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Abstract—Feedback loss can severely degrade the overall
system performance, in addition, it can affect the control and
computation of the Cyber-physical Systems (CPS). CPS hold
enormous potential for a wide range of emerging applications
including stochastic and time-critical traffic patterns. Stochas-
tic data has a randomness in its nature which make a great
challenge to maintain the real-time control whenever the data
is lost. In this paper, we propose a data recovery scheme,
called the Efficient Temporal and Spatial Data Recovery
(ETSDR) scheme for stochastic incomplete feedback of CPS.
In this scheme, we identify the temporal model based on

Transmission Media
(e.g., wireless)

F‘ Sensor

General control view of cyber-physical system.

Figure 1.

the traffic patterns and consider the spatial effect of the

nearest neighbor. Numerical results reveal that the proposed
ETSDR outperforms both the weighted prediction (WP) and

the exponentially weighted moving average (EWMA) algorithm

regardless of the increment percentage of missing data in terms
of the root mean square error, the mean absolute error, and
the integral of absolute error.

Keywordscyber-physical system; data recovery scheme;
stochastic data; temporal correlation; spatial correlation; auto

the physical world through the closed-loop feedback. Thus,
the proper timing and accuracy of feedback data is very
important for interaction between cyber and physical world.
Fig.1 shows the general control view of cyber-physical
system.

Since, CPS exploit the physical information collected by
WSANS; it also inherit the wireless contention problem
of WASN. This makes the challenging issue to control

in real-time. Wireless channels have many adverse prop-
erties like path loss, fading, adjacent channel interference,
|. INTRODUCTION node/link failure, etc. Besides these, wireless signals can
Cyber-physical systems (CPS) are a new generation die easily affected by noise, physical obstacles, node move-
communication, control and computation that has receivednent, environmental change and so on [3]. Because of
a great deal of attention recently [1]. CPS enable thehis unpredictable and dynamic nature, the sensing data
virtual world to interact with the physical world in order loss is a common phenomenon, which make hamper in
to monitor and control the intended parameter in real-timecontrolling decision. Since, the applicability of CPS is found
basis. In CPS, technologies such as communication, contrdi) numerous time-critical applications including smart house
computation, cognition and sensing converge to create neww smart grid, data loss makes the system unstable. Emerging
technologies for smarter society. The area of CPS represeapplications of CPS include medical devices and systems,
the intersection of several systems trends, such as real-tin@erospace systems, transportation vehicles and intelligent
embedded system, distributed systems, control system ardghways, defense systems, robotic systems, process con-
networked wireless system. trol, factory automation, building and environmental control,
To facilitate communications between the cyber andsmart spaces, intelligent home and so on [4]. In all of these
the physical world, wireless sensor and actuator networlapplications, CPS has to monitor and control the state of
(WSAN) is an essential ingredient of CPS. This is becausephysical phenomenon in real-time. In particular, for time-
the traditional wireless sensor network (WSN) is limited critical applications, feedback data must present on time
in its ability to monitor the physical world [2]. However, to make decision. In many cases, re-transmission cannot
CPS achieve this requirement by facilitating the system tgrovide appropriate solution because of the unpredictable
sense, interact and change the physical world in real-timeetwork behavior, which can cause high delay.
by using feedback control loop. In a typical application of To maintain uninterrupted control, we always need to
CPS, sensor nodes collect information from the physicabnsure the presence of feedback data. To do this, we propose
world as a source of CPS inputs. Upon receiving input, aa data recovery scheme that can handle insufficient feedback
controller makes a decision and actuators perform action iontrol information. In our paper [5], we proposed a highly

regressive integrated moving average



Efficient Spatial Data Recovery (ESDR) scheme that dealsnissing data imputation. ML [6] calculates the likelihood
with deterministic traffic pattern of CPS. This scheme is veryfunction for given set of data, which is a hypothetical
efficient for deterministic traffic pattern like temperature, probability that uses past event with known outcome. Then,
humidity, moisture which is highly correlated with space. Inby using iterative steps, ML makes the likelihood function
our proposed ESDR scheme, we utilized spatial correlatiomaximum. EM [7] also uses iterative steps to maximize the
of neighboring sensors by using the Pearson correlation cdikelihood function but in EM, model depends on unobserved
efficient (PCC). But, as mentioned already, the application®r latent variables. Based on mean and covariance matrix of
of CPS are numerous, thus in many applications the dateultivariate normal distribution, expectation (E) step initial-
traffic is stochastic. To handle the stochastic data properlyzes the expected values for latent variables. Maximization
we need to consider their nature which contains randomnes@V) step plugs the expected values into the log-likelihood
The random and non-stationary nature of stochastic traffifunction and maximizes the log-likelihood function by re-
pattern makes it more challenging to recover. In many casegeating the E and M steps. However initialization step
neighbor sensors maintain non-linear relationship betweedirectly impacts the performance of EM based imputation.
them. The aim of this paper, is to propose an EfficientOn the other hand, in Ml [8], missing data are filled by m
Temporal and Spatial Data Recovery (ETSDR) scheme fodifferent times to generate m complete data sets. Generated
stochastic data traffic of CPS by considering the nature ofn data sets are analyzed by standard procedure and then
stochastic data. The proposed scheme consists of two phasesmbined for inference. But these well known techniques
In the first phase, which is offline, we identify the temporal for missing data imputation are not suitable for WSNs, due
model for stochastic data and determine the spatial effects @b their high space and/or time complexities.
neighbors. The stochastic data series is normally highly auto- Xia, et al. [9] first propose a solution for CPS over
correlated and outliers have a different correlation structur®/SANs to cope with packet loss. They illustrate three
then the deterministic data series. Auto Regressive Integratqatediction algorithms and provide a comparison between
Moving Average (ARIMA) model is a very powerful model them. Their first algorithm based on the assumption that,
to identify the auto-correlated nature or trend of stochasti¢he state of the physical system does not change during the
data. We utilize this model to identify the nature of the last sampling period. So, previous sample is used to replace
stochastic data. In addition to determine the outliers, spatiahe missing value. The second algorithm computes a moving
effect of neighbor is analyzed. In the next phase, which isaverage of the previous m samples to restore the lost data.
on line, we use that temporal model and spatial effect toThus it treats every previous measurement equally. In third
recover missing data. At the same time, we check whethealgorithm weighted average of all previous samples is taken
the identified model keeps fitted with recent data or not. to replace the missing one. Simulation result shows that third
The rest of the paper is organized as follows. Sectioralgorithm works well compared with others. All of their
Il summarizes some state-of-the-art research works thoggrocedures are bound for specific situation where current
are related to this paper. In Section lll, the proposed modetlata depends on the previous data or the combination of
based recovery scheme is presented. We describe the expegpievious data but not for all conditions.
mental scenario and the evaluation parameters in Section IV. Choi, et al. [10] exploit an exponentially weighted mov-
Simulation results and discussions are presented in Sectiong average (EWMA) based value estimation algorithm to
V. Section VI concludes with conclusion and future works. reduce the impact of packet loss. When some packets are
randomly dropped in wireless network environment, the
EWMA algorithm filters an abrupt increase or decrease by
Data recovery is a part of most research and there exigixponentially smoothing commands or data based on the
several methods to handle this. Although there exists severglast value profile. This method only suits, when the data
methods, but the recovery of data loss for CPS still poses aseries is an exponentially weighted combination of past data
open problem because of its unique requirement. The wholsets. But in real-life there is no guarantee that data will
recovery process for CPS must be held in real-time andilways maintain this combination. Moreover, none of the
invisible to the outside world. Moreover, the applications ofexisting data recovery scheme includes model identification
CPS are numerous which involves different data patterns. lbbefore recover the data. We believe that successful identifica-
the existing literature, there is no direction of data recoverytion of data model can ensure accurate and timely recovery.
based on traffic patterns. Thus, recovery process without In the literature, there exists some model based data
considering the pattern can not provide a solution for all.aggregation scheme. In [11], authors proposed an ARIMA
To recover data accurately, we first need to understand theased data aggregation method to reduce the energy con-
nature of the data and their relationship with others. sumption and number of communication. In their scheme,
Missing data is a well-studied subject in statistics. Max-both sensor node and aggregator have the same model
imum likelihood (ML), multiple imputation (MIl) and ex- for data generation. Sensor node checks whether the data
pectation maximization (EM) are widely used methods forpredicted from the model and measure data is same or
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not. If the real value and predicted value is within the Stochastic traffic pattern

threshold, then the sensor node will not transmit the data l
to the aggregator. Otherwise, sensor will send the new data Estimate the model
to the aggregator. » from acfand pacf
[1l. PROPOSEDEFFICIENT TEMPORAL AND SPATIAL ol tih ”
DATA RECOVERY SCHEME S perametess
In this section, we propose a data recovery scheme !
called Efficient Temporal and Spatial Data Recovery Scheme Cis the maximum Veritthe model
(ETSDR) for stochastic traffic pattern of CPS. Before doing number of time erttythe mode
this, we classify the pattern and types of CPS data traffic.
We classify three traffic patterns for CPS applications: oo data o Yes
deterministic, stochastic and time-critical. The deterministic the model?
traffic pattern always maintains a stable state. On the other Increase the Use the model for
. . . counter data generation
hand, any traffic pattern which involves random change and
indeterminacy is defined as a stochastic traffic pattern. We

concentrate stochastic traffic patterns in this paper. And,
these traffic patterns can be transmitted by four different
traffic types [12] : fixed, periodic, bursty and arbitrary rate.

In this research, we design our scheme to mitigate the
problem of periodic traffic type. As mentioned already, the

proposed scheme contains two steps: i) Offline temporal
model identification and ii) Online recovery of data.

Terminate the
system

Figure 2. Proposed flowchart for temporal model identification.

2) Moving average model of order: MA model is a lin-

A. Offline Temporal Model Identification s )
The aim of this step is to identify the t | lati ear regression of the current and previous error of a random
e aim of this step is to identify the _empora correlation oo ies. The MA model of senserdata seriedq, dga, .., dsp
or pattern of the observed data and build a model based on

q
that available data. The proposed flowchart for off line tem-With order ¢ is defined as followsl,, = n + ;aﬁn—l,
poral model identification is shown in Fig. 2. The following where, ¢ is the number of moving average té?ms,is the
assumptions have been considered. Firstbserved sensor mean of the serie$, , -, ..0, are the parameter of the series,
data is available for model identifications andobserved ande, is the error.

sensor data is available for model verification. Second, the i ,

maximum number of attempt€’] to generate the model is ) Auto Regressive Integrated Moving Average (ARIMA)

fixed at initialization stage. The paramet€ris also used Model: ARIMA model predicts future values of a sensor

to make the decision that. the model cannot be generate%ata series by a linear combination of its auto-regressive past

from the available data. In the flowchart, first we analyzeyalues’ integrated, and moving average of errors. The model

the data series trend by modelling it into ARIMA series. IS 9enerally referred to as an ARIMA(p,d,q) model where

Before modelling, we analyze the nature of stochastic datRa/ameter, d, andq are non-negative integers that refer
to the order of the auto-regressive, integrated, and moving

which can be perfectly modelled with ARIMA model. k
ARIMA model [13] is a very powerful tool that uses average parts of the model respectively. The ARIMA model
B)Addy ) = O4(B)e,, Where, B is the

historical data to predict future data values. Any type ofiS defined ag,(

stochastic data series can be identified by this model. ThBackward shift operatory is the backward differencej, is
ARIMA model, also called Box-Jenkins model, can be di- the order of differencing and, and©, are the polynomial
vided into three components: auto-regressive (AR), moving®f Orderp andgq respectively. In additionBd, = ds(1)
average (MA), and one-step differencing [13]. and A = 1 — B. ARIMA(p,d,q) model is the product of
1) Auto-regressive model of order AR modelis asim- @ AR part AR(p):0, = 1 — 1B — @2 B? — .. — ¢, BY,
plified version of ARIMA model which describes random aN integrating part7(d) = A~ and a MA part MA(q):
time-varying process. The AR model specifies that the out&¢ =1—-018 — 02B% — ... — 0,B9.
put variable depends linearly on its own previous values [13]. To identify the model, we consider the following steps.
The AR model of senso¢ data seriesi%,dsg, ooy dgn With Step 1: Calculate ACF and PACF

orderp is defined as followsly, = ¢+ 3. pids(n-1) +en, The Auto-correlation function (ACF) is a set of correlation

=1
wherep is the order of auto—regressilve terms,, p2, ..op coefficients between the series and lags of itself over time
are the parameter of the model,s a constant and,, is  [13]. The k-order auto-correlation coefficient of a data series
white noise. ds1,dso, .., ds, Of sensors is defined as



d, is the measured data from sensor

d, is the computed data from model

e, is the error between d,; and d,,, for it neighbor

Threshold, is the maximum acceptable error between
model and measured data

n—Fk — _
] (dsz - dsi)(ds(i+k) - d%)
TR = 2 (1)

(dsv - dw) Input d, as

Measured data from
sensor (d,)

Compute d,,

-

1 feedback data based on the
temporal model

7

where,r;, is thek lag sample auto-correlation awl; is the
average ofn observations. The PACF stands for the partialves
correlation coefficients between the series and lags of itse

over time. Thek-order partial auto-correlation coefficient of | 2" el

a data series is defined as —

P11 =711 (2)
B22 = (12 — 1) (1 —11?) 3)
i = D—1)j — PrkPh—1)(k—j) (4)

-+

Compute the new Adjust d,,

model parameter

Input d,, as
feedback data

Figure 3. Proposed flowchart for ETSDR scheme.

h—1 E—1 data and model estimated data is computed and if the
b =Tk~ > Dk—1)Th—j 1 Zdﬁ(kq)rj (5) difference is greater than error offset, model is updated by
i=1 = computing new parameters. On the other hand, when there

) . h | del is a missing data, the neighbor’s model estimated data is
E:ifnztﬁgigzafné I?’A-E:e;nrt)r?(reaAgls/I:model that closely compared_with neighbor's measured data . If the neighbor’_s
fit to the data can be identif,ied. We determined the order Ogodel'estlma'ted data cross the thresholq, then the spatial
ffect is considered. To estimate the missing data properly,

p and q by matching the patterns in the sample ACF an he model estimated data is adi : :
. . justed with spatial effect and
PACF with the theoretical pattern of known model. Table Iis used as a feedback data.

shows the theoretical properties of ACF and PACF of AR, .
As far as we are concerned, most of the spatial corre-

MA and ARMA series. lation measures the linear correlation between the nearest

Table | neighbors. If an environment is highly correlated in space,
PROPERTIES OFACF AND PACF then the spatial information can be used to estimate missing
ACE PACE data and the estimation function can achieve a high accuracy.
AR() Tails off as exponential Cuts off after lag Pearsor_1 Correlation C_?oefflment (PCC) is a common measure
or damped sine wave _ p _ of the linear correlation between two random variables
MA(q) Cuts off after lagg deTCZ')'/SOOrﬁ ik f)’é%ogif]’;“\?v'ave and j. It reflects the degree of association between two
ARMA(p,q) | Tails off after lag ¢ —p) | Tails off after lag ¢ — p) variables. But in real-life environment, the neighbor sensors

can be correlated non-linearly with their neighbors also. We
Step 3: Solve the Parameters of Temporal Model consider this phenomenon and calculate the spatial effect

In this step, we calculate the parameters of the identifie?ased on the appllca_tmn_s. Fig.4 describes the pr_oposed
model using method of moments and Yule-Walker equation TSDR algonthm, .Wh'Ch is used to produce an estimated
[13]. data from time to time.

Step 4: Verify the Temporal Model

To verify the model, we compare the model generated data
with the ¢ observed sensor data. If the verification fails, we In this section, we conduct the simulation studies to
continue to estimate the model until the maximum counte€valuate our proposed ETSDR scheme compared to the WP
C is reached. In the case of successful verifications, we usglgorithm [9] and the EWMA algorithm [10]. We create
that model to generate the data. an simulation environment with five sensors and one base
station. We generate random series data in MATLAB sim-
ulator for one sensor. We add distance based non-linear co-

To deploy our proposed stochastic data recovery schemeglationship to the generated data and assign to the other four
we propose a flowchart with the recovery scheme for CPSensors. We estimate the model from the generated data by
as depicted in Fig. 3. In the flowchart, the proposed ETSDRealculating the ACF and PACF. We identify possible value of
scheme will compute the model estimated data when therg andq and findp = 2 andg = 0 for our simulation. Then,
is an input measured data from the sensors. If there is nae solve the parameters using Yule-Walker equations for the
missing data, then the measured data is used as a feedbddkntified AR(2) model. In the series, the autocorrelation
data. At the same time the difference between the measureat lag 1 ism = 0.807 and autocorrelation at lag 2 is

IV. NUMERICAL STUDIES

B. Online Data Recovery



Algorithm: Efficient Temporal and Spatial Data Re- in a data set, without considering their direction. In [14],

covery(ETSDR) Wilmott, et al. indicate that the MAE is the most natural

1: if d, = availablethen and unambiguous measure of average error magnitude.

2:  for eachd, from the sensos do On the other hand, the IAE is a widely used performance

3:  Computed,,s(t) from the model metric in control community, which is recorded to measure

4: if abs(ds(t) — dims(t)) > error offsetthen the performance of the control application. The IAE is

5: Update the model with new parameters calculated ag AE — fol |de () — dg(t)| dt

6: end if where, t denotes total simulation time. In general, the

7: end for larger the IAE values imply the worse the performance of

8: else the control algorithm.

9: for all one hop neighboy of sensors do

10:  if abs(d;(t) — dyn;(t)) > thresholdthen V. SIMULATION RESULT AND DISCUSSION

11: de(t) «— ds(t) = ds(t)+ spatial effect In this section, we present our simulation results and make

12: else some discussions on the performance of algorithms. The

13: de(t) «— ds(t) = dpms(t) aim of this simulation is to examine the potential of the

14:  end if proposed algorithm in coping with the data missing for the

15: end for CPS application. In our simulation, we investigate the impact

16: end for of increasing percentage of missing data on the data recovery
Figure 4. Pseudo code for Efficient Temporal and Spatial Data Recover)algorithm performance. The percentage of missing data is
Algorithm varied from10% to 60% in steps of10%.

Fig. 5 depicts the RMSE comparison among data recovery
algorithms for stochastic traffic patterns. As the percentage
ry = 0.429. The equations for the estimators of this seriesof data missing increases, the proposed algorithm always
are 1.000; + 0.807¢4> = 0.807 and 0.8074; + 1.00045, = shows better performance that is compared to the exist-
0.429, which has a solutioy; = 1.321 and ¢ = —0.637. ing two algorithms. The reason for this improvement is
Since ¢ = u(l — 1 — ¢2), then it can be estimated because, the proposed scheme estimates the data model
c = 46.590(1 — 1.321 — 0.637) = 14.9. Thus the estimated then uses that model to generate data. On the other hand,
model isd,,, = 1.321xd(;,_1)—0.637xdg(,,_2)+14.9. This  other two algorithms always use the same combinations of
model is used to generate the data and we set the maximuptevious measurement without considering the effect from
tolerable error between model and measured 2@avhich  the neighbors. Both WP and EWMA algorithm use the
is denoted as error offset. fix combination of previous measurements only. Thus, they

Based on the generated data, we investigate the perfornable to cope with long consecutive missing and frequent
mance of our proposed scheme using a MATLAB. In thischanges in the environment.
simulation, we assume that the single sensor produces a
missing sensed data when it transmits its packet to the
base station. We randomly delete the data according to the
percentage of missing data from the original set and recove
them using the aforementioned data recovery algorithms. We
use the root mean square error (RMSE), mean absolute errc
(MAE) and integral of absolute error (IAE) to evaluate the 15
performance of the said algorithms.

The RMSE is a frequently used measure of the difference
between values estimated by an algorithm and the value!
actually measured from the real environment. The RMSE of
an algorithm estimation with respect to the estimated value,
de is defined as the square root of the mean squared errc 10%  20%  30%  40%  50%  60%
S (ds(n)=de(n))?

n=1
N

25

ETSDR:---@-- WP —a =EWMA _ -
20 o -
. -' ........ . --------

RMSE

10

Percentage of missing data

as written asRM SE =
original measured value.
The MAE is another statistical measurement that usedfigure 5. The comparison of RMSE of stochastic data of all the data
t h | th timated | to t recovery algorithms as the percentage of missing data changes from 10%
0 measure how close the estimated values are to 60%.
measured values. The MAE is given by/AE =
N . . .
30 de(n) — dg(n)] The MAE comparison for stochastic data traffic among
The MAE measures the average magnitude of the errorthree data recovery algorithms is shown in Fig. 6. We

whered, is



can see that the proposed scheme outperforms the WRodel from that data pattern. Our simulation results reveal
algorithm and the EWMA algorithm. Besides that, thethat the proposed ETSDR scheme is very beneficial and
proposed scheme can steadily maintain a small value dfutperforms the WP and the EWMA algorithms regardless
MAE regardless of the increment of missing data. of the increment of missing data. Moreover, further research
is required for examining more time-critical traffic patterns.

Besides that, a future work will focus on examining the real-

time recovery using the proposed ETSDR scheme.

—e—ETSDR :--@-- WP =4 -=EWMA
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