
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Joint LZW and Lightweight Dictionary-based

compression techniques for congested network

Author(s) KHO, Lee Chin; TAN, Yasuo; LIM, Yuto

Citation

2015 International Conference on Computer,

Communications, and Control Technology (I4CT):

196-200

Issue Date 2015-04

Type Conference Paper

Text version author

URL http://hdl.handle.net/10119/13479

Rights

This is the author's version of the work.

Copyright (C) 2015 IEEE. 2015 International

Conference on Computer, Communications, and

Control Technology (I4CT), 2015, 196-200.

Personal use of this material is permitted.

Permission from IEEE must be obtained for all

other uses, in any current or future media,

including reprinting/republishing this material

for advertising or promotional purposes, creating

new collective works, for resale or

redistribution to servers or lists, or reuse of

any copyrighted component of this work in other

works.

Description



Joint LZW and Lossless Dictionary-based
Bit-Packing Compression Techniques for Congested

Network
Lee Chin Kho, Yasuo Tan and Yuto Lim

School of Information Science
Japan Advanced Institute of Science and Technology (JAIST)

1-1 Asahidai, Nomi City, Ishikawa 923-1292, JAPAN

Abstract—One of the viable solutions for reducing congestion
in networks is data compression. Data compression reduces data
size and transmission time. This paper proposes a joint data
compression technique to eliminate the redundancy of data in
a congested network with limited bandwidth and buffer. The
proposed compression techniques combine the Lempel Ziv Welch
(LZW) and Lossless Dictionary-based bit-packing (LDBP) com-
pression methods. The LDBP is a novel compression technique
that requires lesser additional memory compared to LZW. The
joint LZW and LDBP compression techniques will be operating
in the routing domain and it consists of two main stages. The first
stage is the congestion status prediction. If it is predicted that the
particular network will be congested, and to be compressed data
packets satisfy the compression conditions, the data packets will
be forwarded to the second stage. Based on the available buffer
and processing time, the compression technique LZW or LDBP
will then be implemented in the second stage. The results show
that the redundancy of packets can be eliminated. This further
reduces the size of data packets.

Index Terms—congested network, LZW compression, lossless,
dictionary-based compression, redundancy

1. INTRODUCTION

Network congestion is one of the unending problems that
depend on the insufficient capacity of the underlying sub-
network for the demanded amount of data which is rapidly
increased. This growth of demand will eventually go beyond
the Service Provider’s ability to efficiently cope with the huge
data traffic. As a result, the network will tend to face tremen-
dous and unpredictable network congestion. When network
congestion occurred, the quality of service (QoS) and energy
efficiency in the network will be degraded.

The three possible methods to resolve the network conges-
tion problem are, increasing the physical output, increasing
the memory size, and decreasing the incoming data rate.
The format two methods can only be done manually and
it involves costly system updates. That leaves only the last
method of controlling the incoming data rate when needed,
not to deteriorate the network performance when congestion
does not occur. TCP congestion control variants such as
Tahoe, Reno, Vegas, Westwood and the others implement this
method to reduce the network congestion. However, the TCP
congestion control variants still cannot resolve the problem
perfectly. When the data is propagated back to the sender
in the case of serious congestion, packet loss might still

occur due to collision among nodes. Besides, simply reducing
the transmission rate at the transport layer might raise the
difficulty in maintaining the network throughput stability. To
overcome these shortcomings, data compression can be one of
the viable solutions.

The lossless data compression technique which utilizes
LZW and LDBP are implemented in this paper. LZW is simple
to implement, and has the promising throughput in hardware
implementation [1]. However, LZW needs huge additional
memory during dictionary construction, which might not be
able to be provided by the router or switching devices during
the network congestion. LDBP is introduced to overcome this
problem. LDBP needs lesser additional memory, but requires
higher processing time. Therefore, the joint LZW and LDBP
compression technique is proposed in this paper. By adaptively
compressing the data with both techniques that is based on the
network environment and availability of router’s memory, the
networks that are going to be congested will surely have a
higher probability to be released.

The objective of this paper is to propose a data compression
technique for the congested network with limited bandwidth
and buffer. Our contributions are:

• A novel data compression technique, LDBP is proposed.
This algorithm needs lesser additional memory compare
to the LZW during the encoding and decoding process.

• Joint LZW and LDBP data compression technique to
overcome the shortcomings of respective compression
techniques.

• Implementation the joint LZW and LDBP data compres-
sion in edge router or switching device. This allows more
redundancy of data to be eliminated, as stated in [2], the
data of network traffic collected in their paper contain
around 50% of duplicate strings across the packets.

The arrangement of this paper is organized as follows.
Section 2 describes the related works of data compression
in congested network. Section 3 devotes the system model,
definition and notation. Section 4 discusses the joint LZW
and LDBP compression technique and algorithm. The results
and analysis of joint LZW and LDBP are shown in Section 5.
Lastly, this paper is concluded in Section 6.



2. RELATED WORKS

There are few on-going researches that implement data
compression techniques to release the congested network. In
[3], the real time adaptive packet compression scheme is
developed to improve the performance of high latency network
with limited bandwidth. The scheme implements the zlib
compression library for compression and decompression the
blocks of aggregated packet. The simulation results showed
that the scheme may improve up to 90% of the packet drop
rate in a heavy load satellite network. L. S. Tan et. al claimed
that this real time adaptive packet compression scheme is more
suitable for congested limited bandwidth network.

The adaptive compression-based congestion control tech-
nique (ACT) [4] uses both of the lossy and lossless com-
pression techniques to mitigate the congestion problem in
the wireless network. The compression techniques that are
used in ACT are adaptive pulse code modulation (ADPCM)
and run-length coding (RLC). The discrete wavelet transform
(DWT) technique is performed to classify the data into groups
with different frequencies to create a priority-based congestion
control. The experiment results showed that ACT is capable
of increasing the network efficiency and ensuring the fairness
among nodes.

The aforementioned researches depict that the data com-
pression techniques can be implemented in the low bandwidth
communication network and reduce the transmission packets
size. Unlikely, these studies do not show the overhead of
the compression such as memory and time needed for their
system.

3. PRELIMINARIES

A. System Model

Fig. 1 illustrates the system model of deploying the joint
LZW and LDBP data compression in a network. The network
is comprised of senders, router or gateway, and receiver. The
joint LZW and LDBP compression is embedded in the router
domain, particular at edge router or gateway. This is because
the congestion collapse generally occurs at the ‘choke point’,
where the total incoming data to an edge router or gateway
exceeds the outgoing bandwidth. In the Fig. 1, multiple routers
are transmitting their data packets to an incoming edge router
or gateway causing it to be congested. When the buffer of edge
router or gateway is beyond some threshold, the joint LZW and
LDBP compression is activated and performed to reduce the
data packets size. When the number of data packets that have
the same destination reach a threshold, the data packets will
be grouped into a block. The compressibility of the data in a
block is pre-determined by randomly selecting samples from
the data packet to be compressed. If the compression ratio
(CR) of these samples is less than the compressible threshold,
the block data is transmitted directly. If not, the data in the
block will be sent to joint LZW and LDBP compression for
encoding and transmitting. If the outgoing edge of router or
gateway detects that the received data packets are compressed,
the data packets will be decoded.

Sender Domain

Core network

Receiver Domain

Incoming 

edge node
Outgoing 

edge node

Transport

Network

Data Link

Physical

Upper Layer Upper Layer 

Network+
Compression

Data Link

Physical

Transport

Network

Data Link

Physical

Congested 

Network

Data Link

Physical

Network+
Compression

Data Link

Physical

Network

Data Link

Physical

Fig. 1: Architecture of network compression

B. Definitions

Definition 3.1. (Character) A character (x) is a set of
hexadecimal number characters, which uses the characters 0–
9 to represent values zero to nine, and A–F (or alternativelya-
f) to represent values ten to fifteen. Each character represents
four binary bits (or a nibble), which is half of a byte (8 bits).

Definition 3.2. (Symbol) A symbol (s) is a group of two or
more characters. If the symbol has two characters, then the
maximum number of the symbols is162, which is equivalent
to 256.

Definition 3.3. (Symbol length)A symbol length (ls) is the
number of bits of a symbol. If the symbol has two characters,
then the symbol length is2 characters× 4 bits = 8 bits.

Definition 3.4. (Codeword) A codeword (c) is a group of
two or more concatenated symbols. If the codeword has two
symbols and each symbol has two characters, then the max-
imum number of the codewords is2562, which is equivalent
to 65536.

Definition 3.5. (Codeword length) A codeword length (lc)
is the number of bits of a codeword. If the codeword has
two symbols and each symbol has two characters, then the
codeword length is2 symbols× 2 characters× 4 bits = 16
bits.

Definition 3.6. (Code)A code (C) is a mapping from a symbol
or a codeword to a set of finite length of binary strings.

Definition 3.7. (Code length)A code length (λ) is the length
of a code. If the code hasλ bits, then we can encode at most
2λ of symbols and codewords.

Definition 3.8. (Fixed length code)A fixed length code is
a code such thatλi = λj for all i,j. For example, symbol,
{AB} and codewords,{9F1B} in fixed length code of 2 bits,
the code would beC(AB) = 00, andC(9F1B) = 01.

Definition 3.9. (Dictionary) A dictionary (D) is initialized to
contain the single codeword corresponding to all the possible
input characters. The dictionary is identical to the input source
data.

Definition 3.10. (Entry) An entry is a unique codeword that
formed from the concatenation of symbols in the dictionary.



4. JOINT LZW AND LDBP COMPRESSION

The joint LZW and LDBP compression is only activated
when the buffer of router or gateway reaches the threshold.
In this study, the congestion stages are defined according to
buffer level in the router or gateway. The congestion level are
is divided into three stages: moderate, serious, and absolute.
When the buffer level reaches the threshold of moderate stage,
the joint LZW and LDBP compression is activated. At this
stage, the available buffer is suitable for LZW to be completed.

In the situation where LZW cannot reduce the buffer level,
the congestion will enter serious congestion stage. At this
stage, most of the available buffer are being used to store the
incoming data packets. The LDBP which needs lesser memory
is performed to compress the data packets. However, in the
absolute congestion stage, the compression will be halted.
This is because the available buffer is not enough for the
compression process.

Start

Check 

memory

Check 

!me

Check 

!me

End

LD/BP LZW

Small Big

Enough
Not 

Enough
Not 

Enough Enough

Fig. 2: Process flow of joint LZW and LDBP compression

Fig. 2 shows the process flow of joint LZW and LDBP
compression. When the joint LZW and LDBP compression
is activated, two parameters are determined, which are the
available memory (buffer level) and time (transmission time-
out). If the available memory is larger than the previous
memory that needs for encoding process, and the time is lesser
than threshold time of LZW, the LZW compression will be
performed to encode the block of data.

On the other hand, if the available memory is lesser than
the previous memory needs for encoding process, and the time
needs for the encoding process is longer than time threshold
of LDBP, the LDBP compression is performed to encode the
block of data.

A. LZW Compression

The LZW compression is a well-known and mature tech-
nology that can compress any sort of data (binary or ASCII).
The LZW compression is a universal lossless compression. It
does not need to know the statistical information of the data
being compressed as is necessary with Huffman coding, Fano-
Shannon coding, and Arithmetic coding.

The LZW compression compresses the data by using a
dictionary to store repetitive codewords that occur in the
source data stream. The dictionary is initialized with a setof
symbols, i.e the 256 ASCII character as a starting block. This

dictionary will be updated when a new phrase is encountered
during the compression. For example, in a text document that
has many repetition phrases, such as “hello” in the dictionary
entry. The “hello”, which is 5 bytes (or 40 bits), can be
represented by as few bits (as 9 bits for example). The
compression of this codeword is 9/40, which is 23% of the
original size of symbols.

The LZW compression can provide a quick long codeword
that can be stored in the dictionary, but many of the stored
codewords are wasted without being used in the encoding
process. When the dictionary is filled with large and frequently
used codewords, the dictionary size will be bigger than the
source data size. Although the dictionary in the LZW compres-
sion can grow without limitation, when the dictionary gets too
big, the existing dictionary must be deleted [5]. Then another
new block of dictionary is created during the encoding process.
Since the encoder and the decoder have the initial dictionary,
all new entries in the dictionary are created according to
entries in the dictionary that is already exists. The decoder can
recreate the dictionary quickly as encoded data is received. In
order to decode an entry of a dictionary, the decoder must
have received all the prior entries in the block [6].

In summary, the LZW compression has no communication
overhead and requires a simple mathematical computational,
but the required memory for encoding and decoding is huge.
To overcome this problem, the LDBP compression is pro-
posed.

B. LDBP Compression

To reduce the memory requirements in the encoding and
decoding process, the dictionary size is limited. In the LDBP
compression, the dictionary needs to be transmitted to the
decoder for decoding process. The codeword entries of the dic-
tionary is limited to 256. But, this will reduce the compression
performance. To overcome this shortcoming, the dictionary
is filled with higher repetition codewords first regardless
of their position of occurrences. Each of the codewords in
the dictionary must fulfil the minimum repetition threshold
(Rthre). TheRthre is given by

Rthre =
8(lcmax + 1)

(8li − λ)
(1)

The lcmax is the maximum number of codeword length. The
li is the codeword length that between the maximum and
minimum of codeword length, andλ is a code length. The
codewords that did not fulfil the repetition threshold condition
are removed from the dictionary.

A fixed length code is used in the LDBP. It allows the
decoder to access any coded data block in a packet randomly.
The codeword boundaries are clear, which is a valuable feature
from an engineering viewpoint. For example in [11], [12], the
variable length to fixed length codes have been re-evaluated
to speed up the search for compressed data.

Similarly, the dictionary in LDBP compression is initialized
with a set of symbols. These symbols are corresponding to all
possible character. Both encoder and decoder are assumed to



have these symbols in the dictionary with the index from 0
to 255. Therefore, the codeword in the dictionary must start
from λ=9 bits. If theλ is set to 9, the dictionary will have 512
entries. Since the first 256 entries is reserved for the symbols,
only 256 entries are occupied for the codewords.

The LDBP algorithm consists of three process: dictionary
building, encoding and decoding.

1) Dictionary building: The dictionary building algorithm
is shown in Algorithm 1. A window that is based on thelcmax

is used here. The possible longest codewords are formed from
the symbols in the window. The Fig. 3 shows an example of
possible longest codeword forming process. In a window of 6
bytes, the first longest possible codeword is formed according
to the lcmax, then stored it in the input list and count the
number of codeword. The next possible longest codeword is
formed according tolcmax − 1. If this codeword does exist in
the input list, add one into the count of number of codeword.
This process is repeated until it reaches thelcmin. Then,
the window shifts one byte to the left and starts to form
the possible longest codeword again. When the number of
codeword reaches the minimumRthre, the codeword is stored
into the dictionary. The codewords in the dictionary are sorted
in descending order and updated based on the count until
the end of data block. The codeword that has the minimum
number of codeword will be replaced by the higher number
of codeword.

1 2 3 4 5 6

C1 with l
c
= l

cmax

C2 with l
c
= l

cmax
-1

C3 with l
c
= l

cmin

1 2 3 4 5 6

C
4

with l
c
= l

cmax

C5 with l
c
= l

cmax
-1

C6 with l
c
= l

cmin

Fig. 3: An example of possible longest codeword forming
process

Algorithm 1 Dictionary Building
1: Input window = read (lcmax − 1)
2: while (input window.append(read one byte)!=empty)do
3: for (codeword=next possible longest codeword)do
4: if !(codeword in input list)then
5: insert (input list, codeword)
6: else
7: input list [codeword].count+=lc
8: if (codeword in the dictionary)then
9: continue
10: end if
11: if (input list [codeword].count< Rthre ∗ lc) then

12: continue
13: end if
14: if (dictionary full and input list [codeword].count==Rthre ∗ lc) then
15: continue
16: end if
17: if (dictionary full) then
18: remove (dictionary,lowest count codeword)
19: insert (dictionary, codeword)
20: end if
21: end if
22: remove first byte window
23: end for
24: end while

2) Encoding: The encoding algorithm is showed in Algo-
rithm 2. An input window is also used here. If the longest
possible codeword in the input window is found in the
dictionary, the index of the codeword is output and the bit-
packing function will be performed. The bit-packing function

packs bits tightly without requiring a lot of adding and shifting.
The codeword in the input window is then removed by shifting
it to the left. If the longest possible codeword in the input
window is not found in the dictionary, the first byte exactly
the same is output and the bit-packing function is performed.
This time, the input window is shifted one byte to the left
to remove the symbol. This process is repeated until the data
block is fully encoded.

Algorithm 2 Encoding Process
1: while (input window = read next input window)!=emptydo
2: for (codeword = next longest possible codeword (input window))do
3: if (codeword exist in dictionary)then
4: output (bit packing (found Index))
5: remove codeword from input window
6: end if
7: end for
8: output (bit packing(first byte))
9: remove first byte from input window
10: end while

3) Decoding: The decoding algorithm is showed in Al-
gorithm 3. The decoding process is exactly revised way of
the encoding process. The bit in the dictionary and data are
unpacked. If the index of encoded data is higher than 256,
output the codeword from the dictionary. If not, output the
index.

Algorithm 3 Decoding Process
1: load dictionary
2: while (true) do
3: index = unpack bits (compressed stream)
4: if (index =EOstreamf lag) then

5: exist
6: end if
7: if (index< 256) then
8: output(index)
9: else
10: output (dictionary [index-256])
11: end if
12: end while

5. NUMERICAL SIMULATION AND DISCUSSION

In this paper, the compression ratio (CR) is defined as the
ratio between the size of the source data (So) and the size of
the compressed dataSc, which is expressed as

CR =
So

Sc

(2)

The processing time and memory for encoding and decoding
using the LZW and LDBP is presented in the Table below. The
c code of LZW compression in this simulation is developed
by V. Antonenko [15].
Test environment: The simulations work is performed using
the GNU/Linux 3.13, 32-bit operating system, Intel Core 2
Duo 1.20GHz CPU, 4GB main memory, 160GB 66MHz hard
disk. The C code of LZW and LDBP are compiled with gnu
C version 4.8.1.
Data Set: Ten test samples are used in the compression test.
The sizes and categories of these test samples are given in
Table I. These test samples are taken from Canterbury Corpus
[14], except the test sample of tulip which is from Archive
Compression Test [15].
LDBP Compression Parameter Setting: Code length,λ =
9bits, Block size =64KBytes, Maximum Codeword length,
lcmax = 6, and Minimum Codeword length,lcmin = 2



TABLE I: The Test Sample Details

Test sample Size (Kbytes) Category
alice29 152 English text
book2 611 Non-fiction book
Ice10 427 Technical writing
paper1 53 Technical paper
news 377 USENET batch file
obj2 246 Object code
progp 49 Source code
geo 102 Geophysical data
trans 93 Transcript of terminal
tulip 1,153 Photographic picture

TABLE II: The LWZ and LDBP Processing Time (ms)

Test sample LZW LDBP
Encode Decode Encode Decode

alice29 10.0 2.0 1670.0 41.5
book2 70.0 20.0 6528.5 178.7
Ice10 40.0 10.0 4620.5 114.9
paper1 5.6 1.6 537.9 17.2
news 50.0 10.0 3826.6 129.4
obj2 40.0 10.0 2506.9 18.7
progp 5.0 1.4 541.0 14.6
geo 30.0 7.0 961.6 28.7
trans 10.0 2.0 952.0 28.6
tulip 830.0 210.0 12003.0 970.3

Table II shows the processing time of encoding and decod-
ing for LZW and LDBP compression. Both the processing
time is mainly effected by the data format. For example, the
encoding time for the test sample of tulip are 83 times higher
than alice29, eventhough the data size of tulip is just 7.5 times
larger than alice29. In addition, the processing time for LZW
is significantly lesser than LDBP. As opposed to LZW, LDBP
needs additional time to build the dictionary because it cannot
encode while building the dictionary.

TABLE III: The LWZ and LDBP Additional Memory Require-
ment (Mbytes) and Compression Ratio (CR)

Test sample Memory (Mbyte) Compression Ratio
LZW LDBP LZW LDBP

alice29 69 2 2.44 1.76
book2 72 5 2.54 1.60
Ice10 71 3 2.62 1.73
paper1 69 3 2.12 1.59
news 71 6 2.13 1.45
obj2 70 6 1.92 1.42
progp 69 2 2.57 1.69
geo 69 7 1.32 1.55
trans 69 2 2.45 1.56
tulip 77 81 0.98 0.94

Table III shows the additional memory requirement and CR
for both LZW and LDBP. The additional memory needed by
LDBP is at least 10 times lesser than LZW, except test sample
of tulip. The LDBP needs an extra 4Mbytes of additional
memory compared to LZW in tulip. For the compression
performance, the LZW performs better than LDBP in general.
The LDBP only performs better in the test sample of geo,
which is 0.25 higher than the CR in LZW.

In summary, the LWZ needs lesser processing time and
performs better than LDBP. However, the LZW requires larger

additional memory compared to LDBP. By applying joint LWZ
and LDBP, the tradeoff between these two compressions in
releasing the congested can be mitigated.

6. CONCLUDING REMARKS

The demand for data transfer might be more than available
bandwidth of a sub-network leading to congestion. Therefore,
this paper proposed a data compression technique, namely
joint LZW and LDBP at the router or gateway (sub-network) to
release the congested network. The novel LDBP compression
was proposed and described in this paper. The simulation re-
sults have proven that the additional memory needed by LDBP
compression was significantly lesser than LZW. The LDBP
was suitable to be used during the serious congestion stage,
while LZW was suitable to be used in the moderate congestion
stage. The pre-determination of data compressibility was very
important to avoid the uncompressed data, which will worsen
the compression performance like the test sample of tulip.
Overall, the LZW or LDBP compression can save at least 30%
of the network bandwidth if the data flow was text format.

REFERENCES

[1] T. Welch, “A technique for high-performance data compression,” in
Computer, vol 17, no. 6, pp. 8–19, 1984.

[2] S. H. Shen, A. Gember, A. Anand, and A. Akella, “Refactoring content
overhearing to improve wireless performance,” in17th Int. conf. on
Mobile computing and networkinh (MobiCom), Las Vegas, NV, 2011, pp.
217 – 228.

[3] L. S. Tan, S. P. Lau, and C. E. Tan, “Quality of service enhancement
via compression technique for congested low bandwidth network,” in Int.
Conf. on Commun. (MICC), Sabah, Malaysia, 2011, pp. 71 – 76.

[4] J. Hyoung and I. B. Jung, “Adaptive-compression based congestion
control technique for wireless sensor networks,” inJ. of sensors, vol.
10, pp. 2920 – 2945, Mar. 2010.

[5] K. C. Barr, and K. Asanovic, “Energy-Aware Lossless DataCompres-
sion,” in ACM Trans. on Comp. Sys., vol. 24, no. 3, pp. 250 – 291, Aug.
2006.

[6] C. M. Sadler, and M. Martonosi, “Data compression algorithms for
energy-constrained devices in delay tolerant networks,” in Proc. of Int.
Conf. on Embedded networked sensor sys.New York, USA, pp. 265 –
278, Nov. 2006.

[7] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmatic coding for data
compression,” inJ. Communication of ACM, vol. 30, no. 6, pp. 520 –
540, June 1987.

[8] P. Deutsch, “Deflate compressed data format specification”, RFC 1951,
1951.

[9] F. Willems, Y. Shtarkov, and T. Tjalkens, “The context-tree weighting
method: basic properties,” inIEEE Trans. Info. Theory, vol. 41, no. 3,
pp. 653 – 664, May 1995.

[10] A. Beirami and F. Fekri, “Results on the redundancy of universal
compression for finite-length sequences,” inIEEE Int. Symp. Info. Theory,
pp. 1504–1508, Aug. 2011.

[11] T. Kida, “Suffix tree based VR coding for compressed pattern matching,”
in Conf. on Data Compression, Snowbird, UT, pp. 449, Mar. 2009.

[12] S. T. Klein and D. Shapira, “Improved variable to fixed length codes,”
in Lecture Notes in Comp. Sci., vol. 5280, pp. 39-50, 2009.

[13] V. Antonenko, ”Implementation of LZW compression algorithm C,”
https://code.google.com/p/clzw/source/browse/src/lzw-enc.c?name=693
72a470e&r=ace0a939d395d42ac6c16c003fe3c0f5caefda10,access on
August 2014

[14] M. Powell, “The canterbury corpus,”
http://corpus.canterbury.ac.nz/descriptions/#cantrbry, access on June
2014.

[15] J. Gilchrist, “ Jeff Gilcrist Compression: Archive compression test,”
http://compression.ca/act/act-files.html, access on June 2014.

https://code.google.com/p/clzw/source/browse/src/lzw-enc.c?name=693
72a470e&r=ace0a939d395d42ac6c16c003fe3c0f5caefda10
http://corpus.canterbury.ac.nz/descriptions/#cantrbry
http://compression.ca/act/act-files.html

	Introduction
	Related Works
	Preliminaries
	System Model
	Definitions

	Joint LZW and LDBP Compression
	LZW Compression
	LDBP Compression
	Dictionary building
	Encoding
	Decoding


	Numerical Simulation and Discussion
	Concluding Remarks
	References

