
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Greedy scheduling with feedback control for

overloaded real-time systems

Author(s)
Cheng, Zhuo; Zhang, Haitao; Tan, Yasuo; Lim,

Azman Osman

Citation
2015 IFIP/IEEE International Symposium on

Integrated Network Management (IM): 934-937

Issue Date 2015-05

Type Conference Paper

Text version author

URL http://hdl.handle.net/10119/13477

Rights

This is the author's version of the work.

Copyright (C) IFIP. 2015 IFIP/IEEE International

Symposium on Integrated Network Management (IM),

2015, 934-937.

Description

Greedy Scheduling with Feedback Control for
Overloaded Real-Time Systems

Zhuo Cheng, Haitao Zhang, Yasuo Tan, and Azman Osman Lim
School of Information Science, JAIST

Nomi, Ishikawa 923-1292, Japan

{chengzhuo, zhanghaitao, ytan, aolim}@jaist.ac.jp

Abstract—In real-time systems, a task is required to be
completed before its deadline. When workload is heavy, the
system may become overloaded. Under such condition, some tasks
may miss their deadlines. To deal with this overload problem,
the design of scheduling algorithm is crucial. In this paper,
we focus on studying on-line scheduling for overloaded real-
time systems. The objective is to maximize the total number
of tasks that meet their deadlines. To achieve this goal, the
idea of greedy algorithm is used to propose a greedy scheduling
(GS) algorithm. In each time, GS makes an optimum choice for
currently known task set. As the uncertainty of new arriving
tasks, GS cannot make an optimum choice for the set of overall
tasks. To deal with this uncertainty, by applying feedback control,
a greedy scheduling with feedback control (GSFC) is introduced.
Three widely used scheduling algorithms and their corresponding
deferrable scheduling (DS) methods are discussed and compared
with GSFC. Simulation results reveal that GSFC can effectively
improve the system performance.

I. INTRODUCTION

Cyber-Physical Systems (CPSs) are systems with tight cou-
pling between computing and physical environment. With their
rapid developments, CPSs have enlivened many critical areas
for human life such as transportation, energy, and health. In
CPS, as the dynamic nature of physical processing, sensitivity
to timing and concurrency become central features of system
behavior [1]. These features make typical CPSs as multi-
tasking real-time systems. In such a system, a task is required
to be completed before a specified time instant called deadline.
The execution order of tasks is set by a scheduler. Under
ideal workload condition, scheduler with a proper scheduling
algorithm can make all tasks meet their deadlines. However,
in practical environment, system workload may vary widely.
Once system workload becomes too heavy so that there does
not exist a feasible scheduling algorithm can make all the tasks
meet their deadlines, we say the system is overloaded.

When overload problem happens, it is important to mini-
mize the degrees of system performance degradation cased by
tasks missing deadlines. A system that panics and suffers a
drastic fall in performance when a problem happens, is likely
to contribute to this problem, rather than help solve it [2].
To achieve this target, the design of scheduling algorithms is
crucial, as different scheduling algorithms will lead to different
degrees of performance degradation. In this paper, we focus on
studying on-line scheduling (scheduler has no knowledge of a
task until it makes request to execute) for overloaded real-time
systems with uniprocessor. Our objective is to maximize the
total number of tasks that meet their deadlines. This objective

is reasonable upon the application that when a missed deadline
corresponds to a disgruntled customer, and the aim is to keep
as many customers satisfied as possible [2].

There are mainly two contributions in this paper. (i) Utilize
the idea of greedy algorithm to present greedy scheduling (GS)
which can make an optimum choice for currently known task
set. Two theorems are proposed to prove that GS meets the
characteristic of greedy algorithm. Although GS is designed
for the objective that maximizes the total number of tasks that
meet their deadlines, the method and procedures of utilizing
the idea of greedy algorithm to design scheduling algorithm
can be easily extended to other objectives, and can benefit other
research on the design of scheduling algorithm for overloaded
real-time systems. (ii) Extend GS to greedy scheduling with
feedback control (GSFC). With the help of feedback control,
GSFC can dynamically deal with the uncertainty of new
arriving tasks. This uncertainty is the biggest challenge in
the design of on-line scheduling algorithm. This idea gives
a feasible method to meet this challenge. Moreover, this gives
a way that utilizes outcomes in the control theory to benefit
the design of on-line scheduling.

II. SYSTEM MODEL, DEFINITION, AND PRELIMINARY

A. Notation and Assumptions

We adopt general firm-deadline model proposed in [3]. The
“firm-deadline” means only tasks completed before their dead-
lines are considered valuable, and any task missing its deadline
is worthless to system. The real-time system comprises a set
of aperiodic real-time tasks waiting to execute. These tasks
request processor to execute when they arrive in system. Each
task τi is a 3-tuple τi = (ri, ci, di), where i is the index of a
task, ri is the request time instant, ci is the required execution
time, and di is the deadline. Symbol T = {τ1, τ2, . . . , τn}
denotes the set of tasks comprised in the system, where n
is the number of tasks. Task set T varies with the passage
of time. At system time t, ∀τi ∈ T meets ri ≤ t. Symbol
rci represents remaining execution time of task τi. Initially,
it equals to ci. After τi has been executed for δ (δ ≤ ci)
time units, rci = ci − δ. If rci = 0, it means τi has been
completed. A successfully completed task τi feathers that it has
been executed ci time units during time interval [ri, di). Note
that, if rci > di − t, task τi should be discarded immediately,
as such task cannot be able to complete successfully.

The assumptions that apply to the system model are as
follows: (i) The scheduler can learn of a task’s attributes at the
time instant when it makes request, nothing is known about a

discards 3LLF

EDF

SRTF

t

discards 3

discards 3 discards 1

discards 2 discards 3

discards 1

1= (0,3,7)

2= (0,5,5)
3= (0,4,6)
4= (0,1,8)

0 2 4 6 81 3 5 7

Fig. 1. Performance of scheduling algorithms

task before this time. (ii) A task being executed on processor
can be preempted by another task at any time instant, and there
is no associated cost with such preemption. (iii) Every task is
independent with the others. There is no prior bound on the
time instant and number of takes which request to execute.

B. Definition

Definition [4]. When there exists a scheduling algorithm can
make all tasks meet their deadlines, the system is underloaded,
and the task set is feasible. On the contrast, when there does
not exist a scheduling algorithm can make all the tasks meet
their deadlines, the system is overloaded, and the task set is
infeasible.

C. Preliminary

There are many scheduling algorithms used in various
real-time systems. Three representative scheduling algorithms
are adopted as baseline algorithms: shortest remaining time
first (SRTF), earliest deadline first (EDF), and least laxity
first (LLF). We use an example described in Fig. 1 to study
their performance. The scheduling results are: (i): SRTF first
schedules task with the shortest remaining time. The schedul-
ing sequence is 〈τ4, τ1〉. By this sequence, τ4 and τ1 can
be completed sequentially. (ii): EDF first schedules the task
with the earliest deadline. It has been proven as an optimal
scheduling algorithm on uniprocessor. That is, if using EDF to
schedule a task set cannot make all tasks meet their deadlines,
no other algorithms can. The result of scheduling sequence is
〈τ2, τ4〉. It can complete τ2 and τ4. (iii): LLF first schedules
task with least laxity. For τi, the laxity li is computed as
li = di−rci−t. It can complete tasks τ2 and τ4 with scheduling
sequence 〈τ2, τ4〉.

For the given task set T = {τ1, τ2, τ3, τ4} at t = 0, all
the three scheduling algorithms can complete two tasks. In
this regard, the performance of these three algorithms is the
same. However, all these results are obtained based on current
knowledge of task without consideration of the impact of new
arriving tasks. In practical environment, when there are new
tasks arriving, the performance of the three algorithms may be
different. Here, we come to a criterion.

Criterion. A task set can be scheduled by different scheduling
algorithms, when these algorithms can complete the same
number of tasks, the one that can complete this number of
tasks within less time slots makes better performance.

Based on this criterion, SRTF is considered to make better
performance than EDF and LLF. All of the three scheduling

algorithms achieve two as the number of task completion. We
wonder if it is the maximum number. For this simple example,
we can enumerate all the subset of T , and use EDF to tell if
the subset of tasks is feasible. By this way, we can find three
is the maximum number of task completion with scheduling
sequence 〈τ3, τ1, τ4〉. Through this example, we can see that,
for overloaded real-time system, a new scheduling algorithm
is needed. A novel greedy scheduling algorithm is proposed
in next section.

III. GREEDY SCHEDULING

For a given task set T , assume the maximum number
of tasks that can be successfully completed is m, and the
corresponding can be completed task set is T s ⊆ T , |T s| = m.
If we can find T s, which is a feasible task set, using an
optimum scheduling algorithm (e.g., EDF) to schedule T s

can make all the tasks in T s meet deadlines, which means
achieving the maximum number of task completion. Thus, the
key problem is how to find the task set T s.

To find T s, a feasible procedure can be simply interpreted
as: select each task from T based on a specified order, and
use a method to judge if the selected task should be added
into T s. Only a proper task indicated by the judgment method
can be added into T s. There are two things that need to
be decided: (i) the selecting order, (ii) the judgment method.
In this paper, our proposed scheduling algorithm utilizes the
idea of greedy algorithm to decide these two things. Greedy
algorithm is a heuristic method that makes locally optimum
choice at each step with the hope of finding a global optimum.
The optimum choice is according to the optimum target. Based
on our objective and the proposed criterion, we propose two
optimum targets as follows: (i) maximizing the number of
tasks in T s. (ii) when there are different choices that can
put the same maximum number of tasks into T s, the one
that can achieve the least value of

∑
rci, for all τi ∈ T s,

should be chosen. Two theorems are proposed for every step
of constructing T s.

Theorem 1. In the procedure of constructing task set T s, if a
task in T s is replaced by another one with longer remaining
execution time, it will conflict with the optimum targets.

Proof. Assume a task τj in T s is replaced by a task τi, rci >
rcj , there are two situations: (i) if τi replaces τj only, the
number in T s is the same as before, but the value of

∑
rci,

for all τi ∈ T s will be more than before, this conflicts with
the optimum targets. (ii) if τi replaces more than one tasks,
the number of task completion will be less than before, this
conflicts with the optimum targets too.

Theorem 2. For a feasible task set, if a scheduling algorithm
allocates idle time slots to tasks backwards from their dead-
lines, regardless of the allocation order of the tasks, it can
make all the tasks meet their deadlines, i.e., it is an optimal
scheduling algorithm.

Proof. It is trivial that a feasible task set T should meet
the condition ∀T ′ ⊆ T , for all tasks τi ∈ T ′,

∑
rci ≤

d max(T ′) − t, where d max returns the maximum value of
di of τi in T ′. For a given task set T , let’s randomly choose
two tasks τ1, τ2 from T , and allocate rc1 idle time slots to
τ1 backwards from d1 first. As T is feasible, rc1 + rc2 ≤
max(d1 − t, d2 − t).

Algorithm 1 Greedy Scheduling (GS)

1: sort T by ascending order of rci, such that 〈τ1, τ2, . . . , τn〉 is a permutation of
tasks in T with rci ≤ rci+1 for all i, 1 ≤ i < n

2: s := 〈〉, T s := ∅

3: for all 1 ≤ i ≤ n do
4: if s.CalIdle(t, di) ≥ rci then
5: s.BackAllocate(τi, rci, di)
6: T s := T s ∪ {τi}
7: end if
8: end for
9: sort T s by ascending order of di to construct scheduling list sl

1) if d2 ≥ d1: we can get, rc1+rc2 ≤ d2−t. The available
time slots for τ2 is d2−t−rc1 ≥ rc2. Thus, τ2 can be allocated
enough slots.

2) if d2 < d1: we can get, rc1 + rc2 ≤ d1 − t. (i) if
rc1 ≤ d1 − d2, as τ1 is allocated time slots backwards from
d1, thus the available time slots for τ2 is d2 − t ≥ rc2. (ii)
if rc1 > d1 − d2, the available time slots for τ2 is d2 − t −
rc′1, where rc′1 represents the time slots allocated to τ1 in
interval [t, d2). As τ1 is allocated time slots backwards from
d1, rc′1 = rc1 − (d1 − d2), the available time slots for τ2 is
d1 − t− rc1 ≥ rc2. Thus, τ2 can be allocated enough slots.

Then allocate idle time slots to the next task, with similar
analysis, the next task also can be allocated enough time slots.
Repeat allocating, all tasks in T can meet their deadlines.

A. Scheduling Procedure

Theorem 1 gives the idea that we should select tasks with
ascending order of rci. As to the judgment method, because
we want to add tasks into T s as many as possible, meanwhile
ensure the task set T s is feasible, based on theorem 2, the
judgment method can be described as: when we add a task into
T s, first try to allocate rci idle time slots backwards from di;
only a task that can be allocated enough time slots should be
added into T s. Based on these, we can find T s. Then, use EDF
to schedule T s, we come to the procedure of GS constructing
scheduling list. The detail is summarized in Alg. 1.

In list s (line 2) and sl (line 9), the i-th element is the
index of a task that has been allocated i-th time slot. Function
CalIdle(t, di) calculates the number of idle time slots in
interval [t, di). It returns di − t − Θ(t, di), where Θ(t, di)
is the number of time slots which have been allocated to
tasks in interval [t, di). BackAllocate(τi, rci, di) allocates
rci idle time slots to task τi backwards from di. Notice
that, scheduling method that allocates idle time slots to tasks
backwards from their deadlines is called deferrable scheduling
(DS) [5]. Theorem 2 has proven that scheduling algorithm
which uses the deferrable scheduling method is an optimum
scheduling algorithm. In GS, the worst-case time complexity
of CalIdle and BackAllocate are both O(dmax), where
dmax is the maximum di for ∀τi ∈ T . If we use quick sort
algorithm to sort T and T s, the worst-case time complexity
of sort operation is O(n2). Thus, GS has a complexity that is
pseudo-polynomial: O(n · dmax + n2).

Recall the example depicted in Fig. 1. GS can successfully
complete three tasks with the optimum scheduling sequence
〈τ3, τ1, τ4〉. Each time GS scheduling tasks makes an optimum
choice for currently known task set. However, as scheduler
has no knowledge of a task until it arrives in the system, it is
doubtful that GS can make an optimum choice for the set of
overall tasks.

P pK e(t)

I ()
t

i e dK

D ()
dK
de t
dt

Process
e(t)

tr(t)
ws(t) fr(t)

Fig. 2. Window Size (ws) controlled by PID controller

IV. GREEDY SCHEDULING WITH FEEDBACK CONTROL

GS selects proper tasks from T and adds it into T s.
It expects tasks in T s can all be completed. Nevertheless,
when system is overloaded, the selected proper tasks usually
cannot all be successfully completed. This observation gives
the idea that the capacity of T s (i.e., the maximum number of
tasks that can be added into T s) should be limited based on
task completion condition in T s. Here, we use window size,
represented by ws, to denote this capacity.

As T s keeps on changing, its snapshot T s′ is used to be
the observed task set. When we take a snapshot of T s at
system time t, its current value is assigned to T s′ . A new
snapshot is taken when the completion conditions (completed
or discarded) of all the tasks in previous snapshot are deter-
mined. We use failure ratio, represented by fr, to denote the
ratio of unsuccessfully completed tasks in T s′ . The goal of
controlling ws is not just to make all of the tasks in T s meet
their deadlines (i.e., with fr of 0.00), but to achieve this goal
with the largest possible task population in T s. For this reason,
fr’s target value tr is set to 0.05.

When system schedules tasks, fr should be kept on mon-
itoring. Based on its monitored value, ws can be dynamically
changed to justify fr to reach its target value tr. To achieve
this, one feasible method is introducing a feedback controller.
By this way, GS is extended to GSFC. To the consideration of
simplicity, a proportional-integral-derivative (PID) controller
is used. Although it is very simple, its effectiveness has been
demonstrated in industrial control systems. It is also believable
that if PID controller can achieve good performance, a more
sophisticated controller can achieve better. The block diagram
of PID controller is shown in Fig. 2. The variable e represents
the tracking error which is the difference between variable fr
and the desired target value tr. At system time t, the PID
controller attempts to minimize the absolute value of e by
three computing terms: proportional, integral, and derivative,
weighted by tunable gains Kp, Ki, and Kd, respectively. The
computed result is to set ws which can affect the value of
fr. As ws represents the capacity of T s, due to its practical
meaning, ws is defined as an integer variable with a lower
bound 1.

V. PERFORMANCE EVALUATION

In this section, we present the results of simulations which
are conducted to study the performance of different schedul-
ing algorithms. The scheduling algorithms that are used to
compare with GS and GSFC are SRTF, EDF, LLF, and their
corresponding DS methods, i.e., DS-SRTF, DS-EDF, DS-LLF.
The DS method is introduced in section III-A. The difference
of scheduling procedure among DS-SRTF, DS-EDF, and DS-
LLF is the order of selecting tasks. DS-SRTF selects task with

4 6 8 12 16 20 24
30

40

50

60

70

80

90

100

Arrival Rate, λ

Su
cc

es
s

R
at

io
 (%

)
SRTF
DS−SRTF
EDF
DS−EDF
LLF
DS−LLF

Fig. 3. Comparison of baseline
algorithms (4 ≤ λ ≤ 24)

50 100 200 400 800 1600
0

5

10

15

20

25

30

35

40

Arrival Rate, λ
Su

cc
es

s
R

at
io

 (%
)

SRTF
DS−SRTF
EDF
DS−EDF
LLF
DS−LLF

Fig. 4. Comparison of baseline
algorithms (50 ≤ λ ≤ 1600)

4 6 8 12 16 20 24
50

55

60

65

70

75

80

85

90

95

100

Arrival Rate, λ

Su
cc

es
s

Ra
tio

 (%
)

GSFC
GS
SRTF
DS−SRTF
Ideal

Fig. 5. Performance of GSFC and
GS (4 ≤ λ ≤ 24)

50 100 200 400 800 1600
5

10

15

20

25

30

35

40

45

Arrival Rate, λ

Su
cc

es
s

Ra
tio

 (%
)

GSFC
GS
SRTF
Ideal

Fig. 6. Performance of GSFC and
GS (50 ≤ λ ≤ 1600)

ascending order of rci, while DS-EDF and DS-LLF select task
with ascending order of di and task laxity, respectively.

A. Simulation Settings

The metric used to evaluate the scheduling performance
is success ratio which is the percentage of tasks that have
been successfully completed. The setting of total number of
input tasks is 1000. The input tasks are generated according to
uniform distribution with arriving rate λ which represents the
number of tasks that arrive in the system per 100 time units.
For each task τi, ci varies uniformly in [1 25]. The assignment
of di is according to the equation: di = ri+sfi ∗ci, where sfi
is the slack factor that indicates the tightness of task deadline.
For each task τi, sfi varies uniformly in [1 16]. The tuned
values for the gains of PID controller Kp, Ki, Kd are 5, 0.017,
12, respectively. As the existing of lower bound for ws, the
controller takes the measure of anti-windup.

B. Results and Analysis

As the change rate of success ratio is quit different in
different intervals of λ, the results are shown separately in
two intervals: [4 24] and [50 1600]. Beside comparing with
the baseline algorithms, we also want to know how far the
performance of GSFC is from the performance upper bound
in terms of success ratio. If the controller in GSFC could set ws
perfectly to make sure that every time GSFC just completes
all the tasks in T s and no processor time slot is wasted in
executing unsuccessfully completed tasks, the GSFC could
achieve the ideal performance. In order to get the performance
upper bound, we manually manipulate the value of ws. For the
specific input task sets, we can get the ideal results which are
represented by the lines “Ideal” in Fig. 5 and Fig. 6.

TABLE I. TOTAL TIME CONSUMPTION FOR SCHEDULING ALL TASKS

λ GSFC (ms) GS (ms) SRTF (ms) DS-SRTF (ms)

4 286 113 24 70

24 1002 828 82 471

50 1944 1339 156 806

1600 2824 2569 351 955

As shown in Fig. 3 ∼ Fig. 6, compared with the baseline
algorithms, GS performs best when λ ≤ 200. As when λ >
200, the success ratio is around 20%, which means system is
severely overloaded. This condition rarely happens in practical
environment. Thus, we can say GS achieves better overall
performance than all the baseline algorithms. For GSFC, it
achieves the best performance under all the different workload
conditions. Compared with GS, this observation proves the
effectiveness of feedback control. The improvement appears
when λ ≥ 8. This is because when λ < 8, the overload
condition is not serious. The capacity of T s, computed by
PID controller, is larger than the number of tasks that can
be added into T s. This makes these two methods have the
same performance. When λ ≥ 800, it can be seen that GSFC
and SRTF achieve the same best performance. The reason is
that, under such serious overload condition, the capacity of T s

equals to its lower bound 1 at most of the time, it makes the
GSFC act similarly as SRTF.

The total time consumption for scheduling all the input
tasks are shown in Table I. As the computing procedure of
GSFC is more complicated than other algorithms, the time
consumption of GSFC is larger than others. However, we
should notice that, the time consumption is for scheduling all
the input tasks (1000 input tasks in the simulation). It is quite
a good deal for system to spend a little longer time (usually
less than 2 seconds) on scheduling to make much more tasks
(around 100 compared with DS-SRTF) meet their deadlines.

VI. CONCLUDING REMARKS

The design of scheduling algorithm is crucial for over-
loaded real-time systems. In this paper, we focus on maxi-
mizing the total number of tasks that meet their deadlines.
To achieve this objective, a novel scheduling algorithm GSFC
was proposed. As shown in the performance studies, it can
effectively improve system performance. For the future work,
an important direction is to use more sophisticated feedback
controller to further improve the performance of GSFC.

REFERENCES

[1] P. Derler, E.A. Lee, and A.S. Vincentelli, “Modeling Cyber-Physical
Systems,” Proc. IEEE, vol. 100, no. 1, pp. 13–28, Jan. 2012.

[2] S.K. Baruah, J. Haritsa, and N. Sharma, “On-line Scheduling to Max-
imize Task Completions,” Proc. 15th IEEE Real-Time Syst. Symp., pp.
228–236, Dec. 1994.

[3] J.R. Haritsa, M.J. Carey and M. Livny, “On Being Optimistic about
Real-Time Constraints,” Proc. 9th ACM SIGACT-SIGMOD-SIGART
Symp. on Principles of Database Syst., pp. 331–343, Apr. 1990.

[4] F. Zhang and A. Burns, “Schedulability Analysis for Real-Time Systems
with EDF Scheduling,” IEEE Trans. Comput., vol. 58, no. 9, pp. 1250–
1258, Apr. 2009.

[5] M. Xiong, S. Han, K.-Y. Lam, and D. Chen, “Deferrable Scheduling
for Maintaining Real-Time Data Freshness: Algorithms, Analysis, and
Results,” IEEE Trans. Comput., vol. 57, no. 7, pp. 952–964, July 2008.

