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§Institut Télécom, Télécom Bretagne, Lab-STICC UMR CNRS 6285, Technopole Brest Iroise, CS 83818, Brest, France,
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Abstract—We consider the problem of joint decoding and data
fusion in data gathering for densely deployed sensor networks
modeled by the Chief Executive Officer (CEO) problem. More
specifically, we consider the binary CEO problem where all
sensors observe the same time-correlated binary Markov source
corrupted by independent binary noises. Hence, the observations
are two-dimensionally (temporary and spatially) correlated. In
the proposed scheme, every sensor apply a low-density parity-
check (LDPC) code and transmit the corresponding codeword
independently over additive white Gaussian noise (AWGN) chan-
nels. To reconstruct the original bit sequence, an iterative joint
source-channel decoding (JSCD) technique is considered. To ex-
ploit the knowledge about the source correlations, we consider an
iterative decoding between a sum-product (SP) decoder serially
concatenated with BCJR decoder which is applied for every
sensor as local iterations. Then, correlation between sensors’
data is employed to update extrinsic information received from
the SP-BCJR decoders of the different sensors during global
iterations. We illustrate the performance of the joint decoder
for different correlation setups and with different number of
sensors. Simulation results, in terms of bit error rate show
promising improvements compared with the separate decoding
scheme where the correlation knowledge is not completely utilized
in the decoder.

I. INTRODUCTION

During the last years, and with the advances of hardware

and wireless technologies, the scientific community showed

a growing research interest in Wireless Sensor Networks

(WSNs) [1]. Many data gathering WSNs applications such

as environmental and structural monitoring, remote sensing,

and precision farming deploy a large number of sensors to

collect useful information in the sensing fields of interest.

Each sensor independently encodes its measurement, and then

send through rate-constrained channel to a single fusion center

(FC) for further processing. However, such an architecture may

induce some unreliable components since (1) sensors sample

their field of interest with noisy, error-prone transducers, and

(2) the sensed information is communicated to the FC over

unreliable wireless links. The ultimate goal for the FC is

to outstrip these constraints to deliver the best estimate on

the sensed information with reasonable fidelity. This type of

WSNs architecture can be modeled by the CEO problem

[2] where a CEO is interested in a source information that

he cannot observe directly, so deploys M agents to obtain

different versions that he can use to provide the best estimate

on the source information.

Theoretical performance bounds corresponding to source

coding under rate constraints for the CEO problem were first

proposed by Berger [3] and Tung [4]. In fact, they charac-

terized the inner and outer bounds on the information rate

to achieve the acceptable distortions. The quadratic Gaussian

CEO problem where two sources uses Gaussian codebook for

source coding and the observations are, hence, jointly Gaussian

distributed was studied in [5]. Determining the performance

bounds of CEO problem remains, in many cases, still open

question to this date.

The data gathering densely deployed WSNs setup includes

some remarkable properties. First, the nature of the sensed

physical phenomena imposes a memory structure in the source

information that we call temporal correlation. Joint source-

channel (JSC) coding methods can exploit such a character-

istic to improve the performance with respect to a separated

approach. First methods in this context consider an entropy-

achieving source encoder, and a channel decoder exploiting

the residual redundancy [6], [7]. Otherwise, several JSC tech-

niques [8]–[10] focused on exploiting the whole correlation

in the decoding process, without using source compression, to

simplify the encoder structure and reduce power consumption

which is more convenient for WSNs. Second, the signals

forwarded by the multiple sensors are highly correlated since

the data to be delivered to the FC are generated by the same

originator, we call this dependency spatial correlation. In an

attempt to exploit this correlation, many recent works [11],

[12] focused on proposing distributed source coding methods

that approach the Slepian-Wolf limit [13]. JSC coding is also

an alternative solution that can be considered when the spatial

correlation is not compressed (to reduce the encoder com-

plexity) but is exploited at the decoder to jointly recover the

source information with a better reliability. In the last decade,

the design of practical iteratively decodable JSC schemes

exploiting the correlations within WSNs motivated a lot of at-



tention. Different concatenated codes were considered in many

recent contributions such as BCH and LDGM codes in [14],

irregular repeat-accumulate (IRA) in [15], a concatenation of

convolutional code and doped-accumulator in [16], and Turbo-

codes in [17]. In this paper, we propose to use LDPC codes

and to exploit their graphical representation to apply iterative

JSC decoding. A theoretical expression relating the system

capacity to the number of sensors and system parameters was

derived in [18] for the CEO problem. In the cited references,

it was shown that iteratively applying JSC decoding performs

better than separated decoding when the spatial correlation is

exploited. However, relatively low attention has been given to

the temporal correlation exploitation.

In this paper, we suppose the source is correlated in space

and time domains, hence its entropy is not fully saturated,

and we aim at demonstrating how exploiting such memory

structures at the destination is effective in reducing the traffic

load and hence transmit power. We focus on a stationary,

ergodic, two-state emitting binary first-order Markov source,

and consider M sensors observing independent noisy versions

of the source information. The observation error at every

forwarding node is presented with a bit-flipping model with

some error probability. We also suppose that the different

sensors cannot cooperate to exploit their spatial correlation.

Thus, every node encodes separately his observation using

an LDPC code and forwards the corresponding codeword to

the FC. We assume that he encoded sequences from sensors

are transmitted through independent additive white Gaussian

noise (AWGN) channels. The FC tries to estimate the source

information sequence based on the different noisy signals

from the sensors and by exploiting both spatial and temporal

correlations. With this aim, we propose an iterative message

passing JSC decoding method that can be divided into two

main processes. In the first process, observations coming from

the different sensors are decoded independently. Each decoder

applies JSC iterative decoding based on extrinsic information

exchange between the sum-product (SP) LDPC decoder and a

MAP decoder exploiting the temporal correlation. The second

process, aims to recover an estimate of the source information,

common to all the observations, by exploiting the spatial cor-

relation. Such task is performed using a Log-likelihood ratio

(LLR) updating function between the component decoders wih

the successive sensors.

This paper is structured as follows. In Section II, notations

and preliminaries on the system model are provided. In Section

III, we formulate the proposed message passing algorithm for

JSC decoding and data fusion which well utilizes the corre-

lation knowledge in the case of LDPC-coded binary Markov

sources. Simulation results and discussions are provided in

Section IV. Finally, Section V concludes the paper.

II. SYSTEM MODEL

Figure 1 depicts the binary CEO model for a data-gathering

WSN scheme investigated in this paper. M sensors are de-

ployed to observe the sensing target. Such an architecture

can model many real-life applications like video surveillance,

source
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Fig. 1. A sensor network with binary CEO model. u is a sequence generated
by the two-states binary Markov source. For each sensor m ∈ {1, . . . ,M},

vector u(m) is the observation of u through the binary-symmetric channel
(BSC) modeling the observation error with probability p(m). The sensors
encode their observations using an LDPC code and transmit the resulting
codewords to the FC through independent AWGN channels. The decoder
fuses the M sequences together and delivers an estimate of u as û.

precision agriculture, industrial monitoring, etc. According to

the dynamics that governs the physical behavior of the sensed

phenomena, the source delivers temporally correlated data, and

a Markov process can be used to model the source-memory.

In the following, we describe the source as a two-state binary

first-order Markov source {St} defined by α = Pr(St =
1|St−1 = 0) and β = Pr(St = 0|St−1 = 1), generating a

sequence u = (u1, . . . , uK) of length K symbols. The mem-

ory structure of the source is fully characterized by α and β,

with which α = β = 0.5 indicates the memoryless source. The

stationary distribution of the source states µ0 = Pr(St = 0),
and µ1 = Pr(St = 1) are given by µ0 = 1− µ1 = β

α+β
.

We can also distinguish the case of a symmetric source

with memory where α = β 6= 0.5 that defines equal

stationary state probabilities µ0 = µ1. When α 6= β, the

source is called asymmetric and the source is correlated in

time and has a non-uniform distribution of the source bits.

In this paper, the cases of symmetric and asymmetric first-

order Markov sources will be investigated. The entropy rate

corresponding to the stationary binary Markov source is given

by H(S) = µ0h(α) + µ1h(β), where h(x) = −x log2(x) −
(1− x) log2(1− x) denote the binary entropy function.

A set of M sensors observes the source information u,

subject to a probability of sensing error p(m) = Pr(u
(m)
k 6=

uk) for k ∈ {1, . . . ,K}, with 0 < p(m) < 0.5 for all

m ∈ {1, . . . ,M}. Thus, sensor number m receives a noisy ob-

servation of the source sequence as u(m) = (u
(m)
1 , . . . , u

(m)
K )

after passing through a binary symmetric channel (BSC) with

crossover probability p(m). Each sensor encodes its data using

a systematic irregular LDPC code with rate R(m). We suppose

that the different sensor-encoders are not able to communicate

with each other to directly exploit the correlation between

their inputs. The coded sequence b(m) = (b
(m)
1 , . . . , b

(m)
N ) for

sensor m consists of K information bits and N−K parity bits.

Finally, the obtained sensor codewords b(m) are modulated by

binary-phase shift keying (BPSK) and transmitted to the FC
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Fig. 2. The proposed JSC decoding strategy for a parallel sensor network
exploiting both source temporal correlation and inter-sensors’ spatial cor-
relation. The algorithm follows iterative processing with local and global
message passing steps. For each elementary decoder m ∈ {1, . . . ,M}, the

initial input is the channel intrinsic information L
(m)
i

, and the LDPC decoder

exploits extrinsic information: L
(m)
B

provided by the BCJR decoder, and L
(m)
S

generated by the global iterations made by the a posteriori LLR calculator.

over independent AWGN channels. The FC aims to recover the

original source information from the data sent by all sensors

y(m) = s(m) + n(m) for m ∈ {1, . . . ,M} where s(m) is the

BPSK modulated symbol sequence at sensor m, and n(m)

denotes a zero mean Gaussian noise with variance (σ(m))2.

In this contribution, we don’t focus on theoretical aspects,

and the main objective is to propose a practical FC joint

decoder for the estimation of the source sequence û by

applying an iterative message-passing algorithm. The joint

decoder applies its knowledge of both the correlation between

sensors’ data, and the temporal correlation induced by the

source memory to update the extrinsic information during the

iterative decoding process. In the following section, we present

a method for applying such a decoding process for sensor

networks equipped by LDPC codes.

III. JOINT DECODING AND DATA FUSION FOR

LDPC-CODED BINARY MARKOV SOURCES

As mentioned, for complexity constraints, the WSN system

model considered in this paper supposes no source compres-

sion, and no distributed processing. Thus, the design of the

joint decoder that can best exploit the system correlation

properties plays a very important role. In fact, in the proposed

decoder the temporal and spatial correlations are exploited

through two types of iterations: local and global iterations.

As depicted in the block diagram of Fig. 2, during local

iterations the systematic variable nodes of the LDPC Tanner

graph of sensor number m receives the channel observations

LLRs L
(m)
i as intrinsic information, the extrinsic information

L
(m)
B delivered by a MAP source decoder using the BCJR

algorithm [19] applied to the trellis diagram of the Markov

source, and an extrinsic information L
(m)
S fusing all sensors

data given by the last global iteration. The latter is equal to

zero before the first global iteration. The LLRs are exchanged

between the variable and check nodes of the LDPC, and

the Markov source-graph on which BCJR is applied until

a maximum number of local iterations is reached. Then a

global iteration is performed to update the spatial corre-

Markov source graph model
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Fig. 3. The proposed JSC iterative message passing decoder and the messages
exchanged between the variable and check nodes, the BCJR source decoder,
and the data fusing LLR calculator. Iterations indices l and g are omitted for
sake of clarity.

lation information using an LLR updating function taking

into account the observation error probability p(m). During

a global iteration, the a posteriori LLR calculator fuses all

the information generated by the elementary local decoders to

deliver a full a posteriori information Lapp. Each local decoder

extracts its corresponding extrinsic information L
(m)
S that will

be appended in the next local iteration to improve the system

performance by exploiting the spatial correlation.

Let’s focus on the information transfer between the differ-

ent decoders for a sensor m, a local iteration number l ∈
{1, . . . , L}, and a global iteration g ∈ {1, . . . , G}. We denote

w
(l,m)
v,c and w

(l,m)
c,v respectively the LLR messages passed from

the v-th variable node to the c-th check node and inversely at

the local iteration l for sensor m. For the initialization, the

LLRs to be used for the global iteration are first set to zero

for all decoders. The check-to-variable node messages are also

initialized to zero for the first local iteration. We suppose that

the LDPC codewords were transmitted by means of BPSK

modulation through independent AWGN channels with zero-

mean and (σ(m))2 noise variance. Then, the channel LLRs

are first calculated for a sensor m according to the received

signal y(m) = (y
(m)
1 , . . . , y

(m)
N ) by L

(m)
v = 2y

(m)
v /(σ(m))2 for

1 ≤ v ≤ N . The process for the LLR message updating for a

sensor m follow the SP decoding with additional LLRs from

the BCJR decoder for every local iteration and from the other

sensors’ decoders for every global iteration.

As shown in Fig. 3, the LLR messages of the m-th sensor

decoder to be forwarded from the systematic variable nodes to

the corresponding check nodes exploit both source temporal

and spatial correlations by respectively inducing the extrinsic

LLR L
(l,m)
B,v sent from the BCJR decoder to the variable node v

and the updated LLR delivered by the other sensors L
(g−1,m)
S,v

at the previous global iteration. For v ∈ {1, . . . ,K}, we have:

w(l,m)
v,c = L(m)

v +
∑

c′ 6=c

w
(l,m)
c′,v + L

(l,m)
B,v + L

(g−1,m)
S,v (1)

For parity variable nodes, we have no extra information to

exploit, and the check messages update follows the standard



SP decoder with, for v ∈ {K + 1, . . . , N}:

w(l,m)
v,c = L(m)

v +
∑

c′ 6=c

w
(l,m)
c′,v (2)

In each local iteration, the input LLR of the BCJR decoder

denoted L
(l,m)
v,B is calculated by excluding his delivered infor-

mation at the previous local iteration from the a posteriori

LLR. Thus, we can write:

L
(l,m)
v,B = L(m)

v +
∑

c′

w
(l,m)
c′,v + L

(g−1,m)
S,v (3)

After L local iterations, the overall a posteriori LLR can be

evaluated for every variable node to prepare the next global

iteration, and for every local JSC decoder m we have

L(g,m)
v,app = L(m)

v +
∑

c′

w
(l,m)
c′,v + L

(l,m)
B,v + L

(g−1,m)
S,v (4)

This information can be used for spatial correlation update

in the next global iteration. In fact, after performing LDPC

SP decoding several iterations, the a posteriori LLRs output

from the M elementary decoders are combined. As described

previously, the sequences processed at the different forward-

ing nodes are initially generated by the same originator,

and corrupted by random errors with probabilities p(m) for

1 ≤ m ≤ M . Since we suppose that the observation error

probabilities are known, we can evaluate the contribution of

node m to the LLR of the original sequence u. It is quite

straightforward that for every node m, we can obtain a relation

between the probabilities of the v-th bits, uv of u and u
(m)
v

of u(m) as:

Pr(uv = 1) = (1− p(m))Pr(u(m)
v = 1) + p(m)Pr(u(m)

v = 0)

Pr(uv = 0) = (1− p(m))Pr(u(m)
v = 0) + p(m)Pr(u(m)

v = 1)

Based on these relations, we can demonstrate after several

mathematical manipulations that the expression relating the

LLRs of u and u(m) components can be written as:

L(uv) = log

(

Pr(uv = 1)

Pr(uv = 0)

)

(5)

=
(1− p(m)) exp(L(u

(m)
v )) + p(m)

p(m) exp(L(u
(m)
v )) + (1− p(m))

,

which is equivalent to the LLR updating function

fc(L(u
(m)
v ), p(m)) applied for L(u

(m)
v ) given the error

probability p(m) [20].

In our system, this function will be applied to extrinsic

LLRs excluding the spatial correlation information of the

previous global iteration. This extrinsic information will be

delivered by every sensor as

L
(g,m)
v,ext = L(g,m)

v,app − L
(g−1,m)
S,v (6)

Then, we perform LLR update using fc(., p
(m)), and sum

up over all sensors to have

L(g)
v,app =

M
∑

m=1

fc(L
(g,m)
v,ext , p

(m)) (7)
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Fig. 4. BER performance of the proposed joint decoder exploiting only
spatial correlation through global iterations (GI) between M = {4, 8, 12, 16}
forwarding nodes with observation error probability p(m) = 0.01.

For every variable node v, and for every sensor m, we

evaluate the a priori information coming from the global

iteration as:

L
(g,m)
S,v = fc(L

(g)
v,app − L

(g,m)
v,ext , p

(m)) (8)

After that, novel local iterations are performed until the

maximum number of global iterations G is reached.

Finally, the estimated message is obtained by taking the

hard decision on the a posteriori LLR of all the variable nodes

which is calculated as

Lv =

M
∑

m=1

fc(L
(G,m)
v,app , p(m)). (9)

IV. SIMULATION RESULTS

In this section, we present simulation results obtained by

applying the proposed JSC decoding algorithm and com-

pare them to theoretical bounds obtained without considering

observation-errors.

A. Theoretical bounds

As mentioned above, the derivation of the theoretical bound

for the CEO problem with a correlated source is difficult,

and remains open. Instead, under the assumption of zero

observation-error probabilities, the system will be equivalent

to a parallel coding of a Markov source for which the

derivation of the bound under separated source-channel coding

assumption is feasible. In fact, according to [20], on the basis

of the Shannon and the Slepian-Wolf theorems, the conditions

for reliable communications of two correlated sources S(1)

and S(2) over independent channels can be expressed as:

H(S(1)|S(2)) < C1/R1

H(S(2)|S(1)) < C2/R2

H(S(1), S(2)) < C1/R1 + C2/R2 (10)

where Ri is the rate of the channel code used for source Si,

and Ci is the capacity of the corresponding channel. In a CEO
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problem setup, we consider M sources and equation (10) can

be generalized to

H(S(1), . . . , S(M)) = H(S) <
M
∑

i=1

Ci

Ri

. (11)

Under the assumption that the links between the different

forwarding nodes and the destination have the same AWGN

properties with a signal-to-noise ratio SNR, and with equal

channel encoding rates Ri = R, ∀i ∈ {1, . . . ,M}, we can

obtain:

H(S) < M
log2(1 + SNR)

2R
, (12)

Under the assumption that no errors occur at the observation

phase, all the forwarding nodes will process the same source

information, and the term H(S) will be the original binary

Markov source entropy rate H(S) given in Section II, which

means that

SNRlim = 10 log10(2
2H(S)R

M − 1). (13)

B. Spatial correlation exploitation

In this paragraph, we investigate the bit error-rate (BER)

system performance in the case where the source memory

structure is not exploited. The objective is to show the gains

induced by the global iterations (information exchange be-

tween the different LDPC SP decoders) and the effect of the

number of the sensors on the global system performance. The

observation error probabilities are supposed equal for all the

sensors p(m) = 0.01 and the source-sequence length is equal to

K = 2048 bits. For all sensors, we used a rate R = 0.5 irreg-

ular LDPC code based on optimized degree distribution over

AWGN channels [21]. The corresponding variable node degree

distribution is given by λ(x) = 0.25105x + 0.30938x2 +
0.00104x3 + 0.43853x9. The simulations were made for the

case of M =4, 8, 12, and 16 sensors with G = 8 global

iterations and L = 30 local iterations.
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Fig. 4 illustrates the BER performances with respect to

the per-link signal-to-noise ration (SNR) for the cases where

global iterations are performed for spatial correlation ex-

ploitation (solid curves) and when no global iterations are

performed (dashed curves) and provides the corresponding

theoretical limits. It is clear that the global iterations induce

significant improvements in terms of per-link SNR. In fact,

the exploitation of the spatial correlation between forwarding

nodes involves a gain of about 4.75 dB when M = 4 sensors

are used, and can achieve almost 8 dB when we have M = 16
sensors. Moreover, we can conclude that the achieved improve-

ment is better when the number of sensors increases, and a

gain of about 2.5 dB is obtained when we double the number

from 8 to 16. When no global iterations are performed, this

improvement is not so significant since the elementary local

decoders work independently. The gap between theoretical

limits and simulation results for the different values of M is

low. In fact, for M = 8 and M = 12 we have a gap of about

1 dB and 1.25 dB respectively. We finally notice an error floor

at a BER equal to 3.10−4 when 4 sensors are used which is

caused by the distortion included with the observation errors.

This value depends only on the observation-error probabilities

and on the number of sensors. To reduce the impact of such an

error floor, the only solution is to increase the sensors number.

C. Effects of the exploitation of the source temporal correla-

tion

In the previous sub-section, we demonstrated the possible

improvements we can achieve by exploiting inter-nodes spatial

correlation in the case of a memoryless source. The aim of

this part is to investigate the proposed JSC iterative decoder

performance in the case of a temporally-correlated source. As

stated in the previous sections, the source is modeled as a

state transition emitting Markov source. The source decoding

is performed by applying the BCJR algorithm on its trellis

diagram.



The BER curves of the different decoding methods with

different correlation parameters are shown in Fig. 5 for M = 4
and in Fig. 6 for M = 8 forwarding nodes. We consider two

types of binary Markov sources. The first is a symmetric one

with α = β = 0.1, and the second is asymmetric with α = 0.2
and β = 0.1. It can be observed that with the exploitation

of the temporal source correlation, the performance of the

system can be improved for relatively high to medium noisy

channel. It is found from Fig. 5, that for M = 4 sensors and

with the asymmetric source, roughly gain of 1.0 dB can be

achieved at a BER of 10−2 over the decoder that exploits

only spatial correlation. This gain increases to approximately

1.5 dB for the symmetric source with α = β = 0.1 which is

more correlated (lower entropy). The gap between theoretical

limits and simulation results for the proposed decoder with

α = β = 0.1 is about 3.1 dB, and for α = 0.2, β = 0.1 is

almost equal to 2.5 dB. It is found that the larger the temporal

correlation, the larger the gap between theoretical limits and

simulation results.

Moreover, in the case of 8 forwarding nodes, the improve-

ment obtained through temporal correlation exploitation is

also remarkable. As shown in Fig. 6, applying JSC decoding

involves a gain of about 2 dB for a BER equal to 10−2 and

when α = β = 0.1, which correspond to an overall 7.5 dB

SNR gain compared to a separated approach. This gain reduces

to almost 7 dB for the asymmetric case with α = 0.2 and

β = 0.1. However, as for M = 4 sensors, the joint source

decoding gain is lost for low error rates. Compared to the

theoretical limits, we can see that the gap is increasing when

the temporal correlation level increases.

V. CONCLUSION

In this paper, we considered JSC decoding and data fusion

for sensor networks using LDPC codes. The proposed decoder

first aims at exploiting the knowledge of temporal correlation

in the data delivered by a binary Markov source to apply

iterative JSC decoding based on the BCJR algorithm with

SP decoding. The proposed scheme is also exploiting the

spatial correlation between sensor’s data at the fusion center.

In fact, global iterations are made based on the update of

the extrinsic information received from the joint iterative

elementary sensors’ decoders. We show how messages are

passed between the LDPC variable nodes, check nodes, and

the BCJR decoder during local iterations and between the M
sensors’ decoders during global iterations. The performance

of the proposed decoder are evaluated for systems modeled

by binary CEO problem. Our simulation results emphasize the

major improvements due to the exploitation of temporal source

correlation and the spatial correlation. The results show that

making global iterations can increase the system performance

by inducing a gain of about 7.5 dB in per-link SNR when 8

sensors are forwarding the information. It was also shown that

exploiting the source memory in the decoding process involves

remarkable improvements for relatively low-to-medium SNRs.

Finally, we can conclude that since densely deployed wire-

less networks induce remarkable correlation levels in time and

space with a non saturated entropy, exploiting the source and

system memory structures through iterative JSC decoding and

data fusion is an effective solution in improving the system

performance.
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