
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Termination and Boundedness for Well-Structured

Pushdown Systems

Author(s) Lei, Suhua; Cai, Xiaojuan; Ogawa, Mizuhito

Citation

Research report (School of Information Science,

Graduate School of Advanced Science and

Technology, Japan Advanced Institute of Science

and Technology), IS-RR-2016-001: 1-25

Issue Date 2016-05-17

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/13503

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学先端

科学技術研究科情報科学系）

Termination and Boundedness for
Well-structured Pushdown Systems

Suhua Lei, Xiaojuan Cai

BASICS Lab, Shanghai Jiao Tong University

Mizuhito Ogawa
School of Information Science, Japan Advanced Institute of Science and Technology

May 17, 2016

IS-RR-2016-001

Termination and Boundedness for
Well-Structured Pushdown Systems

Suhua Lei1, Xiaojuan Cai1, and Mizuhito Ogawa2

1 BASICS Lab, Shanghai Jiao Tong University, China
leisuhua,cxj@sjtu.edu.cn

2 Japan Advanced Institute of Science and Technology, Japan
mizuhito@jaist.ac.jp

Abstract. Well-structured pushdown systems (WSPDSs) extend push-
down systems with well-quasi-ordered (possibly infinitely many) states
and stack alphabet. As an expressive model for concurrent recursive com-
putations, WSPDSs are believed to “be close the border of undecidabil-
ity” [11]. Most of the decidability results are known only on subclasses. In
this paper, we investigate the decidability of the termination and bound-
edness problems for WSPDSs using two algorithms: One is an extension
of the reduced reachability tree technique proposed by Leroux et. al.
in [11]. The other is based on Post∗-automata technique which has been
successfully applied in the model checking of pushdown systems. The
complexity of both are Hyper-Ackermannian for bounded WSPDSs. We
implement both algorithms and make experiments on a large number
of randomly generated WSPDSs. The results illustrate that the Post∗-
automata based algorithm sometimes behaves an order of magnitude
faster. 3

1 Introduction

Pushdown systems (PDSs) and Vector addition systems (VASs) are both pow-
erful models with decidable reachability. A PDS has finitely many control states
equipped with a stack for storing words over finite stack alphabet and the tran-
sition rules may push or pop on the stack. It is natural for modeling recursive
computations. A VAS consists of integer vector addition rules over vectors of
natural numbers. It is usually used for describing concurrent computations.

A well-structured pushdown system (WSPDS) [4] is a pushdown system with
both well-quasi-ordered control states and stack alphabet, which can be viewed
as a combinations of a pushdown system and a well-structured transition system
(WSTS) [9,2].

Like other VAS-extensions, WSPDSs have four crucial problems for verifica-
tion : Reachability problem asks whether a configuration is reachable; Coverability
problem asks whether a configuration can be covered by a reachable configura-
tion; Termination problem asks whether all runs terminate; Boundedness problem
asks whether the reachability set (the set of reachable configurations) is finite.

3 A part of the results are orally presented at YR-ICALP 2015 (Kyoto, 5 July 2015).

The decidability of these properties are confirmed on only subclasses of
WSPDSs, e.g., the coverability is decidable for WSPDSs with finite control states
and well-quasi-ordered stack alphabet [4] and 1-dimension vector control states
and finite stack alphabet [12]. Note that the boundedness and the reachability
may be undecidable for a WSTS, if its transitions are not strictly monotonic; an
example is a VAS with reset operations [7].

In this paper, we show that the termination problem is decidable for general
WSPDSs and the boundedness problem is decidable for strict WSPDSs (WSPDS
with strictly monotonic transitions). Our contributions include:

– The reduced reachability tree algorithm in [11] is generalized to WSPDSs in
a straightforward way, and applied to prove the decidability of the termina-
tion/boundedness problem (Section 3).

– The Post∗-automata algorithm is proposed and provides alternative algo-
rithms for the termination/boundedness problem of WSPDSs (Section 4).

– We induce Hyper-Ackermannian upper and lower bounds of both algorithms
for bounded WSPDSs where control states and stack alphabet are vectors
(Section 5).

– The experimental results show practical advantages of the algorithm based
on Post∗-automata (Section 6).

The reachability tree and the Post∗-automata algorithms can be regarded
as an analogy to two ways of the emptiness checking on pushdown automata,
i.e., the pumping lemma and the P-automata (Post∗) [8], whose (upper bound)
complexity are exponential and cubic, respectively. The latter is typically used
for the implementation of pushdown model checking[15].

Related Work

This paper is inspired by [11]. They also proposed the notion of “well-structured
pushdown systems” (Definition III.1 in [11]), which are WSPDSs (in this pa-
per) with finite stack alphabet. Their reduced reachability tree technique is an
extension of a Karp-Miller tree to prove the decidability of termination and
boundedness problems.

Our work extends their technique to general WSPDSs, i.e., with both states
and stack alphabet being well-quasi-orders, and proves the decidability of termi-
nation (resp. boundedness) for general (resp. strict) WSPDSs. Our reachability
tree and complexity estimation heavily depend on [11]. Our originality is mostly
on the Post∗-automata algorithm. We (as well as [11]) focus on finitely branching
and strongly monotonic transitions. Observation beyond them (e.g., [2]) requires
careful attention.

There are several models of concurrent recursive computation, e.g., a branch-
ing VAS (BVAS) [6], a recursive VASS (RVASS) [3], and an alternating VASS
(AVASS) [5]. Their coverability is known to be decidable, but the reachability is
left open except that an AVASS is known to be undecidable [5]. All of them can
be encoded into WSPDSs with finite control states, and their decidability of the

coverability is obtained from general arguments on WSPDSs [4]4. A pushdown
VAS [11] is a WSPDS 〈(Nk,≤), Γ,∆〉 with finite stack alphabet Γ . If its dimen-
sion k is 1, its coverability is decidable [12], while that with larger dimensions is
still open.

2 Pushdown systems and P-automata

2.1 Pushdown system

Definition 1. A pushdown system (PDS) is a 4-tuple 〈P, Γ,∆, c0〉 where P
is a set of states, Γ is stack alphabet, c0 is the initial configuration and ∆ ⊆
P ×Γ≤1×P ×Γ≤2 is a set of transitions. A transition ↪→ between configurations
is defined as follows.

inter
(p, γ → p′, γ′) ∈ ∆
〈p, γw〉 ↪→ 〈p′, γ′w〉

push
(p, γ → p′, αβ) ∈ ∆
〈p, γw〉 ↪→ 〈p′, αβw〉

pop
(p, γ → p′, ε) ∈ ∆
〈p, γw〉 ↪→ 〈p′, w〉

where a configuration 〈p, w〉 is a pair of a state p and a word w ∈ Γ ∗, and we
write p, w → q, v if (p, w, q, v) ∈ ∆. ↪→∗ is the reflexive transitive closure of ↪→.

Given some initial configuration c0, a run starting from c0 is a finite or
infinite sequence: c0 ↪→ c1 ↪→ c2 ↪→ · · · . The reachability set of c0 is defined
{c | c0 ↪→∗ c}.
– Termination problem decides whether each run starting from c0 is finite, and
– boundedness problem decides whether the reachability set of c0 is finite.

For later convenience, we introduce two more forms of rules. simple push
and non-standard pop. They often appear in instances of WSPDSs, such as a
branching VAS and a recursive VASS.

simple-push
(p, ε→ p′, α) ∈ ∆
〈p, w〉 ↪→ 〈p′, αw〉

nonstandard-pop
(p, αβ → p′, γ) ∈ ∆
〈p, αβw〉 ↪→ 〈p′, γw〉

Throughout the paper, we use the following notational convention.

– α, β, γ, · · · range over Γ ,
– w, v, · · · range over words in Γ ∗. |w| denotes the length of word w and w[i]

denotes the i-th symbol in w. The head h(p, w) of a configuration 〈p, w〉 is
(p, w[1]) if w 6= ε; otherwise, h(p, w) = (p,⊥).

– p, q, · · · range over states, and c, d, · · · range over configurations.
– We use → in rules, ↪→ for transitions between configurations, and 7→ for

edges (transitions) in Post∗-automata.
– We denote N (resp. Z) for the set of natural numbers (resp. integers).

4 The reachability problem of Alternating VASS cannot be interpreted in WSPDS
because of conflicts with the monotonicity.

2.2 Post∗-automaton

A P-automaton [8] is an automaton that accepts the set of reachable configura-
tions of a PDS.

Definition 2. Given a PDS M = 〈P, Γ,∆, c0〉, a P-automaton A is a quadru-
plet (S, Γ,∇, F) where

– S is the set of states and S ∩ P 6= ∅,
– F is the set of final states, and F ⊆ S,
– ∇ ⊆ S × (Γ ∪ {ε})× S is the set of transitions.

We write s
γ7→ s′ for (s, γ, s′) ∈ ∇ (possibly γ = ε), and 7→∗ for the reflexive

transitive closure of 7→.
M accepts 〈p, w〉 for p ∈ P and w ∈ Γ ∗ if there exists some f ∈ F s.t.

p
w7−→
∗
f . We use L(A) to denote the set of configurations that A accepts.

Let A0 be the initial P-automaton that accepts C0 = {c0}. Let post∗(C0)
be the set of all successors of configurations of C0. The saturation procedure
to compute post∗(C0) starts from A0, and repeatedly adds states and edges
according to the rules of a PDS until convergence.

Definition 3. For a PDS M = 〈P, Γ,∆, c0〉, let A0 = (S0, Γ,O0, F) be the ini-
tial P-automaton that accepts C0 = {c0}. Post∗(A0) is the automaton generated
by repeated applications of the following Post∗-saturation rules:

– if p, w → p′, γ ∈ ∆:

(S, Γ,O, F), p
w7−→
∗
q ∈ ∇

(S ∪ {p′}, Γ,O ∪ {p′ γ7→ q}, F)

– if p, γ → p′, αβ ∈ ∆:

(S, Γ,O, F), p
γ7→ q ∈ ∇

(S ∪ {p′, qp′,α}, Γ,O ∪ {p′
α7→ qp′,α

β7→ q}, F)

For instance, consider a push rule (p, γ → p′, αβ). If p
γ7→ q is in ∇, then

p′
α7→ qp′,α

β7→ q is added to ∇. The intuition is, if, for v ∈ Γ ∗, 〈p, γv〉 is in
post∗(C0), then 〈p′, αβv〉 is also in post∗(C0) by applying rule (p, γ, p′ → αβ).

Remark 1. Post∗-saturation introduces ε-transitions when applying standard
pop rules. To avoid it, we apply the following preprocessing on a WSPDS, which
results in an equivalent WSPDS.

1. The stack is initialized with a bottom symbol ⊥,
2. Each standard pop rule ψ ∈ F(P ×Γ, P ×{ε}) is replaced with ψ′ ∈ F(P ×
Γ 2, P × Γ) and for any β ∈ Γ ∪ {⊥}, ψ′(p, αβ) = (q, β) if ψ(p, α) = (q, ε).

For a PDS, Post∗(A0) has bounded numbers of states, since each newly
added state qp,γ is indexed by a pair of a state and a stack symbol, which
are finitely many. Thus, the saturation procedure finitely converges and accepts
exactly the reachability set of C0 (Theorem 1). When we consider P and Γ
to be infinite, Post∗(A0) may not finitely converge. However, it has a limit
∪iPosti(A0) (by taking set unions of states and transitions, which monotonically
increase). Theorem 1 holds under such generalization.

Theorem 1. [8] post∗(C0) = L(Post∗(A0)).

2.3 Well-structured pushdown systems

A quasi-order (S,�) is a reflexive transitive binary relation on a set S. We
denote s ≺ t if s � t and t 6� s. A partial order is an anti-symmetric quasi-order.
A quasi-order (S,�) is a well-quasi-order (WQO), if, for any infinite sequence
s1, s2, s3, . . . in S, there exist indices i, j with i < j and si � sj .

For WQOs (X1,≤1) and (X2,≤2), a product of WQOs (X1 × X2,≤) is a
WQO by Dickson’s Lemma, where (x1, x2) ≤ (x′1, x

′
2) if x1 ≤1 x

′
1 and x2 ≤2 x

′
2.

(Nk, ≤) is a WQO for k ∈ N, where ≤ is the product extension on Nk.
We denote a1a2 . . . am � b1b2 . . . bn, if m = n and, for each i, ai ≤ bi holds,

and w�v if w�v and w 6�v. Note that � may be not a WQO for a WQO ≤.
We also assume the least element ⊥ in Γ , representing the stack bottom.

Let F(X,Y) denote the set of partial functions from a set X to a set Y.

Definition 4. [4] A well-structured pushdown system (WSPDS) is a 4-tuple
M = 〈(P,�), (Γ,≤), ∆, c0〉 where

– (P,�) and (Γ,≤) are WQOs, and
– ∆ ⊆ F(P × Γ≤2, P × Γ≤2) is a finite set of monotonic partial computable

functions (w.r.t. � ×�).

We denote 〈p, w〉 ↪→ 〈p′, w′〉 if there exists ψ(p, u) = (p′, u′) for u, u′ ∈ Γ≤2

where w = u.v and w′ = u′.v.

Note that the set of heads of configurations is well-quasi-ordered by E=�
× ≤.

A WSPDS 〈(P,�), (Γ,≤), ∆〉 is strict if (P,�) and (Γ,≤) are partial order,
and ∆ consists of strictly monotonic partial functions (i.e., (p, γ)/(p′, γ′) implies
f(p, γ) / f(p′, γ′)).

Example 1. Let M = 〈(N,≤), (N,≤), ∆, c0〉 where

∆ =


r1 : p, α→ p+ 1, (α− 1)(α− 1)
r2 : p, ε→ p+ 2, 0 if p ≥ 2
r3 : p, α→ p− 3, α+ 3
r4 : p, αβ → p, α+ β − 2

M is a WSPDS with both its states and stack symbols being natural numbers.
The transitions rules in ∆ are defined by four monotonic partial functions, each

of which denotes sets of push, simple push, internal, and non-standard pop rules,
respectively. M is also a strict WSPDS.

Assume c0 = 〈1, 1〉, here is an infinite run with an infinite reachability set:

〈1, 1〉 r1↪→ 〈2, 00〉 r2↪→ 〈4, 000〉 r3↪→ 〈1, 300〉 r4↪→ 〈1, 10〉 r1↪→ · · ·

If we change rule r1 to r′1 : p, α→ p+ 1, (α− 1), this infinite run contains a

finite reachability set: 〈1, 1〉 r1↪→ 〈2, 0〉 r2↪→ 〈4, 00〉 r3↪→ 〈1, 30〉 r4↪→ 〈1, 1〉 r1↪→ 〈2, 0〉 · · · .
If we further remove the rule r2, all runs starting from c0 terminate. �

3 The reduced reachability tree algorithm

The reachability tree of a WSPDS M = 〈(P,�), (Γ,≤), ∆, c0〉 with an initial
configuration c0 is a rooted unordered tree defined as follows. Each node of the
tree is labeled by a configuration of M. The root r is labeled by c0, denoted
by r : c0. Each node n : cn has a child m : cm when cn ↪→ cm. Note that the
reachability tree of M is finitely branching since ∆ is finite.

3.1 Termination problem

Definition 5. A node s : 〈p, w〉 pumps a node t : 〈q, v〉 if

– there is a path from s to t, and every node t′ : 〈p′, w′〉 on it satisfies |w′| ≥ |w|.
– h(〈p, w〉) E h(〈q, v〉), i.e., p � q and either w = ε or w[1] ≤ v[1].

We call a node pumpable if there exists a node pumping it. The notion of
pumpable nodes is similar to subsumed nodes in [11], but we consider the in-
crease of heads instead of states. Let the reduced reachability tree be the largest
prefix of the reachability tree such that every pumpable node has no children.

Example 2. Recall the WSPDS M in Example 1. Starting from 〈1, 1〉, we have

〈1, 1〉 ↪→ 〈2, 00〉 ↪→ 〈4, 000〉 ↪→ 〈1, 300〉 ↪→ 〈1, 10〉 ↪→ · · ·

We observe that 〈4, 000〉 is pumpable by 〈2, 00〉, and 〈1, 300〉 and 〈1, 10〉 are
pumpable by the root 〈1, 1〉. The reduced run 〈1, 1〉 ↪→ 〈2, 00〉 ↪→ 〈4, 000〉 implies
non-termination of M. �

The intuition of pumpable nodes is that if the run from 〈p, w〉 to 〈q, v〉 only
changes the top element of w, then we can simulate this run from 〈q, v〉 to some
〈q′, v′〉 by monotonicity, satisfying p � q � q′, and w[1] ≤ v[1] ≤ v′[1]. We can
construct an infinite run by repeating this process.

Conversely, assume 〈p0, w0〉 ↪→ 〈p1, w1〉 · · · is an infinite run, we can extract
an infinite subsequence, say 〈pi0 , wi0〉, 〈pi1 , wi1〉, · · · , such that each node is cho-
sen if it has the minimal depth of the stack in its suffix run. Note that each pair
of 〈pik , wik〉 and 〈pij , wij 〉 with k < j in this subsequence satisfies the first con-
dition of pumpable nodes. By the fact that the set of heads is well-quasi-ordered
with respect to E, it must contain a pumpable node.

Theorem 2. A WSPDS has an infinite run if, and only if, its reduced reacha-
bility tree contains a pumpable node.

3.2 Boundedness problem

The boundedness asks whether the reachability set is finite. We know that any
infinite run has a pumpable node. If a pumpable node is exactly the same as the
one that pumps it, still an infinite run keeps the reachability set finite. Otherwise,
a strict WSPDS enlarges reachable configurations infinitely.

Definition 6. A node s : 〈p, w〉 strictly pumps a node t : 〈q, v〉 if s pumps t,
and either |w| < |v| or h(〈p, w〉) / h(〈q, v〉).

Example 3. In Example 2, all the pumpable nodes are strictly pumpable nodes.
We can conclude the unboundedness.

Theorem 3. A strict WSPDS has an infinite reachability set if, and only if, its
reduced reachability tree contains a strictly pumpable node.

Similar to the termination problem, theorem 3 derives the decidability of the
boundedness problem for a strict WSPDS. The proof (Appendix A) is similar
to that of Theorem 2. We need the strictness of a WSPDS for the proof because
a partial order enables us to conclude a < b from a 6= b and a ≤ b, and only
strictly monotonic transition rules guarantee the strict growth of configurations.

Theorem 2 (Theorem 3) provides an algorithm to decide the termination
(boundedness) of WSPDS (strict WSPDS). Algorithm 1 is for termination, in
which we generate and check the reachability tree by depth-first searches. The
algorithm for boundedness is similar.

The correctness of this algorithm is straightforward. One thing needs to be
mentioned is that we cannot stop when meeting nodes with labels already in the
tree since the same nodes in different branches have different ancestors, and the
pumpability checking depends on all the ancestor nodes.

4 Post∗-automata algorithm

The Post∗-automata for WSPDSs are the same as those for PDSs, but the former
may be infinite. In this section we give alternative algorithms for the termination
and boundedness problems based on Post∗-automata construction.

We first introduce the notion of the dependency [4] to transitions of Post∗-
automata. We then give the notion of pumpable transitions in Post∗-automata,
corresponding to the notion of pumpable nodes in reduced reachability trees.

4.1 Dependency relation

The dependency is a binary relation V among transitions of a Post∗-automaton
and is generated during Post∗-saturation steps. Starting from the empty set ∅
and we add new dependency relations by the following rules:

1. (inter) If a transition p′
γ′

7→ q is added by a rule (p, γ → p′, γ′) and a transition

p
γ7→ q, then add (p

γ7→ q)V (p′
γ′

7→ q).

Algorithm 1 Reduced Reachability Tree Algorithm

Input: M = 〈(P,�), (Γ,≤),∆, c0〉,
Output: If M terminates, return YES; otherwise, return NO.
1: nodes = {root : c0}
2: while nodes! = NULL do
3: currentNode = nodes.pop()
4: for all r ∈ ∆ do
5: nodes.push(computeChild(currentNode, r))
6: end for
7: minLength = currentNode.stack.length
8: ancestor = currentNode.father
9: while ancestor! = Null do

10: len = ancestor. stack.length
11: if minLength ≥ len then
12: if currentNode.State≥ ancestor.State

&&(currentNode.stack.top ≥ ancestor.stack.top
‖ ancestor.stack = Null)

then

13: return NO.
14: end if
15: minLength = len
16: end if
17: ancestor = ancestor.father
18: end while
19: end while
20: return YES

2. (nonstandard pop) If a transition p′
γ7→ q is added by a rule (p, αβ → p′, γ)

and transitions p
α7→ p′′

β7→ q, then add (p′′
β7→ q)V (p′

γ7→ q).

3. (push) If transitions p′
α7→ qp′,α

β7→ q are added by a rule (p, γ → p′, αβ) and

a transition p
γ7→ q, then add (p

γ7→ q)V (p′
α7→ qp′,α) and (p

γ7→ q)V (qp′,α
β7→

q).
4. Otherwise, we do not update V.

We denote the transitive closure of V by V∗.

Example 4. Recall the WSPDS M in Example 1. Let C0 = {c0 = 〈1, 1〉}, the
Post∗-saturation starting from A0 is illustrated in the following graph, where
the ⇓ represents the dependency relation between transitions.

A0 : 1
1 // f

A : 1
⇓ ⇓

1 // f

· · · 0 // 4
⇓

0 // 2
⇓

0 // q2,0
0

??

· · ·
3

@@

1
3

AA

1
1

??

The transitions 2
07→ q2,0

07→ f are generated from 1
17→ f by the push rule r1.

Simultaneously, we add both 1
17→ f V 2

07→ q2,0 and 1
17→ f V q2,0

07→ f .

The transition 4
07→ 2 is added by the simple push rule r2 and no new depen-

dency pairs added.

The transition 1
17→ q2,0 is added from transitions 1

37→ 2
07→ q2,0 by the non-

standard pop rule r4. We add 2
07→ q2,0 V 1

17→ q2,0. Note that we do not add

dependency between 1
37→ 2 and 1

17→ q2,0 because this nonstandard pop rule
decreases the stack and we only add the dependency relation t1 V t2 only when
t2 is generated from t1, and has equal or longer distance to the final states. �

Lemma 1 shows that dependency relations in Post∗-automata reflect the
transitions among configurations of the WSPDS. It plays a key role in using
Post∗-automata techniques to prove the decidability of termination and bound-
edness for WSPDSs. Proof of Lemma 1 can be found in Appendix B.

Lemma 1. If p
γ7→ q V∗ p′

γ′

7→ q′ for p, p′ ∈ P , there exists v ∈ Γ ∗ such that

q′
v

7→∗ q and 〈p, γ〉 ↪→∗ 〈p′, γ′v〉 in which no simple push transitions appear.

4.2 Termination problem

To give the notion of a pumpable transition, we need to characterize the prop-
erty that the content of stack never goes below some depth in a Post∗-automaton.
Lemma 1 tells us that if two transitions has dependency relation, then there ex-
ists a run that will never let the stack goes below the initial depth. An exception
of Lemma 1 is a simple push transition, which interrupts the dependency relation
and the depth of stack simply grows. We separately consider these two cases.

Definition 7. A transition p
γ7→ q for p ∈ P is pumpable if either

1. there exists a path from q to some p′ � p, i.e., p
γ7→ q

w7→
∗
p′, or

2. there exist a transition p′
γ′

7→ q′ with p′ � p, γ′ ≤ γ and a path p
γ7→ q

w7→
∗
q′

that contains a transition p′′
γ′′

7→ q′′ with p′
γ′

7→ q′ V+ p′′
γ′′

7→ q′′.

Condition 1) in Definition 7 describes the case that 〈p′, ε〉 pumps 〈p, γw〉 in
the reachability tree. The run starts with a simple push transition (which solely
can cause p′ to be a destination state of 7→) and never pops stack contents. In
this case, we do not need to consider the top element.

Alternatively, the run may start with a push or an internal rule, which relies
on the top element of the stack. Condition 2) in Definition 7 corresponds to the
case that 〈p′, γ′〉 pumps 〈p, γw〉 with p′ � p, γ′ � γ and the first rule is not a
simple push rule. In the saturation process, the dependency relation between

p′
γ′

7→ q′ and p
γ7→ q may be interrupted by a simple push transition. However,

we can take some transition p′′
γ′′

7→ q′′ in the path p
γ7→ q

w7→
∗
q′ such that

the dependency relation (p′
γ′

7→ q′ V+ p′′
γ′′

7→ q′′) holds before the simple-push
operation.

Example 5. Recall the Post∗-automaton in Example 4. The following pumpable
transitions imply nontermination.

– The transition 4
07→ 2 satisfies 1) in Definition 7.

– The transition 1
37→ 2 pumped by transition 1

17→ f . It satisfies condition

2) of Definition 7, since during the path 1
37→ 2

07→ q2,0
07→ f , there exists

2
07→ q2,0 such that 1

17→ f V 2
07→ q2,0. After that the dependency sequence

is interrupted by a simple push on state 2 (generating 4
07→ 2). �

A reduced Post∗-automaton is obtained by avoiding the application of sat-
uration rules when the saturation procedure reaches a pumpable transition.
Lemma 2 reflects the correspondence between a pumpable transition in a Post∗-
automaton and a pumpable node in the reachability tree. Because of the prop-
erties of WQOs, either a pumpable transition or a cycle of 7→ will be found in
finitely many steps. Details and proofs can be found in Appendix C.

Lemma 2. Given a WSPDS M = 〈(P,�), (Γ,≤), ∆, c0〉 with an initial configu-
ration c0 such that A0 accepts c0. There exists a pumpable node in the reachability
tree if, and only if, there exists a pumpable transition in Post∗(A0).

Theorem 4. For a WSPDS and an initial configuration c0, a reduced Post∗-
automaton finitely converges. Moreover, it converges within k steps of the satu-
ration, where k is the size of the reduced reachability tree rooted at r : c0.

4.3 Boundedness problem

Similar to the reduced reachability tree, we focus on strict WSPDSs for bound-
edness.

Definition 8. A transition p
γ7→ q where p ∈ P is strictly pumpable if it satisfies

the pumpable conditions in Definition 7 either by Condition 1), or Condition
2) with an additional condition that p′ ≺ p, γ′ ≺ γ, or p′′ 6= p.

Similar to termination, a strictly reduced Post∗-automaton avoids applying
saturation rules on strictly pumpable transitions. Theorem 5 shows the decid-
ability of boundedness for strict WSPDSs.

Theorem 5. The strictly reduced Post∗-automaton of a strict WSPDS finitely
converges.

Example 6. Recall the Post∗-automaton in Example 4. The two pumpable tran-
sitions of Example 5 are strictly pumpable transitions, which implies unbound-
edness. �

Theorem 4 and 5 provide alternative algorithms for the termination and
boundedness problems. Algorithm 2 is for termination checking and the one for
boundedness checking is similar.

In Algorithm 2 we store transitions that has been saturated and to be sat-
urated in rel and trans respectively. Every transition in trans is checked the
pumpability and then applied saturation rules. Note that we assume preprocess-
ing on WSPDS by rewriting all pop rules to non-standard pop rules in order
to removing ε transitions. Hence there are four types of rules to be considered
(from Line 18 to Line 38), and Line 29 is especially for the case that transition
(p′, γ′, p) has been put into rel, but the newly added transition (p, γ, q) makes

the saturation on p′
γ′γ7−→ q possible. The correctness is guaranteed by Lemma 3

and the proof is in Appendix D.

Lemma 3. If M has an infinite run, Algorithm 2 will return NO; otherwise, it

will return YES, and (p, γ, q) ∈ rel if and only if p
γ7→ q is an edge in Post∗(A0).

5 Complexity issues

In [11], Hyper-Ackermannian upper and lower bounds for the size of reduced
reachability trees are shown for pushdown VASS. They estimate the maximum
length of bad nested sequences, which is the height of reachability trees in the
worst case. Since the reduced reachability tree for a pushdown VASS is finitely
branching, the upper bound for the size of the reduced reachability tree can be
obtained from the upper bound of its height. For a lower bound, they construct a
family of pushdown VASS {An} each of which computes a fast growing function
Fωω (n) and terminates. Since each transition rule increments at most one, the
reachability tree has at least Fωω (n) nodes.

In this section, we generalize their methodology to bounded WSPDSs, in
which both states and stack symbols are vectors and transition rules can change
them by a constant (see Definition 9). BVAS [6], RVASS[3], multi-set PDS[10,16],
and Pushdown VASS[11] are all subclasses of bounded WSPDSs. By estimating
the size of a reduced Post∗-automaton and that of the reduced reachability tree,
we obtain their Hyper-Ackermannian upper and lower bounds together.

Following Section V of [11], we define a class of fast growing functions by
(Fλ)λ for an ordinal λ ≤ ωω, defined as

Fλ(n) =


n+ 1 if λ = 0
Fn+1
λ′ (n) if λ = λ′ + 1
Fλn

(n) if λ < ωω is a limit ordinal
Fωn+1(n) if λ = ωω

where λn = ωdad + · · · + ωr(ar − 1) + ωr−1(n + 1) for a limit ordinal λ =
ωdad + · · ·+ ωrar in its Cantor normal form with d ≥ r and ar > 0. Here, Fω is
Ackermann function, and we use a Hyper-Ackermann function Fωω to estimate
the complexity.

Definition 9. Let k, d ∈ N. A WSPDS A = 〈(Nd,≤), (Nk,≤),4, c0〉 with the
initial configuration c0 = 〈p0, w0〉 is bounded if each rule (p, w, q, v) ∈ ∆ with
v 6= ε satisfies

‖q − p‖∞ ≤ 1 and ‖Σ(v)−Σ(w)‖∞ ≤ 1

Algorithm 2 The Post∗-automata Algorithm

Input: A0 = (Q,Γ,O0, ∅, F)
Output: If M terminates, return YES; otherwise, return NO.
1: procedure Check((p, γ, q), rel, dep)
2: for q 7→∗ p′ do
3: if p′ � p then return NO
4: end if
5: end for
6: for (p′, γ′, q′)V+ (p, γ, q) do
7: if (p, γ) ≥ (p′, γ′) then return NO
8: end if
9: end for

10: end procedure
11: trans, rel,Q′ := (O0) ∩ (P × Γ ×Q), (O0) \ trans,Q;
12: while trans 6= ∅ do
13: pop t = (p, γ, q) from trans;
14: check(t, rel ∪ t, dep);
15: if t ∈ rel then continue
16: end if
17: rel := rel ∪ t;
18: for all (p, ε→ p′, γ′) ∈ ∆ do
19: trans := trans ∪ (p′, γ′, p);
20: end for
21: for all (p, γ → p′, γ′) ∈ ∆ do
22: trans := trans ∪ {(p′, γ′, q)};
23: dep := dep ∪ {tV (p′, γ′, q)};
24: end for
25: for all (p, γγ′ → p′, α) ∈ ∆, (q, γ′, q′) ∈ rel do
26: trans := trans ∪ {(p′, α, q′)};
27: dep := dep ∪ {(q, γ′, q′)V (p′, α, q′)};
28: end for
29: for all (p′, γ′γ → p′′, α) ∈ ∆, (p′, γ′, p) ∈ rel do
30: trans := trans ∪ {(p′′, α, q)};
31: dep := dep ∪ {tV (p′′, α, q)};
32: end for
33: for all (p, γ → p′, αβ) ∈ ∆ do
34: Q′ := Q′ ∪ {qp′,α};
35: trans := trans ∪ {(p′, α, qp′,α)};
36: rel := rel ∪ {(qp′,α, β, q};

37:
dep := dep ∪

{tV (p′, α, qp′,α), tV (qp′,α, β, q)};
38: end for
39: end while
40: return YES.

where ‖m‖∞ denotes the largest component for a vector m, and Σ(w) denotes
Σi∈{1..n}αi if w = α1 · · ·αn and 0 if w = ε.

The size of A is defined as

| A | = d+ k + (d+ k) ·max{‖p0‖∞, ‖Σ(w0)‖∞}+ (d+ k) · |4|.

5.1 Upper bound

Each node (configuration) of a reachability tree for a WSPDS can be abstracted
to a pair consisting of the head and the depth of the stack. With this abstraction,
a path in a reachability tree of a WSPDS is a nested sequence [11]. Upper bound
for the height of the reduced reachability tree equals the maximal length of bad
nested sequences. We give only main results here and leave the formal definitions
in Appendix E.

Theorem 6. (Theorem VI.1 in [11]) For d ≥ 1 and n ≥ 2, LNd(n) ≤ Fωd(d ·n),
where LNd(n) is the maximal length of n-controlled bad nested sequences over
Nd.

Theorem 6 generalizes to bounded WSPDSs, since runs of bounded WSPDSs
are n-controlled nested sequences.

Each run of a bounded WSPDS A = 〈(Nd,≤), (Nk,≤),4〉 with an initial con-
figuration 〈p0, w0〉 can be abstracted to a nested sequence over (Nd+k,E). We ob-
serve that this nested sequence is n-controlled for n = max{‖p0‖∞, ‖Σ(w0)‖∞}+
2 (Lemma 7 in Appendix E). Thus, Theorem 6 implies that the height of the
reduced reachability tree is at most Fωd+k((d + k) · n). Since each node of the
reduced reachability tree can have at most |∆| children, we have an upper bound
|∆|Fωd+k ((d+k)·n)+1 for its size, which is also bounded by Fωω (| A |)).

Theorem 7. The reduced reachability tree of a bounded WSPDS has at most
Fωω (| A |) nodes (thus at most Fωω (| A |) edges).

From Theorem 4, the number of saturation steps of a reduced Post∗-automaton
is bounded by the size of the reduced reachability tree. Since each saturation
step adds at most two transitions, the number of transitions is bounded by
2|∆|Fωd+k ((d+k)·n)+1 ≤ Fωω (| A |).

Corollary 1. The reduced Post∗-automaton of a bounded WSPDS A has at most
Fωω (| A |) transitions.

5.2 Lower bound

Theorem 8. (Theorem VII.7 [11]) For each n ∈ N, there exists a Pushdown
VASS An of the size quadratic to n, such that the reduced reachability tree of An
has at least Fωω (n) nodes.

The result of Fωω (n) is stored in the first coordinate of its states of An,
which is initially 0. Since each transition of An changes one coordinate by at
most 1, the Post∗-automaton of An has at least Fωω (n) states, and shares a
Hyper-Ackermannian lower bound.

Corollary 2. For n ∈ N, there exists a Pushdown VASS An of the size quadratic
to n, such that the reduced Post∗-automaton of An has at least Fωω (n) states.

Remark 2. Since a Pushdown VASS An is a subclass of bounded WSPDSs, the
lower bound for the size of the reduced reachability tree forAn works for bounded
WSPDSs as well.

6 Implementations and Experiments

Experiments are performed on a Windows 7 station with 2.60 GHz Intel(R) Core
i5 with 8GB of RAM 5. Experimental data are randomly generated bounded
WSPDSs by setting

– control states to be natural numbers,
– stack symbols to be natural number vectors of dimension 1 to 3,
– an initial configuration 〈p, γ〉 taken from [0, 15] × [0, 15]dim where dim ∈
{1, 2, 3}, and

– 1 to 10 transition rules (the number is also randomly decided), which are
randomly chosen from internal, non-standard pop, pop, push, and simple
push rules (in a VAS like style, e.g., a push rule (p,v→ p+q, (v+c) (v+d))
and a non-standard pop rule (p,v1 v2 → p+ q,v1 + v2 + c), in which each
constant and element of a constant vector are randomly taken from [−10, 10].

Fig.6. (a), (b), and (c) compare between the execution time of the two al-
gorithms on randomly generated 1000 bounded WSPDSs with 1-, 2-, and 3-
dimensional vectors as stack alphabet respectively. The lines of Log(ReachTime)
and Log(PostTime) plot the execution time (omitting time for IO) of the reach-
ability tree and Post∗-automata algorithms in the logarithmic scale respectively.
The zigzag of line Log(PostTime) is due to the rounding. The instances are
sorted by the execution time of the Post∗-automata algorithm.

Some cases that significantly differ on complex instances of WSPDSs are
extracted to Table 1, in which the columns mean

– PostTime (resp. ReachTime) is the execution time of the Post∗-automata
algorithm (resp. the reachability tree algorithm) in milliseconds.

– EdgeNum (resp. NodeNum) is the number of checked transitions in the
generated Post∗-automaton (resp. the reduced reachability tree).

We observe that the Post∗-automata algorithm shows more stable behavior.

– Both algorithms stops quickly on most of problems.

5 source code can be found at: https://github.com/leisuhua/WSPDS

https://github.com/leisuhua/WSPDS

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

Lo
g

of
 m

ill
is

ec
on

ds

Random Instances of WSPDSs

Log(PostTime)
Log(ReachTime)

(a) P = N and Γ = N
0 100 200 300 400 500 600 700 800 900 1000

0

1

2

3

4

5

6

7

8

9

10

Lo
g

of
 m

ill
is

ec
on

ds

Random Instances of WSPDSs

Log(PostTime)
Log(ReachTime)

(b) P = N and Γ = N2

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

10

Lo
g

of
 m

ill
is

ec
on

ds

Random Instances of WSPDSs

Log(PostTime)
Log(ReachTime)

(c) P = N and Γ = N3 (d)

Fig. 1. (a-c)Comparison between two algorithms in the logarithmic scale. (d)Speed
ratio of two algorithms with various initial configurations.

– The reachability tree algorithm is sometimes slower in magnitude on complex
problems, as in Table 1. The opposite is never observed.

Preliminary experiments on boundedness also show consistent results.
Fig.1(d) describes the effect of the change of the speed ratio when initial

configurations are modified. This instance is arbitrary selected from Fig.1(a)
(i.e., Γ = N), varying initial configurations in [1, 12]×[1, 8]. Rules of this instance
are:

∆ =


r1 : p, ε→ p− 10, 2
r2 : p, v1v2 → p+ 7, v1 + v2 + 1
r3 : p, v → p− 3, v + 5
r4 : p, v → p− 2, v + 9
r5 : p, v → p− 6, v + 3

We observe that the increase of the size of initial configurations brings significant
slow down of the reachability tree algorithm, compared to the Post∗-automata
algorithm.

Table 1. Problems showing significant differences

Post∗-automata Reachability tree

PostTime EdgeNum ReachTime NodeNum

29 (ms) 52 2039 (ms) 2397
105 69 11086 6727
507 271 104291 66138
74 95 17032 18834
523 103 207327 53698
153 58 97231 71464
65 71 44947 44164
276 191 801889 667065
426 299 1570971 158307

7 Conclusion

We studied termination and boundedness on WSPDSs and strict WSPDSs, re-
spectively. We compared two algorithms, the reachability tree algorithm, which
is a generalization of that in [11], and the Post∗-automata algorithm. Although
the complexity estimation is hyper-ackermannian for both, experiments show
that the latter behaves better than the former.

Acknowledgment

This research is partially supported by NSFC-JSPS joint project 61511140100,
NSFC project 61472238 and JSPS KAKENHI Grant-in-Aid for Scientific Re-
search(B) (15H02684).

References

1. M. Atig, A. Bouajjani, and S. Qadeer. Context-bounded analysis for concurrent
programs with dynamic creation of threads. TACAS 2009. LNCS 5505 107–123.

2. M. Blondin, A. Finkel, P. McKenzie. Handling Infinitely Branching WSTS. ICALP
(2) 2014. LNCS 8573 13-25.

3. A. Bouajjani and M. Emmi. Analysis of recursively parallel programs. POPL 2012.
ACM 203–214.

4. X. Cai and M. Ogawa. Well-structured pushdown systems. CONCUR 2013. LNCS
8052 121–136.

5. J. Courtois and S. Schmitz. Alternating vector addition systems with states. MFCS
2014 (1). LNCS 8634 220–231.

6. S. Demri, M. Jurdzinski, O. Lachish, and R. Lazic. The covering and boundedness
problems for branching vector addition systems. J. Comput. Syst. Sci. (2013),
79(1):23–38.

7. C. Dufourd, A. Finkel, P. Schnoebelen. Reset Nets Between Decidability and
Undecidability. ICALP 1998. LNCS 1443 103–115.

8. A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model
checking pushdown systems. Electr. Notes Theor. Comput. Sci. (1997), 9:27–37.

9. A. Finkel. A Generalization of the Procedure of Karp and Miller to Well Structured
Transition Systems. ICALP 1987. LNCS 267 499–508.

10. R. Jhala and R. Majumdar. Interprocedural analysis of asynchronous programs.
POPL 2007. ACM 339–350.

11. J. Leroux, M. Praveen, and G. Sutre. Hyper-ackermannian bounds for pushdown
vector addition systems. CSL-LICS 2014. ACM/IEEE 63:1–63:10.

12. J. Leroux, G. Sutre, and P. Totzke. On the coverability problem for pushdown
vector addition systems in one dimension. ICALP (2) 2015. LNCS 9135 324–336.

13. S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software.
TACAS 2005. LNCS 3440 93–107.

14. G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecid-
able. Trans. ACM on Programming Languages and Systems (2000), 22(2):416–430.

15. T.W. Reps and S. Schwoon and S. Jha and D. Melski Weighted pushdown systems
and their application to interprocedural dataflow analysis Science of Computer
Programming(2005), 58:206-263

16. K. Sen and M. Viswanathan. Model checking multithreaded programs with asyn-
chronous atomic methods. CAV 2006. LNCS 4144 300–314.

A Proof of Theorem 3

Theorem 3. A strict WSPDS has an infinite reachability set if, and only if, its
reduced reachability tree contains a strictly pumpable node.

Proof. (Only-if) Assume a strict WSPDS M has an infinite reachability set.
Let T be the largest prefix of its reachability tree such that, on each branch, all
nodes have distinct labels. The tree T is infinite since every configuration in the
reachability set is a node in T .

By König’s lemma, it follows that T contains finitely many branches in which
all nodes are distinct. Since the reduced reachability tree of M is finite, among
finitely many branches, there are two nodes n : (p, w) and m : (q, v) such that
they are in the reduced reachability tree and n pumps m.

Thus, (p, w) 6= (q, v) and (p, w) pumps (q, v). By definition of pumpable
nodes, we have two cases: (1) |w| < |v|, and (2) |w| = |v|. In case (2), either
w � v or p ≺ q holds. w[2, |w|] = v[2, |v|] implies either w[1] < v[1] or p ≺ q.
Thus, both cases, n strictly pumps m.

(If) Similar to that of Theorem 2. The path from the root to a strictly pumpable
node yields a run

(p0, w0)
op1−→ . . .

opk−→ (pk, wk)
opk+1−→ . . .

opl−→ (pl, wl)

such that (pk, wk) strictly pumps (pl, wl), which leads an infinite run by iterating
the sequence of operations opk+1, ..., opl. As the case analysis, if pk ≺ pl, the
resulting infinite run visits infinitely many different states; if |w| < |v|, the
resulting infinite run enlarges the length of the stack infinitely; if w[1] < v[1],
the resulting infinite run enlarges the top element of the stack infinitely.

B Proof of Lemma 1

We denote transitions of a WSPDS and Post∗-automata by ↪→ and 7→, respec-
tively. Let w ∈ Γ ∗ and

con(p, w) =

{
〈p, w〉 if p ∈ P
〈p′, αw〉 if p = qp′,α ∈ Q

First, we need the following invariants on Post∗-automata. The proof is by
induction on the saturation steps of Post∗-automata (See the proof of Lemma 2
in [4]).

Lemma 4. If p
w7→
∗
q and p, q ∈ P ∪Q, we have con(q, ε) ↪→∗ con(p, w).

Instead of Lemma 1, we prove Lemma 1’, which generalizes p, p′ ∈ P to
p, p′ ∈ P ∪Q for Q = {qp,α | p ∈ P, α ∈ Γ}.

Lemma 1’. If p
γ7→ q V∗ p′

γ′

7→ q′ for p, p′ ∈ P ∪ Q, there exists v ∈ Γ ∗ such

that q′
v

7→∗ q and con(p, γ) ↪→∗ con(p′, γ′v) in which no simple push transitions
appear.

Proof. We proceed by the induction on the saturation steps of Post∗-automata.
For A0, immediate from V0= ∅. Assume it holds for Ai where the dependency
relation is denoted by Vi. Ai+1 is obtained from Ai by applying a saturation
rule once. We have Vi+1⊇Vi and perform the case analysis.

– If the saturation step is by a simple push rule, the dependency relation is
not updated. The lemma holds immediately.

– If the saturation step is by an internal rule (p1, γ1, p2, γ2) on p1
γ17→ q1, the

dependency relation is updated by adding p1
γ17→ q1 V p2

γ27→ q1 (if not added
yet). Assume that we have

p
γ7→ q V∗i p1

γ17→ q1 Vi+1 p2
γ27→ q1 V

∗
i p
′ γ

′

7→ q′

By induction hypothesis, there exist v1 and v2 with q′
v27→
∗
q1

v17→
∗
q, con(p, γ)

↪→∗ 〈p1, γ1v1〉, and 〈p2, γ2v1〉 ↪→∗ con(p′, γ′v2v1), among which no simple
push transitions appear. Finally, the internal rule connects them as

con(p, γ) ↪→∗ 〈p1, γ1v1〉 ↪→ 〈p2, γ2v1〉 ↪→∗ con(p′, γ′v2v1)

– If the saturation step is by a push rule (p1, γ1, p2, γ2γ3) on p1
γ17→ q1, the

dependency relation is updated by adding p1
γ17→ q1 V p2

γ27→ qp2,γ2 and

p1
γ17→ q1 V qp2,γ2

γ37→ q1 (if not added yet).
First, assume that we have

p
γ7→ q V∗i p1

γ17→ q1 Vi+1 p2
γ27→ qp2,γ2 V

∗
i p
′ γ

′

7→ q′

By induction hypothesis, there exist v1, v2 with q′
v27→
∗
qp2,γ2

γ37→ q1
v17→
∗
q,

con(p, γ) ↪→∗ 〈p1, γ1v1〉, and 〈p2, γ2γ3v1〉 ↪→∗ con(p′, γ′v2γ3v1) among which
no simple push transitions appear. Finally, the push rule connects them as

con(p, γ) ↪→∗ 〈p1, γ1v1〉 ↪→ 〈p2, γ2γ3v1〉 ↪→∗ con(p′, γ′v2γ3v1)

Second, assume that we have

p
γ7→ q V∗i p1

γ17→ q1 Vi+1 qp2,γ2
γ37→ q1 V

∗
i p
′ γ

′

7→ q′

By induction hypothesis, there exist v1, v2 with q′
v27→
∗
q1

v17→
∗
q, con(p, γ) ↪→∗

〈p1, γ1v1〉, and 〈p2, γ2γ3v1〉 ↪→∗ con(p′, γ′v2v1) among which no simple push
transitions appear. Finally, the push rule connects them as

con(p, γ) ↪→∗ 〈p1, γ1v1〉 ↪→ 〈p2, γ2γ3v1〉 ↪→∗ con(p′, γ′v2v1)

– If the saturation step is by a nonstandard pop rule (p1, γ1γ2, p2, γ3) on p1
γ17→

q2
γ27→ q1, the dependency relation is updated by adding q2

γ27→ q1 V p2
γ37→ q1

(if not added yet). Assume that we have

p
γ7→ q V∗i q2

γ27→ q1 Vi+1 p2
γ37→ q1 V

∗
i p
′ γ

′

7→ q′

By induction hypothesis, there exist v1, v2 with q′
v27→
∗
q1

v17→
∗
q, con(p, γ) ↪→∗

con(q2, γ2v1), and 〈p2, γ3v1〉 ↪→∗ con(p′, γ′v2v1) among which no simple push
transitions appear. By Lemma 4, we have con(q2, ε) ↪→∗ 〈p1, γ1〉, and the
nonstandard pop rule connects them as con(p, γ) ↪→∗ con(q2, γ2v1) ↪→∗
〈p1, γ1γ2v1〉 ↪→ 〈p2, γ3v1〉 ↪→∗ con(p′, γ′v2v1)

C Proofs of Lemma 2 and Theorem 4

Lemma 4 shows the correspondence from transitions of Post∗-automata to those
of a WSPDS. In lemma 5, we give the opposite direction.

Lemma 5. Let p, q ∈ P and α, γ ∈ Γ .

1. If 〈p, ε〉 ↪→∗ 〈q, v〉, we have q
v7→
∗
p.

2. If 〈p, α〉 ↪→∗ 〈q, γv〉 in which no simple push transitions appear (thus during

the run the stack stays nonempty) and p
α7→ q′, we have q

γ7→ q2
v7→
∗
q′ such

that either
– p

α7→ q′ V∗ ι for each transition ι in q
γ7→ q2

v7→
∗
q′, or

– v = v1γ
′′v2 and q2

v17→
∗
p′′

γ′′

7→ q′′
v27→
∗
q′ for some p′′ ∈ P and p

α7→ q′ V∗ ι

for each transition ι in p′′
γ′′

7→ q′′
v27→
∗
q′.

Proof. By induction on the length i of ↪→∗. If i = 0, immediate. Assume that
they hold for i.

1. If 〈p, ε〉 ↪→ · · · ↪→︸ ︷︷ ︸
i times

〈qi, vi〉 ↪→ 〈q, v〉, by induction hypothesis, we have qi
vi7→
∗
p.

No matter which rule is applied in 〈qi, vi〉 ↪→ 〈q, v〉, q
v7→
∗
p holds from the

definition of saturation rules.
2. If 〈p, α〉 ↪→ · · · ↪→︸ ︷︷ ︸

i times

〈qi, γivi〉 ↪→ 〈q, γv〉 and p
α7→ q′, by induction hypothesis,

we have qi
γi7→ qi2

vi7→
∗
q′ which satisfies either of two cases below.

– p
α7→ q′ V∗ ι for each transition ι in qi

γi7→ vi7→
∗
q′.

If 〈qi, γivi〉 ↪→ 〈q, γv〉 is a simple push transition, we have q
γ7→ qi

v7→
∗
q′

for v = γivi. This matches to the second case with p′′ = qi, γ
′′ = γi and

v1 = ε.
Otherwise, by the definition of saturation rules, we have q

γ7→ v7→
∗
q′ and

p
α7→ q′ V∗ ι for each transition ι in q

γ7→ v7→
∗
q′.

– vi = vi1γ
′′vi2 and qi2

vi17→
∗
p′′

γ′′

7→ q′′
vi27→
∗
q′ for some p′′ ∈ P and p

α7→
q′ V∗ ι for each transition ι in p′′

γ′′

7→ q′′
vi27→
∗
q′.

If 〈qi, γivi〉 ↪→ 〈q, γv〉 is a non-standard pop transition with vi1 = ε, the

transition rule is qi, γiγ
′′ → q, γ. Hence, we have q

γ7→ q′′
vi27→
∗
q′ and

p
α7→ q′ V∗ ι for each transition ι in q

γ7→ q′′
vi27→
∗
q′.

Otherwise, we have v = v1γ
′′vi2, q

γv17→
∗
p′′

γ′′

7→ q′′
vi27→
∗
q′, and p

α7→ q′ V∗ ι

for each transition ι in p′′
γ′′

7→ q′′
vi27→
∗
q′.

Instead of prove Lemma 2 directly, we prove strengthened Lemma 2’.

Lemma 2’ Given a WSPDS M = 〈(P,�), (Γ,≤), ∆〉 and an initial configuration
c0. Assume that A0 accepts c0. Then, in Post∗(A0),

1. if p
γ7→ q is pumpable, there exists w with q

w7→
∗
f and c0 ↪→ c1 ↪→∗ cn ↪→

〈p, γw〉 in the reachability tree such that 〈p, γw〉 is pumpable;

2. if p
γ7→ q is not pumpable, for every w with q

w7→
∗
f , there exists c0 ↪→ c1 ↪→∗

cn ↪→ 〈p, γw〉 in the reachability tree such that 〈p, γw〉 is not pumpable;

Proof. (1.) The proof follows to Definition 7 of pumpable transitions.

– If p
γ7→ q satisfies the first condition in Definition 7, i.e., there exists some p′

s.t. p
γ7→ q

w17→
∗
p′

w27→
∗
f with p′ � p. Since c0 is the only initial configuration,

by Lemma 4, we have

c0 ↪→∗ 〈p′, w2〉 ↪→∗ 〈p, γw1w2〉,

which implies 〈p′, w2〉 pumps 〈p, γw1w2〉.
– If p

γ7→ q satisfies the second condition in Definition 7, i.e., there exists

p′
γ′

7→ q′
w27→
∗
f with p′ � p, γ′ ≤ γ and there exists a path p

γ7→ q
w7→
∗
q′

containing a transition p′′
γ′′

7→ q′′ with p′
γ′

7→ q′ V+ p′′
γ′′

7→ q′′.
Let γw = w1γ

′′w′1. By Lemma 1 and 4, there exists

c0 ↪→∗ 〈p′, γ′w2〉 ↪→∗ 〈p′′, γ′′w′1w2〉

If p′′ = p and γ′′ = γ, then γw = γ′′w′1 and 〈p′, γ′w2〉 pumps 〈p, γww2〉.
Otherwise, by Lemma 4, we have c0 ↪→∗ 〈p′, γ′w2〉 ↪→∗ 〈p′′, γ′′w′1w2〉 ↪→∗
〈p, γw1γ

′′w′1w2〉 = 〈p, γww2〉 Thus, 〈p′, γ′w2〉 pumps 〈p, γww2〉.

(2.) We prove by contradiction. Assume that p
γ7→ q is not pumpable and there

exists w with q
w7→
∗
f and c0 ↪→ c1 ↪→∗ cn ↪→ 〈p, γw〉 in the reachability tree such

that 〈p, γw〉 is pumped by ci = 〈p′, w′〉. From Definition 5, we have two cases.

– 〈p′, ε〉 ↪→∗ 〈p, γw′′〉 with w = w′′w′. By Lemma 5, there exists p
γ7→ q

w′′

7→
∗
p′.

Hence p
γ7→ q is a pumpable transition, which contradicts to the assumption.

– 〈p′, γ′〉 ↪→∗ 〈p, γw′′〉 with w′ = γ′w1 and w = w′′w1, and during the run the

stack stays nonempty. Also by Lemma 5, p
γ7→ q is a pumpable transition,

which contradicts to the assumption.

Theorem. 4 For a WSPDS and an initial configuration c0, a reduced Post∗-
automaton finitely converges. Moreover, it converges within k steps of the satu-
ration, where k is the size of the reduced reachability tree rooted at r : c0.

Proof. In every step of saturation, we add one or two new transitions. If these
new transitions introduce pumpable transitions, the construction of reduced
Post∗-automaton finishes. Otherwise, they will cover at least one non-pumpable
configuration in the reachability tree (Lemma 2’) Hence, the number of non-
pumpable nodes in the reachability tree bounds the number of saturation steps.

D Correctness of Algorithm 2

Lemma. 3 If M has an infinite run, Algorithm 2 will return NO; otherwise, it

will return YES, and (p, γ, q) ∈ rel if and only if p
γ7→ q is an edge in Post∗(A0).

Proof. Firstly, an overall description of Algorithm 2 is: we use stack trans to
store transitions in the Post∗-automaton that are waiting to be checked sep-
arately. Each time we pop a transition from trans and check whether it is
pumpable. If yes, return NO(means non-terminates) and algorithm stops; oth-
erwise, generate new transitions by the saturation rules from this transition if it
is not in rel, a set to restore all the transitions that have been checked, and put
the new transitions to the stack trans. Meanwhile, we update the dependency
relation of transitions maintained in a map dep. When the stack trans become
empty, it means we have checked all the transitions in the Post∗-automaton, but
haven’t found any pumpable transition separately. In this case, the algorithm
returns YES(means terminates) and stops.

Secondly, we prove that if M doesn’t have infinite run, upon termination of
algorithm 2, (p, γ, q) ∈ rel holds for any p, q ∈ Q′ and γ ∈ Γ ∪ {ε} if and only if

p
γ7→ q ∈ ∇.
By Definition 3, set ∇ satisfies the following:

– If (p, ε→ p′, γ′) ∈ ∆ and p
γ7→ q ∈ ∇, then p′

γ′

7→ p ∈ ∇.

– If (p, γ → p′, γ′) ∈ ∆ and p
γ7→ q ∈ ∇, then p′

γ′

7→ q ∈ ∇.

– If (p, αβ → p′, γ) ∈ ∆ and p
α7→ p′′, p′′

β7→ q ∈ ∇, then p′
γ7→ q ∈ ∇.

– If (p, γ → p′, αβ) ∈ ∆ and p
γ7→ q ∈ ∇, then p′

α7→ qp′,α, qp′,α
β7→ q ∈ ∇.

(Only-if) we show that if (p, γ, q) ∈ rel, then p
γ7→ q ∈ ∇. Since transitions

from trans flow into rel, we examine all the lines that change trans or rel:

– Lines 11 add elements from ∇0, which is subset of ∇.
– Line 19 is a case of rule (p, ε→ p′, γ′) ∈ ∆.
– Line 22 is a case of rule (p, γ → p′, γ′) ∈ ∆.
– Line 26 and 30 are cases of rule (p, αβ → p′, γ) ∈ ∆.
– Line 35 and 36 are cases of rule (p, γ → p′, αβ) ∈ ∆.

(If)We show that if p
γ7→ q ∈ ∇, then after termination (p, γ, q) ∈ rel. Observe

that all the transitions in trans eventually end up in rel. Therefore we only need
to prove that all transitions of ∇ added either to rel or trans during execution
of the algorithm.

The desired property is derived from the following facts:

– Because of lines 11, ∇0 ⊆ rel holds.
– If (p, ε→ p′, γ′) ∈ ∆ and (p, γ, q) ∈ rel, then (p′, γ′, p) is added by line 19.
– If (p, γ → p′, γ′) ∈ ∆ and (p, γ, q) ∈ rel, then (p′, γ′, q) is added by line 22.

– If (p, γγ1 → p′, γ2) ∈ ∆ and whenever there is a pair t1 = (p, γ, q), t2 =
(q, γ1, q

′) ∈ rel for some p, q, p′ ∈ Q′, then we need to add (p′, γ2, q
′).

1. If t1 was examined before t2, then (p′, γ2, q
′) is added by line 30.

2. If t2 was examined before t1, t2 is in rel when t1 is examined, then
(p′, γ2, q

′) is added by line 26.

– If (p, γ → p′, αβ) ∈ ∆ and (p, γ, q) ∈ rel, then (p′, α, qp′,α) and (qp′,α, β, q)
are added by line 35 and 36.

E Nested sequences

Definition 10 ([11]). A nested sequence over a set S is a (finite or infinite)
sequence (s0, h0), (s1, h1), ... of elements in S × N satisfying h0 = 0 and hj =
hj−1 + {−1, 0, 1} for every index j > 0 of the sequence.

For a WSPDS M = 〈(P,�), (Γ,≤), ∆〉, every run, i.e., every path in its
reachability tree, can be abstracted as a nested sequence over P × {⊥} ∪ Γ , by
mapping each configuration (p, w) to the pair (h(p, w), |w|).

Definition 11 ([11]). A nested sequence (s0, h0), (s1, h1), ... over a quasi-ordered
set (S,E) is good if there exists i < j such that si E sj and hi+1, ..., hj ≥ hi. A
nested sequence is bad if it is not good.

Consider a path in the reachability tree of a WSPDS. The nested sequence
associated with this path is good, if, and only if it contains a pumpable node.

Definition 12 ([11]). A norm for a WQO set (P,�) is a function ‖·‖ : P 7→ N
such that {p ∈ P |‖p‖ ≤ n} is finite for each n. The structure (P,≤, ‖·‖) is called
a normed WQO.

A WQO set (Nk,≤) is normed by the function ‖ · ‖∞ that maps a vector to its
largest component.

Definition 13 ([11]). A nested sequence (s0, h0), (s1, h1), ... over a normed
WQO set (S,E) is n-controlled for n ∈ N if max{‖sj‖} ≤ n + j for each
index j.

LetBADP (n) be the set of n-controlled bad nested sequences over a WQO set
(P,�). The maximal length function LP is LP (n) = max{|w||w ∈ BADP (n)}.

Remark 3. Every run of a bounded WSPDS A = 〈(Nd,≤), (Nk,≤),4〉 can be
seen as a nested sequence, by mapping each configuration (p, w) to the pair
(h(p, w), |w|). Recall that h(p, w) = (p, w[1]) if w 6= ε, and h(p, w) = (p,⊥)
otherwise. We will prove in Lemma 6 that the length of a bad nested sequence
will not change after mapping ⊥ to 0. (h(p0, w0), |w0|), (h(p1, w1), |w1|), ... is a
nested sequence over Nd × Nk.

Lemma 6. Given a bounded WSPDS A = 〈(Nd,≤), (Nk,≤),4〉 with an initial
configuration (p0, w0). The length of a bad nested sequence (h(p0, w0), |w0|), ...,
(h(pi, wi), |wi|), ... associated with the path (p0, w0), ..., (pi, wi), ... will not change
by mapping ⊥ to 0.

Proof. Consider one step transition (pi−1, wi−1) ↪→ (pi, wi). If wi = ε (i.e.,
wi[1] = ⊥), the triplet corresponding to (pi, wi) is (pi,⊥, 0). Since (p0, w0[1], |w0|),
. . . , (pi, wi[1], |wi|), ... is a bad nested sequence, there are two cases.

– The triplet corresponding to (pi−1, wi−1) is (pi−1,⊥, 0), where pi−1 > pi. In
this case, the nested sequence is bad after mapping ⊥ to 0.

– The triplet corresponding to (pi−1, wi−1) is (pi−1, γ, 1), where γ ∈ Nk and
γ 6= ⊥. Since |wi−1| > |wi|, the mapping ⊥ to 0 keeps sequences bad.

Lemma 7. Given a bounded WSPDS with an initial configuration (p0, w0), the
nested sequence (h(p0, w0), |w0|), (h(p1, w1), |w1|), ... over (Nd × Nk,≤ × ≤) is
n-controlled for n = max{‖p0‖∞, ‖Σ(w0)‖∞}+ 2.

Proof. We define the norm of a WQO (Nd × Nk,≤ × ≤) as ‖(pj , wj [1])‖ =
max{‖pj‖∞, ‖wj [1]‖∞}. We will prove by induction on an index j that

‖(pj , wj [1])‖ ≤ n+ j

for each index j and n = max{‖p0‖∞, ‖w0‖∞}+ 2.

– (Base step.) ‖(p0, w0[1])‖ ≤ n is immediate.
– (Induction step.) Assume ‖(pi, wi[1])‖ ≤ n+ i. We show

‖(pi+1, wi+1[1])‖ ≤ n+ (i+ 1)

by a case analysis on the rule applied in the transition (pi, wi) ↪→ (pi+1, wi+1).
We consider push rules (pi, γ, pi+1, αβ) in detail. The other cases are similar.
By the definition of bounded WSPDS, we have ‖pi+1−pi‖∞ ≤ 1 andΣ(αβ)−
Σ(γ)‖∞ ≤ 1. Hence,

‖(pi+1, wi+1[1])‖ = max{‖pi+1‖∞, ‖wi+1[1]‖∞}
≤ max{‖pi+1‖∞, ‖Σ(wi+1)‖∞}
≤ max{‖pi‖∞, ‖Σ(wi)‖∞}+ 1

≤ n+ i+ 1

	IS-RR-2016-001_titlepage
	JAIST_TR160506
	Termination and Boundedness for Well-Structured Pushdown Systems

