~y) + g(1; ~y)
�
�
��

g(2; ~y) + g(3; ~y)
A
A
AA

g(0; ~y) + g(1; ~y) + g(2; ~y) + g(3; ~y)
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By previous chapter, the algebra A0 contains the functions +;
: ; rev. Clearly A0 � A.

We show the bounded exponential function is in this class. The bounded exponential

function is

Exp(x; y) = 2min(x;jyj);

to use Exp(x; y) as 2x, if x is bounded by jyj. Firstly de�ne the auxiliary function exp0

exp0(x; y; 0) = 1

exp0(x; y; si(z)) =

(
s1(exp0(x; y; z)) if jzj = x � jyj _ jzj = jyj � x

s0(exp0(x; y; x)) else.

Then

Exp(x; y) = brev(exp0(x; y; s1(y)))=2c:

De�ne functions `(x) [resp. n(x)] whose value is the number of leaves [resp. nodes] of a

full binary tree Tx which will be associated with x;

`(x) = Exp(jjxjj; 2 � jxj)

n(x) = 2 � `(x)� 1:

While

n(x) = 2jjxjj+1 � 1 < 4 � jxj < j24�jxjj = j8#xj:

As Exp(n(x); 8#x) = 2n(x), the function 2n(x) is de�nable in A0 and A.
Let Tx be the full binary tree having `(x) many leaves and altogether n(x) many nodes,

whose nodes labeled as follows: leaves are labeled 0; . . . ; `(x)� 1 form left to right, then

parents of leaves are labeled `(x); . . . ; `(x) + `(x)

2
� 1 form left to right, etc.

We will explain more formally. Let

LC(i; x) = n(x)� [2 � (n(x)� i) + 1]

RC(i; x) = n(x)� [2 � (n(x)� i)]:

Hence LC(i; x) [resp. RC(i; x)] is the labeled number of left [resp. right] child of i in Tx,

provided that `(x) � i < n(x).
By this idea we will formalize a computation on the tree. Tx. De�ne

f(i; x; ~y) =

8>>><
>>>:

g(i; ~y) if i � jxj

0 if jxj < i < `(x)

f(LC(i; x); x; ~y) + f(RC(i; x); x; ~y) if `(x) � i < n(x)

0 if n(x) � i

It is easily veri�ed that

f (n(x)� 1; x; ~y) =
jxjX
i=0

g(i; ~y)

since f assigns values g(0; ~y); . . . ; g(jxj; ~y) to the leaves of Tx and then computes level-by-

level the pairwise sums so that
Pjxj

i=0 g(i; ~y) is assigned at the root n(x)� 1 of Tx.
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By the lemma 3.15, functions to encode the sequence were shown to belong to A0. It

is then straightforward to show that a sequence concatenation function _ exists in A0

for which if s = hs1; . . . ; sni and t = ht1; . . . ; tmi then s_t = hs1; . . . ; sn; t1; . . . ; tmi. By

�2(s) = n; �2(t) = m,

s_t = h�(1; s); . . . ; �(�2(s); s); �(1; t); . . . ; �(�2(t); t)i:

The reason of using encoding function is that we would like to refer to the earlier history

of sum than just before node.

Now de�ne F (z; x; ~y) by

F (0; x; ~y) = h i

f(si(z); x; ~y) = F (z; x; ~y)_hh(z; x; ~y)i

where

h(z; x; ~y) =

8>>><
>>>:

g(jzj; ~y) if jzj < jxj

0 if jxj � jzj < `(x)

�(F (z; x; ~y); LC(jzj; x)) + �(F (z; x; ~y); RC(jzj; x)) if `(x) � jzj < n(x)
0 else.

F become the history of addition. Thus F (z; x; ~y) = hf(0; x; ~y); . . . ; f(jzj � 1; x; ~y)i. As

to have seen f(n(x)� 1; x; ~y) =
Pjxj

i=0 g(i; ~y). In the discussion of chapter 2 it was shown

that if g 2 A0, then the maximum function

mg(x; ~y) = maxfg(i; ~y) : i � jxjg

belongs to A0. It follows that if g 2 A, then mg 2 A. Hence,

jxjX
i=0

g(i; ~y) � mg(x; ~y) � (jxj+ 1)

� mg(x; ~y)#(2 � x)

and so
Pjxj

i=0 g(i; ~y) is bounded by a function in A. Hence function F is also bounded in

A.

Let G(z; x; ~y) = F (jzj; x; ~y). Then G is de�nable in A by using wbrn. Then A
contains G. Finally, de�ne K by

K(x; ~y) = G(2n(x) : 1; x; ~y)

= F (j2n(x) : 1j; x; ~y)

= F (n(x); x; ~y)

= hf (0; x; ~y); . . . ; f(n(x)� 1; x; ~y)i:

Thus

�(K(x; ~y); n(x)) = f(n(x)� 1; x; ~y)

=

jxjX
i=0

g(i; ~y)
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and hence A is closed under sbsum.

Theorem 4.9 (P. Clote [5]) K � A.

Proof. By replacing sum by product, the proof of the proof of the previous lemma can

immediately be modi�ed to yield that A is closed under sbprod.3 The initial functions

0; I; s0; s1;+;� of K all belong to A. The �rst three belong to A by de�nition; in previous

chapter, it was shown that + 2 A0 � A; � is known to belong to nc (even nc
1). The

class A is closed under composition, and by previous lemma, under sbsum and sbprod.

It follows that K � A.

Theorem 4.10 (P. Clote [5]) tc
0 � K.

Proof. Initially it is necessary that the initial functions of tc0 can be de�ned in K.

jxj =

0
@X
i�jxj

1

1
A : 1

2jxj =

$Q
i�jxj 2

2

%

sg(x) = 1 : x =

(
1 if x = 0

0 else

sg(x) = 1 : sg(x) =

(
0 if x = 0

1 else

c�(x; y) = sg(x : y) =

(
1 if x � y

0 else

cond(x; y; z) = sg(x) � y + sg(x) � z =

(
y if x = 0

z else

min(x; y) = cond(x : y; x; y):

From these functions, de�nitions by case are admissible in K. De�nitions of the form

f(x; ~y) =
P

i�jxj h(i; x; ~y) and f(x; ~y) =
Q
i�x h(i; x; ~y) are allowed by sbsum and sbprod.

De�ne

Exp(x; y) = 2min(x;jyj) =
Y
i�jyj

g(i; x; y)

3
In showing that G is de�nable by sbprod, note that

jxjY
i=0

g(i; ~y) � mg(x; ~y)
jxj+1 � mg(x; ~y)#(2 � x):
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where

g(i; x; y) =

(
2 if i < min(x; jyj)
1 else

Further de�ne

Msp(x; i) =

$
x

Exp(i; x)

%

bit(i; x) = Msp(x; i) : 2 �

$
Msp(x; i)

2

%

x#y =

$Q
i�jyj 2

jyj

2jxj

%
= 2jxj�jyj

Thus all the initial functions of tc0 belong to K.

Secondly we show thatK is closed under crn, suppose that f is de�ned from g; h0; h1 2

K using crn. To simulate crn by sbsum, consider the summation such that

hi(z; ~y) � 2
jxj�1�z; 0 � z � jxj:

We de�ne formally, let

U(z; x; ~y) = hbit(z;x)(Msp(x; z + 1); ~y) �Msp(2jxj
:
1; jxj : (z + 1)):

Hence f is de�nable as follow using sbsum,

f (x; ~y) =
X
i�jxj

U(i; x; ~y) + g(~y) � 2jxj:

Thus K contains all the initial functions of tc0 and is closed under the operations comp

and crn, hence tc0 � K.

4.2 Some observations on K

The class K is very natural, however the corresponding machine model is unknown. Then

following question has been proposed.

Question 4.11 What complexity class corresponds to

[0; I; s0; s1;+;
: ;�; bx=yc;comp,sbsum,sbprod]?

According to [5, 6], H.-J. Burtshick has proposed that polynomial size uniform arithmetic

circuits could be related to the K. H. Ishihara suggested that the algebra adding initial

function xjyj to tc
0 could be involving in K. And Ishihara showed that tc0 is closed

under sbsum.
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Lemma 4.12 tc
0
is closed under sbsum.

Proof. Let

m(x; ~y) = maxfg(i; ~y) : i � jxjg#(2 � x)

and

f(x; ~y) = bit((2jjm(x;~y)jj : 1) : (jxj mod 2jjm(x;~y)jj); g(bjxj=2jjm(x;~y)jjc; ~y)):

Then de�ne h and h0 by crn as follow:

h(0; ~y) = 0

h(si(x); ~y) = sf(x;~y)(h(x; ~y));

h0(0; ~y) = 0

h0(si(x); ~y) = s
sg(jxj mod 2jjm(x;~y)jj)

(h0(x; ~y)):

We would like to show the existence of the function t(2 tc
0) such that

jt(x; ~y)j = 2jjm(x;~y)jj � (jjxjj+ 1):

Let

t1(x; ~y) = (jm(x; ~y)j#1)(jxj+ 1);

and

t2(x; ~y; 0) = 1

t2(x; ~y; si(z)) =

(
s0(t2(x; ~y; z)) if jzj � t1(x; ~y)
s1(t2(x; ~y; z)) else :

For z such that jzj � t1(x; ~y), it is clear that binary representation of t2(x; ~y; z) is

1

jzjz }| {
00 � � � 0| {z }
t1(z;~y)

11 � � � 1

where there are t1(x; ~y) many 0's and jzj � t1(x; ~y; z) many 1's.

Now letting,

t3(x; ~y) = ((m(x; ~y) �m(x; ~y))#x) � ((m(x; ~y) �m(x; ~y))#1);

clearly jt3(x; ~y)j � t1. Let
t4(x; ~y) = t2(x; ~y; t3(x; ~y))

and

t5(x; ~y) = �i < jt4(x; ~y)j[bit(t4(x; ~y); i) = 0]:
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By the lemma 3.12, t5 is in 2tc
0(� A0). The binary representation of t4(x; ~y) is

1

jt3(x;~y)jz }| {
00 � � � 0| {z }

2jjxjj�(jxj+1)

11 � � � 1

where there are 2jjxjj � (jxj+ 1) many 0's and jt3(x; ~y)j � 2jjxjj � (jxj+ 1) many 1's. As well,

t5(x; ~y) is the position of the rightmost 0 occurring the binary representation of t4(x; ~y).

Now de�ne the desired function t by

t(x; ~y) = msp(t4(x; ~y); s1(t5(x; ~y))):

Putting

A(x; ~y) = h(t(x; ~y); ~y);

B(x; ~y) = h0(t(x; ~y); ~y):

the binary representations A(x; ~y) and B(x; ~y) are of the forms

g(0; ~y) 0 � � � 0g(1; ~y)| {z }
2jjm(x;~y)jj

0 � � � 0g(2; ~y)| {z }
2jjm(x;~y)jj

� � � 0 � � � 0g(jxj; ~y)| {z }
2jjm(x;~y)jj

and

1 0 � � � 01| {z }
2jjm(x;~y)jj

0 � � � 01| {z }
2jjm(x;~y)jj

� � � 0 � � � 01| {z }
2jjm(x;~y)jj

respectively, where each blocksize is 2jjmjj. The jxj-th block of the product A(x; ~y) �B(x; ~y)
the binary representation of the integer

msp(lsp(A(x; ~y) �B(x; ~y); 2jjm(x;~y)jj � (jxj+ 1)); 2jjm(x;~y)jj � jxj)

which is equal to
P

i�jxj g(i; ~y).

If we append initial function xjyj to tc0 then smash function is expressed by x#y =

(2jxj)jyj, moreover add bx=yc.

De�nition 4.13 De�ne the following class.

T = [0; I; s0; s1; jxj;bit;�; bx=yc; x
jyj;comp,crn]:

The author attempted to show the equivalence T = K to �nd out any clues to solve

question 4.11.

Lemma 4.14 Let

�
x

y

�
be binary coe�cient for x � y > 0. Then

�
jxj

y

�
is de�nable in T .
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Proof. Let

C(x) = (2jxj + 1)jxj:

The binary representation of C(x) is

 
jxj

0

!
00 � � � 0

 
jxj

1

!
| {z }

j2jxjj

0 � � � 00 � � � 0

 
jxj

jxj � 1

!
00 � � � 0

 
jxj

jxj

!
;

where each blocksize is j2jxjj. Hence for jxj � y � 0,

 
jxj

y

!
= msp(lsp(C(x); (y + 1) � j2jxjj); y � j2jxjj):

Lemma 4.15

n! =
nX
i=0

 
(�1)i � (n� i)n �

 
x

i

!!
:

Proof. Choose i elements in x1; . . . ; xn then letting yi as the following way

yn = (x1 + x2 + � � �+ xn)
n

yn�1 = (x1 + � � �+ xn�1)
n + (x1 + x3 + � � �+ xn)

n + � � �+ (x1 + � � �+ xn�1)
n + (x2 + � � �+ xn)

n

yn�2 = (x1 + � � �+ xn�2)
n + (x1 + � � �+ xn�3 + xn)

n + � � �+ (x3 + � � �+ xn)
n

...

y2 = (x1 + x2)
n + (x2 + x3)

n + � � �+ (xn�1 + xn)
n

y1 = xn1 + xn2 + � � �+ xnn:

Each yi has the sum of the
�
n

i

�
terms which is the sum of i variables to the n-th power.

And let zi in the ensuing

zi =
X

j1 6=j2 6=���6=ji;m1+m2+���+mi=n

 
n

m1;m2; . . . ;mi

!
xm1
j1 x

m2
j2 � � �xmi

ji
;

where
�

n

m1;m2;...;mi

�
is multinomial coe�cient such that

 
n

m1;m2; . . . ;mi

!
=

n!

m1!m2! � � �mi!
;
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for instance if n = 3 then

z1 =

 
3

3

!
x31 +

 
3

3

!
x32 +

 
3

3

!
x33

z2 =

 
3

1; 2

!
x1x

2
2 +

 
3

1; 2

!
x1x

2
3 +

 
3

1; 2

!
x2x

2
3 +

 
3

2; 1

!
x21x2 +

 
3

2; 1

!
x21x3 +

 
3

2; 1

!
x22x3

z3 =

 
3

1; 1; 1

!
x1x2x3;

note that
�

3

1;1;1

�
= 3!. Therefore

yn = z1 + z2 + � � �+ zn

yn�1 =

 
n� 1

1

!
z1 +

 
n� 2

1

!
z2 + � � �+

 
1

1

!
zn�1

yn�2 =

 
n� 1

2

!
z1 +

 
n� 2

2

!
z2 + � � �+

 
2

2

!
zn�2

...

yi =

 
n� 1

n� i

!
z1 +

 
n� 2

n� i

!
z2 + � � �+

 
n� i

n� i

!
zi

...

y2 =

 
n� 1

n� 2

!
z1 +

 
n� 2

n� 2

!
z2

y1 =

 
n� 1

n� 1

!
z1:

By
nX
i=0

 
(�1)i �

 
n

i

!!
= 0;

thus

nX
i=1

�
(�1)i�1 � yi

�
= zn

= n! � x1x2 � � �xn:

On the other hand if we suppose that all xi is 1 then

yn = nn �

 
n

n

!

yn�1 = (n� 1)n �

 
n

n� 1

!

...
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yi = (n� i)n �

 
n

i

!

...

y2 = 2n �

 
n

2

!

y1 = 1n �

 
n

1

!
;

Hence this lemma is proofed.

Lemma 4.16 T contains the factorial of the length of x; jxj!.

Proof. By the lemma 4.12, 4.15 and tc
0 � T ,

jxj! =

jxjX
i=0

 
(�1)i � (jxj � i)jxj �

 
jxj

i

!!

= jxjjxj � (jxj � 1)jxj �

 
jxj

jxj � 1

!
+ (jxj � 2)jxj �

 
jxj

jxj � 2

!
� � � � � 2jxj �

 
jxj

2

!
� 1jxj �

 
jxj

1

!

=

jxjX
i=0

 
(jxj : s0(i)) �

 
jxj

jxj : s0(i)

!!
:

jxjX
j=0

 
(jxj : s1(j)) �

 
jxj

jxj : s1(j)

!!
:

Remark 4.17 After all we could not show that T is closed under sbprod. If one proved

it, T and K would be equivalent algebra. Therefore the author could not answer the

question 4.11. However we have that T � K.
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Chapter 5

Concluding Remarks

In chapter 2 we have seen the classes which several machine models involve. Turing

machine is used regularly as computation model. Typical open problem in structural

complexity theory is \Are P and NP properly di�erent class?". Then both of P and NP
are originally de�ned by Turing machine. Circuit families have the advantage of surveying

the inside of P .

The author has searched for the class of feasibly computable functions. It is maybe

important that the notion of feasibly computable needs both of machine depend and inde-

pendent characterization. In chapter 3 the class of polynomial time computable functions

is mainly discussed. Cobham [8] �rst �nded out a machine independent characterization

of polynomial time functions using a certain variant of primitive recursion. And the au-

thor also discussed other two recursions. In chapter 4 the Constable's class K is treated as

the class of feasibly computable functions. K is the smallest class of functions containing

the initial functions; constant 0, projections, binary successors +; : ;�; bx=yc and closed

under the operations of composition, sharply bounded summation and sharply bounded

product. In [5] Clote obtained the relation with some classes de�ned by circuit families

i.e. tc0 � K � nc. However we can not answer the machine dependent characterization

of K. The author have attempted to show that K is equivalent to a function algebraic

class related to the complexity class. Then the author de�ne the class T which is the

extension of tc0. It is clearly that T � K. Hence we would like to know that T contains

all initial functions of K and closed under sbsum and sbprod. Then in this paper it is

shown that T contains all initial functions of K and closed only under sbsum. Thus the

following problem remained,

Question 5.1 Is T closed under sbprod ?

The author only showed that T contains particular binary coe�cient
�
jxj

y

�
and also par-

ticular factorial function of binary length jxj!. Unfortunately the author is coming to

reluctant conclusion that question 5.1 remains as still open problem. It is left as a future

work.
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