
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
非負数マトリックス因数分解へのリッチモデルと高速

アルゴリズム

Author(s) Nguyen, Duy Khuong

Citation

Issue Date 2016-03

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/13512

Rights

Description Supervisor:Ho Bao Tu, 知識科学研究科, 博士

Doctoral Dissertation

Fast Algorithms and Rich Models
for Nonnegative Matrix

Factorization

Nguyen Duy Khuong

Supervisor: Professor Tu-Bao Ho

School of Knowledge Science
Japan Advanced Institute of Science and Technology

March, 2016

To my family with all my love and honor.

Abstract

Experiments, observations, and numerical simulations in science with the major support
of modern computers and sensor technologies are generating terabytes and petabytes of
data. These datasets require rich models and fast algorithms to analyze large datasets
to discover inside hidden knowledge for creating major breakthroughs in science, tech-
nology, industry, services and among others.

Nonnegative matrix factorization (NMF) is a linear powerful technique for dimension
reduction, extracting latent factors and learning part-based representation. Specially,
it reduces dimension of data making learning algorithms faster and more effective as
they often work less effectively due to the curse of dimensionality. Moreover, latent
factor extraction and part-based learning representation give concise interpretability of
datasets to discover hidden knowledge. Although NMF and its applications have been
developed for more than a decade, they have still several limitations of modeling and
performance.

In this study, we designs rich models and fast algorithms for nonnegative matrix
factorization. Specially, rich models provides concise interpretability describing data
and enhance the quality of models by adding constraints to adapt the complexity of
growing large datasets. In addition, fast algorithms are essential to find out these rich
models for large datasets.

In summary, this study has the following contributions:
Firstly, concerning about rich NMF models, we propose a new rich NMF model as

simplicial nonnegative matrix factorization and nonnegative matrix factorization with L1

L2 regularizations. Simplicial nonnegative matrix factorization can enhance smoothness
and sparsity, and give more concise interpretability of the role of latent components
over data instances. In addition, we generalize another rich NMF model as nonnegative
matrix factorization with L1 L2 regularizations for Frobenius norm and KL divergence,
which can enhance smoothness and sparsity of NMF models.

Secondly, we propose a fast parallel and distributed algorithm using limited internal
memory for nonnegative matrix factorization with Frobenius norm with L1 L2 regular-
izations, which is based on the the accelerated anti-lopsided algorithm for nonnegative
least squares. The proposed algorithm has fast over-bounded guaranteed convergence
O([(1 − µ

L
)(1 − µ

rL
)2r]k) in the space of passive variables, where convex parameter µ and

Lipschitz constant L are bounded as 1
2 ≤ µ ≤ L ≤ r.

Thirdly, we propose a fast parallel randomized algorithm for NMF nonnegative ma-

trix factorization with L1 L2 regularizations and KL divergence for large sparse datasets.
The proposed algorithm has fast convergence, and utilize the sparse properties of data,
model and representation. In addition, the experiments indicate that sparse models
and sparse representation are archived for large sparse datasets, which is a significant
milestone in this research problem.

Fourthly, we propose a fast parallel algorithm for simplicial nonnegative matrix fac-
torization with Frobenius norm. The proposed algorithm has guaranteed instance in-
ference with sub-linear convergence O(1/k), low iteration complexity, and easy sparsity
control.

Finally, we propose a fast parallel algorithm for simplicial nonnegative matrix fac-
torization with Kullback–Leibler divergence. The proposed algorithm has guaranteed
instance inference with sub-linear convergence O(1/k), and easy sparsity control. The
experiments indicate that this approach can achieve highly sparse representation with
higher accuracy in comparison with equivalent approaches.

In summary, this thesis discusses two significant mutual aspects of nonnegative ma-
trix factorization as rich models and fast algorithms. Specifically, we propose rich models
and their four fast parallel algorithms for nonnegative matrix factorization for two di-
vergences, which can adapt with large scale applications and various datasets.

Keywords: Rich models, fast algorithms, nonnegative matrix factorization, parallel
and distributed, Frobenius norm, KL divergence

iii

Acknowledgements

First of all, I would like to thank Professor Ho Tu Bao with my deep appreciation.
His advices and comments have helped me become more mature. Furthermore, I am
very grateful to his encouragement and support for me through this grad school. His
inspiration and knowledge have been invaluable for my future academic career.

Secondly, sincere thanks go to Dam Hieu Chi and Nguyen Ngoc Binh. Professor Dam
Hieu Chi have given me useful advice and insightful discussion to enhance my researches.
Professor Nguyen Ngoc Binh have guided me a study of distributed computation for
optimization for large datasets in Apache Spark, which is significant to become a data
scientist in both academic and industry.

Thirdly, I would like to express my gratitude the committee members of my disser-
tation, including Takashi Hashimoto, Riichiro Mizoguchi, Hieu Chi Dam, and Hiroshi
Motoda due to their helpful comments. In addition, I thank my friends and colleges for
fruitful discussion and collaboration. I have studied a lot from the discussion with them
including Than Quang Khoat, Tran Dinh Quoc, Nguyen Dang Thanh, Bui Ngoc Thang,
Nguyen Vu Linh, Hoang Khanh Hung, and Dang Tran Thai.

I would like to thank my family for their continual supports and encouragements
during my long-term study. Without their encouragement and support, it is hard for
me to complete this study.

Finally, I want to express my gratitude to Vietnamese Ministry of Education and
Training which financially supported me for four years of this study through 322 Scholar-
ship Program; and Japan Advanced Institute of Science and Technology which supported
me the tuition fee through Collaborative Education Program JAIST-FIVE. In addition,
I would like to thank my school, School of Knowledge Science, and Asian Office of
Aerospace R&D for additional financial support under research projects.

The whole of science is nothing more than a refinement of
everyday thinking.

— Albert Einstein —

Contents

Abstract iii

Acknowledgements iv

Contents vi

List of Figures x

List of Tables xii

1 Introduction 1
1.1 Introduction to Nonnegative Matrix Factorization 1

1.1.1 Notations and abbreviations . 2
1.1.2 Nonnegative matrix factorization 3
1.1.3 Norms and divergences for NMF 4
1.1.4 Applications for nonnegative matrix factorization 4
1.1.5 Nonnegative matrix factorization in knowledge science 5

1.2 Research Context . 6
1.3 Motivations and Challenges . 7
1.4 Thesis Structure . 9

2 Rich Models for Nonnegative Matrix Factorization 11
2.1 General NMF model . 11
2.2 Various NMF models and applications 13
2.3 Rich models for NMF . 14
2.4 Conclusion . 15

3 Accelerated Parallel and Distributed Algorithm using Limited Internal
Memory for NMF with L1 L2 Regularizations 16
3.1 Introduction . 17
3.2 Background and Related Works . 19

3.2.1 Background . 19
3.2.2 Related works . 19

3.3 Proposed Algorithm . 22
3.3.1 Iterative multiplicative update accelerated algorithm 22

Contents

3.3.2 Full decomposition for NMF . 22
3.3.3 Parallel and distributed algorithm using limited internal memory 24
3.3.4 Fast algorithm for nonnegative quadratic programming 26
3.3.5 Extensions for L1 L2 regularized NMF 31

3.4 Theoretical Analysis . 32
3.4.1 Convergence . 32
3.4.2 Complexity . 33

3.5 Experimental Evaluation . 34
3.5.1 Convergence . 37
3.5.2 Optimality . 38
3.5.3 Average of iteration number . 39
3.5.4 Running on large datasets . 39
3.5.5 Regularized NMF extensions . 40

3.6 Conclusion and Discussion . 40

4 Fast Parallel Randomized Algorithm for NMF with L1 L2 Regulariza-
tions and KL Divergence for Large Sparse Datasets 42
4.1 Introduction . 43
4.2 Proposed Algorithm . 45
4.3 Theoretical Analysis . 49
4.4 Experimental Evaluation . 50

4.4.1 Convergence . 51
4.4.2 Sparsity of factor matrices . 51
4.4.3 Used internal memory . 53
4.4.4 Running on large datasets . 54

4.5 Conclusion and Discussion . 55

5 Fast Parallel Algorithm for Simplicial NMF with Frobenius Norm 56
5.1 Introduction . 56
5.2 Simplical Matrix Factorization with Frobenius norm 58
5.3 Proposed Algorithm . 60

5.3.1 Inference Algorithm . 60
5.3.2 Learning Algorithm . 63

5.4 Theoretical Analysis . 63
5.4.1 Complexity . 63
5.4.2 Convergence Guarantee of Inference 64

vii

Contents

5.4.3 Sparsity . 64
5.4.4 Distributability and Parallelizability 65

5.5 Experimental Evaluation . 65
5.5.1 Interpretation . 65
5.5.2 Sparse Representation . 66
5.5.3 Performance for classification . 67
5.5.4 Convergence . 67

5.6 Conclusion and discussion . 68

6 Fast Parallel Algorithm for Simplicial NMF with KL Divergence 69
6.1 Introduction . 69
6.2 Proposed Algorithm . 70

6.2.1 Inference Algorithm . 70
6.2.2 Learning Algorithm . 72

6.3 Theoretical Analysis . 74
6.3.1 Complexity . 74
6.3.2 Convergence Guarantee of Inference 74
6.3.3 Sparsity . 75
6.3.4 Parallelizability and distributability 75

6.4 Experimental Evaluation . 76
6.4.1 Sparse Representation . 76
6.4.2 Performance for classification . 77
6.4.3 Convergence . 77

6.5 Conclusion and discussion . 78

7 Conclusion and Future Works 79
7.1 Conclusion . 79
7.2 Future Works . 80

List of Publications i

References ii

viii

Contents

This dissertation was prepared according to the curriculum for the Collaborative
Education Program organized by Japan Advanced Institute of Science and Technology,
and University of Engineering and Technology, Vietnam National University, Hanoi.

ix

List of Figures

1.1 Illustration of nonnegative matrix factorization 3
1.2 Illustration of nonnegative matrix factorization 5
1.3 Research context of proposed fast algorithms 7
1.4 Research context of proposed rich models 8
1.5 Thesis structure: numbers in circles refer chapters 10

2.1 General model for nonnegative matrix factorization 12
2.2 Basic model for nonnegative matrix factorization 13
2.3 L1 and L2 regularization model for nonnegative matrix factorization . . . 13
2.4 Orthogonal model for nonnegative matrix factorization 14
2.5 Orthogonal nonnegative matrix tri-factorizations model for clustering . . 14
2.6 Model for simplicial nonnegative matrix factorization 15

3.1 Distributed System Diagram for NMF 24
3.2 59 optimizing steps in iterative exact line search method using the first

order derivative for the function 3.4 starting at x0 = [200 20]T 29
3.3 1 optimizing steps in iterative exact line search method using the first

order derivative for the function 3.5 starting at y0 = x0

√
diag(H) 29

3.4 Objective function values ∥V −W T F∥2
2/2 versus CPU seconds for datasets:

Faces, Digits, and Tiny Images . 37
3.5 Objective function values ∥V −W T F∥2

2/2 in terms of the iteration number
for datasets: Faces, Digits, and Tiny Images 38

3.6 average of the iteration number k̄, average of iteration time, and conver-
gence of fk

fMaxInt
in learning NMF model for the dataset Nytimes within

the different numbers of latent components 40
3.7 Convergence of regularized NMF Extensions for algorithms AcS, Nev and

Alo within two regularized cases: µ2 = 10−2 and µ2 = β2 = 10−2 40

4.1 Objective value D(V ∥W T F) versus running time with r = 10 52
4.2 Objective value D(V ∥W T F) versus running time with r = 20 53
4.3 Running time of 100 iterations with different number of latent component

using 1 thread . 54
4.4 Running time of 100 iterations with r = 50 and using different number of

threads . 55

x

List of Figures

5.1 Basic NMF . 66
5.2 Simplicial NMF . 66
5.3 Latent components with K = 25 for digit database 66
5.4 Sparsity of new coefficients for Frobenius norm with r = 30 66
5.5 Inaccuracy for Digit Classification . 67
5.6 Information Loss for Frobenius norm with r = 30 68

6.1 Sparsity of new coefficients for KLdivergence with r = 30 76
6.2 Inaccuracy for Spam Classification . 77
6.3 Information Loss for KL divergence with r = 30 78

xi

List of Tables

3.1 Comparison Summary of NMF solvers 18
3.2 Complexity of an iteration in NMF solvers 35
3.3 Dataset Information . 36
3.4 Optimal Values of NMF solvers . 38
3.5 Average of Iteration Number k̄ . 39

4.1 Summary of datasets . 50
4.2 Sparsity (%) of (W, F) for the algorithm SRCD’s results 52
4.3 Used internal memory (GB) for r = 10 53

xii

Chapter 1

Introduction

Hiding within those mounds of data is knowledge that could
change the life of a patient, or change the world.

— Atul Butte, Stanford

Nonnegative matrix factorization is a linear fast powerful dimensionality reduction,
which can extract latent factors to effectively interpret and discover hidden knowledge
in datasets. In this chapter, we introduce basic concepts for nonnegative matrix factor-
ization.

1.1 Introduction to Nonnegative Matrix Factoriza-
tion

Experiments, observations, and numerical simulations in science with the major sup-
port of modern computers and sensor technologies have been generating terabytes and
petabytes of data [24, 79]. Finding hidden knowledge in these datasets has already
led to major breakthroughs in science, technology, industry, services and among oth-
ers [1,24,74]. For example, Google needs to search 30 trillion web pages and 100 billion
times a month for giving useful suggestions for users 1. The entire contents of the Na-
tional Institutes of Health’s 1000 Genomes Project are approximately all 200 terabytes
to be analyzed to find out hidden disease patterns, which can be the answers for curing
diseases as cancer and diabetes 2 [1].

Many datasets are formatted in pair-relationship nonnegative matrices such as doc-
uments, images, genes, log datasets, ... [22] In addition, latent factors are hidden inside
these datasets and underlying the relationship. For example, latent topics are hidden
between words and documents [3,34]. Specifically, each document is a mixture of latent

1http://venturebeat.com
2http://www.zdnet.com

1

http://venturebeat.com
http://www.zdnet.com

1.1 Introduction to Nonnegative Matrix Factorization

topics, while each topic contains a number of weighted words. The process of extracting
these latent factors in these datasets is known as learning representation, which is one key
problem in artificial intelligence for understanding knowledge inside datasets, dimension-
ality reduction, information retrieval, and many other tasks in machine learning [6, 30].
Furthermore, this process can be conducted by nonnegative matrix factorization which
is a linear fast powerful dimensionality reduction to extract latent factors to effectively
interpret and discover hidden knowledge and relationships between two sets of objects
in the datasets. In this thesis, we study several significant issues of nonnegative matrix
factorization to effectively extract latent factors in these datasets.

1.1.1 Notations and abbreviations

In this thesis, we use notations as follows:
n Dimension of data instances
m Number of data instances
r Number of latent factors or number of latent components
V ∈ Rn×m as data nonnegative matrix
W ∈ Rr×n as basis vector matrix
F ∈ Rr×m as coefficient factor matrix
Aj Column jth vector
α, α1, ... L2 regularization parameter
β, β1, ... L1 regularization parameter
γ Orthogonality regularization parameter
Wi, Fj ∈ Rk

1n [1, 1, ..., 1]T ∈ Rn

0n [0, 0, ..., 0]T ∈ Rn

D(x∥y) Function to measure the difference between x and y

∥x − y∥1 = ∑n
i=1 |xi − yi|, where x, y ∈ Rn

∥x∥p
p = ∑n

i=1 xp
i , where x ∈ Rn and p ∈ 1, 2, 3, ...

List of abbreviations:
NMF Nonnegative matrix factorization
NTF Nonnegative tensor factorization
sNMF Simplicial nonnegative matrix factorization
KL Kullback–Leibler
LS Least squares
NNLS Nonnegative least squares

2

1.1 Introduction to Nonnegative Matrix Factorization

≈ ×

m data instances

n
at

tri
bu

te
s

n
at

tri
bu

te
s

m data instancesr latent factors

WT ∈Rn×r

F ∈Rr×m

V ∈Rn×m

r l
at

en
t f

ac
to

rs

an instance

new representation

Fig. 1.1 Illustration of nonnegative matrix factorization

1.1.2 Nonnegative matrix factorization

Nonnegative matrix factorization (NMF) is a powerful technique widely used in appli-
cations of data mining, signal processing, computer vision, bioinformatics, etc. [92, 98].
Fundamentally, NMF has two main purposes. First, it reduces dimension of data mak-
ing learning algorithms faster and more effective as they often work less effectively due
to the curse of dimensionality [41]. Second, NMF helps extracting latent components
and learning part-based representation, which are the significant distinction from other
dimension reduction methods such as Principal Component Analysis (PCA), Indepen-
dent Component Analysis (ICA), Vector Quantization (VQ), etc. This feature originates
from transforming data into lower dimension of latent components and non-negativity
constraints [29,34,58].

Mathematically, nonnegative matrix factorization (NMF) is formualated as follows:

Definition 1 Given a dataset consisting of m vectors in n dimensions V = [V1, V2, ..., Vm]
∈ Rn×m

+ , where each vector presents a data instance. NMF seeks to approximately
factorize V into a product of two nonnegative factorizing matrices W T and F , where
W ∈ Rr×n

+ and F ∈ Rr×m
+ are coefficient matrix and latent component matrix, respec-

tively, V ≈ W T F .

The illustration of approximate nonnegative matrix factorization is visually presented
in Figure 1.1. Specifically, a nonnegative data matrix V ∈ Rn×m

+ , each column of which
is a data instance and each row presents an attribute of data instances, is approximately
factorized into a product of two nonnegative matrices as W T ∈ Rn×r and F ∈ Rr×m. In
addition, each column of W T is latent factors inside the dataset V , and each column of
F is new presentation of an column in the data matrix V .

3

1.1 Introduction to Nonnegative Matrix Factorization

Furthermore, after determining the two factor matrices W T and F , each instance
is approximated by a linear combination of these latent components Vi ≈

r∑
k=1

FkiW
T
k .

Hence, the vectors in W T are latent factors underlying the dataset V , and Fi is the new
representation of vector Vi in the new space of latent factors W T . In addition, Fi can
be specified when W T is fixed; thus, W T can be considered the parameters of the NMF
model. Fi is a representative of the data instance Vi in a higher abstract space of W T

instead of raw coordinates. Furthermore, datasets are assumed to follow an additive
model [22], and non-negativity conditions are significant to successfully extract latent
factors because they reduce overlapping of extracted hidden factors that are raised by
lacking the orthogonality conditions of basis vectors.

1.1.3 Norms and divergences for NMF

In another mathematical way of understanding NMF, the factorization is the transforma-
tion of vectors in dataset V to a new space of vectors in W T to obtain new representation
F . Specifically, determining F is considered the projection of datasets into a new space
of latent factors W T . W T F is the result of projecting back into the original space of
new coefficients F .

Furthermore, the whole of information in the original space can not be kept be-
cause m, n is often bigger than r. To retain the properties of V , the factorization
needs to guarantee having at least information loss via minimizing an objective func-
tion D(V ∥W T F) =

m∑
j=1

d(Vij∥[W T F]ij); where d(x∥y) can be considered a function to
measure the difference between x and y.

In practice, many functions are employed depending on the properties of datasets.
For examples, Frobenius norm is suitable for image datasets [39], Kullback–Leibler (KL)
divergence is employed for count sparse datasets such as documents, and Itakura-Saito
(IS) divergence is more suitble for decomposing a power spectrogram in musical appli-
cations [95]. In this research, we focus on two of the most popular divergences:

• Frobenius norm: d(x∥y) = (x − y)2

• KL divergence: d(x∥y) = x log(x
y
) − x + y

1.1.4 Applications for nonnegative matrix factorization

Nonnegative matrix factorization has been widely employed in many applications be-
cause it can automatically extract sparse and easily interpretable latent components [34]

4

1.1 Introduction to Nonnegative Matrix Factorization

≈

m documents

n
w

or
ds

n
w

or
ds

m documentsr topics

×

r t
op

ic
s

new representation

a document

a latent topic

Fig. 1.2 Illustration of nonnegative matrix factorization

inside datasets to more effectively represent data instances and also discover hidden
knowledge. In computer science, it have been applied in many research areas such
as image processing for feature extraction [58, 69]; text mining for topic recovery [3],
document classification [8], document clustering [53, 84], etc; hyperspectral imaging for
identifying endmembers and classifying pixels [65, 68]; multimedia for blind source sep-
aration and music analysis [91]; social network for community detection [93]; etc. In
other fields, NMF is a powerful tool to effectively analyze the experimental results to
create significant breakthroughs such as in genomics for deciphering signatures of mu-
tational processes operative in human cancer [1], in physics for understanding of the
optical response of noble-metal nanoparticles [74], etc.

One example of NMF application is text processing [34], in which a collection of
documents are given to extract latent topics and find the new document representation
as a mixture of latent topics, see Figure 1.2. Specifically, each document is represented
by weighted words in a column of V , and each latent factor is represented by weighted
words in a column of W T . Each new document representation as a column of F is
a mixture of latent topics. This technique is widely applied in many applications of
information retrieval, document classification, document clustering, etc...

1.1.5 Nonnegative matrix factorization in knowledge science

We have been interacting large volumes of data in scientific fields to discover knowledge
for this digital era [24]. However, humans are always limited in processing the large
mount and the high dimension of data. Hence, knowledge discovery must be essentially
supported by dimensionality reduction and data processing methods which create and
justify hypotheses in order to discover hidden knowledge inside observed data from
experiments.

In comparison with dimensionality reduction like PCA, ICA, nonnegative factoriza-

5

1.2 Research Context

tion factorization has more concise interpretability because it can achieve linear part-
base representation with high comprehension [86]. Specifically, observed instances are
analyzed into small structure parts; then, these intermediate results are effectively inter-
acted to create hypothesis. For example, documents can be represented by a combina-
tion of hidden topics [34]. Extracting hidden topics lead to understanding and managing
knowledge of documents more effectively. Therefore, nonnegative matrix factorization
is a powerful tool to manage and discovery knowledge from observed datasets in order
to provide convenient services for us.

1.2 Research Context

Nonnegative matrix factorization has more than a decade of rapid development with
numerous applications. Firstly, two milestones in early days of the NMF historical
development were its mathematical formulations as positive matrix factorization with
Byzantine algorithms [75] and as parts-based representation with a simple effective al-
gorithm [58]. Then, various works contributed to NMF can be viewed in three major
perspectives: variants of NMF, algorithms and applications. In particular, variants of
NMF are based on either divergence functions [83,97], or constraints [43,76], or regular-
izations [19,59]. Most NMF algorithms were developed in two main directions: provable
algorithms [2] and iterative multiplicative update algorithms [98].

Concerning provable algorithms, two major limitations of complexity and flexibility
still exist for challenging current researches [2]. Currently, state-of-the-art algorithms
running in a polynomial time O((mn)O(r)) may reduce the feasibility for numerous large
scale applications. In addition, it is difficult to add more constraints into the objective
function and to change the kinds of objection functions because it is believed to need
many practical settings [2]. Hence, this thesis only discusses rich models and their fast
algorithms based on iterative multiplicative update algorithms to deal with big data.

The iterative multiplicative update algorithms can be divided into inexact block
coordinate descent methods [7, 12, 57, 58, 63], and exact block coordinate descent meth-
ods [46, 49, 96], and accelerated block coordinate descent methods [35, 36]. These al-
gorithms is classified based on the optimization strategies. The common characteristic
of inexact block coordinate descent methods is their usage of gradient methods to seek
an approximate solution for NNLS problems, which is neither optimal nor fulfilling of
fast approximations and accelerated conditions. In addition, the specific characteristic
of exact block coordinate descent methods is obtaining optimal solutions for two NNLS

6

1.3 Motivations and Challenges

Algorithms	 for	 NMF

inexact	 block	
coordinate	

descent	 methods

exact	 block	
coordinate	

descent	 methods

accelerated	 block	
coordinate	

descent	 methods

Exact	 Algorithms

Accelerated	
Algorithm	

Fast algorithm with sub-
linear convergence and

low complexity for
simplicial NMF

Fast algorithm for large
sparse datasets having
fast convergence with

low complexity for
NMF with KL

divergence

Provable	 Methods

Approximate	
Algorithms

Fast	 Randomized	
Algorithm

2	 Fast	 Algorithms	
based	 on	 Frank-‐

Wolfe	

Fast algorithm with
linear convergence and
using limited internal

memory for NMF with
Frobenius norm

Fig. 1.3 Research context of proposed fast algorithms

problems in each iteration. Finally, the accelerated methods use fast solution approx-
imations satisfying accelerated conditions to reduce the complexity and to keep fast
convergence.

In this research, we propose rich models and fast algorithms for nonnegative matrix
factorization. Concerning rich models, two rich models, namely NMF with L1 L2 regu-
larizations and simplicial NMF (see Figure 1.4 that is extended from [92]), are proposed
to enhance sparsity, smoothness and interpretability. In comparison with the previous
models, the proposed rich models are more general, robust and interpretable to deal with
various data. Regarding to fast algorithms, we propose four fast parallel algorithms for
four NMF variants of two rich models and two divergences. Furthermore, the proposed
algorithms are carefully designed to achieve low complexity and fast convergence to deal
with big data.

1.3 Motivations and Challenges

Although nonnegative matrix factorization and its applications have been developed for
more a decade, there remains many open problems for further studies. Some of major

7

1.3 Motivations and Challenges

NMF

Basic	 NMF Constrained	
NMF

Structured	
NMF

Generalized	
NMF

Weighted	
NMF

Semi-‐NMF

NTF

NMSF

Kernel	 NMFConvolutive
NMF

NMTF

Manifold	 NMF

Orthogonal	
NMF

Discriminant	
NMF

Simplicial	 NMF

Sparse	 NMF

Smooth	 NMF

NMF	 with	 L1	
L2	

regularizations

A rich model having
concise interpretability
of latent component role

A rich model regularizes both
smoothness and sparsity in both latent
components and new coefficients

Fig. 1.4 Research context of proposed rich models

challenges can be enumerated as follows:
C1. Rich models: Nonnegative matrix factorization is an ill-posed inverse prob-

lem. In other words, many local optimal solutions, called as stationary points, are
existed. Hence, rich models are necessary to concisely interpret the relationship ob-
served data and latent factors. Rich models will specially describe latent factors and
new coefficients to enhance the factorization results. In addition, model-based approach
provides significant advantages in creating highly tailored models for specific scenarios,
rapidly prototyping and easily understanding various models [10].

C2. Fast convergence and low complexity: In practice, multiple iterative
algorithms like EM algorithms containing a number of iterations are employed for NMF
because NMF is often an ill-posed inverse problem and its objective function depends on
separated sets of variables W T and F . The number of used iterations and the iteration
complexity mainly influence the speed of algorithm performance. In addition, NMF is
a non-convex optimization problem, yet finding new W and F when fixing one of them
is convex. Hence, algorithms having fast guaranteed convergence are preferred rather
than heuristic unstable ones [36].

C3. Parallel and distributed computation: The development of technology and
science has been generating huge data matrices [64], which is impossibly factorized by a
single core or a computer. Hence, the computation must be parallelized and distributed

8

1.4 Thesis Structure

to reduce the running time. The major challenges are how to decompose the computation
into small independent computing units, deal with the limited internal memory and
various constraints of smoothness, sparsity, and orthogonality [92, 98]. Furthermore,
emerging new computing models such as Hadoop and Spark leads to redesign parallel
NMF algorithms for distributed computation.

C4. Sparsity of models and representation: Sparsity is a natural property of
data [5], which can be measured by the number of non-zeros elements. For example, the
number of words in a topic and the number of topics in a document should be small [3,34].
Moreover, sparsity leads to save used internal memory, enhance the speed of algorithms,
and void over-fitting problems [40, 89]. In nonnegative matrix factorization, algorithms
need to attain sparse models W T , sparse representation in F , and sparse computation
that utilizes the sparsity of W T and F to increase their speed.

Based on these challenges, we develop rich models having more concise interpretabil-
ity with high quality of sparsity and smoothness. In addition, fast algorithms having
fast convergence and low complexiy for these rich NMF models are proposed to deal
with large datasets in parallel and distributed systems.

1.4 Thesis Structure

The thesis structure is depicted in Figure 1.5, which contains six main chapters discussing
models and algorithms for nonnegative matrix factorization:

Chapter 2 propose two rich NMF models that give more concise interpretability and
achieve high quality, namely NMF with L1 L2 regularizations and simplicial NMF for
Frobenius norm and KL divergence.

Chapter 3 proposes an accelerated parallel and distributed algorithms for NMF with
Frobenius norm, which inherits a novel accelerated anti-lopsided algorithm for non-
negative least squares. Specifically, the proposed algorithm achieves over-bounded linear
convergence rate of O([(1 − µ

L
)(1 − µ

L
)2r]k) in the sub-spaces of passive variables when

fixing one of latent factor matrix; where µ and L are always bounded as 1
2 ≤ µ ≤ L ≤ r.

Chapter 4 introduces a fast parallel randomized algorithm for NMF with KL-divergence
having fast convergence to solve major problems for count sparse datasets including
sparse model, sparse representation, sparse algorithm, limited internal memory, and
parallel algorithm.

Chapter 5 introduces a new formulation of NMF as simplicical NMF for Frobenius
norm, which give a more concise interpretability of the roles of latent factors contribut-

9

1.4 Thesis Structure

Rich models for NMF

NMF with L1 L2
regularizations Simplicial NMF

Fast algorithm
for NMF with

Frobenius norm

Fast algorithm
for NMF with KL

divergence

Fast algorithm
for Simplicial

NMF with
Frobenius norm

Fast algorithm
for Simplicial
NMF with KL
divergence

Accelerated
Antilopsided

Algorithm

Sparse
Randomized
Coordinate

Descent Algorithm

Frank-Wolfe
Algorithm

3

3 4 5

Approximate
Algorithm

6

2

2 2

Models

Fast
Algorithms

Fig. 1.5 Thesis structure: numbers in circles refer chapters

ing on the data instances by assuming that each instance is a probabilistic contribution
of latent components, while it still enhance sparsity and smoothness. In addition, the
proposed inference algorithms based on Frank-Wolf algorithm has sub-linear conver-
gence rate O(1/k), which can achieve concise interpretability, fast convergence versus
iterations, sparse representation, and high accuracy classification.

Chapter 6 introduce a new formulation of NMF as simplicical NMF KL divergence,
which also give a more concise interpretability of the roles of latent factors contributing
on the data instances by assuming that each instance is a probabilistic contribution
of latent components, while it still enhance sparsity and smoothness. In addition, the
proposed inference algorithms based on Frank-Wolf algorithm has sub-linear convergence
rate O(1/k), which can achieve fast convergence versus iterations, sparse representation,
and high accuracy classification.

In summary, this thesis discusses two significant solid aspects of nonnegative matrix
factorization as rich models and fast algorithms. Specifically, we propose rich mod-
els and their four fast parallel algorithms for nonnegative matrix factorization for two
divergences, which can adapt with large scale applications and various datasets.

10

Chapter 2

Rich Models for Nonnegative
Matrix Factorization

Essentially, all models are wrong, but some are useful.

— George Edward Pelham Box

Model and algorithm are the two significant mutual aspects for nonnegative matrix
factorization (NMF). The model describes the processing of generating data, which the
algorithm learns the model from training data and finds out the new representation of
new data instances. In this chapter, we propose two rich models for nonnegative matrix
factorization as simplicial NMF and NMF with L1 L2 regularizations, then the next
chapters will discuss fast parallel algorithms for NMF variants of the rich models.

2.1 General NMF model

Nonnegative matrix factorization is a linear hidden factor model, which transfers high-
dimensional observed data into a low-dimensional space [11] and extracts latent compo-
nents inside data. Specially, V is approximately factorized by a product of two matrices:
V ≈ W T F . W T can be considered the parameters of NMF models, because the new
coefficient Fi of Vi can be specified by Vi ≈ W T Fi when W T is fixed. W T includes latent
vectors or basis vectors; and F includes new coefficients as new low-rank representa-
tion of data instances. The quality of this factorization is guaranteed by a divergence
D(V ∥W T F) such as Frobenius norm, KL-divergence, etc [97,98].

Although these divergences are often convex, NMF is a non-convex problem and
has many local optimal solutions. Hence, various constraints and regularizations are
added to control the quality of NMF [92, 98]. These constraints and regularizations
are to enhance concise interpret-ability, sparsity, and orthogonality in order to provide
better explanation, increase accuracy, and avoid over-fitting. Therefore, in practice,
many variants of NMF are developed to be suitable for many real applications. In this

11

2.1 General NMF model

α1 β1 γ1 ...
Wi Vij

S

Fj

α2 β2 γ2 ...

n m

1

Fig. 2.1 General model for nonnegative matrix factorization

section, we propose a general NMF model, which can catch many variants of NMF, see
Figure 2.1. Based on this model, new researchers can conveniently comprehend existing
NMF formulations during over a decade and also design new models for their various
studies.

In the general model, it contains three main hidden variables S, Wi, and Fj; and
several constraint parameters α1, α2, β1, β2, γ1, γ2, etc. Wi and Fj are latent factors
contributing on the observation Vij, which always appear in every NMF variant. In
addition, because V is not normalized, S includes scaling factors for latent factors or
provides additional interpretabilities. In many variants, these scaling factors are omitted
since S can be considered to equal to the identify matrix in that case.

Although the mathematical roles of W and F are equivalent in the objective func-
tions, they have different meanings. Hence, the parameters may have different meanings
as latent components and new coefficients. Specifically, parameters α1, α2, β1, β2, γ1, γ2,
etc are to control the quality of NMF including sparsity, smoothness, factor indepen-
dence, etc. The roles of α1 and α2, β1 and β2 are equivalent for basis factors W and
new coefficient F . However, the interpretability of γ1 and γ2 are different for W and
F . γ1 controls the orthogonality of basis vectors W T , while γ2 enhances the sparsity
of F that leads to spectral clustering by the orthogonal unit constraints F T

i Fi = 1 and
F T

i Fi′ = 0, ∀i, i′, i ̸= i′ [34, 51, 78]. Usually, these quality parameters do not simultane-
ously appear in a NMF variant because the model may become thoroughly complicated
over the requirements of real applications.

In real application, parameter variables can be omitted or added to construct simpler
or more effective NMF models in real applications. In the next section, we review various
customized models for many variants of NMF.

12

2.2 Various NMF models and applications

Wi Vij Fj

n m

1

Fig. 2.2 Basic model for nonnegative matrix factorization

α1 β1
Wi Vij Fj

α2 β2

n m

1

Fig. 2.3 L1 and L2 regularization model for nonnegative matrix factorization

2.2 Various NMF models and applications

For more a decade of development, NMF has many variants employed in numerous
applications. In this section, we summarized several NMF models, which are widely
applied in real applications.

In the most basic formulation as basic NMF [57], most the factors and the quality
parameters are omitted, excepted Wi and Fj, see Figure 2.2. Many algorithms have been
developed with different optimization strategies, namely inexact methods [46, 58, 63]
and exact methods [35, 36, 44, 47, 49, 96]. Furthermore, NMF models with L1 and L2

regularizations are proposed to control sparsity and smoothness of NMF [36,44]. In this
study, besides proposing fast algorithms, we generalize them to adapt with all the L1

and L2 NMF variants for Frobenius norm and KL-divergence with the general objective
function D(V ∥W T F) + α1∥W∥1 + β1∥W∥2

2 + α2∥F∥1 + β2∥F∥2
2.

Furthermore, orthogonal NMF models are proposed to attain independence basis
factors by adding orthogonal constraints on W [51], and spherical k-means by adding
orthogonal constraints on F [78], see Figure 2.4.

In the previous NMF formulations, V is often not normalized, while scaling factors S

is ignored since S equals to the identify matrix I. In addition, W and F are not normal-
ized, which leads to unintended solutions that lacks of interpret-ability. Hence, several
studies conduct nonnegative matrix tri-factorization V ≈ W T SF with orthogonal con-
ditions on W T for orthogonality and F for clustering [27], see Figure 2.5. Although

13

2.3 Rich models for NMF

γ1
Wi Vij Fj

γ2

n m

1

Fig. 2.4 Orthogonal model for nonnegative matrix factorization

γ1
Wi Vij

S

Fj

γ2

n m

1

Fig. 2.5 Orthogonal nonnegative matrix tri-factorizations model for clustering

orthogonal conditions provides a poor matrix low-rank approximation, they give a con-
cise interpretability of clustering and enhance factor independence.

2.3 Rich models for NMF

NMF is a non-convex problem and has stationary points of solutions. Hence, it is
necessary to add more constraints into the basic NMF model based on prior knowledge
to achieve rich models with more concise interpretability and high quality of sparsity,
smoothness, and latent factor independence. In this thesis, we propose two rich models,
namely NMF with L1 L2 regularizations (Figure 2.3) and simplicial NMF (Figure 2.6)
for two popular divergences as Frobenius norm and KL divergence.

NMF with L1 L2 regularizations (Figure 2.3) generalizes models of the previous re-
searches for NMF variants and simultaneously attains smoothness and sparsity. In com-
parison with the previous NMF formulations, NMF with L1 L2 regularizations enhance
the sparsity and the smoothness of NMF in both latent components W and coefficients
F . Specifically, the previous formulations lacks the generalization of algorithm to deal
with all the possible cases of L1 L2 regularizations. In Chapter 3 and Chapter 4, we will
propose fast parallel algorithms for all the NMF variants of L1 L2 regularizations for the

14

2.4 Conclusion

Wi Vij Fj

σ

n m

1

Fig. 2.6 Model for simplicial nonnegative matrix factorization

two most popular divergences as Frobenius norm and KL divergence.
Meanwhile, simplicial NMF (Figure 2.6) gives more concise interpretability of the role

of latent components over data instances, in which each data instance is a probabilistic
combination of latent components. The detailed formulations and proposed algorithms
will be discussed in Chapter 5 and 6.

2.4 Conclusion

In summary, NMF is an opening flexible model, which can adapt with numerous applica-
tions. When studying on nonnegative matrix factorization, the model for NMF and the
most suitable algorithm for the model should be carefully selected. In next chapters, we
discuss the algorithm aspects for specific problems on nonnegative matrix factorization.

15

Chapter 3

Accelerated Parallel and Distributed
Algorithm using Limited Internal
Memory for NMF with L1 L2
Regularizations

Data is the new science. Big data holds the answers.

— Pat Gelsinger, CEO, EMC

Nonnegative matrix factorization (NMF) is a powerful technique for dimension re-
duction, extracting latent factors and learning part-based representation. For large
datasets, NMF performance depends on some major issues: fast algorithms, fully par-
allel distributed feasibility and limited internal memory. This research aims to design a
fast fully parallel and distributed algorithm using limited internal memory to reach high
NMF performance for large datasets. Specially, we propose a flexible accelerated algo-
rithm for NMF with all its L1 L2 regularized variants based on full decomposition, which
is a combination of exact line search, greedy coordinate descent, and accelerated search.
The proposed algorithm takes advantages of these algorithms to achieve over-bounded
linear convergence rate of O[(1 − µ

L
)(1 − µ

rL
)2r]k in optimizing each factor matrix when

fixing the other factor one in the sub-space of passive variables, where r is the number
of latent components, and µ and L are bounded as 1

2 ≤ µ ≤ L ≤ r. In addition, the
algorithm can exploit the data sparseness to run on large datasets with limited internal
memory of machines. Furthermore, our experimental results are highly competitive with
7 state-of-the-art methods about three significant aspects of convergence, optimality and
average of the iteration number. Therefore, the proposed algorithm is superior to fast
block coordinate descent methods and accelerated methods.

16

3.1 Introduction

3.1 Introduction

Nonnegative matrix factorization (NMF) is a powerful technique widely used in ap-
plications of data mining, signal processing, computer vision, bioinformatics, etc. [98].
Fundamentally, NMF has two main purposes. First, it reduces dimension of data mak-
ing learning algorithms faster and more effective as they often work less effectively due
to the curse of dimensionality [41]. Second, NMF helps extracting latent components
and learning part-based representation, which are the significant distinction from other
dimension reduction methods such as Principal Component Analysis (PCA), Indepen-
dent Component Analysis (ICA), Vector Quantization (VQ), etc. This feature originates
from transforming data into lower dimension of latent components and non-negativity
constraints [29,34,58].

In the last decade of fast development, there were remarkable milestones. The two
first milestones in early days of the NMF historical development were its mathemati-
cal formulations as positive matrix factorization with Byzantine algorithms [75] and as
parts-based representation with a simple effective algorithm [58]. The last decade has
witnessed the rapid NMF development [92,98]. Various works on NMF can be viewed in
three major perspectives: variants of NMF, algorithms and applications. In particular,
variants of NMF are based on either divergence functions [83,97], or constraints [43,76],
or regularizations [19,59]. Most NMF algorithms were developed along two main direc-
tions: geometric greedy algorithms [90] and iterative multiplicative update algorithms.
Although geometric greedy algorithms are usually fast, they are hard to trade off com-
plexity, optimality, loss information and sparseness.

More recently, it is well recognized that the most challenging problems in iterative
multiplicative update algorithms for NMF are fast learning, limited internal memory,
parallel distributed computation, among others. In particular, fast learning is essential
in learning NMF models from large datasets, and it is indeed difficult to carry out them
when the number of variables is very large. In addition, the limited internal memory
is one of the most challenging requirements for big data [38], because data has been
exploring rapidly while the internal memory of nodes is always limited. Finally, parallel
and distributed computation makes NMF applications feasible for big data [64].

To deal with these challenges, this work develops an accelerated algorithm for NMF
and its L1 L2 regularized variants having several major advantages that are summarized
in Table 3.1. The proposed approach has five significant properties as follows:

• NMF and its variants: We fully decompose NMF and its L1 L2 regularized variants

17

3.1 Introduction

Table 3.1 Comparison Summary of NMF solvers

Criteria Inexact Exact Accelerated
MUR PrG Qn Nt AcS BlPFCD AcH Ne Alo

Guaranteed Convergence ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ 1
k2 ✓[(1 − µ

L)(1 − µ
rL)2r]k

Exploit Data Spareness ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓
Used Internal Memory O(mn + r(r + n + m)) O(r(r + n))
Fully Parallel & Distributed ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Optimization Problem Size r(m, n) r r(n, m) (m, n) r(m, n) r

✓means considered, and ✗means not considered
1
2 ≤ µ ≤ L ≤ r, n × m is the data matrix size, r is the number of latent components
(m, n) = max(m, n), and r(m, n) = r.max(m, n)
Abbreviations: MUR: Multiplicative Update Rule [58]; PrG: Projected Gradient methods [63];
Nt: Newton-type methods [46]; Qn: Projected Quasi-Newton [96]; AcS: Fast Active-set-like
method [47]; BlP: Block Principal Pivoting method [49]; FCD: Fast Coordinate Descent meth-
ods with variable selection [44]; AcH: Accelerated Hierarchical Alternating Least Squares [35];
Nev: Nesterov’s optimal gradient method [36]; Alo: The proposed method.

into non-negative quadratic programming problems. This decomposition makes the
proposed algorithm flexible to adapt all L1 L2 regularized NMF in a unified framework
that can trade-off the quality of information loss, sparsity and smoothness.

• Algortihm: We employ an accelerated anti-lopsided algorithm in Chapter ?? for
non-negative quadratic programming. The algorithm reduces variable scaling problems
to achieve linear convergence rate of O([(1 − µ

L
)(1 − µ

rL
)2r]k) in optimizing each factor

matrix in the sub-space of passive variables, where µ and L are bounded as 1
2 ≤ µ ≤

L ≤ r. This result is advanced to fast coordinate methods and accelerated methods
in terms of efficiency as well as convergence rate. In addition, the size of optimization
problem is reduced into r (r ≪ m, n), which is the smallest among the state-of-the-art
methods. Hence, the algorithm has the low complexity and converges very fast to the
optimal solution, and it is highly potential to be applied in alternating least squares
methods for factorization models.

• Parallel and Distribution: The proposed algorithms are fully parallel and dis-
tributed on limited internal memory systems, which is crucial for big data when com-
puting nodes having limited internal memory that cannot hold the whole dataset.

• Implementation: The proposed algorithms are convenient to implement for hybrid
multi-core distributed systems because this algorithm works on each individual instance
and each latent feature.

• Comparision: This is the first time that state-of-the-art algorithms in different

18

3.2 Background and Related Works

research directions for NMF are compared together.
The rest of chapter is organized as follows: Section 3.2 discusses the background and

related works of NMF; Section 3.3 mentions our proposed algorithm; Section 3.4.2 gives
a complexity analysis of our proposed algorithms; Section 3.5 experimentally compares
our proposed algorithm with state-of-the-art algorithms for NMF among remarkable
approaches; our conclusion is stated in Section 3.6.

3.2 Background and Related Works

3.2.1 Background

Mathematically, NMF in Frobenius norm is defined as follows:
Definition 1 [NMF]: Given a dataset consisting of m vectors in a n-dimension space
V = [V1, V2, ..., Vm] ∈ Rn×m

+ , where each vector presents a data instance. NMF seeks to
decompose V into a product of two nonnegative factorizing matrices W and F , where
W = [W1, ..., Wn] ∈ Rr×n

+ and F = [F1, ..., Fm] ∈ Rr×m
+ are the latent component matrix

and the coefficient matrix respectively, V ≈ W T F , in which the quality of approximation
can be guaranteed by the objective function in Frobenius norm: D(V ∥W T F) = ∥V −
W T F∥2

2.
Although NMF is a non-convex problem, optimizing each factor matrix when fixing

the other one is a convex problem. In other words, F can be traced when W is fixed, and
vice versa. Furthermore, F and W have different roles although they are symmetric in
the objective function. W are latent components to represent data instances V by coef-
ficients F . Hence, NMF can be considered as a latent factor model of latent components
W , and learning this model is equivalent to find out latent components W . Therefore,
in this chapter, we propose an accelerated parallel and distributed algorithm to learn
NMF models W for large datasets.

3.2.2 Related works

NMF algorithms can be divided into two groups: the greedy algorithms and the iter-
ative multiplicative update algorithms. The greedy algorithms [90] are often based on
geometric interpret-ability, and they can be extremely fast to deal with large datasets.
However, it is hard to trade off complexity, optimality, loss information and sparseness.
The iterative multiplicative update algorithms such as “two-block coordinate descent”
often consist of two steps, each of them fixes one of two matrices to replace the other

19

3.2 Background and Related Works

matrix for obtaining the convergence of the objective function. There are numerous
studies on these algorithms, see Table 3.1, because NMF is nonconvex, though two steps
corresponding to two non-negative least square (NNLS) sub-problems are convex [36,48].
In addition, various constraints and optimization strategies have been used to trade off
the convexity, information loss, complexity, sparsity, and numerical instability.

Based on the optimization updating strategy, these iterative multiplicative update
algorithms can be further divided into three sub-groups:

• Inexact Block Coordinate Descent: The algorithms’ common characteristic is their
usage of gradient methods to seek an approximate solution for NNLS problems, which
is neither optimal nor fulfilling of fast approximations and accelerated conditions. Lee
et al. [58] proposed the (basic) NMF problem and simple multiplicative updating rule
(MUR) algorithm using first-order gradient method to learn the part-based represen-
tation. Seung at al. [83] concerned rescaling gradient factors with carefully selected
learning rate to achieve a faster convergence rate. Subsequently, Lin [62] modified MUR,
which is theoretically proved getting a stationary point. However, that algorithm cannot
improve the convergence rate. Berry et al. [7] projected nonnegative least square (PNLS)
solutions into nonnegative quadratic space by setting negative entries in the matrices to
zero. Although this algorithm does not guarantee the convergence, it is widely applied in
real applications. In addition, Bonettini et al. [12] used line search based on Amijo rule
to obtain better solutions for matrices. Theoretically, this method can achieve optimal
solutions for factor matrices as exact block coordinate descent group, but it very slowly
tends to stationary points because the line search is time-consuming.

• Exact Block Coordinate Descent: In contrast to the first sub-group, the common
characteristic in this group is obtaining optimal solutions for two NNLS problems in
each iteration. Zdunek et al. [96] employed second-order quasi-Newton method with
inverse of Hessian matrix to estimate the step size, aiming to a faster convergence than
projected methods. However, this algorithm may be slow and non-stable because of the
line search. Subsequently, Kim et al. [46] used rank-one to Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm to approximate the inverse of Hessian matrix. Furthermore,
Chih-Jen Lin [63] proposed several algorithms based on projected gradient methods and
exact line search. Theoretically, this method can obtain more accurate solutions, however
it is time-consuming because of exact line search and the number of iterations increased
by the large number of variables. Moreover, Kim et al. [47, 49] proposed two active-set
methods based on Karush-Kuhn-Tucker (KKT) conditions, in which the variables are
divided into two sets: a free set and an active set. Only the free set contains variables

20

3.2 Background and Related Works

that can optimize the objective functions. Removing the number of redundant variables
makes their algorithms improve the convergence rate significantly. However, the method
still has heavy computation for large-scale problems.

• Accelerated Block Coordinate Descent: The accelerated methods use fast solution
approximations satisfying accelerated conditions to reduce the complexity and to keep
fast convergence. The accelerated conditions are different constraints in different meth-
ods to guarantee convergence to the optimal solution in comparison with the initial value.
These accelerated methods are developed due to the limitation of inexact methods having
slow convergence, and exact methods having high complexity in each iteration. Partic-
ularly, for inexact methods, they have slow convergence because of the high complexity
of solution approximations in each iteration or a large number of iterations that leads
to the highly expensive computation between two sequential iterations. Furthermore,
the exact methods have high complexity in each iteration, however obtaining optimal
solutions in every iteration is controversial because it can lead to zig-zag problems when
optimizing a non-convex function of two independent sets of variables.

Firstly, Hsieh et al. [44] proposed a fast coordinate descent method with the best
variable selection to reduce the objective function. The algorithm iteratively selects
variables to update the approximate solution until the accelerated stopping condition
maxijD

F
ij < ϵpinit satisfied, where DF

ij is the reduction of the objective function based
on the variable Fij, and pinit is the maximum initial reduction over the matrix F . Al-
though the greedy update method does not have guaranteed convergence, it has the fast
convergence speed in many reports.

Subsequently, Gillis and Glineur [35] proposed a number of accelerated algorithms
using fast approximation by fixing all variables but excepting a single column of factor
matrices. This framework improved significantly the effectiveness of multiplicative up-
dates [57], hierarchical alternating least squares (HALS) algorithms [21] and projected
gradients [63]. These algorithms achieve the accelerated condition in each iteration such
as that ∥F (k,l+1) −F (k,l)∥2

2 ≤ ϵ∥F (k,1) −F (k,0)∥2
2 is the stopping condition when optimizing

the objective function on F if fixing W . Although these greedy algorithms does not have
guaranteed convergence, their results are highly competitive with the inexact and exact
methods.

More recently, Guan et al. [36] employed Nesterov’s optimal methods to optimize
NNLS with fast convergence rate O(1/k2) to achieve the accelerated convergence condi-
tion ∥ ∂f

∂F(k,l+1)
∥2

2 ≤ ϵ∥ ∂f
∂F(k,0)

∥2
2. Although Guan et al.’s method [36] has a fast convergence

rate O(1/k2), it has several drawbacks such as working on the whole factor matrices,

21

3.3 Proposed Algorithm

and less flexibility for regularized NMF variants. Furthermore, this approach does not
consider the issues of parallel and distribution, and they require numerous iterations
to satisfy the accelerated condition because the step size is limited by 1

L
, where L is

Lipschitz constant.
To deal with the above issues of accelerated methods, in next section, we propose

an accelerated parallel and distributed algorithm for NMF and its regularized L1 L2

variants with linear convergence in optimizing each factor matrix when fixing the other
factor one.

3.3 Proposed Algorithm

To read easily, this section hierarchically presents our proposed algorithm. First, an
iterative multiplicative update accelerated algorithm is introduced. Then, a transforma-
tional technique fully decomposes the objective functions of NMF into basic computation
units as nonnegative quadratic programming (NQP) problems. After that, a modified
version of the algorithm is proposed to deal with the issues of parallel and distributed
systems. Subsequently, a combinational method of an anti-lopsided algorithm and a fast
coordinate descent algorithm is developed to effectively solve NQP problems. Finally,
extensions for L1 L2 regularized NMF is discussed.

3.3.1 Iterative multiplicative update accelerated algorithm

For solving NMF, we employ an iterative multiplicative update accelerated algorithm,
like expectation-maximization (EM) algorithm, presented in Algorithm 1. This algo-
rithm consists of two main steps: one for finding F + (F + is updated F in the iteration)
when fixing W and the other for finding W + when fixing F . In the first step called E-
step, we find F +, each column of which F +

i is the new representation of a data instance
Vi in the new space of latent components W . Meanwhile, the other one, called M-step,
learns new latent components.

3.3.2 Full decomposition for NMF

This section discusses decomposing the objective function of NMF into non-negative
quadratic programming (NQP) problems, which aims to fully parallelize and distribute
the NMF computation. Particularly, in Algorithm 1, the E-step is to find new coordi-
nates of data instances in the space of latent components W by minimizing J(V ∥W T F) =

22

3.3 Proposed Algorithm

Algorithm 1: Iterative Multiplicative Update Accelerated Algorithm
Input: Data matrix V = {Vi}m

i=1 ∈ Rn×m
+ and r.

Output: Latent components W ∈ Rr×n.
1 begin
2 Randomize r nonnegative latent components W ∈ Rr×n

+ ;
3 repeat
4 E-step: Fixing W to find F + such that the accelerated condition is

satisfied;
5 M-step: Fixing F to find W + such that the accelerated condition is

satisfied;
6 until Convergence condition is satisfied;

∥V − W T F∥2
2 = ∑m

j=1 ∥Vj − W T Fj∥2
2. Hence, minimizing J(V ∥W T F) is equivalent to

independently minimizing ∥Vj − W T Fj∥2
2 for each instance j since W is fixed. Similarly,

the M-step is also equivalent to independently minimizing ∥V T
i −F T Wi∥2

2 for each feature
i, where F is fixed. Hence, the basic computation units are nonnegative least-squares
(NNLS) problems [56].

For large datasets n, m ≫ r, we equivalently turn these problems into nonnegative
quadratic programmings (NQP):

minimize
x

1
2∥Ax − b∥2

2

subject to x ≽ 0 ∈ Rr

where A ∈ Rnr
+ , b ∈ Rn

+

(3.1)

equivalent to
minimize

x
f(x) = 1

2xT Hx + hT x

subject to x ≽ 0.

where H = AT A, h = −AT b

(3.2)

Hence, finding new coefficients F + and new latent components W + can be fully
paralleled and distributed into basic computation units as solving NQP problems.

23

3.3 Proposed Algorithm

Finding new coefficient
; and computing

and

Control Node

Reduce Node
< , >

Reduce Node
< , >

Map Node

…

Map Node…

data instances

Map Node Map Node…

data instances data instances
data instances

Finding update model
for NMF

Fig. 3.1 Distributed System Diagram for NMF

3.3.3 Parallel and distributed algorithm using limited internal
memory

In this section, we design a parallel and distributed algorithm using limited internal
memory for learning NMF model W , see Fig. 3.1, which is a modified version of Algo-
rithm 1.

For large datasets, the computation can be not performed in a single process, so
parallel and distributed algorithm environments are employed to speed up the computa-
tion. For parallel and distributed systems, we often face two major issues: dependency of
computation units and limited internal memory computing nodes. In particular, compu-
tation units must be independently conducted as much as possible, since any dependency
of computing elements will increase the complexity of implementation and the delay of
data transfer over the network that reduces the performance of system. Furthermore, for
these parallel distributed systems, computation units are executed on computing nodes
within a limited internal memory. In addition, accessing external memory will increase
the complexity and reduce the performance.

For our proposed approach, the computation can be fully paralleled and distributed,
and use limited internal memory in computing nodes because the objective function is
properly decomposed to NQP problems. Particularly, Algorithm 2 presents a modified
version of iterative multiplicative update algorithms, in which computation units are
fully paralleled and distributed. In addition, Q = WW T is precomputed to reduce
the complexity, and finding new coefficients Fj can be independently computed and

24

3.3 Proposed Algorithm

Algorithm 2: Parallel and Distributed Algorithm
Input: Data matrix V = {Vj}m

j=1 ∈ Rnm
+ and r.

Output: Latent components W ∈ Rrn
+ .

1 begin
2 Randomize r nonnegative latent components W ∈ Rrn

+ ;
3 repeat
4 Y = 0 ∈ Rrn /* Y = FV T */;
5 H = 0 ∈ Rrr /* H = FF T /*;
6 Q = WW T ∈ Rrr;
7 maxStop = 0;
8 /*Parallel and distributed*/;
9 for j = 1 to m do

10 /*call Algorithm 3*/;
11 Fj ≈ argmin

x∈Rr≽0
(xT Qx

2 − V T
j W T x);

12 Y = Y + FjV
T

j ;
13 H = H + FjF

T
j ;

14 /*Parallel and distributed*/;
15 for i = 1 to n do
16 /*call Algorithm 3*/;
17 Wi ≈ argmin

x∈Rr≽0
(xT Hx

2 − Yi
T x);

18 until Convergence condition is satisfied;

25

3.3 Proposed Algorithm

distributed. Remarkably, the most heavy computation of Y = FV T and H = FF T is
divided into computing FjV

T
i and FjF

T
j to be parallel and distributed.

Particularly, the distributed system using MapReduce is described in Fig. 3.1. In this
computing model, data instances and the instance projection are parallel and distributed
over the Map nodes. The Reduce nodes sum up the results FjF

T
j and FjV

T
i of the Map

nodes. Subsequently, in the M-step, the results FF T and FV T are employed to compute
latent components W . This M-step computation can be conducted by a single machine
or a distributed system, which depends on the dimension of problem because the time
to distribute this computation over the network is usually considerable.

In comparison with the previous algorithms, this computing model is much more
effective than the previous models [33, 64,88] by the following reasons:

• The necessary memory used in computing nodes is O(size(W, Y, H)) = O(r(r+n)).
The necessary memory used in the controlled node is O(size(W, Y, H, Q)) = O(r(r+n)).
In practice, approximate solutions of NQP problems should be cached in hard disks in
order to increase accuracy and reduce the number of iterations.

• At each distributed iteration, the computation is fully decomposed into basic com-
putations units, which enhances the convergence speed to the optimal solution because
the size of optimization is significantly reduced. Furthermore, the expensive computation
FV T and FF T is fully parallelized and distributed over the computing nodes.

• The computational model is conveniently implemented because computing NMF
model is divided into basic computation units as NQP problems that are independently
solved, and the optimization is carried out on vectors instead of matrices.

In the next section, we propose a novel algorithm, Algorithm 3, to solve approx-
imately NQP problems, which is robust and effective because it only uses the first
derivative and does not consider the ill-condition of matrix inverse.

3.3.4 Fast algorithm for nonnegative quadratic programming

In this section, we briefly review the literature before proposing the novel algorithm to
solve NQP Problem 3.2 for real large-scale NMF applications.

Regarding algorithms for NNLS and its equivalent problem NQP, numerous algo-
rithms are proposed to deal with high dimension [18]. Generally, methods for solving
NNLS can divided into two groups: active-set and iterative methods [18]. Active-set
methods are traditional to solve accurately [15, 56]. However, they require heavy com-
putation in repeatedly computing (AT A)−1 with different set of passive variables. Hence,
iterative methods that can handle multiple active constraints in each iteration have more

26

3.3 Proposed Algorithm

potential for fast NMF algorithms [18, 45, 50]. Hence, iterative methods can deal with
more large-scale problems. Among the fast iterative methods, the coordinate descent
method [31] has fast approximation, but has the zip-zag problem when the solution
requires high accuracy. In addition, accelerated methods [72] has a fast convergence
O(1/k2) [36], which only require the first order derivative. However, one major disad-
vantage of the methods is that they require a big number of iterations because their
step size is limited by 1

L
that can be very small for large-scale problems; where L is

Lipschitz constant. More recently, the accelerated anti-lopsided algorithm [73] re-scale
variables to obtain fast linear convergence O([(1 − µ

L
)(1 − µ

rL
)2r]k) in the sub-space of

passive variables, while the complexity of each iteration is kept in O(r2).
Therefore, we employ the accelerated anti-lopsided algorithm having fast fast linear

convergence to reduce the number of iterations. The proposed algorithm include four
important parts to attain fast convergence:

• Part 1. Anti-lopsided transformation from Line 4 to Line 6: the variable vector x

is transformed into a new space by x = ϕ(y) as an inverse function. In the new
space, the new equivalent objective function g(y) = f(ϕ(y)) has ∂2g

∂y2
i

= 1, ∀i, or
the acceleration of each variable equals 1. As a result, the role of variables become
more balanced because the shape of the function becomes more spherical because
∂2g
∂y2

i
= 1, ∀i, and g(y) is convex. This part aims to make the post-processing parts

more effective because it can implicitly exploit the second derivative information
∂2g
∂y2

i
= 1, ∀i to guarantee that µ and L are always bounded as 1

2 ≤ µ ≤ L ≤ n.

• Part 2: Exact line search from Line 11 to Line 13: this part optimizes the objective
function with a guarantee of over-bounded convergence rate O((1 − µ

L
)k) where

1
2 ≤ µ ≤ L ≤ n over the space of passive variables, which has a complexity
O(n2). The part aims to reduce the objective functions exponentially and precisely,
although it suffers from variable scaling problems and nonnegative constraints.

• Part 3. Greedy coordinate descent algorithm from Line 15 to Line 18 and repeated
in Line 26: this part employs greedy coordinate descent using Gauss-Southwell rule
with exact optimization to rapidly reduce the objective function with fast conver-
gence O(1− µ

nL
) for each update [71,80], which has a complexity of O(n2). The part

aims to reduce negative affects of variable scaling problems and nonnegative con-
straints, although it has zig-zagging problems because of optimizing the objective
function over each single variable. Due to having fast convergence in practice and

27

3.3 Proposed Algorithm

reducing negative affects of variable scaling problems and nonnegative constraints,
this part is repeated one more time after Part 4.

• Part 4. Accelerated search from Line 22 to Line 25: This step performs a momen-
tum search based on previous changes of variables in Part 2 and Part 3, which has
a low complexity of O(n.nn(n)) where nn(n) is the number of negative elements
in (xk+1 − α△x), see Line 25 in Algorithm 3. This part relies on the global in-
formation of two distinct points to escape the local optimal information issues of
the first derivative raised by the function complexity. This part originates from
the idea that if the function is optimized from xs to xk by the exact line search
and the coordinate descent algorithm, it is highly possible that the function value
will be reduced along the vector (xk − xs) because the NNLS objective function is
convex and has (super) eclipse sharp.

Particularly, the proposed algorithm, Algorithm 3, contains two main steps: The
first step, from Line 4 to Line 6, rescales variables to avoid rescaling problems of the
first order methods by replacing y = x. ∗

√
diag(H), we have:

f(x) = 1
2xT Hx + hT x = 1

2yT Qy + qT y (3.3)

where Q = H√
diag(H)diag(H)T

and q = h√
diag(H)

such that ∂2f
∂2yi

= Qii = Hii√
HiiHii

= 1 for ∀i.
By the way, the rate of change of a quantity through variables equals to a constant to
guarantee that the convex parameter µ and Lipschitz constant L are always bounded as
1
2 ≤ µ ≤ L ≤ r.

The second step contains a loop of iterations, from Line 8 to Line 27, which combines
three algorithms including exact line search, greedy coordinate descent, and acceler-
ated search. The accelerated anti-lopsided algorithm guarantees the linear convergence
O([(1− µ

L
)(1− µ

rL
)2r]k) in the sub-space of passive variables to avoid the zip-zag problem

of the fast coordinate descent algorithm, while the coordinate block descent algorithm
speeds up the convergence to the final optimal set of passive variables. The passive
variables are variables belongs the set P = {xi|xi > 0 or ∇fi < 0} that changes through
iterations.

In addition, the complexity of each part is still kept in O(r2). As a result, the pro-
posed algorithm will utilize advantages of various algorithms to attain a fast convergence,
while retaining the same low complexity O(r2) of each iteration.

To comprehend the proposed algorithm’s effectiveness, we consider optimizing Func-

28

3.3 Proposed Algorithm

80 100 120 140 160 180 200
0

10

20

30

40

50

Fig. 3.2 59 optimizing steps in iterative exact line search method using the first order
derivative for the function 3.4 starting at x0 = [200 20]T

80 100 120 140 160 180 200

30

40

50

60

Fig. 3.3 1 optimizing steps in iterative exact line search method using the first order
derivative for the function 3.5 starting at y0 = x0

√
diag(H)

tion 3.4:

f(x) = 1
2xT

 1 0.1
0.1 10

 x + [−80 − 100]x (3.4)

The exact search gradient algorithm, from Line 11 to Line 13, starting with x0 =
[200 20]T performs 59 iterations to reach the optimal solution, see Fig. 3.2. However, the
proposed algorithm only needs 1 iterations to reach the optimal solution, see Fig. 3.3
because we optimize Function 3.5 instead of Function 3.4; where Function 3.5 is equiva-
lently obtained by applying the steps from Line 11 to Line 13. The exact search gradient
algorithm becomes much faster because the shape of Function 3.5 become more sphere,
and its derivative is more effective to optimize the objective function.

f(y) = 1
2yT

 1 0.1√
10

0.1√
10 1

 y + [−80√
10

−100√
10

]y (3.5)

Moreover, Algorithm 3 only attains approximate solutions because achieving the
optimal solution is controversial for the reasons that its computation is expensive and it
can leads to the zig-zag problem in optimizing a non-convex function. In addition, it is
necessary to control and balance the quality of the convergence to the optimal solution.

29

3.3 Proposed Algorithm

Algorithm 3: Fast Combinational Algorithm for NQP
Input: H ∈ Rr×r and h ∈ Rr and x0

Output: x ≈ argmin
x≽0

1
2xT Hx + hT x

1 begin
2 /*Having a variable maxStop = 0 for each thread of computation */;
3 /*Re-scaling variables*/;
4 Q = H√

diag(H)diag(H)T
; q = h√

diag(H)
;

5 /*Solving NQP: minimizingf(x) = 1
2xT Qx + qT x*/;

6 x = x0. ∗
√

diag(H);
7 ∇f = Qx + q;
8 repeat
9 xs = xk−1 and ∇fs = ∇f ;

10 /*Exact line search over passive variables*/;
11 ∇f̄ = ∇f ; and ∇f̄ [x = 0 and ∇f > 0] = 0;
12 α = arg min

α
f(xk − α∇f̄) = ∥∇f̄∥2

2
∇f̄T Q∇f̄

;

13 xk = xk−1 − α∇f̄ ; ∇fk = ∇fk − αQ∇f̄ − Q[xk]−; xk = [xk]+;
14 /*Greedy coordinate descent algorithm*/;
15 for t=1 to n do
16 p = argmax

i∈P (x)
|∇if(xk)|;

17 △xp = max(0, [xk]p − ∇pf
Qpp

) − [xk]p;
18 ∇f = ∇f + Qp△xp; [xk]p = [xk]p + △xp;

19 if (∥f̃k∥2
2 ≤ ϵ∥f̃0∥2

2) or (∥f̃k∥2
2 ≤ maxStop) then

20 break;

21 /*Accelerated search carries a "momentum" based on the changes of
variables in exact line search and greedy coordinate descent part*/;

22 △x = xs − xk /*xs and ∇fs are assigned in Line 9*/;
23 α = argmin

α
f(xk − α△x) = ∇fT △x

△xT Q△x
= ∇fT △x

△xT (∇fs−∇f) ;

24 xk = xk − α△x;
25 ∇f = ∇f − αQ△x − Q[xk]−; xk = [xk]+;
26 Repeat steps in the part of greedy coordinate descent algorithm;
27 until (∥f̃k∥2

2 ≤ ϵ∥f̃0∥2
2) or (∥f̃k∥2

2 ≤ maxStop);
28 maxStop = max(maxStop, ∥f̃k∥2

2);
29 return xk√

diag(H)

30

3.3 Proposed Algorithm

Hence, we employ an accelerated condition (∥f̃k∥2
2 ≤ ϵ∥f̃0∥2

2) to regulate the quality
of the convergence to the optimal solutions of the NQP problems in comparison with
initial values and a fast-break condition (∥f̃k∥2

2 ≤ maxStop) to balance the quality of
the convergence among variables in each thread of the computation. As a result, the
objective function converges faster through iterations; and the complexity and average
of the iteration number are reduced significantly.

3.3.5 Extensions for L1 L2 regularized NMF

In this section, we consider solutions for L1 L2 regularized NMF variants to control the
quality of NMF. L1 regularized NMF [42] aims to achieve sparse solutions in optimization
problems. Usually, only the coefficient matrix F is penalized to control its sparsity.
Meanwhile, concerning L2 regularized NMF, the penalty terms of F and W are added
to control smoothness of solutions in NMF [77]. Fortunately, the objective functions
of L1 L2 regularized NMF can be turned into NQP problems, of which solutions are
completely similar to the general NMF. Particularly, in the most general variant, the
objective function J(V ∥W T F) is formulated by:

∥V − W T F∥2
2 + µ1∥F∥1 + β1∥W∥1 + µ2∥F∥2

2 + β2∥W∥2
2 (3.6)

where ∥.∥1 is the L1-norm, ∥.∥2 is the L2-norm, and µ1, µ2, β1, β2 are regularized param-
eters that tradeoff the sparsity and the smoothness of the information loss. Obviously,
both the E-step and the M-step need to solve the same NNLS problems when one of the
two matrices is fixed. For example, in a E-step, we can minimize the objective function
by independently solving NQP problems when fixing W :

J(V ∥W T F) = 1
2∥V − W T F∥2

2 + µ1∥F∥1 + µ2∥F∥2
2 + C

=
m∑

j=1
(1
2∥Vj − W T Fj∥2

2 + µ1(1K)T Fj + µ2F
T
j IFj) + C

=
m∑

j=1
(1
2F T

j QFj + qT Fj) + C

(3.7)

where Q = WW T + 2µ1I, qT = −WVj + µ21K and C is a constant.
This transformation from minimizing the objective functions into solving NQP prob-

lems independently is comprehensive to understand and simplify the variants of NMF
problems as much as possible. As a result, we can conveniently implement NMF and its
L1 L2 regularized variants in parallel distributed systems as in sub-section 3.3.3.

31

3.4 Theoretical Analysis

In comparison with the previous algorithms that optimizing the objective function
works on the whole of matrices, this approach decomposing the objective function is
easier to parallelize and distribute the computation. Additionally, it is faster to reach
the solutions because it only performs on a smaller set of variables.

3.4 Theoretical Analysis

In this section, we investigate the convergence of Algorithm 3 and the complexity of
Algorithm 2 using Algorithm 3

3.4.1 Convergence

In this section, we only consider the convergence rate of Algorithm 3 for the general
NMF for the two following reasons. Firstly, L1 regularized coefficients do not affect on
the complexity. Secondly, L2 regularized coefficients are often small, and they change
Lipschitz constants µ and L by adding a small positive value, where µ and L are the
convex parameter and the Lipschitz constant of strongly convex function f(x) satisfying
µI ≼ ∂2f

∂2x
≼ LI and I is the identity matrix. Hence, L2 regularized coefficients slightly

change the convergence rate because it depends on µ
L

.
Based on [73], consider the complexity of Algorithm 3, we have:

Theorem 1 The exact line search in Algorithm 3 linearly converges at the rate of O(1−
µ
L

)k in the sub-space of passive variables, where 1
2 ≤ µ ≤ L ≤ r, r is the dimension of

solutions or the number of latent factors, and r is the number of iterations.

Proof:
From [73], we have:
Remark 1: After (k + 1) iterations, f(xk+1) − f ∗ ≤ (1 − µ

L
)k(f(x0) − f ∗), where

µI ≼ ∇2f ≼ LI, f ∗ is the minimum value of f(x), and f(x) is a strongly convex function
of the passive variables.

We have ∇2f = Q, and
1
2xT Ix ≤ ∑r

i=1
∑r

j=1 Qijxixj = xT Qx, ∀x since Qij = cos(W T
i , W T

j), and Qii = 1.
⇒ 1

2I ≼ Q.

32

3.4 Theoretical Analysis

Moreover, based on Cauchy-Schwarz inequality, we have:

(
r∑

i=1

r∑
j=1

Qijxixj)2 ≤ (
r∑

i=1

r∑
j=1

Q2
ij)(

r∑
i=1

r∑
j=1

(xixj)2)

⇒
r∑

i=1

r∑
j=1

Qijxixj ≤

√√√√∥Q∥2
2(

r∑
i=1

xi
2)2

⇔xT Qx ≤ ∥Q∥2x
T Ix (∀x) ⇔ Q ≼ ∥Q∥2I

Finally,
√

r =
√∑r

i=1 Q2
ii ≤ ∥Q∥2 =

√∑r
i=1

∑r
j=1 Q2

ij ≤
√

r2 = r since −1 ≤ Qij =
cos(W T

i , W T
j) ≤ 1. Therefore, we have:

Remark 2: 1
2 ≤ µ ≤ L ≤ r.

From Remark 1 and Remark 2, we have Theorem 1. �

Actually, the exact line search step, from Line 11 to Line 13 in Algorithm 3, guar-
antees linear convergence of O(1 − µ

L
)k in the sub-space of passive variables. How-

ever, the set of passive variables changes through iterations. Hence, we employ 2r

times of the greedy coordinate descent update, which also has fast convergence O([(1 −
µ

2L
)2r]k) [71, 80]. Hence, the greedy coordinate descent algorithm rapidly restricts the

domain of solution to converge to the final optimal sub-space of passive variables of the
solution. Hence, the proposed algorithm linearly converges of O([(1 − µ

L
)(1 − µ

rL
)2r]k)

, where µ and L are bounded as 1
2 ≤ µ ≤ L ≤ r. Therefore, the convergence rate is

over-bounded [(1 − µ
L

)(1 − µ
rL

)2r]k ≤ [(1 − 1
2n

)(1 − 1
2rn

)2r]k. Hence, we have:

Theorem 2 Algorithm 3 has over-bounded linear convergence rate of O([(1 − µ
L

)(1 −
µ

rL
)2r]k) in the sub-space of passive variables, where 1

2 ≤ µ ≤ L ≤ r, (1 − µ
L

)(1 − µ
rL

)2r

≤ (1 − 1
2n

)(1 − 1
2rn

)2r, r is the dimension of solutions or the number of latent factors,
and k is the number of iterations.

3.4.2 Complexity

In this section, we analyze the complexity of Algorithm 2 using Algorithm 3 to solve
NQP problems. If we assume that the complexity for each iteration contains O(nr2)
in computing Q = WW T , O(mnr) in computing Y = V F T , O(mr2) in computing
H = FF T , O(kmr2) in computing F and O(knr2) in computing W , where k is the
number of iterations, then we have the following Lemma 3:

Theorem 3 The complexity of each iteration in Algorithm 2 using Algorithm 3 to solve
NQP problems is O((m + n)r2 + mnr + k(m + n)r2). In addition, it is O((m + n)r2 +

33

3.5 Experimental Evaluation

rS(mn) + k(m + n)r2) for sparse data, where S(mn) is the number of non-zero elements
in data matrix V .

Theorem 3 is significant for big data, because the data is usually big and sparse. In
other words, mn is actually large, but S(mn) is small; so mn ≫ (m + n)r2 + rS(mn) +
k̄(m + n)r2. Hence, in experimental evaluation Section 3.5, we prove that our algorithm
can run on large high-dimension sparse datasets such as Nytimes for an acceptable time.
In that dataset, mnr ≫ rS(mn) ≫ (m+n)r2, so the running time T (m, n, r) ≈ rS(mn)
since m, n ≫ r.

Moreover, Table 3.2 shows a comparison of the complexity in an iteration of our pro-
posed algorithms (Alo) with other state-of-the-art algorithms’ in the literature: Multi-
plicative Update Rule (MUR) [57], Projected Nonnegative Least Squares (PrN) [7], Pro-
jected Gradient (PrG) [63], Projected Quasi-Newton (PQN) [96], Active Set (AcS) [47],
Block Principal Pivoting (BlP) [49], Accelerated Hierarchical Alternating Least Squares
(AcH) , Fast Coordinate Descent Methods with Variable Selection (FCD) [44], and Nes-
terov’s Optimal Gradient Method (Nev) [36]. It can be seen that the complexity of our
proposed algorithm is highly comparable with that of other algorithms, and the speed
of algorithms depend on the number of iterations. In the experimental evaluation, we
will show that the iteration number of our algorithm is highly competitive with other
algorithms’. Remarkably, moreover, our proposed algorithm has the following properties
that other algorithms has yet considered:

• Exploit the sparseness of datasets,

• Runnable for big datasets in limited internal memory systems,

• Convenient to implement in fully paralleled and distributed systems.

3.5 Experimental Evaluation

In this section, we investigate the effectiveness of the proposed algorithm Alo by compar-
ing it to 7 carefully selected state-of-the-art NMF solvers belongs to different approaches:

• MUR: Multiplicative Update Rule [58],

• PrG: Projected Gradient Methods [63],

34

3.5 Experimental Evaluation

Table 3.2 Complexity of an iteration in NMF solvers

Solver Complexity (O)

MUR [57] mnr + (m + n)r2

PrN [7] mnr + (m + n)r2 + r3

PrG [63] (m + n)r2 + rmn + kt(m + n)r2

PQN [96] k(mnr + m3r3 + n3r3)
BlP [49] (m + n)r2 + mnr + k(m + n)r2

AcS [47] (m + n)r2 + rmn + k(m + n)r2

FCD [44] (m + n)r2 + rS(mn) + k(m + n)r2

AcH [35] (m + n)r2 + rS(mn) + k(m + n)r2

Nev [36] (m + n)r2 + mnr + k(m + n)r2

Alo (m + n)r2 + rS(mn) + k(m + n)r2

where m, n is the matrix size, r is the number of latent components, k is the average number
of iterations, t is the average number of internal iterations, and S(mn) is the number of non-
zero elements of data matrix V . To easily compare among the algorithms, we consider r update
times for Algorithm FCD as one iteration because the complexity of one update is O(r), while
the complexity of one iteration in other accelerated algorithms is O(r2).

35

3.5 Experimental Evaluation

Table 3.3 Dataset Information

Data-sets m n r MaxIter

Faces 6977 361 60 300
Digits 6.104 784 80 300
Tiny Images 5.104 3,072 100 300
Nytimes 3.105 102,660 100,...,200 300

• BlP: Block Principal Pivoting method [49],

• AcS: Fast Active-set-like method [47],

• FCD: Fast Coordinate Descent methods with variable selection [44],

• AcH: Accelerated Hierarchical Alternating Least Squares [35],

• Nev: Nesterov’s optimal gradient method [36].

Test cases: In this experiment, we design two tests using four datasets shown in
Table 3.3. In the first test, 3 typical datasets with different sizes are used: Faces1, Digits2

and Tiny Images 3. For these tests, the algorithms are compared in terms of conver-
gence, optimality, and average of the iteration number to investigate their performance
and effectiveness. Additionally, average of the the iteration number k̄ for approximate
solutions of the sub-problems as NNLS or NQP is to compare the complexity of algo-
rithms. In the second test, a large dataset containing tf-idf values computed from the
text dataset Nytimes4 is used to verify the performance and the feasibility of our parallel
algorithms on sparse large datasets.

Environment settings: To be fair in comparison, for the first test, the programs of
compared algorithms are written in the same language Matlab 2013b, run by the same
computer Mac Pro 8-Core Intel Xeon E5 3 GHz RAM 32 GB, and initialized by the same
factor matrices W0 and F0. The maximum number of threads is set to 10 while keeping
2 threads for other tasks in the operation system. For the second test, the proposed
algorithm is written in Java programming language to utilize the data sparseness.

1http://cbcl.mit.edu/cbcl/software-datasets/FaceData.html
2http://yann.lecun.com/exdb/mnist/
3http://horatio.cs.nyu.edu/mit/tiny/data/index.html
4https://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-words/

36

http://cbcl.mit.edu/cbcl/software-datasets/FaceData.html
http://yann.lecun.com/exdb/mnist/
http://horatio.cs.nyu.edu/mit/tiny/data/index.html
https://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-words/

3.5 Experimental Evaluation

10−1 100 101 102 103 104

108.5

109

seconds

ob
je
ct
iv
e
va
lu
es

Faces

MUR PrG BlP AcS FCD AcH Nev Alo

100 101 102 103 104

1010.2

1010.4

1010.6

1010.8

1011

seconds

Digits

100 101 102 103 104 105

1010.6

1010.8

1011

1011.2

1011.4

seconds

Tiny Images

1

Fig. 3.4 Objective function values ∥V − W T F∥2
2/2 versus CPU seconds for datasets:

Faces, Digits, and Tiny Images

Source code: The source codes of MUR, PrG, BlP, AcS, FCD, AcH, and Nev
are downloaded from 5, 6, 7, 8, and 9. For convenient comparison in the future, we
publish all the source codes and datasets in 10.

3.5.1 Convergence

In this experiment, we investigate the convergence of algorithms by information loss
1
2∥V − W T F∥2

2 in terms of time and the iteration number. In terms of time, see Fig. 3.4,
the proposed algorithm Alo is remarkably faster than the other algorithms for the three
different-size datasets: Faces, Digits and Tiny Images. Especially, for the largest dataset
Tiny Images, the distinction between the proposed algorithm and the runner-up algo-
rithm AcH is easily recognized. Furthermore, in terms of the iteration number, see
Fig. 3.5, the proposed algorithm converges to the stationary point of solutions faster
than the others. This observation is clear for large datasets as Digits and Tiny Images.
The results are significant in learning NMF models for big data because the proposed
algorithm not only converges faster but also uses a less number of iterations, and the
time of reading and optimization through a big dataset is actually considerable.

5http://www.cs.toronto.edu/~dross/code/nnmf.m
6https://github.com/kimjingu/nonnegfac-matlab
7http://www.csie.ntu.edu.tw/~cjlin/nmf/
8http://dl.dropboxusercontent.com/u/1609292/Acc_MU_HALS_PG.zip
9https://sites.google.com/site/nmfsolvers/

10https://bitbucket.org/aaaaaa/matlabnmf

37

http://www.cs.toronto.edu/~dross/code/nnmf.m
https://github.com/kimjingu/nonnegfac-matlab
http://www.csie.ntu.edu.tw/~cjlin/nmf/
http://dl.dropboxusercontent.com/u/1609292/Acc_MU_HALS_PG.zip
https://sites.google.com/site/nmfsolvers/
https://bitbucket.org/aaaaaa/matlabnmf

3.5 Experimental Evaluation

100 101 102

108.5

109

iterators

ob
je
ct
iv
e
va
lu
es

Faces

MUR PrG BlP AcS FCD AcH Nev Alo

100 101 102

1010.2

1010.4

1010.6

1010.8

1011

iterators

Digits

100 101 102

1010.6

1010.8

1011

1011.2

1011.4

iterators

Tiny Images

1

Fig. 3.5 Objective function values ∥V − W T F∥2
2/2 in terms of the iteration number for

datasets: Faces, Digits, and Tiny Images

Table 3.4 Optimal Values of NMF solvers

Dataset MUR PrG BlP AcS FCD AcH Nev Alo

Faces (×108) 3.142 2.003 1.975 1.975 1.983 2.058 2.003 1.985
Digits (×1010) 4.659 1.639 1.641 1.641 1.644 1.640 1.646 1.639
Tiny Images (×1010) 6.925 3.483 3.472 3.472 3.474 3.476 3.473 3.467

3.5.2 Optimality

After more a decade of rapid development, numerous algorithms have been proposed
for solving NMF as a fundamental problem in dimension reduction and learning repre-
sentation. Currently, the difference of the final loss information ∥V − W T F∥2

2 among
the state-of-the-art methods is inconsiderable in comparison to the square of informa-
tion ∥V ∥2

2. However, the small difference represents the effectiveness of the optimization
methods because NMF algorithms often slowly converge when the approximate solution
is close to the optimal local solution. Hence, in Table 3.4, the final values of the ob-
jective function 1

2∥V − W T F∥2
2 investigate the optimality and the effectiveness of the

optimization methods. Noticeably, Algorithm AcH fast converges over time and has a
low average of the iteration number, but it has the optimal values much higher than the
proposed algorithm because it uses a time-break technique to interrupt the optimiza-
tion algorithm. In addition, the proposed algorithm achieves the best optimality for
two largest of three datasets. This result additionally represents the robustness of the
proposed method, which is highly competitive with the state-of-the-art methods.

38

3.5 Experimental Evaluation

Table 3.5 Average of Iteration Number k̄

Dataset MUR PrG BlP AcS FCD AcH Nev Alo

Faces 1.00 321.12 1116.96 102.09 1.54 1.11 29.21 1.01
Digits 1.00 36.70 12503.75 305.94 1.00 1.05 23.36 1.00
Tiny Images 1.00 767.45 12869.12 1086.51 1.38 2.52 29.32 1.02

3.5.3 Average of iteration number

In this section, we investigate the complexity of the NMF solvers by average of the
iteration number k̄ = number of internal iteration

MaxIter×(m+n) for approximate solutions of sub-problems
as NNLS or NQP because the complexity of algorithms mainly depends on this number,
see Table 3.2. Except for the original algorithm MUR with one update having the worst
result, the proposed algorithm Alo employs at least average of the iteration number, see
Table 3.5, especially for large datasets. In addition, the proposed algorithm does not
employ any tricks to timely interrupt before one of the stopping conditions is satisfied,
while the highly competitive algorithm AcH uses. Therefore, this result clearly represents
the fast convergence of Algorithm 3 as it is verified by a large number of NQP problems.

3.5.4 Running on large datasets

In this section, we verify the feasibility of the proposed algorithm in learning NMF
model for large datasets. Particularly, the proposed algorithm is implemented by Java
programming language to exploit the data sparseness. Additionally, it runs on the large
sparse text dataset Nytimes with different numbers of latent components, see Table 3.3.
Interestingly, the proposed algorithm can run with hundreds of latent components by a
single computer in an acceptable time.

Fig. 3.6 shows the performance of our algorithm running on the large sparse dataset
Nytimes. Remarkably, the proposed algorithm only uses about 1 iteration on average to
satisfy the accelerated condition of approximate solutions. Furthermore, the average of
iteration time in learning NMF model linearly increases through the different numbers
of latent components. This result totally fits the complexity analysis when rnm ≫
rS(mn) ≫ (m + n)r2 + k̄(m + n)r2, so the complexity T (m, n, r) ≈ rS(mn) since
m, n ≫ r. Additionally, the objective function converges to the stationary point at
about the 100th iteration within the different numbers of latent components r, which is
the same with the previous datasets.

39

3.6 Conclusion and Discussion

100 120 140 160 180 200
0

0.5

1

1.5

2

number of components r

k̄

(a) Average of Iteration Number

100 120 140 160 180 200

20

30

40

50

number of components r
se

co
n

d
s

(b) Average of Iteraiton Time

100 101 102 103

1

1.1

1.2

iterators

f
k

f
M

a
x
In

t

Convergence of fk
fMaxInt

r = 100
r = 120
r = 140
r = 160
r = 180
r = 200

1

Fig. 3.6 average of the iteration number k̄, average of iteration time, and convergence
of fk

fMaxInt
in learning NMF model for the dataset Nytimes within the different numbers

of latent components

10−1 100 101 102 103

108.5

109

seconds

ob
je
ct
iv
e
va
lu
e

Faces

100 101 102 103 104

1010.2

1010.4

1010.6

1010.8

1011

seconds

Digits

100 101 102 103 104

1010.6

1010.8

1011

1011.2

1011.4

seconds

Tiny Images

AcS µ2 = β2 = 10−2

Nev β2 = 10−2

Alo β2 = 10−2

Alo µ2 = β2 = 10−2

1

Fig. 3.7 Convergence of regularized NMF Extensions for algorithms AcS, Nev and Alo
within two regularized cases: µ2 = 10−2 and µ2 = β2 = 10−2

3.5.5 Regularized NMF extensions

In this section, we investigate the convergence of algorithms for regularized NMF exten-
sions on three datasets: Faces, Digits, and Tiny Images. Due to the lack of available
codes and the L1 L2 generalization of the other algorithms, only three algorithms AcS,
Nev and Alo are compared within two regularized cases: µ2 = 10−2 and µ2 = β2 = 10−2,
see Fig. 3.7. In comparison with other algorithms for regularized NMF extensions, the
proposed algorithm Alo converges much faster than algorithms AcS and Nev.

3.6 Conclusion and Discussion

In this chapter, we propose a general flexible algorithm in a unified framework for NMF
and its L1 L2 regularized variants based on full decomposition, and employ a fast ac-
celerated anti-lopsided algorithm for NMF. The proposed algorithm has over-bounded
linear convergence rate of O[(1 − µ

L
)(1 − µ

rL
)2r]k in optimizing each matrix factor in

40

3.6 Conclusion and Discussion

the sub-space of passive variables when fixing the other matrix, where r is the num-
ber of latent components. The proposed algorithm is an advanced version of fast block
coordinate descent methods and accelerated methods. In theory and practice, the pro-
posed algorithm resolve some current major issues of NMF: fast learning algorithm, data
sparseness exploit-ability, and parallel distributed feasibility using limited internal mem-
ory. Furthermore, the proposed algorithm flexibly adapts with all the variants of L1 L2

NMF regularizations.
In experimental comparative evaluation, our algorithm overcomes 7 of the most art-

the-state algorithms in large datasets about three significant aspects of convergence,
average of the iteration number and optimality. In addition, it can fully be parallelized
and distributed because the computation using limited internal memory is decomposed
into basic computation units as NQP problems. Concerning the feasibility in real ap-
plications, the proposed algorithm exploits the data sparseness to learn the huge sparse
dataset Nytimes in an acceptable time by a single machine. Finally, the convergence of
the proposed algorithm for L1 L2 regularized NMF variants is much faster than that of
the existing algorithms.

Concerning the optimization techniques for alternating least squares methods, we
propose a fast algorithm, Algorithm 3 for NQP problems, which not only has a linear
convergence in theory but also is verified in practice about the three significant aspects
by a large number of NQP problems conducted inside the NMF framework. Hence,
we strongly believe that the algorithm can be effectively employed for alternating least
square methods as the key problem in factorization methods. Hence, in further re-
searches, we will generalize the proposed algorithm for nonnegative matrix factorization
problems.

Publications

1. Nguyen, Duy Khuong, and Tu Bao Ho. Anti-lopsided Algorithm for Large-scale
Nonnegative Least Square Problems. International Journal of Data Science and
Analytics, Springer, (accepted to publish).

2. Nguyen, Duy-Khuong, and Tu-Bao Ho. Accelerated Parallel and Distributed Al-
gorithm using Limited Internal Memory for Nonnegative Matrix Factorization.
submitted to Journal of Global Optimization, (under revision).

41

Chapter 4

Fast Parallel Randomized Algorithm
for NMF with L1 L2 Regularizations
and KL Divergence for Large Sparse
Datasets

We chose it because we deal with huge amounts of data.
Besides, it sounds really cool.

— Larry Page, founder of Google

Nonnegative Matrix Factorization (NMF) with Kullback-Leibler Divergence (NMF-
KL) is one of the most significant NMF problems and equivalent to Probabilistic Latent
Semantic Indexing (PLSI), which has been successfully applied in many applications.
For sparse count data, a Poisson distribution and KL divergence provide sparse models
and sparse representation, which describe the random variation better than a normal
distribution and Frobenius norm. Specially, sparse models provide more concise un-
derstanding of the appearance of attributes over latent components, while sparse rep-
resentation provides concise interpretability of the contribution of latent components
over instances. However, minimizing NMF with KL divergence is much more difficult
than minimizing NMF with Frobenius norm; and sparse models, sparse representation
and fast algorithms for large sparse datasets are still challenges for NMF with KL di-
vergence. In this chapter, we propose a fast parallel randomized coordinate descent
algorithm having fast convergence for large sparse datasets to archive sparse models and
sparse representation. The proposed algorithm’s experimental results overperform the
current studies’ ones in this problem.

42

4.1 Introduction

4.1 Introduction

The development of technology has been generating big datasets of count sparse data
such as documents and social network data, which requires fast effective algorithms to
manage this huge amount of information. One of these tools is nonnegative matrix
factorization (NMF) with KL divergence, which is proved to be equivalent with Latent
Semantic Indexing (PLSI) [26].

NMF is a powerful linear technique to reduce dimension and to extract latent topics,
which can be readily interpreted to explain phenomenon in science [34, 58, 86]. NMF
makes post-processing algorithms such as classification and information retrieval faster
and more effective. In addition, latent factors extracted by NMF can be more concisely
interpreted than other linear methods such as PCA and ICA [86]. In addition, NMF is
flexible with numerous divergences to adapt a large number of real applications [92,98].

For sparse count data, NMF with KL divergence and a Poisson distribution may
provide sparse models and sparse representation describing better the random variation
rather than NMF with Frobenius norm and a normal distribution [87]. For example, the
appearance of words over latent topics and of topics over documents should be sparse.
However, achieving sparse models and sparse representation is still a major challenge
because minimizing NMF with KL divergence is much more difficult than NMF with
Frobenius norm [53].

In the NMF-KL problem, a given nonnegative data matrix V ∈ Rn×m
+ must be

factorized into a product of two nonnegative matrices, namely a latent component matrix
W ∈ Rr×n

+ and a representation matrix F ∈ Rr×m
+ , where n is the dimension of a data

instance, m is the number of data instances, and r is the number of latent components
or latent factors. The quality of this factorization is controlled by the objective function
with KL divergence as follows:

D(V ∥W T F) =
n∑

i=1

m∑
j=1

(Vij log Vij

(W T F)ij
− Vij + (W T F)ij) (4.1)

In the general form of L1 L2 regularization variants, the objective function is written
as follows:

D(V ∥W T F) + α1
2 ∥W∥2

2 + α2
2 ∥F∥2

2 + β1∥W∥1 + β2∥F∥1 (4.2)

43

4.1 Introduction

NMF with KL divergence has been widely applied in many applications for dense
datasets. For example, spatially localized, parts-based subspace representation of vi-
sual patterns is learned by local non-negative matrix factorization with a localization
constraint (LNMF) [60]. In another study, multiple hidden sound objects from a single
channel auditory scene in the magnitude spectrum domain can be extracted by NMF
with KL divergence [85]. In addition, two speakers in a single channel recording can be
separated by NMF with KL divergence and L1 regularization on F [81].

However, the existing algorithms for NMF with KL divergence (NMF-KL) are ex-
tremely time-consuming for large count sparse datasets. Originally, Lee and Seung,
2001 [57] proposed the first multiple update iterative algorithm based on gradient meth-
ods for NMF-KL. Nevertheless, this technique is simple and ineffective because it requires
a large number of iterations, and it ignores negative effects of nonnegative constraints.
In addition, gradient methods have slow convergence for complicated logarithmic func-
tions like KL divergence. Subsequently, Cho-Jui & Inderjit, 2011 [44] proposed a cycle
coordinate descent algorithm having low complexity of one variable update. However,
this method contains several limitations: first, it computes and stores the dense product
matrix W T F although V is sparse; second, the update of W T F for the change of each
cell in W and F is considerably complicated, which leads to practical difficulties in par-
allel and distributed computation; finally, the sparsity of data is not considered, while
large datasets are often highly sparse.

In comparison with NMF with Frobenius norm, NMF with KL divergence is much
more complicated because updating variables will influence derivatives of other variables;
this computation is extremely expensive. Hence, it is difficult to employ fast algorithms
having multiple variable updates, which limits the number of effective methods.

In this paper, we propose a new advanced version of coordinate descent methods
with significant modifications for large sparse datasets. Regarding the contributions of
this paper, we:

• Propose a fast sparse randomized coordinate descent algorithm using limited in-
ternal memory for nonnegative matrix factorization for huge sparse datasets, the
full matrix of which can not stored in the internal memory. In this optimization
algorithm, variables are randomly selected with uniform sampling to balance the
order priority of variables. Moreover, the proposed algorithm effectively utilizes
the sparsity of data, models and representation matrices to improve its perfor-
mance. Hence, the proposed algorithm can be considered an advanced version of
cycle coordinate descent for large sparse datasets proposed in [44].

44

4.2 Proposed Algorithm

• Design parallel algorithms for combinational variants of L1 L2 regularizations.

• Indicate that the proposed algorithm using limited memory can fast attain sparse
models, sparse representation, and fast convergence by evaluational experiments,
which is a significant milestone in this research problem for large sparse datasets.

The rest of the chapter is organized as follows. Section 4.2 presents the proposed
algorithms. The theoretical analysis of convergence and complexity is discussed in Sec-
tion 4.3. Section 4.4 shows the experimental results, and Section 4.5 summarizes the
main contributions of this pape and discussion.

4.2 Proposed Algorithm

In this section, we propose a fast sparse randomized coordinate descent parallel algo-
rithm for nonnegative sparse matrix factorization on Kullback-Leibler divergence. We
employ a multiple iterative update algorithm like EM algorithm, see Algorithm 4, be-
cause D(V ∥W T F) is a non-convex function although it is a convex function when fixing
one of two matrices W and F . This algorithm contain a while loop containing two main
steps: the first one is to optimize the objective function by F when fixing W ; and the
another one is to optimize the objective function by W when fixing F . Furthermore, in
this algorithm, we need to minimize Function 4.3, the decomposed elements of which
can be independently optimized in Algorithm 4:

D(V ∥W T F) =
m∑

i=1
D(Vi∥W T Fi) =

n∑
j=1

D(V T
j ∥F T Wj) (4.3)

Specially, a number of optimization problems D(Vi∥W T Fi) or D(V T
j ∥F T Wj) in Al-

gorithm 4 with the form D(v∥Ax) can be independently and simultaneously solved by
Algorithm 5. In this paper, we concern combinational variants of NMF KL divergence
with L1 L2 regularizations in the general formula, Function 4.4:

f(x) = D(v∥Ax) =
n∑

i=1
(vi log vi

[Ax]i
− vi + [Ax]i) + α

2 ∥x∥2
2 + β|x|1 (4.4)

where v ∈ Rn
+, A ∈ Rn×r

+ , x ∈ Rr
+

Because the vector v is given, minimizing Function 4.4 is equivalent to minimizing

45

4.2 Proposed Algorithm

Algorithm 4: Iterative multiplicative update
Input: V ∈ Rn×m

+ , r, and α1, α2, β1, β2 ≥ 0
Output: W ∈ Rn×r

+ , F ∈ Rr×m
+ .

1 begin
2 Randomize W ∈ Rr×n

+ ;
3 Randomize F ∈ Rr×m

+ ;
4 while convergence condition is not satisfied do
5 ids = a randomized ordered set of values {1, 2, ..., r};
6 sumW = W1n;
7 /*Optimizing the objective function by F when fixing W*/;
8 for j = 1 to m do
9 /*Call Algorithm 5 in parallel*/;

10 F k+1
j = Algorithm 5 (Vj, W T , sumW , F k

j , α2, β2, ids)

11 sumF = F1m;
12 /*Optimizing the objective function by W when fixing F*/;
13 for i = 1 to n do
14 /*Call Algorithm 5 in parallel*/;
15 W k+1

i = Algorithm 5 (V T
i F T , sumW , W k

i , α2, β2, ids);

16 return (W k+1)T , F k+1;

Function 4.5:

f(x) = D(v∥Ax) =
n∑

i=1
(−vi log [Ax]i + [Ax]i) + α

2 ∥x∥2
2 + β|x|1 (4.5)

From Equation 4.5, the first and second derivative of the variable xk are computed
by Formula 4.6:

⇒

∇fk = −

n∑
i=1

vi
Aik

[Ax]i +
n∑

i=1
Aik + αxk + β

∇2fkk =
n∑

i=1
vi(Aik

[Ax]i)2 + α
(4.6)

Based on Formula 4.6, we have several significant remarks:

• One update of xk changes all elements of Ax, which are under the denominators
of fractions. Hence, it is difficult to employ fast algorithms having simultaneous

46

4.2 Proposed Algorithm

updates of multiple variables because it will require heavy computation. Hence,
we employ coordinate descent methods to reduce the complexity of each update,
and to avoid negative effects of nonnegative constraints.

• One update of xk has complexity of maintaining ∇fk and ∇2fkk as O(k +nnz(v)+
nnz(v)) = k + nnz(v) if ∑n

i=1 Aik is computed in advance. Specially, it employs
O(k + nnz(v)) of multiple and addition operators, and exactly O(nnz(v)) of divide
operators; where nnz(v) is the number of non-zero elements in the vector v. Hence,
for sparse datasets, the number of operators can be negligible.

• The used internal memory of Algorithm 4 and Algorithm 5 is O(nnz(V)+size(W)+
size(F)) = nnz(V)+(n+m)r, where nnz(V) is the number of non-zero elements in
the given matrix V , which is much smaller than O(mn+(n+m)r) for the existing
algorithms [44,57].

Hence, Algorithm 5 employs a coordinate descent algorithm based on projected New-
ton methods with quadratic approximation in Algorithm 5 is to optimize Function 4.5.
Specially, because Function 4.5 is convex, a coordinate descent algorithm based on pro-
jected Newton method [66, 66] with quadratic approximation is employed to iteratively
update with the nonnegative lower bound as follows:

xk = max(0, xk − ∇fk

∇2fkk

)

Considering the limited internal memory and the sparsity of x, we maintain W T Fj

via computing Ax instead of storing the dense matrix W T F for the following reasons:

• The internal memory requirement will significantly decrease, so the proposed al-
gorithm can stably run on limited internal memory machines.

• The complexity of computing Ax is always smaller than the complexity of comput-
ing and maintaining ∇fk and ∇2fkk, so it does not cause the computation more
complicated.

• The updating Ax = Ax + △xAk as the adding with a scale of two vectors utilizes
the speed of CPU cache because of accessing consecutive memory cells.

• The recomputing helps remove the complexity of maintaining the dense product
matrix W T F as in [44,57], which is certainly considerable because this maintenance
accesses memory cells far together and does not utilize CPU cache.

47

4.2 Proposed Algorithm

Algorithm 5: Randomized coordinate descent algorithm for sparse datasets
Input: v ∈ Rn, A ∈ Rn×k, sumA, x ∈ Rk, α ≥ 0, β ≥ 0, and variable order ids

Output: x is updated by
x ≈ argmin

x≽0

n∑
i=1

−vi log([Ax]i + ϵ) + [Ax]i + α
2 ∥x∥2

2 + β∥x∥1.

1 begin
2 Compute Ax ∈ Rn;
3 for k in order ids do
4 Compute ∇fk and ∇2fkk based on α, β, v, x, Ax, sumA and sparsity of v

based on Formula 4.6;
5 while (∇fk < −ϵ) or (|∇fk| > ϵ and xk > ϵ) do
6 △x = max(0, xk − ∇fk

∇2fkk
) − xk;

7 Update Ax via Ax = Ax + △xAk;
8 xs = xk;
9 xk = xk + △x;

10 if (△x < ϵxxs) then
11 break;

12 Update ∇fk and ∇2fkk based on α, β, v, x, sumA and sparsity of v

based on Formula 4.6;

13 return x;

In summary, in comparison with the original coordinate algorithm [44] for NMK-KL,
the proposed algorithm involve significant improvements as follows:

• Randomize the order of variables to optimize the objective function in Algorithm 5.
Hence, the proposed algorithm can balance the order priority of variables,

• Remove duplicated computation of maintaining derivatives ∇fk and ∇2fkk by
computing common elements sumW = W1n and sumF = F1m in advance, which
led to that the complexity of computing ∇fk and ∇2fkk only depends on the
sparsity of data,

• Effectively utilize the sparsity of W and F to reduce the running time of computing
Ax,

• Effectively utilize CPU cache to improve the performance of maintaining Ax =
Ax + △xAk,

48

4.3 Theoretical Analysis

• Recompute Ax but remove the maintenance of the dense matrix product W T F .
Hence, the proposed algorithm stably run on the limited internal memory systems
with the required memory size O(nnz(V)+size(W)+size(F)) = nnz(V)+(m+n)r,
which is much smaller than O(mn + (n + m)r) for the existing algorithms [44,57].

4.3 Theoretical Analysis

In this section, we analyze the convergence and complexity of Algorithm 4 and Algo-
rithm 5.

In comparison with the previous algorithm of Hsieh & Dhillon, 2011 [44], the proposed
algorithm has significant modifications for large sparse datasets by means of adding the
order randomization of indexes and utilizing the sparsity of data V , model W , and
representation F . These modifications does not affect on the convergence guarantee
of algorithm. Hence, based on Theorem 1 in Hsieh & Dhillon, 2011 [44], Algorithm 5
converges to the global minimum of f(x). Furthermore, based on Theorem 3 in Hsieh
& Dhillon, 2011 [44], Algorithm 4 using Algorithm 5 will converge to a stationary point.
In practice, we set ϵx = 0.1 in Algorithm 5, which is more precise than ϵx = 0.5 in Hsieh
& Dhillon, 2011 [44].

Concerning the complexity of Algorithm 5, based on the remarks in Section 4.2,
we have Theorem 4. Furthermore, because KL divergence is a convex function over
one variable and the nonnegative domain, and project Newton methods with quadratic
approximation for convex functions have superlinear rate of convergence [9, 66], the
average number of iterations t̄ is small.

Theorem 4 The complexity of Algorithm 5 is O(nnnz(r) + t̄r(r + n + nnz(n))), where
nnz(r) is the number of non-zero elements in x, nnz(n) is the number of non-zero ele-
ments in v, and t̄ is the average number of iterations. Then, the complexity of a while
iteration in Algorithm 4 is O(t̄(mnr + (m + n)r2))

Proof: Consider the major computation in Algorithm 5, based on Formula 4.6, we have:

• The complexity of computing Ax in Line 2 is O(nnnz(r)),

• The complexity of computing ∇fk and ∇2fkk in Line 4 is O(r + nnz(n)) because
Ax and sumA are computed in advance,

• The complexity of updating ∇fk and ∇2fkk in Line 12 is O(r+n+nnz(n)) because
only one dimension of vector x is changed.

49

4.4 Experimental Evaluation

Table 4.1 Summary of datasets

Dataset (V) n m nnz(V) Sparsity (%)

Digits 784 60, 000 8, 994, 156 80.8798
Reuters21578 8, 293 18, 933 389, 455 99.7520
TDT2 9, 394 36, 771 1, 224, 135 99.6456
RCV1_4Class 9, 625 29, 992 730, 879 99.7468

Hence, the complexity of Algorithm 5 is O(nnnz(r) + t̄r(r + n + nnz(n))).
In addition, the complexity of computing sumW and sumF is O((m + n)r). Hence,

the complexity of a while iteration in Algorithm 4 is O((m + n)r + mnnnz(r) + t̄mr(r +
n + nnz(n))) ≈ (m + n)r + t̄(mnr + (m + n)r2) ≈ t̄(mnr + (m + n)r2) Therefore, we
have Theorem 4 �

For large sparse datasets, m, n ≫ r ⇒ O(t̄(mnr + (m + n)r2)) ≈ t̄(mnr). This
complexity is raised by the operators Ax = Ax + △xAk in Algorithm 5. To reduce the
running time of these operators, Ak must be stored in an array to utilize CPU cache
memory by accessing continuous memory cells of Ax and Ak.

4.4 Experimental Evaluation

In this section, we investigate the effectiveness of the proposed algorithm via conver-
gence and sparsity. Specially, we compare the proposed algorithm Sparse Randomized
Coordinate Descent (SRCD) with state-of-the-art algorithms as follows:

• Multiplicative Update (MU) [57]: This algorithm is the original method for NMF
with KL divergence.

• Cycle Coordinate Descent (CCD) [44]: This algorithm has the current fastest
convergence because it has very low complexity of each update for one variable.

Datasets: To investigate the effectiveness of the algorithms compared, the 4 sparse
datasets used are shown in Table 4.1. The dataset Digit is downloaded from 1, and the
other tf-idf datasets Reuters21578, TDT2, and RCV1_4Class are downloaded from 2.

Environment settings: We develop the proposed algorithm SRCD in Matlab with
embedded code C++ to compare them with other algorithms. We set system parameters

1http://yann.lecun.com/exdb/mnist/
2http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html

50

http://yann.lecun.com/exdb/mnist/
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html

4.4 Experimental Evaluation

to use only 1 CPU for Matlab and the IO time is excluded in the machine Mac Pro 8-
Core Intel Xeon E5 3 GHz 32GB. In addition, the initial matrices W 0 and F 0 are set to
the same values. The source code will be published on our homepage 3.

4.4.1 Convergence

In this section, we investigate the convergence of the objective value D(V ||W T F) versus
running time by running all the compared algorithms on the four datasets with two
numbers of latent factors r = 10 and r = 20. The experimental results are depicted in
Figure 4.1 and Figure 4.2. From these figures, we realize two significant observations as
follows:

• The proposed algorithm (SRCD) has much faster convergence than the algorithms
CCD and MU,

• The sparser the datasets are, the greater the distinction between the convergence
of the algorithm SRCD and the other algorithms CCD and MU is. Specially, for
Digits with 81% sparsity, the algorithm SRCD’s convergence is lightly faster than
the convergence of the algorithms CCD and MU. However, for three more sparse
datasets Reuters21578, TDT2, and RCV1_4Class with above 99% sparsity, the
distance between these convergence speeds is readily apparent.

4.4.2 Sparsity of factor matrices

Concerning the sparsity of factor matrices W and F , the algorithms CCD and MU
does not utilize the sparsity of factor matrices. Hence, these algorithms add a small
number into these factor matrices to obtain convenience in processing special numerical
cases. Hence, the sparsity of factor matrices W and F for the algorithms CCD and MU
both are 0%. Although this processing may not affect other post-processing tasks such
as classification and information retrieval, it will reduce the performance of these algo-
rithms. The sparsity of (W, F) of the proposed algorithm’s results is showed in Table 4.2.
These results clearly indicate that the sparse model W and the sparse representation
F are attained. The results also explain why the proposed algorithm runs very fast on
the sparse datasets Reuters21578, TDT2 and RCV1_4Class, when it can obtain highly
sparse models and sparse representation in these highly sparse datasets.

3http://khuongnd.appspot.com/

51

http://khuongnd.appspot.com/

4.4 Experimental Evaluation

101 102 103

109

109.2

109.4

D
(V

‖W
F
)

Digits with r = 10

SRCD CCD MU

101 102 103 104

106.8

107

107.2

107.4

TDT2 with r = 10

101 102 103

106.2

106.4

106.6

106.8

107

seconds

D
(V

‖W
T
F
)

Reuters21578 with r = 10

101 102 103 104

105.4

105.6

105.8

106

seconds

RCV1 4Class with r = 10

1

Fig. 4.1 Objective value D(V ∥W T F) versus running time with r = 10

Table 4.2 Sparsity (%) of (W, F) for the algorithm SRCD’s results

Digits Reuters21578 TDT2 RCV1_4Class

r = 10 (74.3, 49.2) (75.6, 71.6) (68.5, 71.3) (81.2, 74.0)
r = 20 (87.8, 49.7) (84.2, 80.4) (78.6, 81.1) (88.4, 83.0)

52

4.4 Experimental Evaluation

101 102 103
108.8

109

109.2

109.4

D
(V

‖W
F
)

Digits with r = 20

SRCD CCD MU

101 102 103 104
106.6

106.8

107

107.2

107.4

TDT2 with r = 20

101 102 103 104

106.2

106.4

106.6

106.8

107

seconds

D
(V

‖W
T
F
)

Reuters21578 with r = 20

101 102 103 104

105.4

105.6

105.8

106

seconds

RCV1 4Class with r = 20

1

Fig. 4.2 Objective value D(V ∥W T F) versus running time with r = 20

4.4.3 Used internal memory

Table 4.3 shows the internal memory used by algorithms. From the table, we have two
significant observations:

• For the dense dataset Digits, the proposed algorithm SRCD uses more internal
memory than the the algorithm CCD because a considerable amount of memory
is used for the indexing of matrices.

• For the sparse datasets Reuters21578, TDT2, and RCV1_4Class, the internal

Table 4.3 Used internal memory (GB) for r = 10

Datasets MU CCD SRCD

Digits 1.89 0.85 1.76
Reuters21578 5.88 2.46 0.17
TDT2 11.51 5.29 0.30
RCV1_4Class 9.73 4.43 0.23

53

4.4 Experimental Evaluation

10 20 30 40 50

100

200

300

400

500

600

r

R
u
n
n
in
g
ti
m
e
(s
)

Digits Reuters21578 TDT2 RCV1 4Class

1

Fig. 4.3 Running time of 100 iterations with different number of latent component
using 1 thread

memory for SRCD is remarkably smaller than the internal one for MU and CCD.
These results indicate that we can conduct the proposed algorithm for huge sparse
datasets with a limited internal memory machine is stable.

4.4.4 Running on large datasets

This section investigates running the proposed algorithm on large datasets with different
settings. Figure 4.3 shows the running time of Algorithm SRCD for 100 iterations
with different number of latent component using 1 thread. Clearly, the running time
linearly increases, which fits the theoretical analyses about fast convergence and linear
complexity for large sparse datasets in Section 4.3. Furthermore, concerning the parallel
algorithm, the running time of Algorithm SRCD for 100 iterations significantly decreases
when the number of used threads increases in Figure 4.4. In addition, the running time
is acceptable for large applications. Hence, these results indicate that the proposed
algorithm SRCD is feasible for large scale applications.

54

4.5 Conclusion and Discussion

1 2 3 4 5 6 7 8

100

200

300

400

500

600

Number of threads

R
u
n
n
in
g
ti
m
e
(s
)

Digits Reuters21578 TDT2 RCV1 4Class

1

Fig. 4.4 Running time of 100 iterations with r = 50 and using different number of
threads

4.5 Conclusion and Discussion

In this chapter, we propose a fast parallel randomized coordinate descent algorithm for
NMF with KL divergence for large sparse datasets. The proposed algorithm attains fast
convergence by means of removing duplicated computation, exploiting sparse properties
of data, model and representation matrices, and utilizing the fast accessing speed of
CPU cache. In addition, our method can stably run systems within limited internal
memory by reducing internal memory requirements. Finally, the experimental results
indicate that highly sparse models and sparse representation can be attained for large
sparse datasets, a significant milestone in researching this problem. In future research,
we will generalize this algorithm for nonnegative tensor factorization.

Publications

1. Nguyen, Duy-Khuong, and Tu-Bao Ho. Fast Parallel Randomized Algorithm for
Nonnegative Matrix Factorization with KL Divergence for Large Sparse Datasets,
International Journal of Machine Learning and Computing (Accepted to publish).

55

Chapter 5

Fast Parallel Algorithm for
Simplicial NMF with Frobenius
Norm

If your experiment needs statistics, you ought to have done
a better experiment.

— Ernest Rutherford

Nonnegative matrix factorization (NMF) is a linear powerful method for dimension
reduction and component analysis, which has been widely in many applications such
as information retrieval, image processing, etc. It has more concise interpretability and
more sparsity than other linear methods such as PCA and ICA because of its non-
negativity constraints. However, these non-negativity constraints still have discursive
interpretability of the role of latent components over data instances. In the chapter, we
proposed simplicial NMF by adding simplicial constraints over coefficients that express
the probabilistic combination role of latent components over data instances. In addition,
we propose a fast parallel algorithms with instance inference guaranteed about sub-linear
convergence O(1/k), low iteration complexity and sparsity control for simplicial NMF
with Frobenius norm. The experimental results are highly competitive with the current
results of nonnegative matrix factorization.

5.1 Introduction

Many algorithms in data mining cannot deal with large datasets because of their rawness,
high dimension and complex distribution. To deal with this situation, two fundamen-
tal purposes have been raised in data processing: Transforming the data into a lower
dimension space and extracting latent components and variables inside the datasets to
represent data [92]. Nonnegative matrix factorization (NMF) is one of the most popular

56

5.1 Introduction

effective methods to pursue these two purposes. Many datasets in various fields have
been formed as matrices with nonnegative values. NMF aims to factorize such a matrix
V into a product of two matrices, V ≈ W T F , where W contains basis vectors in the new
space and F contains new corresponding coefficients of data instances in V . In other
words, this factorization transforms data instances into new space of basis vectors.

Many NMF methods have been developed in the last decade by using divergence
functions, constraints and regularizations. Initially, basic NMF [58] only allows approx-
imating the original nonnegative data by a product of two matrices. By this approxi-
mation, each object is represented as an additive combination of nonnegative parts or
basis vectors. Following [58], many algorithms were proposed for different divergence
functions [83]. Currently, by adapting requirements for data analysis problems and
data types, many variants of NMF are being developed. Also, various new divergence
functions are employed [97], and local constraints are added to improve the quality of
matrix decompositions, which preserve the local features [60]. Sparse representation
can be achieved by adding sparseness constraints [43, 76]. In addition, some work has
implicitly or explicitly added orthogonality constraints [19, 59].

Usually, NMF is solved by iterative multiplicative updating algorithms because the
objective function is non-convex, although each sub-problem when fixing one of latent
matrices is convex. Minimizing object functions does not guarantee a unique solution,
which often converges to stationary points. The existence of many stationary points
makes the algorithms suffering from rotational ambiguities. If no prior information is
known, the normalization of rows in W or latent components will help to reduce the
effects of these ambiguities [22]. Specially, if V ≈ W T F is a solution, V ≈ (DW W ′)T G =
W T ′[DT

W F] is also a solution; where DW = diag(∥W T
1 ∥−1

p , ..., ∥W T
r ∥−1

p), p ∈ [1, ∞) and
W = DW W ′. As a result, the latent components are normalized as basis vectors.
Although this technique is advantageous to optimize the objective functions, the role of
basis vectors is not easy to interpret directly via their coefficients values.

In this chapter, we propose a new NMF formulation by adding new prior information
into NMF, in which each data instance is a convex combination of the latent components.
In other words, each instance is a probabilistic distribution over the latent components.
By this way, we associate a probabilistic model with the NMF problem. As a result, we
obtain more advantages than the previous formulations such as easy interpretability, low
complexity, convexity, sparsity, and distributability and parallelability. We also develop
an effective algorithm for one of the most popular divergence functions as Frobenius
norm [97].

57

5.2 Simplical Matrix Factorization with Frobenius norm

5.2 Simplical Matrix Factorization with Frobenius
norm

Mathematically, we can define NMF problem with Frobenius norm as follows:

Definition 2 [NMF]: Given a dataset consisting of m vectors in n dimensions V =
[V1, V2, ..., Vm] ∈ Rn×m

+ , where each vector Vj presents a data instance. NMF seeks to
factorize V into a product of two nonnegative factorizing matrices W T and F , where
W ∈ Rr×n

+ and F ∈ Rr×m
+ are coefficient matrix and latent component matrix, respec-

tively, V ≈ W T F . In other words, each instance is approximately represented by a
linear combination of these latent components Vj ≈ W T Fi. For Frobenius norm, NMF
minimize the objective function: ∥V − W T F∥2

2

We assume that each instance is a probabilistic convex combination of the latent
components obtained by adding simplicial constraints into NMF. Hence, we have:

Definition 3 [Simplicial NMF]: Simplicial NMF is NMF where each instance Vj is
a convex combination of the latent components Vj ≈ W T Fj and

r∑
k=1

Fkj = 1, ∀j.

By adding this new constraint, we have associated a probabilistic model with NMF
problem, in which each instance is a probabilistic distribution over the latent compo-
nents and represented as a convex combination of latent components. In other words,
this convex combination provides explicitly the extent of contribution of each latent com-
ponent, while other formulations of NMF do not have. Moreover, regarding to geometry
meaning, each instance is projected as a point on the simplex of latent components. This
projection is called instance inference. As a result, we obtained significant properties:

• Sparsity: Instance inference is a convex problem over the simplex of latent com-
ponents. Furthermore, we can easily control the solution sparsity via greedy ap-
proximation algorithms such as Frank-Wolfe algorithm [23], which can guarantee
theoretical convergence.

• Convexity: Obviously, inferring an instance is to find an approximation of the
convex combination that is a convex optimization problem [13,14,23]. In addition,
this simplicial convex problem can be solved by linearly guaranteed algorithms
such as Frank-Wolfe algorithm [23,55].

58

5.2 Simplical Matrix Factorization with Frobenius norm

• Computation: The instance representation can be considered as a projection on
the simplex of the latent components. Hence, the inference based on this projec-
tion can be guaranteed by sub-linear convergence rate O(1/k) [23]. In comparison
to other formulations, this one has significant computing advantages in the in-
ference of instances, while the learning step is the same with the previous basic
formulations because it solves the same optimization problem.

• Interpretability: The new formulation provides a more comprehensible inter-
pretation of the contribution role of coefficients. Particularly, each data instance
is a convex combination of the latent components, in which the sum of coeffi-
cients always equals to 1 through NMF. Hence, the contribution role of the latent
components on instances can be concisely represented via values of coefficients.
Otherwise, for other formulations, evaluating the contribution of components is
forceful because of the lack of constraints between coefficients. Alternatively, a
post-processing can be employed to find out the role of the latent components.
However, it is independent and inconsistent with learning NMF model.

• Distributability and parallelizability: NMF problem contains two sub-problems:
inference and learning, see Section 5.3. The learning problem is the same with
other formulations and can be solved by distributed algorithms [20]. Meanwhile,
the inference one of our formulation can be solved by a much faster algorithm
comparing to the others’, and it can be parallelized [13]. This favor is hard to be
reached in other formulations.

To control the quality of NMF, various cost functions f(V ∥W T F) are employed,
which often contain two parts: The first part is a divergence function that measures
the difference between original coordinates (V) inverted coordinates (W T F); and the
second one is possibly regularizations and constraints to control sparsity, smoothness,
and orthogonality. In this formulation, we only consider the objective function containing
a divergence function between original coordinates (V) and coordinates (W T F) under
simplicial contraints because these constraints can guarantee sparsity and smoothness
to avoid over-fitting problems.

In this chapter, we focus on simplicial nonnegative matrix factorization with Frobe-
nius norm:

59

5.3 Proposed Algorithm

• Frobenius norm:

DF ro(x∥y) = 1
2∥x − y∥2

2 = 1
2

n∑
i=1

(xi − yi)2

• Simplicial NMF with Frobeius norm:

J(V ∥W T F) = 1
2

m∑
j=1

DF ro(Vj∥W T Fj) = 1
2

m∑
j=1

∥Vj − W T Fj||22.

5.3 Proposed Algorithm

For solving simplicial NMF with Frobenius norm, we employ iterative multiplicative
updates like EM algorithm, which is presented in Algorithm 6, because the objective
function is non-convex, although sub-problems are strongly convex. This algorithm
contains two main steps: one for finding F when fixing W , and the other for finding W

when fixing F . In the first step, F = {Fj}m
j=1 are updated to achieve a better objective

value W ≈ argmin
F

DF ro(V T ∥F T W), where each of Fj is a probabilistic representation
of data instances {Vj}m

j=1. Hence, this step can be seen as inference step and the process
is called as inferring an data instance. In the other step called learning step, the latent
components are acquired by approximately minimizing DF ro(V ∥W T F) when fixing F :
W ≈ argmin

W
DF ro(V ∥W T F).

5.3.1 Inference Algorithm

Remark 1 Inferring of data instances V in a new space of latent components by mini-
mizing J(V ∥W T F) can be conducted independently.

In this step, we need to minimize

J(V ∥W T F) =
m∑

j=1
DF ro(Vj∥W T Fj) =

m∑
j=1

∥Vj − W T Fj∥2
2

Hence, since V and W are fixed in this step, minimizing J(V ∥W T F) is equivalent to
minimizing nonnegative least squares or its nonnegative quadratic programming problem
1
2xT Qx + qT x , which is performed independently by Algorithm 7.

Specially, when setting x = Fj, the inference will become minimizing:

J(v∥W T x) = 1
2∥Vj − W T x∥2

2 = 1
2xT Qx + qT x (5.1)

60

5.3 Proposed Algorithm

Algorithm 6: Iterative multiplicative update for Frobenius norm
Input: Data matrix V = {Vj}m

j=1 ∈ Rn×m
+ and r.

Output: Coefficients F ∈ Rr×m
+ and latent components W ∈ Rr×n

+

1 begin
2 Select randomly r components from m data instances;
3 repeat
4 q = −WV ;
5 Q = WW T ;
6 Inference step: Fix W to find F ≈ argmin

F ∈Rr×m

J(V ∥W T F);

7 /*Call Algorithm 7 in parallel*/;
8 for j = 1 to m do
9 Fj ≈ argmin

x inRr
+,xT 1r=1

∥Vj − W T x∥2
2 = argmin

x inRr
+,xT 1r=1

1
2xT Qx + qT

j x

10 q = −FV T ;
11 Q = FF T ;
12 Learning step: Fix F to find W ≈ argmin

W ∈Rr×n

J(V T ∥F T W);

13 /*Call solving NQP in parallel*/;
14 for i = 1 to n do
15 Wi ≈ argmin

x inRr
+

∥V T
i − F T x∥2

2 = argmin
x inRr

+

1
2xT Qx + qT

i x

16 if convergence condition is satisfied then
17 break;

18 until False;

where:
r∑

k=1
xk = 1, Q = WW T , q = −WVj.

This is a nonnegative quadratic programming problem adding a simplicial constraint.

Remark 2 Inferring each data instance is equivalent to solving a nonnegative quadratic
programming problem with a simplicial contraint.

Moreover, adding the convex constraints leads to the existence of sparse solutions
and it can avoid over-fitting problems. Specially, the convex constraints enable greedy
algorithms, which is derived from Frank-Wolfe algorithm [23, 55], in order to control
directly and effectively sparsity of solutions, see more details in Algorithm 7.

61

5.3 Proposed Algorithm

Algorithm 7: Inference for data instance x

Input: Q ∈ Rr×r, q ∈ Rr.
Output: New coefficient x ≈ argmin

x∈Rr
f(x) = argmin

x∈Rr

1
2xT Qx + qT x.

1 begin
2 Choose k = arg min

k

1
2eT

k Qek + qT ek, where ek is the kth basis vector;

3 Set x = 0k; xk = 1; Qx = Qek; qx = qT x and ∇f = Qx + qT ;
4 repeat
5 Select k = argmin

k∈{1..r}
∇fk;

6 Select α = argmin
α

f(αek + (1 − α)x);

7 α = min(1, max(−1, max(α, − fk

1−fk
)));

8 if α == 0 then
9 break;

10 Qx = (1 − α)Qx + αQek;
11 ∇f = Qx + q;
12 qx = (1 − α)qx + αqek;
13 x = (1 − α)x;
14 xk = xk + α;
15 until converged conditions are staisfied;

62

5.4 Theoretical Analysis

5.3.2 Learning Algorithm

Remark 3 Learning components W by minimizing J(V T ∥F T W) can be independently
conducted in each attribute.

We also have J(V T ∥F T W) =
n∑

i=1
1
2∥V T

i −F T Wi∥2
2. Hence, minimizing J(V T ∥F T W) is

equivalent to minimizing 1
2∥Vi −F T Wi∥2

2 = 1
2xT Qx+qT x independently in each attribute

since V and W are fixed, where Q = FF T , q = −FV T
i . Therefore, we can independently

learn attributes of the latent components by solving nonnegative quadratic programming
problem [56,73].

5.4 Theoretical Analysis

5.4.1 Complexity

In this section, we discuss the complexity of instance inference because it effects on the
performance of real applications. Consider the complexity of inference steps, we have:

Theorem 5 The complexity of inferring a data instance is O(kr), and the complexity of
inference step is O(mnr +nr2 +kmr), where k is the iteration number, n is the instance
dimension, and m is the instance number.

Proof: Excepted the statement in Line 6, all other statements in Algorithm 7 have
complexity O(1) or O(r). Hence, the complexity of inferring a data instance is O(kr) if
and only if α = argmin

α
f(αek + (1 − α)x) has complexity of O(r). Because f(αek + (1 −

α)x) is a quadratic function of α, α = argmin
α

f(αek + (1 − α)x) = − ∇fα

∇2fα
.

In addition, we have:
∇fα = (ek−x)T Q((1−α)x+αek)+(ek−x)T q = (1−α)(ek−x)∇f +α(ek−x)(Qek+q)
∇2fα = (ek − x)T Q(ek − x) = eT

k QeT
k − 2eT

k Qx + xT Qx

Hence, both of computing ∇fα and ∇2fα can be computed in O(r) because ∇f and
Qx are computed in advance.

Therefore, the complexity of inferring a data instance is O(kr), and the complexity
of inference step is O(mnr + nr2 + kmr) if we consider computing WV and WW T is
O(mnr + nr2). �

63

5.4 Theoretical Analysis

5.4.2 Convergence Guarantee of Inference

Concerning the convergence of inference, based on [23], we have

Theorem 6 Let f be a twice differentiable convex function over simplex △ and denote
Cf = supy,z∈△;ỹ∈[y,z](y−z).∇2f(ỹ).(y−z)T . After l iterations, the Frank-Wolfe algorithm
will find an approximate solution xl with at most (l + 1) non-zeros coefficients which
satisfy

maxx∈△f(xl) − f(x) ≤ Cf

l+1

From this theorem, we have the following remarks:

• Convergence rate of inference is linear and the goodness of solutions is bounded,
which are crucial in applications.

• Inference depends mostly on complexity of f and ∇f .

• We can easily tradeoff between sparsity and quality of solutions by stop finding
new latent components to optimize the cost function. This property is valid for
real applications, which the number of non-zero coefficients is limited.

5.4.3 Sparsity

Recently, sparse solutions receive much interests in machine learning by its abilities of
improving accuracy and saving storage with low complexity. To obtain sparse solutions,
most previous works employed different regularizations such as L1 and L2 ones. However,
they are limited in controlling sparsity level of solutions. In other words, the number of
non-zero coefficients in solutions is unpredictable.

Unlike previous approaches, we have imposed a greedy algorithm, e.g., Frank-Wolfe
algorithm, which can control severely the solution’s sparsity. From Algorithm 7, the
number of non-zero coefficients can be restricted by do not employing new latent com-
ponents to optimize the cost function, when the number of non-zeros ones reaches to
the limitation. Moreover, the preference of selecting the best latent components to opti-
mize allows our algorithm to achieve more sparse solutions than other algorithms while
keeping the optimality of solution.

64

5.5 Experimental Evaluation

5.4.4 Distributability and Parallelizability

From the proposed algorithm, Algorithm 7, we have several remarks:

• Inference of data instances can be fully distributed over machines that is crucial
for designing distributed algorithms.

• Running time of inference mostly depends on finding the best latent component.
Furthermore, computing the partial derivative for each latent component is totally
separated. As a result, this computation can be paralleled. Hence, the responding
time in real applications can be effectively reduce.

5.5 Experimental Evaluation

This section investigates the effectiveness of our approach and the proposed algorithm for
simplicial NMF (sNMF) with Frobenius norm by four criteria: interpretability, sparsity
of solutions, performance in classification tasks and loss information measure. More
particularly, our algorithm for Frobenius norm is compared to NMF [83], spNMF [82],
oNMF [19], and cNMF [25]. The implemented codes are at 1.

Test-cases: In this investigation, we use one typical databases of images digit
dataset, which has 4 000 random-selected samples from 2.

5.5.1 Interpretation

In conducting experiments for the digit dataset, we have run with different parameters
r ∈ {10, 15, 20, 25, 30, 35, 40}. We realize that approaches begin finding out part-based
representation of data instances from r = 25. Figure 5.3 shows latent components of
NMF [58] and sNMF with r = 25 for the digit dataset. Obviously, latent components
of sNMF are small part curves of digits, while ones of Lee 2001’s NMF 5.3 also gives
a part-based representation but they are bigger curves. The results indicates that the
proposed approach obtains a better part-based representation for data instances because
the latents components are more sparse and independent each other. Moreover, when
factorizing matrices is comleted, sNMF’s coefficients are in [0, 1] with sum equal to 1,
so they can represent the role of latent components in instances, while coefficients in

1http://www.ee.columbia.edu/~grindlay/code.html
2http://yann.lecun.com/exdb/mnist/

65

http://www.ee.columbia.edu/~grindlay/code.html
http://yann.lecun.com/exdb/mnist/

5.5 Experimental Evaluation

Fig. 5.1 Basic NMF Fig. 5.2 Simplicial NMF

Fig. 5.3 Latent components with K = 25 for digit database

10 15 20 25 30 35 40

0

10

20

30

40

50

60

Number of latent components

S
p
ar
si
ty
(%

)

sNMF spNMF cNMF oNMF NMF

1

Fig. 5.4 Sparsity of new coefficients for Frobenius norm with r = 30

other formulations does not. They are nonnegative numbers, which only represent the
measure of basis vectors.

5.5.2 Sparse Representation

In order to compare the sparsity of solutions, we compute the percentage of zero coeffi-
cients

Number of zero coefficients
Number of coefficients × 100%

The results are highly competitive with other methods. For Frobenius norm, al-
though our algorithm’s sparsity is only less than cNMF [25] (Figure 5.4), it has lower
information loss and higher performance in classification.

66

5.5 Experimental Evaluation

10 15 20 25 30 35 40

10

15

20

Number of latent components

A
cc
u
ra
cy

sNMF spNMF cNMF oNMF NMF

1

Fig. 5.5 Inaccuracy for Digit Classification

5.5.3 Performance for classification

Classification quality is one of measures that evaluates our method’s effectiveness as
NMF is often considered as a dimension redution technique used widely in classification.
In this experiment, we use Random Forest3, a robust algorithm for classification. Ob-
serving Figure 5.5, our method is one of methods with the lowest errors in testing. For
Frobenius norm and the digit dataset, the result of our method is very close to the best
method oNMF [19].

5.5.4 Convergence

For dimension reduction, information loss criterion is one of the most important measure.
From observing Figure 5.6, our approach has the lowest information loss.

In addition, convergence speed is a significant measure to evaluate updating algo-
rithms because algorithms having more iterations require more computation and also
time for loading data. We can realize easily from Figure 5.6 that our algorithm has
the fast convergence speed while it gains the best optimized solutions with at the least
number of iterations.

3http://cran.r-project.org/web/packages/randomForest/

67

5.6 Conclusion and discussion

0 10 20 30 40 50 60 70 80 90 100

109.8

1010

1010.2

1010.4

Iterators

D
(V

‖W
T
F
)

sNMF spNMF cNMF oNMF NMF

1

Fig. 5.6 Information Loss for Frobenius norm with r = 30

5.6 Conclusion and discussion

In this chapter, we have propose a new formulation as simplicial nonnegative matrix
factorization (simplicial NMF) with Frobenius norm, in which each data instance is a
probabilistic convex combination of latent components. A fast parallel algorithm de-
rived from Frank-Wolfe algorithm is designed for simplicial NMF with Frobenius norm
to control directly and effectively sparsity of solutions. The proposed algorithm has low
complexity in inference, sparsity, and distributability and parallelization. Our experi-
mental evaluation indicates the effectiveness of our approach via significant criteria such
as interpretability, sparsity, performance in classification task and information loss. Our
obtained results are highly competitive with equivalent approaches.

Publications

1. Nguyen, Duy Khuong, Khoat Than, and Tu Bao Ho. Simplicial nonnegative matrix
factorization. In Computing and Communication Technologies, Research, Innova-
tion, and Vision for the Future (RIVF), 2013 IEEE RIVF International Conference
on, pp. 47-52. IEEE, 2013 (best student paper).

68

Chapter 6

Fast Parallel Algorithm for
Simplicial NMF with KL Divergence

Data Science wisdom comes only through failed
experimentation

— Damian Mingle

Nonnegative Matrix Factorization (NMF) with Kullback-Leibler(KL) Divergence (NMF-
KL) can provide more sparse models and sparse representation than Nonnegative Matrix
Factorization (NMF) with Frobenius norm. Hence, it is more suitable for sparse count
data that follows Poisson distributions. In this chapter, we extend simplicial nonneg-
ative matrix factorization for KL divergence by proposing a parallel algorithm having
guaranteed convergence O(1/k) in inference for large sparse datasets to archive sparse
models and sparse representation. The proposed algorithm’s experimental results are
highly competitive with the results of equivalent methods.

6.1 Introduction

NMF is a powerful linear technique to reduce dimension and to extract latent factors,
which can be concisely interpreted to explain phenomenon in science [34,58,86]. Hence,
it has been widely used in many applications [92, 98]. For sparse count data, NMF
with KL divergence and a Poisson distribution may provide sparse models and sparse
representation describing better the random variation rather than NMF with Frobenius
norm and a normal distribution [87]. However, nonnegative constraints are not enough to
express the role of latent components over data instances. In this chapter, we extend the
study of simplicial nonnegative matrix factorization (simplicial NMF) for KL divergence,
in which the role of latent components is represented by coefficient values.

In simplicial NMF with KL divergence, a given nonnegative data matrix V ∈ Rn×m
+

must be factorized into a product of two nonnegative matrices, namely a latent compo-

69

6.2 Proposed Algorithm

nent matrix W ∈ Rr×n
+ and a representation matrix F ∈ Rr×m

+ , where n is the dimension
of a data instance, m is the number of data instances, and r is the number of latent
components or latent factors. In addition, each instance is a probabilistic combination
of latent components, which is represented by

r∑
r=1

Fkj = 1, ∀j. Hence, the objective
function of simplicial NMF with KL divergence is rewritten as follows:

J(V ∥W T F) =
m∑

j=1
DKL(Vj∥W T Fj) =

m∑
j=1

n∑
i=1

(Vij log Vij

W T
i Fj

− Vij + W T Fj), (6.1)

where V, W, F ≥ 0;
r∑

k=1
Fkj = 1 for all j.

The rest of the chapter is organized as follows. Section 6.2 presents the proposed
algorithms. The theoretical analysis of convergence and complexity is discussed in Sec-
tion 6.3. Section 6.4 shows the experimental results, and Section 6.5 summarizes the
main contributions of this chapter and discussion.

6.2 Proposed Algorithm

For solving simplicial NMF with KL divergence norm, sub-problems are convex, although
the objective function is non-convex. Hence, we employ iterative multiplicative updates
like EM algorithm, which is presented in Algorithm 8. This algorithm contains two
main steps: one for finding F when fixing W , and the other for finding W when fixing
F . In the first step, F = {Fj}m

j=1 are updated to achieve a better objective value
W ≈ argmin

F
DKL(V T ∥F T W), where each of Fj is a probabilistic representation of data

instances {Vj}m
j=1. Hence, this step can be seen as inference step and the process is

called as inferring an data instance. In the other step called learning step, the latent
components are acquired by approximately minimizing DKL(V ∥W T F) when fixing F :
W ≈ argmin

W
DKL(V ∥W T F).

6.2.1 Inference Algorithm

In this section, we discuss the inference algorithm which inherited Frank-Wolfe algo-
rithm having sub-linear convergence O(1/k). In this algorithm, the objective function is
optimized by updating values of latent components {Fj}m

j=1 when fixing latent compo-
nents W T . In addition, the inference in this divergence can be conducted independently
for each data instance Vj because D(V ∥W T F) =

m∑
j=1

D(Vj∥W T Fj). Hence, inferring

70

6.2 Proposed Algorithm

Algorithm 8: Iterative multiplicative update for KL divergence
Input: Data matrix V = {Vj}m

j=1 ∈ Rn×m
+ and r.

Output: Coefficients F ∈ Rr×m
+ and latent components W ∈ Rr×n

+

1 begin
2 Select randomly r components from m data instances;
3 repeat
4 Inference step: Fix W to find F ≈ argmin

F ∈Rr×m

J(V ∥W T F);

5 Compute sumW = W1n;
6 /*Call Algorithm 9 in parallel*/;
7 for j = 1 to m do
8 Fj ≈ argmin

x inRr
+,xT 1r=1

DKL(Vj∥W T x) with sumW ;

9 Learning step: Fix F to find W ≈ argmin
W ∈Rr×n

J(V T ∥F T W);

10 /*Learning new latent components by approximation algorithm*/;
11 for i = 1 to n do

12 Wi ≈ argmin
x inRr

+

DKL(V T
i ∥F T x) ⇒ Wki =

∑m

j=1 Vij∑m

j=1 Fkj

13 if convergence condition is satisfied then
14 break;

15 until False;

each data instance in KL divergence is also solving a convex optimization problem with
simplicial constraints with the common form:

f(x) =
n∑

i=1
(vi log vi

AT
i x

− vi + AT
i x) (6.2)

The derivative of variable x is computed as follows:

∇f = −
n∑

i=1
vi

AT
i

AT
i x

+
n∑

i=1
AT

i (6.3)

To seek the optimal solution, Algorithm 9 inherited from Frank-Wolfe algorithm is
employed. This algorithm prefers optimizing the objective function along the steepest

71

6.2 Proposed Algorithm

direction selected by:

k = argmin
k

< ek − x, ∇f >= argmin
k

∇fk (6.4)

To optimize the objective function along the direction ek − x, it is parameterized by
α as follows:

f(y) =
n∑

i=1
(vi log vi

AT
i y

− vi + AT
i y) (6.5)

where : y = (1 − α)x + αek

Hence, we have:

∇fα = ∂f

∂y

∂y

∂α
= −

n∑
i=1

vi
AT

i (ek − xk)
AT

i ((1 − α)x + αek) +
n∑

i=1
AT

i (ek − x) (6.6)

Since the objective function is convex over a continuous variable α, we can employ
bisection search method with O(log(1

ϵ
)) iterations:

α = argmin
α∈[0,1]

f((1 − α)x + αek) (6.7)

To avoid issues of numerical computation, we add a small positive number into the
denominator. In addition, to reduce the complexity, Ax is computed and maintained
through conducting the algorithm.

6.2.2 Learning Algorithm

Equivalent to Frobenius distance, learning components can be conducted separately in
each column because J(V T ∥F T W) = ∑n

i=1 DKL(V T
i ∥F T Wi), and V and F are fixed.

In this step, to approximate the solution Wi, we have:

DKL(V T
i ∥F T Wi) =

m∑
j=1

(Vij log Vij

W T
i Fj

−Vij +W T
i Fj) =

m∑
j=1

(W T
i Fj −Vij log W T

i Fj)+const

Hence, minimizing DKL(V T
i ∥F T Wi) is equivalent to minimizing

h(W1i, ..., Wri) =
m∑

j=1
F T

j Wi −
m∑

j=1
Vij log(F T

j Wi) (6.8)

Moreover, based on Josen’s inequality for the concave function log and non-negative

72

6.2 Proposed Algorithm

Algorithm 9: Inference for data instance x

Input: Data instance v ∈ Rr
+ and latent components A ∈ Rr×n

+ ; and
sumA = A1n

1 , Output: New coefficient x ≈ argmin
x∈Rr

+

n∑
i=1

(vi log(vi

AT
i x+ϵ

) − vi + AT
i x

2 begin
3 Choose component W T

i closest to x in KL divergence;
4 Set x = 0r; xk = 1; and Wx = W T x;
5 repeat
6 Computing ∇f ;
7 Select k = argmin

i∈{1..r}
∇fk;

8 Select α = argmin
α∈[0,1]

f(αek + (1 − α)x);

9 Wx = (1 − α)Wx + αW T
k ek;

10 Set x = (1 − α)x and xk = xk + α;
11 until Convergence condition satisfied;

coefficients F1j, ..., Frj with
r∑

k=1
Fkj = 1, we have

logF T
j Wi = log(

r∑
k=1

FkjWki) ≤
r∑

k=1
Fkj log(Wki) (6.9)

Then:

h(W1i, ..., Wri) ≤ h′(W1i, ..., Wri) =
m∑

j=1

r∑
k=1

WkiFjk −
m∑

j=1
Vij

r∑
k=1

Fjklog(Wki) (6.10)

Wk is approximated by minimizing h′(W1i, ..., Wki):

∂h′

∂Wki

= 0 ⇔ Wki =
∑m

j=1 Vij∑m
j=1 Fkj

(6.11)

Therefore, in the learning step for KL divergence, we can directly approximate the
solution. Although this is only an approximate solution, it is really effective for KL
divergence and this technique has been employed in numerous applications.

73

6.3 Theoretical Analysis

6.3 Theoretical Analysis

As discussed above, the main difference between our algorithms and the others is in
the inference step because we solve the same optimization problem in the learning step.
Hence, we will discuss complexity, convergence of inference, sparsity, and distributability
and parallelizability in this section.

6.3.1 Complexity

Theorem 7 Consider Algorithm 9 to infer a data instance having n-dimension by r

latent components with k iterations. Then, its complexity is O(k[r.nnz(n) + n log 1
ϵ
]),

where nnz(n) is the number of non-zero elements in v.

Proof:In the Algorithm 9, for each iteration, base on Equation 6.3 of computing the
derivative, the complexity of finding out the best coefficient k is O(r.nnz(n)) when
Ax and sumA are computed in advanced. In addition, the complexity of estimating
a ∈ [0, 1] is O(n log 1

ϵ
), where ϵ is a small positive quantity for the required precision,

because we use binary search algorithm. Overall, the complexity for k iterations is
O(k[r.nnz(n) + n log 1

ϵ
]) �

In addition, for the learning step with KL divergence, we employ an approximate
algorithm with low complexity:

Theorem 8 Let consider to learn new latent components after inferring coefficients of
data instances. Then, its complexity is O(m[nnz(n) + nnz(r)]).

Proof: This theorem is implied from formula 6.11 �

6.3.2 Convergence Guarantee of Inference

Based on [23], we have

Theorem 9 Let f be a twice differentiable convex function over simplex △ and denote
Cf = supy,z∈△;ỹ∈[y,z](y−z).∇2f(ỹ).(y−z)T . After l iterations, the Frank-Wolfe algorithm
will find an approximate solution xl with at most (l + 1) non-zeros coefficients which
satisfy

maxx∈△f(xl) − f(x) ≤ Cf

l+1

74

6.3 Theoretical Analysis

From this theorem, we have the following remarks:

• The proposed algorithm has fast sub-linear convergence O(1/k), which is a sig-
nificant contribution because basic NMF with KL divergence does not guarantee
this property. In addition, this convergence guarantee the bounded goodness of
solutions.

• After training NMF models, fast inference is crucial for large scale applications.

• Sparsity and quality of solutions can easily trade-offed by stop finding new latent
components to optimize the cost function, which is valid for real applications when
limiting the number of non-zero coefficients.

6.3.3 Sparsity

Sparse solutions receive much interests in machine learning community because of im-
proving computation performance and saving storage with low complexity. In this for-
mation, sparse solutions are enhanced by three factors as simplicial constraints, KL
divergence, and Frank-Wolfe algorithm. In addition, we can easily control the sparsity
of solutions by limiting the number of non-zero elements, which is crucial for real appli-
cations, which prefer high sparse representation such as topic modeling and compressed
sensing.

6.3.4 Parallelizability and distributability

In the proposed algorithm, the objective function is fully decomposed into small com-
putation elements. Hence, the computation is easily computed and distributed over
distributed systems. In addition, running time of inference mainly depends on finding
the best latent component. Furthermore, computing the partial derivative for each la-
tent component is totally separated. As a result, this computation can be paralleled.
Hence, the responding time in real applications can be effectively reduce. Moreover,
regarding to the learning algorithm for KL divergence, it is absolutely fast and can be
easily distributed, which is highly suitable for parallel and distributed systems such as
Hadoop and Apache Spark.

75

6.4 Experimental Evaluation

5 10 15 20 25 30 35

0

20

40

60

80

100

Number of latent components

S
p
ar
si
ty
(%

)

sNMF spNMF cNMF oNMF kl-NMF

1

Fig. 6.1 Sparsity of new coefficients for KLdivergence with r = 30

6.4 Experimental Evaluation

In this section, we investigate the effectiveness of our approach and the proposed al-
gorithm for simplicial NMF with KL divergence by four criteria: sparsity of solutions,
performance in classification tasks and loss information measure. More particularly, our
algorithm for simplicial NMF KL-divergence is compared to kl-NMF [83], local non-
negative matrix factorization (locNMF) [60], convolutional NMF(conNMF) [85], and
Nonsmooth Nonnegative Matrix Factorization (nsNMF) [76]. The implemented codes
are at 1.

Test-cases: In this investigation, we use a typical database text, which contains
4 327 labeled spam emails are all downloaded from 2 . For the email dataset, after
normalizing data such as numbers turning into number term and plural noun into single
noun, we compute tf-idf 3 for 32 906 distinct terms as convenient features for data
instances.

6.4.1 Sparse Representation

In this section, we investigate the sparse of instance representation in the new space
of latent components. This sparsity of solutions is measured as the percentage of zero
coefficients by the following formula:

1http://www.ee.columbia.edu/~grindlay/code.html
2http://csmining.org/index.php/spam-email-datasets-.html
3http://en.wikipedia.org/wiki/Tf-idf

76

http://www.ee.columbia.edu/~grindlay/code.html
http://csmining.org/index.php/spam-email-datasets-.html
http://en.wikipedia.org/wiki/Tf-idf

6.4 Experimental Evaluation

5 10 15 20 25 30 35

15

20

25

30

Number of latent components

A
cc
u
ra
cy

sNMF spNMF cNMF oNMF kl-NMF

1

Fig. 6.2 Inaccuracy for Spam Classification

Number of zero coefficients
Number of coefficients × 100%

Figure 6.1 shows that the sparsity result is highly competitive with other methods’
one. Specially, our approach retains the highest sparse solutions, while it still keeps one
of the best result for the other measures. This result indicates that simplicial NMF with
KL divergence can achieve both of highly sparse representation and high quality of other
factors, which is crucial for real large scale application.

6.4.2 Performance for classification

In this section, our method is compared with other methods on classification perfor-
mance, which is one important measure for dimension redution technique. In this ex-
periment, we employ Random Forest4, a robust algorithm for classification. Figure 6.2
indicates that our method obtains the lowest misclassification with r = 15 and r = 35.

6.4.3 Convergence

In this section, we investigate the convergence of information loss. Figure 6.3 has
achieved lowest and fastest convergence versus iterations. This result is meaning for
large scale applications because algorithms having more iterations require more compu-
tation and also time for loading data for distributed computation like Hadoop.

4http://cran.r-project.org/web/packages/randomForest/

77

6.5 Conclusion and discussion

0 2 4 6 8 10 12 14 16 18 20

106.25

106.3

106.35

106.4

106.45

Iterators

D
(V

‖W
T
F
)

sNMF spNMF cNMF oNMF kl-NMF

Fig. 6.3 Information Loss for KL divergence with r = 30

6.5 Conclusion and discussion

In this chapter, we have propose a fast parallel algorithm derived from Frank-Wolfe algo-
rithm for simplicial NMF with KL divergence to control directly and effectively sparsity
of solutions. The proposed algorithm has fast guaranteed convergence O(1/k), sparsity,
and parallelization. Our experimental evaluation shows the effectiveness of our approach
via significant criteria such as sparsity, classification performance and information loss.
The proposed approach has highly sparse representation, fast convergence and high ac-
curacy, which are highly competitive with equivalent approaches and potentially feasible
for large scale applications.

Publications

1. Nguyen, Duy Khuong, Khoat Than, and Tu Bao Ho. Simplicial nonnegative matrix
factorization. In Computing and Communication Technologies, Research, Innova-
tion, and Vision for the Future (RIVF), 2013 IEEE RIVF International Conference
on, pp. 47-52. IEEE, 2013 (best student paper).

78

Chapter 7

Conclusion and Future Works

I have not failed. I’ve just found 10,000 ways that won’t
work.

— Thomas Edison

7.1 Conclusion

In summary, this thesis has systematically studied to rich models and fast algorithms for
nonnegative matrix factorization in two popular objective functions as Frobenius norm
and KL-divergence. Specially, the thesis has major contributions:

Chapter 2 introduces a unified NMF model by generalizing numerous variants of
NMF, which has been developed and employed for many real applications. From this
modeling, new researchers can easily implement and compare NMF models, conveniently
comprehend existing NMF formulations during over a decade, and also create new formu-
lations for their various researches. Base on this approach, we propose two rich models
for NMF as NMF with L1 L2 regularizations and simplicial NMF.

Chapter 3 proposes an accelerated parallel and distributed algorithms for NMF with
L1 L2 regularizations, which inherits a novel accelerated anti-lopsided algorithm for non-
negative least squares. Specially, the proposed algorithm achieves over-bounded linear
convergence rate of O([(1 − µ

L
)(1 − µ

L
)2r]k) in the sub-spaces of passive variables when

fixing one of latent factor matrix; where µ and L are always bounded as 1
2 ≤ µ ≤

L ≤ r. In addition, the algorithm is a flexible framework for all the variants of NMF
regularizations. In the experimental evaluation, our algorithm overcomes 7 of the most
art-the-state algorithms in large datasets about three significant aspects of convergence,
average of the iteration number and optimality. Furthermore, it can fully be parallelized
and distributed because the computation using limited internal memory is decomposed
into basic computation units as NQP problems.

79

7.2 Future Works

Chapter 4 introduces a fast parallel randomized algorithm for nonnegative matrix
factorization with KL-divergence having fast average convergence to solve major prob-
lems for count sparse datasets including sparse model, sparse representation, sparse
algorithm, limited internal memory, and parallel algorithm. The algorithm can achieve
sparse model and sparse representation, which leads to that the proposed algorithm
effectively utilize sparsity prosperities of data and model to significantly improve its
performance. In addition, the algorithm generally adapt all the variants of L1 L2 reg-
ularizations of NMF with KL-divergence. In experimental evaluation, the proposed
algorithms’ results outperform the results of the state-of-the-art algorithms.

Chapter 5 and Chapter 6 introduce a new formulation of NMF as simplicical NMF for
Frobenius norm and KL divergence. The formulation give a more concise interpretabil-
ity of the roles of latent factors contributing on the data instances by assuming that
each instance is a probabilistic contribution of latent components, which it still enhance
sparsity and smoothness. Furthermore, this formulation can utilize parallel and dis-
tributed algorithms, and current advanced optimization algorithms having guaranteed
convergence and sparsity. In practice, the algorithm based on Frank-Wolf algorithm has
sub-linear convergence rate O(1/k). In addition, the proposed approaches can achieve
concise interpretability, fast convergence versus iterations, sparse representation, and
high accuracy classification.

In summary, this thesis discusses two significant mutual aspects of nonnegative ma-
trix factorization as rich models and fast algorithms. Specifically, we propose rich models
and their four fast parallel algorithms for nonnegative matrix factorization for two di-
vergences, which can adapt with large scale applications and various datasets.

7.2 Future Works

In despite of these significant contributions that solved several fundamental problems
in NMF with Frobenius norm and KL-divergence, many new challenges based on this
study are open for further researches:

Fast parallel and distributed algorithms for orthogonal nonnegative matrix
factorization

Nonnegative matrix factorization is a linear model like principal component analy-
sis (PCA), which forces non-negativity constraints but relaxes orthogonality properties.
These non-negativity constraints on both latent components and coefficients lead NMF

80

7.2 Future Works

to an additive model and reduce the overlapping of extracted latent factors. In addi-
tion, orthogonality provides more concise interpret-ability of clustering and latent factor
independence [27, 28], which is necessary for real applications [78]. However, current
algorithms [51,67,78,94] for orthogonal nonnegative matrix factorization still is limited
on convergence speed, and parallel and distributed computing paradigms to deal with
big data.

Supervised algorithms for nonnegative matrix factorization

Nonnegative matrix factorization can be purely considered as an unsupervised learning
method. Using supervised information such as label and clustering information will
improve accuracy of supervised post-processes such as clustering and classification [61,
67, 70]. In future researches, we will extend the current studies of rich models and fast
algorithms for supervised learning in nonnegative matrix factorization.

Rich models for stream data

Modern technologies such as the Internet of things, sensors, machines to machines sys-
tems, web logs, and computer network traffic, etc have been generating big stream
data [4,16,24]. These big data are complicated by various properties of high-dimension
datasets [24]. Current formulations for NMF have several limitations in interpretability
and unpredictable forms of latent factors, which are necessary for data stream process-
ing. Hence, rich models support fast algorithms, concise interpretability and normalized
output, which are opening challenges for nonnegative matrix factorizations.

Fast online learning algorithms for nonnegative matrix factorization

Big and stream data require fast algorithms to deal with them [17]. In addition, non-
negative matrix factorization is a powerful and popular method for data analysis, while
online learning algorithms can deal with big and stream data. Hence, online learning
algorithms for new variants of NMF for real large-scale applications and stream data are
opening problems for further researches [37].

Fast paparell and distributed algorithms for nonnegative tensor factorization

Tensor can be considered a higher-dimension version of matrix, and nonnegative tensor
factorization (NTF) can model high-dimension and more complicated data [22, 32, 52].

81

7.2 Future Works

Specially, NTF extract latent components to discover hidden knowledge inside high-
dimension datasets. However, tensor is more complex than matrix because several al-
gebra properties of matrix are incorrect for tensor [52]. Hence, upgrading researches of
these results of NMF for tensor is necessary and still challenges for further researches [54].

82

Softwares
We publish three software packages as follows:

Accelerated anti-lopsided algorithm for nonnegative least squares

URL address: https://github.com/khuongnd/nnls_antilopsided

This package implements the proposed fast anti-lopsided algorithm for nonnegative
least squares ∥Ax − b∥2

2 subject to x ≽ 0, which can be considered as a core algorithm
for nonnegative matrix and tensor factorization.

Accelerated parallel algorithm for nonnegative matrix factoriza-
tion with L1 L2 regularizations for Frobenius norm

URL address: https://github.com/khuongnd/NMF_APD

This package implements the proposed fast parallel algorithm for nonnegative matrix
factorization with all the variants of L1 L2 regularizations and Frobenius norm, which
optimizes the objective function: ∥V − WF∥2

2 + α1
2 ∥W∥2

2 + α2
2 ∥F∥2

2 + β1∥W∥1 + β2∥F∥1

Fast parallel algorithm for NMF with L1 L2 regularizations for
KL-divergence for large sparse datasets

URL address: https://github.com/khuongnd/NMF_KL_FastParallel

This package implements the proposed fast parallel algorithm for nonnegative ma-
trix factorization with KL-divergence for all the variants of L1 L2 regularizations for
large sparse datasets, which optimizes the objective function:

n∑
i=1

m∑
j=1

Vij log(Vij

W T
i Fj

−Vij +

W T
i Fj) + α1

2 ∥W∥2
2 + α2

2 ∥F∥2
2 + β1∥W∥1 + β2∥F∥1

83

https://github.com/khuongnd/nnls_antilopsided
https://github.com/khuongnd/NMF_APD
https://github.com/khuongnd/NMF_KL_FastParallel

List of Publications
[DKN15AN] Nguyen, Duy Khuong, and Tu Bao Ho. Anti-lopsided Algorithm for Large-

scale Nonnegative Least Square Problems. International Journal of Data
Science and Analytics, Springer, (accepted to publish).

[DKN15AC] Nguyen, Duy-Khuong, and Tu-Bao Ho. Fast Parallel Randomized Algo-
rithm for Nonnegative Matrix Factorization with KL Divergence for Large
Sparse Datasets, International Journal of Machine Learning and Computing
(accepted to publish).

[DKN15AC] Nguyen, Duy-Khuong, and Tu-Bao Ho. Accelerated Parallel and Dis-
tributed Algorithm using Limited Internal Memory for Nonnegative Matrix
Factorization. submitted to Journal of Global Optimization, (under revision).

[DKN15SIM] Nguyen, Duy Khuong, Khoat Than, and Tu Bao Ho. Simplicial nonneg-
ative matrix factorization. In Computing and Communication Technologies,
Research, Innovation, and Vision for the Future (RIVF), 2013 IEEE RIVF
International Conference on, pp. 47-52. IEEE, 2013 (best paper student).

[QKT14AN] Than, Khoat, Tu Bao Ho, and Duy Khuong Nguyen. An effective frame-
work for supervised dimension reduction. Neurocomputing 139 (2014): 397-
407.

[QKT14SU] Than, Khoat, Tu Bao Ho, Duy Khuong Nguyen, and Pham Ngoc Khanh.
Supervised dimension reduction with topic models. In ACML, pp. 395-410.
2012.

i

References
[1] Alexandrov, L.B., Nik-Zainal, S., Wedge, D.C., Campbell, P.J., Stratton, M.R.: De-

ciphering signatures of mutational processes operative in human cancer. Cell reports
3(1), 246–259 (2013)

[2] Arora, S., Ge, R., Kannan, R., Moitra, A.: Computing a nonnegative matrix
factorization–provably. In: Proceedings of the forty-fourth annual ACM symposium
on Theory of computing. pp. 145–162. ACM (2012)

[3] Arora, S., Ge, R., Moitra, A.: Learning topic models–going beyond svd. In: Foun-
dations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on. pp.
1–10. IEEE (2012)

[4] Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in
data stream systems. In: Proceedings of the twenty-first ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems. pp. 1–16. ACM (2002)

[5] Baraniuk, R.G.: Compressive sensing. IEEE signal processing magazine 24(4) (2007)

[6] Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and
new perspectives. Pattern Analysis and Machine Intelligence, IEEE Transactions
on 35(8), 1798–1828 (2013)

[7] Berry, M.W., Browne, M., Langville, A.N., Pauca, V.P., Plemmons, R.J.: Algorithms
and applications for approximate nonnegative matrix factorization. Computational
Statistics & Data Analysis 52(1), 155–173 (2007)

[8] Berry, M.W., Gillis, N., Glineur, F.: Document classification using nonnegative ma-
trix factorization and underapproximation. In: Circuits and Systems, 2009. ISCAS
2009. IEEE International Symposium on. pp. 2782–2785. IEEE (2009)

[9] Bertsekas, D.P.: Projected newton methods for optimization problems with simple
constraints. SIAM Journal on control and Optimization 20(2), 221–246 (1982)

[10] Bishop, C.M.: Model-based machine learning. Philosophical Transactions of the
Royal Society of London A: Mathematical, Physical and Engineering Sciences
371(1984), 20120222 (2013)

ii

References

[11] Blei, D.M.: Build, compute, critique, repeat: Data analysis with latent variable
models. Annual Review of Statistics and Its Application 1, 203–232 (2014)

[12] Bonettini, S.: Inexact block coordinate descent methods with application to non-
negative matrix factorization. IMA journal of numerical analysis 31(4), 1431–1452
(2011)

[13] Boyd, S.: Alternating direction method of multipliers. In: Talk at NIPS Workshop
on Optimization and Machine Learning (2011)

[14] Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge university press
(2004)

[15] Bro, R., De Jong, S.: A fast non-negativity-constrained least squares algorithm.
Journal of chemometrics 11(5), 393–401 (1997)

[16] Chakravarthy, S., Jiang, Q.: Stream data processing: a quality of service perspec-
tive: modeling, scheduling, load shedding, and complex event processing, vol. 36.
Springer Science & Business Media (2009)

[17] Chen, C.P., Zhang, C.Y.: Data-intensive applications, challenges, techniques and
technologies: A survey on big data. Information Sciences 275, 314–347 (2014)

[18] Chen, D., Plemmons, R.J.: Nonnegativity constraints in numerical analysis. In:
Symposium on the Birth of Numerical Analysis. pp. 109–140 (2009)

[19] Choi, S.: Algorithms for orthogonal nonnegative matrix factorization. In: Neural
Networks, 2008. IJCNN 2008.(IEEE World Congress on Computational Intelligence).
IEEE International Joint Conference on. pp. 1828–1832. IEEE (2008)

[20] Chu, C., Kim, S.K., Lin, Y.A., Yu, Y., Bradski, G., Ng, A.Y., Olukotun, K.: Map-
reduce for machine learning on multicore. Advances in neural information processing
systems 19, 281 (2007)

[21] Cichocki, A., Zdunek, R., Amari, S.i.: Hierarchical als algorithms for nonnegative
matrix and 3d tensor factorization. In: Independent Component Analysis and Signal
Separation, pp. 169–176. Springer (2007)

[22] Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.i.: Nonnegative matrix and tensor
factorizations: applications to exploratory multi-way data analysis and blind source
separation. Wiley (2009)

iii

References

[23] Clarkson, K.L.: Coresets, sparse greedy approximation, and the frank-wolfe algo-
rithm. ACM Transactions on Algorithms (TALG) 6(4), 63 (2010)

[24] Council, N.: Frontiers in massive data analysis (2013)

[25] Ding, C., Li, T., Jordan, M.: Convex and semi-nonnegative matrix factoriza-
tions. Pattern Analysis and Machine Intelligence, IEEE Transactions on 32(1), 45–55
(2010)

[26] Ding, C., Li, T., Peng, W.: Nonnegative matrix factorization and probabilistic
latent semantic indexing: Equivalence chi-square statistic, and a hybrid method. In:
Proceedings of the national conference on artificial intelligence. vol. 21, p. 342. Menlo
Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999 (2006)

[27] Ding, C., Li, T., Peng, W., Park, H.: Orthogonal nonnegative matrix t-
factorizations for clustering. In: Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining. pp. 126–135. ACM (2006)

[28] Ding, C.H., He, X., Simon, H.D.: On the equivalence of nonnegative matrix factor-
ization and spectral clustering. In: SDM. vol. 5, pp. 606–610. SIAM (2005)

[29] Donoho, D., Stodden, V.: When does non-negative matrix factorization give a
correct decomposition into parts? In: Advances in neural information processing
systems 16: proceedings of the 2003 conference. MIT Press (2004)

[30] Fodor, I.K.: A survey of dimension reduction techniques (2002)

[31] Franc, V., Hlaváč, V., Navara, M.: Sequential coordinate-wise algorithm for the
non-negative least squares problem. In: Computer Analysis of Images and Patterns.
pp. 407–414. Springer (2005)

[32] Friedlander, M.P., Hatz, K.: Computing non-negative tensor factorizations. Opti-
misation Methods and Software 23(4), 631–647 (2008)

[33] Gemulla, R., Nijkamp, E., Haas, P.J., Sismanis, Y.: Large-scale matrix factoriza-
tion with distributed stochastic gradient descent. In: Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data mining. pp. 69–
77. ACM (2011)

[34] Gillis, N.: The why and how of nonnegative matrix factorization. Regularization,
Optimization, Kernels, and Support Vector Machines 12, 257 (2014)

iv

References

[35] Gillis, N., Glineur, F.: Accelerated multiplicative updates and hierarchical als algo-
rithms for nonnegative matrix factorization. Neural computation 24(4), 1085–1105
(2012)

[36] Guan, N., Tao, D., Luo, Z., Yuan, B.: Nenmf: an optimal gradient method for
nonnegative matrix factorization. Signal Processing, IEEE Transactions on 60(6),
2882–2898 (2012)

[37] Guan, N., Tao, D., Luo, Z., Yuan, B.: Online nonnegative matrix factorization
with robust stochastic approximation. Neural Networks and Learning Systems, IEEE
Transactions on 23(7), 1087–1099 (2012)

[38] Guan, N., Wei, L., Luo, Z., Tao, D.: Limited-memory fast gradient descent method
for graph regularized nonnegative matrix factorization. PloS one 8(10), e77162 (2013)

[39] Guillamet, D., Vitria, J.: Classifying faces with nonnegative matrix factorization.
In: Proc. 5th Catalan conference for artificial intelligence. pp. 24–31 (2002)

[40] Hastie, T., Tibshirani, R., Friedman, J., Franklin, J.: The elements of statisti-
cal learning: data mining, inference and prediction. The Mathematical Intelligencer
27(2), 83–85 (2005)

[41] Helén, M., Virtanen, T.: Separation of drums from polyphonic music using non-
negative matrix factorization and support vector machine. In: Proc. EUSIPCO. vol.
2005 (2005)

[42] Hoyer, P.O.: Non-negative sparse coding. In: Neural Networks for Signal Process-
ing, 2002. Proceedings of the 2002 12th IEEE Workshop on. pp. 557–565. IEEE
(2002)

[43] Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. J.
Mach. Learn. Res. 5, 1457–1469 (Dec 2004)

[44] Hsieh, C.J., Dhillon, I.S.: Fast coordinate descent methods with variable selection
for non-negative matrix factorization. In: Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining. pp. 1064–1072.
ACM (2011)

[45] Kim, D., Sra, S., Dhillon, I.S.: A new projected quasi-newton approach for the
nonnegative least squares problem. Computer Science Department, University of
Texas at Austin (2006)

v

References

[46] Kim, D., Sra, S., Dhillon, I.S.: Fast newton-type methods for the least squares
nonnegative matrix approximation problem. In: SDM. pp. 343–354. SIAM (2007)

[47] Kim, H., Park, H.: Nonnegative matrix factorization based on alternating nonneg-
ativity constrained least squares and active set method. SIAM Journal on Matrix
Analysis and Applications 30(2), 713–730 (2008)

[48] Kim, J., He, Y., Park, H.: Algorithms for nonnegative matrix and tensor factor-
izations: A unified view based on block coordinate descent framework. Journal of
Global Optimization 58(2), 285–319 (2014)

[49] Kim, J., Park, H.: Toward faster nonnegative matrix factorization: A new algorithm
and comparisons. In: Data Mining, 2008. ICDM’08. Eighth IEEE International Con-
ference on. pp. 353–362. IEEE (2008)

[50] Kim Dongmin, S.S., Dhillon, I.S.: A non-monotonic method for large-scale non-
negative least squares. Optimization Methods and Software 28(5), 1012–1039 (2013)

[51] Kimura, K., Tanaka, Y., Kudo, M.: A fast hierarchical alternating least squares
algorithm for orthogonal nonnegative matrix factorization. In: Proceedings of the
Sixth Asian Conference on Machine Learning. pp. 129–141 (2014)

[52] Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM review
51(3), 455–500 (2009)

[53] Kuang, D., Choo, J., Park, H.: Nonnegative matrix factorization for interactive
topic modeling and document clustering. In: Partitional Clustering Algorithms, pp.
215–243. Springer (2015)

[54] Kuleshov, V., Chaganty, A.T., Liang, P.: Tensor factorization via matrix factoriza-
tion. arXiv preprint arXiv:1501.07320 (2015)

[55] Lacoste-Julien, S., Jaggi, M.: An affine invariant linear convergence analysis for
frank-wolfe algorithms. arXiv preprint arXiv:1312.7864 (2013)

[56] Lawson, C.L., Hanson, R.J.: Solving least squares problems, vol. 161. SIAM (1974)

[57] Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Ad-
vances in neural information processing systems. pp. 556–562 (2001)

vi

References

[58] Lee, D., Seung, H., et al.: Learning the parts of objects by non-negative matrix
factorization. Nature 401(6755), 788–791 (1999)

[59] Li, H., Adal, T., Wang, W., Emge, D., Cichocki, A.: Non-negative matrix factoriza-
tion with orthogonality constraints and its application to raman spectroscopy. The
Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology
48(1-2), 83–97 (2007)

[60] Li, S.Z., Hou, X.W., Zhang, H.J., Cheng, Q.S.: Learning spatially localized, parts-
based representation. In: Computer Vision and Pattern Recognition, 2001. CVPR
2001. Proceedings of the 2001 IEEE Computer Society Conference on. vol. 1, pp.
I–207. IEEE (2001)

[61] Li, T., Ding, C., Jordan, M., et al.: Solving consensus and semi-supervised cluster-
ing problems using nonnegative matrix factorization. In: Data Mining, 2007. ICDM
2007. Seventh IEEE International Conference on. pp. 577–582. IEEE (2007)

[62] Lin, C.J.: On the convergence of multiplicative update algorithms for nonnega-
tive matrix factorization. Neural Networks, IEEE Transactions on 18(6), 1589–1596
(2007)

[63] Lin, C.J.: Projected gradient methods for nonnegative matrix factorization. Neural
computation 19(10), 2756–2779 (2007)

[64] Liu, C., Yang, H.c., Fan, J., He, L.W., Wang, Y.M.: Distributed nonnegative matrix
factorization for web-scale dyadic data analysis on mapreduce. In: Proceedings of
the 19th international conference on World wide web. pp. 681–690. ACM (2010)

[65] Lu, X., Wu, H., Yuan, Y., Yan, P.g., Li, X.: Manifold regularized sparse nmf
for hyperspectral unmixing. Geoscience and Remote Sensing, IEEE Transactions on
51(5), 2815–2826 (2013)

[66] Luenberger, D.G., Ye, Y.: Linear and nonlinear programming, vol. 116. Springer
Science & Business Media (2008)

[67] Ma, H., Zhao, W., Tan, Q., Shi, Z.: Orthogonal nonnegative matrix tri-factorization
for semi-supervised document co-clustering. In: Advances in Knowledge Discovery
and Data Mining, pp. 189–200. Springer (2010)

vii

References

[68] Manolakis, D., Truslow, E., Pieper, M., Cooley, T., Brueggeman, M.: Detection
algorithms in hyperspectral imaging systems: An overview of practical algorithms.
Signal Processing Magazine, IEEE 31(1), 24–33 (2014)

[69] Mel, B.W.: Computational neuroscience: Think positive to find parts. Nature
401(6755), 759–760 (1999)

[70] Mohammadiha, N., Smaragdis, P., Leijon, A.: Supervised and unsupervised speech
enhancement using nonnegative matrix factorization. Audio, Speech, and Language
Processing, IEEE Transactions on 21(10), 2140–2151 (2013)

[71] Nesterov, Y.: Efficiency of coordinate descent methods on huge-scale optimization
problems. SIAM Journal on Optimization 22(2), 341–362 (2012)

[72] Nesterov, Y.: A method of solving a convex programming problem with convergence
rate o(1/k2). In: Soviet Mathematics Doklady. vol. 27, pp. 372–376 (1983)

[73] Nguyen, D.K., Ho, T.B.: Anti-lopsided algorithm for large-scale nonnegative least
square problems. arXiv preprint arXiv:1502.01645 (2015)

[74] Nicoletti, O., de La Peña, F., Leary, R.K., Holland, D.J., Ducati, C., Midgley,
P.A.: Three-dimensional imaging of localized surface plasmon resonances of metal
nanoparticles. Nature 502(7469), 80–84 (2013)

[75] Paatero, P., Tapper, U.: Positive matrix factorization: A non-negative factor model
with optimal utilization of error estimates of data values. Environmetrics 5(2), 111–
126 (1994)

[76] Pascual-Montano, A., Carazo, J.M., Kochi, K., Lehmann, D., Pascual-Marqui,
R.D.: Nonsmooth nonnegative matrix factorization (nsnmf). Pattern Analysis and
Machine Intelligence, IEEE Transactions on 28(3), 403–415 (2006)

[77] Pauca, V.P., Piper, J., Plemmons, R.J.: Nonnegative matrix factorization for spec-
tral data analysis. Linear algebra and its applications 416(1), 29–47 (2006)

[78] Pompili, F., Gillis, N., Absil, P.A., Glineur, F.: Two algorithms for orthogonal non-
negative matrix factorization with application to clustering. Neurocomputing 141,
15–25 (2014)

viii

References

[79] Rudraraju, S., Salvi, A., Garikipati, K., Waas, A.M.: Experimental observations
and numerical simulations of curved crack propagation in laminated fiber composites.
Composites Science and Technology 72(10), 1064–1074 (2012)

[80] Schmidt, M., Friedlander, M.: Coordinate descent converges faster with the gauss-
southwell rule than random selection. In: NIPS OPT-ML workshop (2014)

[81] Schmidt, M.N.: Speech separation using non-negative features and sparse non-
negative matrix factorization (2007)

[82] Schmidt, M.N., Larsen, J., Hsiao, F.T.: Wind noise reduction using non-negative
sparse coding. In: Machine Learning for Signal Processing, 2007 IEEE Workshop on.
pp. 431–436. IEEE (2007)

[83] Seung, D., Lee, L.: Algorithms for non-negative matrix factorization. Advances in
neural information processing systems 13, 556–562 (2001)

[84] Shahnaz, F., Berry, M.W., Pauca, V.P., Plemmons, R.J.: Document clustering us-
ing nonnegative matrix factorization. Information Processing & Management 42(2),
373–386 (2006)

[85] Smaragdis, P.: Non-negative matrix factor deconvolution; extraction of multiple
sound sources from monophonic inputs. In: Independent Component Analysis and
Blind Signal Separation, pp. 494–499. Springer (2004)

[86] Sotiras, A., Resnick, S.M., Davatzikos, C.: Finding imaging patterns of structural
covariance via non-negative matrix factorization. NeuroImage 108, 1–16 (2015)

[87] Sra, S., Kim, D., Schölkopf, B.: Non-monotonic poisson likelihood maximization.
Tech. rep., Tech. Rep. 170, Max Planck Institute for Biological Cybernetics (2008)

[88] Sun, Z., Li, T., Rishe, N.: Large-scale matrix factorization using mapreduce. In:
Data Mining Workshops (ICDMW), 2010 IEEE International Conference on. pp.
1242–1248. IEEE (2010)

[89] Than, K., Ho, T.B.: Fully sparse topic models. In: Machine Learning and Knowl-
edge Discovery in Databases, pp. 490–505. Springer (2012)

[90] Thurau, C., Kersting, K., Wahabzada, M., Bauckhage, C.: Convex non-negative
matrix factorization for massive datasets. Knowledge and information systems 29(2),
457–478 (2011)

ix

References

[91] Vincent, E., Bertin, N., Gribonval, R., Bimbot, F.: From blind to guided audio
source separation: How models and side information can improve the separation of
sound. IEEE Signal Processing Magazine 31(3), 107–115 (2014)

[92] Wang, Y.X., Zhang, Y.J.: Nonnegative matrix factorization: A comprehensive re-
view. Knowledge and Data Engineering, IEEE Transactions on 25(6), 1336–1353
(2013)

[93] Xie, J., Kelley, S., Szymanski, B.K.: Overlapping community detection in networks:
The state-of-the-art and comparative study. ACM Computing Surveys (csur) 45(4),
43 (2013)

[94] Yoo, J., Choi, S.: Orthogonal nonnegative matrix factorization: Multiplicative up-
dates on stiefel manifolds. In: Intelligent Data Engineering and Automated Learning–
IDEAL 2008, pp. 140–147. Springer (2008)

[95] Yoshii, K., Tomioka, R., Mochihashi, D., Goto, M.: Infinite positive semidefinite
tensor factorization for source separation of mixture signals. In: Proceedings of the
30th International Conference on Machine Learning (ICML-13). pp. 576–584 (2013)

[96] Zdunek, R., Cichocki, A.: Non-negative matrix factorization with quasi-newton
optimization. In: Artificial Intelligence and Soft Computing–ICAISC 2006, pp. 870–
879. Springer (2006)

[97] Zhang, Z.Y.: Divergence functions of non negative matrix factorization: A com-
parison study. Communications in Statistics-Simulation and Computation 40(10),
1594–1612 (2011)

[98] Zhang, Z.Y.: Nonnegative matrix factorization: Models, algorithms and applica-
tions 2 (2011)

x

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Introduction to Nonnegative Matrix Factorization
	1.1.1 Notations and abbreviations
	1.1.2 Nonnegative matrix factorization
	1.1.3 Norms and divergences for NMF
	1.1.4 Applications for nonnegative matrix factorization
	1.1.5 Nonnegative matrix factorization in knowledge science

	1.2 Research Context
	1.3 Motivations and Challenges
	1.4 Thesis Structure

	2 Rich Models for Nonnegative Matrix Factorization
	2.1 General NMF model
	2.2 Various NMF models and applications
	2.3 Rich models for NMF
	2.4 Conclusion

	3 Accelerated Parallel and Distributed Algorithm using Limited Internal Memory for NMF with L1 L2 Regularizations
	3.1 Introduction
	3.2 Background and Related Works
	3.2.1 Background
	3.2.2 Related works

	3.3 Proposed Algorithm
	3.3.1 Iterative multiplicative update accelerated algorithm
	3.3.2 Full decomposition for NMF
	3.3.3 Parallel and distributed algorithm using limited internal memory
	3.3.4 Fast algorithm for nonnegative quadratic programming
	3.3.5 Extensions for L1 L2 regularized NMF

	3.4 Theoretical Analysis
	3.4.1 Convergence
	3.4.2 Complexity

	3.5 Experimental Evaluation
	3.5.1 Convergence
	3.5.2 Optimality
	3.5.3 Average of iteration number
	3.5.4 Running on large datasets
	3.5.5 Regularized NMF extensions

	3.6 Conclusion and Discussion

	4 Fast Parallel Randomized Algorithm for NMF with L1 L2 Regularizations and KL Divergence for Large Sparse Datasets
	4.1 Introduction
	4.2 Proposed Algorithm
	4.3 Theoretical Analysis
	4.4 Experimental Evaluation
	4.4.1 Convergence
	4.4.2 Sparsity of factor matrices
	4.4.3 Used internal memory
	4.4.4 Running on large datasets

	4.5 Conclusion and Discussion

	5 Fast Parallel Algorithm for Simplicial NMF with Frobenius Norm
	5.1 Introduction
	5.2 Simplical Matrix Factorization with Frobenius norm
	5.3 Proposed Algorithm
	5.3.1 Inference Algorithm
	5.3.2 Learning Algorithm

	5.4 Theoretical Analysis
	5.4.1 Complexity
	5.4.2 Convergence Guarantee of Inference
	5.4.3 Sparsity
	5.4.4 Distributability and Parallelizability

	5.5 Experimental Evaluation
	5.5.1 Interpretation
	5.5.2 Sparse Representation
	5.5.3 Performance for classification
	5.5.4 Convergence

	5.6 Conclusion and discussion

	6 Fast Parallel Algorithm for Simplicial NMF with KL Divergence
	6.1 Introduction
	6.2 Proposed Algorithm
	6.2.1 Inference Algorithm
	6.2.2 Learning Algorithm

	6.3 Theoretical Analysis
	6.3.1 Complexity
	6.3.2 Convergence Guarantee of Inference
	6.3.3 Sparsity
	6.3.4 Parallelizability and distributability

	6.4 Experimental Evaluation
	6.4.1 Sparse Representation
	6.4.2 Performance for classification
	6.4.3 Convergence

	6.5 Conclusion and discussion

	7 Conclusion and Future Works
	7.1 Conclusion
	7.2 Future Works

	List of Publications
	References

