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Abstract

Speech is one of the most important carriers of communications in our daily life. However, in

real-world listening environments, speech signals are often smeared by various types of acoustic

interferences, such as background noise and reverberation. When only monaural information

is available, single-channel speech enhancement techniques are used to reduce the effects of

acoustic interferences. They are especially interesting due to the simplicity in microphone in-

stallation but the major constraint of single-channel methods is that there is no reference signal

for the noise available such as sound location. Therefore the performance of important appli-

cations such as hearing aids and automatic speech recognition systems, where only one micro-

phone is available due to cost and size considerations, may severely reduce when the speech are

subjected to the acoustic interferences. In order to facilitate the performance in the important

applications, it is, of great necessity, to conduct some research about the single-channel speech

enhancement to improve the performance of speech communication applications.

Many conventional methods of single-channel speech enhancement have been proposed in

the last a half of century. These methods can suppress the effects of noise or reverberation well

but they can only improve the perceived overall quality but not the intelligibility of speech.

Perceived overall quality is the overall impression of the listener of how good the quality of the

speech is and intelligibility is a measure of how comprehensible speech is. There is substantial

evidence that many signals can be represented as low frequency modulators which modulate

higher frequency carriers. This concept called modulation analysis is useful for describing,

representing, and modifying acoustic signals. It has been shown that modulation frequency

between 4 Hz and 16 Hz is important for speech intelligibility. Therefore, we can focus on

restoring the temporal envelope for improving intelligibility of speech. Recent studies have

shown that not only the amplitude spectrum but also the phase spectrum contains important

information for speech enhancement, however, most of the modulation analysis based meth-

ods neglect the phase spectrum information. The most important is that these method only

consider magnitude spectrum information without phase spectrum information. Recent psy-

choacoustical studies have reported that the temporal amplitude envelope (TAE) and temporal

fine structure (TFS) are important for speech perception. TAE and TFS representations belong

to complex modulation spectrum analysis and play an important role of improving intelligibility

of degraded speech, instantaneous amplitude and phase by Gammatone filterbank correspond

to TAE and TFS. Therefore, instantaneous amplitude and phase decomposed by Gammatone

filterbank based on human hearing characteristics are used in this research for improving the

perceived overall quality and intelligibility of speech.
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The Kalman filter, which is an efficient computational recursive solution for estimating a

signal widely used in fields related to statistical processing, is applied in our proposed methods.

In the process of Kalman filter, linear prediction (LP) is utilized to obtain transition matrix. LP

uses some previous values in time domain to estimate current value under principle of Minimum

mean square error (MMSE), meanwhile, the Kalman filter uses the previous samples to estimate

current sample and update information step by step. The Kalman filter with LP process the

representations of signal using modulation analysis in time domain frame-by-frame. Cpestral

Mean Normalization (CMN) was also applied as post-processing to reduce the effect of early

reflection.

In summary, this thesis proposes an efficient speech enhancement method using modulation

analysis for instantaneous amplitudes and phases. Instantaneous amplitude and phase are ex-

tracted from the sub-bands of Gammatone filterbank, which are representations in modulation

analysis, by using the Hilbert transform. Kalman filter with LP is applied to restore the instanta-

neous amplitude and phase in time domain. Results of the objective and subjective experiments

showed that the proposed method can improve much perceived overall quality and intelligibil-

ity of speech simultaneously in hearing aids and Automatic speech recognition (ASR) systems,

compared with conventional methods such as MMSE method and Wiener filtering method.

Keywords: speech enhancement, instantaneous amplitude and phase, Kalman filter, linear

prediction, modulation.
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Chapter 1

Introduction

1.1 History of speech enhancement

Speech is one of the most important carriers of communications in our daily life. However, in

real-world listening environments, speech signals are often smeared by various types of acous-

tic interferences, such as background noise and reverberation. Many situations require the en-

hanced speech signal for communication or store. For example, hearing impaired people need

degraded speech perfectly enhanced for the capabilities of their hearing aids. The reverbera-

tion generated in a room may severely reduce the performance of telecommunication when the

hands-free telephone system is used. The speech recognition systems may not work well in the

noisy reverberant environment because they are designed for clean speech.

When only monaural information is available, single-channel enhancement techniques are

used to reduce the effects of acoustic interferences. They are especially interesting due to the

simplicity in microphone installation but the major constraint of single-channel methods is that

there is no reference signal for the noise available such as sound location. Therefore the perfor-

mance of important applications such as telecommunication and automatic speech recognition

systems, where only one microphone is available due to cost and size considerations, may

severely reduce when the speech are subjected to the acoustic interferences. In order to fa-

cilitate the performance in the important applications, it is of great necessity to conduct some

research about the single-channel speech enhancement to improve the performance of speech

applications.

Speech enhancement is to solve the problems that estimating the clean speech signal from

the smeared speech signal. Minimizing the difference between estimated and clean speech sig-

nals is the goal of speech enhancement. The proper distortion measures should be used and the

statistical models for desired speech signal and interference must be established to achieve this

goal. The perception of speech signal is always measured in terms of quality and intelligibility.

The quality shows the noise level of the speech signal and reflects the preferences of listen-
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ers, while the intelligibility shows the percentage of words that can be recognized by listeners.

These two measures do not have correlation. In [1], sacrificing the quality of speech signal

by emphasizing the high frequency components of the noisy signal could improve the intelligi-

bility of speech. It is well known that the improvement of speech quality will not necessarily

improve the intelligibility. On the contrary, improvements in speech quality always bring out

the loss in speech intelligibility because the important information of clean speech is destroyed

in the process of speech enhancement. Theoretically, this kind of loss could be predicted by

data processing theorem [2]. In the other words, one can never learn from the enhanced speech

more than that from the smeared speech about the clean speech.

A speech enhancement system must be effective for all kinds of speech signals. The speech

and interference are naturally random processes and the speech enhancement is a kind of statis-

tical estimation problem that separating one random process from the summation of that process

and interference. Therefore, the accurate statistical models for speech signal and interference

are needed and a proper distortion measure which is used to evaluate the similarity of clean

speech and restored speech is necessary. It is quite difficult to obtain the precise models for

speech signal and interference and select the perceptually meaningful distortion measure. Fur-

thermore, speech signals are not always stationary. Therefore, the estimation methods which

do not require the precise statistical models always fail to detect the changes in the speech sig-

nal. Currently, the best statistical models and the most meaningful distortion measure are not

discovered. Therefore, many speech enhancement methods have been proposed which are dif-

fered in their statistical models, the manner of signal estimator implementation and distortion

measures.

1.2 Speech enhancement methods

Methods for speech enhancement mainly have three categories: speech enhancement methods

for noisy speech, methods for reverberant speech, and methods for noisy reverberant speech.

The typical methods for these three categories are introduced in this section.

1.2.1 Noise reduction

The conventional speech enhancement methods for noisy speech can be categorized into two

classes: statistical models and estimation and Minimum mean square error (MMSE) spectral

magnitude estimation. The first class includes the linear estimation methods, spectral magnitude

estimation methods, Gaussian model based methods, multi-state speech model based methods.

The second class includes the signal estimation methods, signal presence probability methods,

a prior SNR estimation methods and noise spectrum estimation methods.
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Statistical models and estimation

The statistical models and estimations mainly contain the spectral magnitude estimation, linear

estimation, multi-state speech model, and Gaussian model.

The experiments by Wang and Lim [3] have shown that the human auditory system is more

sensitive to spectral magnitude than its phase. They also concluded that better speech enhance-

ment would be achieved when the spectral magnitude of speech signal was directly estimated,

rather than its waveform. In these experiments, the phase of the noisy speech signal was com-

bined with the estimated spectral magnitude to generate the enhanced speech signal. In order to

estimate the spectral magnitude, McAulay and Malpass [4] developed the maximum likehood

to estimate the short-term spectral magnitude for additive Gaussian noise condition. Ephraim

and Malah [5] developed the MMSE estimator for this purpose. It is assumed that the spectral

components of the clean speech signal and noise were mutually independent Gaussian random

variables, therefore the MMSE estimator of the complex exponential of clean speech signal is

equal to the complex exponential of the noisy speech signal [5]. This could be the evidence of

using noisy phase with the estimated spectral magnitude in speech enhancement. It also shows

that human auditory system has compression of speech signal’s spectral magnitude in the pro-

cess of decoding. Therefore, the better speech enhancement could be achieved if the logarithm

of the spectral magnitude could be directly estimated. The MMSE estimator of the log-spectral

magnitude was implemented in [6] under the same assumption described above.

Linear estimation may be the simplest approach whenever the speech signal and noise are

assumed to be statistically independent Gaussian processes, meanwhile, the distortion measure

of mean square error (MSE) is utilized. The Wiener filters are always designed for the vectors of

noisy speech signal because the speech signals are not exactly stationary. It is notable that this

kind of simple approach is one of the most effective approaches in speech enhancement. The

core technique in this approach is the reliable estimation of the covariance matrices for the clean

speech signals and noise. There are many extensions for this approach which are summarized

in [7]. It is known that controlling the estimation of noisy covariance matrix is much easier in

the frequency domain, therefore the subtraction of covariance matrix is always operated in this

domain which arouse the family of speech enhancement methods based on spectral subtraction.

Many filters are designed to extend this idea which can minimize the distortion for the spectrum

of the residual noise. This kind of optimization problem has been perfectly solved by [8]. In

[9], these criteria of estimation were applied to the speech enhancement for noisy speech. It is

notable that the covariance matrices of speech vectors are not full rank matrices.

Drucker et al [10] proposed the five-state model for the clean speech signal. The states in

this model includes vowel, glide, stop, fricative and nasal sounds. In order to enhance the noisy

speech signal, firstly, each vector of the noisy speech signal should be classified into one of the

five states, then a class-specific filter should be applied to the noisy vector. The states are created
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in a learning process, which is a clustering process that can be calculated by vector quantization

techniques [11], from the training data. Each state can be depicted by a power spectral density

(PSD) which may be an autoregressive process.

Many speech enhancement systems are designed based on the assumption that the spectral

components at any frame are statistically independent Gaussian random variables. In these sys-

tems, both the real and imaginary parts of spectral components are also assumed as statistically

independent random variables. The Gaussian assumption of real and imaginary parts of the

speech spectral components has been implemented by some authors. For example, the spectral

magnitude was verified to have Gamma distribution in [12] and the real and imaginary parts of

the spectral components were assumed to be statistically independent Laplace random variables

[13]. As is known, the Gaussianity of the spectral components depend on the variance of the

components. Thus the Gaussian assumption relies on the probability density function (PDF)

of the spectral components. It should be noticed that one Gaussian spectral component could

have many different PDFs. Ephraim et al [14] introduced the speech enhancement system by

using a hidden Markov process (HMP) which is a bivariate process of state and observation

vectors. The state vector a kind of homogeneous Markov chain with a certain number of states

and the observation vector is independent with the state vectors. In the HMP model, spectral

components of each vectors are assumed to be correlated because each vector is assumed to be

autoregressive.

MMSE spectral magnitude estimation

The MMSE spectral magnitude estimation contains the signal presence probability estimation,

the noise spectrum estimation and a prior SNR estimation.

For the estimation of speech presence probability, the estimators are always determined by

the relation between the speech absence likelihood in time-frequency domain and the average of

the prior SNR and prior SNR distribution. The speech absence probability is always estimated

by soft-decision method for each frame. In the stationary noisy conditions, the variance of noise

is time invariant. The variance of noise could be easily obtained from the noise spectral compo-

nents. However, it is challenging to obtain this value in non-stationary noisy conditions. Martin

[15, 16] has proposed the minimum statistics in which the minimum values of the smoothed

PSD of noisy speech signal is updated. A more recent approach presented in [17] is based on

the minimum controlled recursive averaging. The author also proposed an estimator controlled

by minima values of the smoothed PSD of the noisy speech signal. This estimation procedure

includes smoothing which utilizes the voice activity detection and minimum tracking which

removes the relatively strong speech components by smoothing.

The accuracy of the estimation of the variance of spectral components is quite important

for speech enhancement. In the past a few decades, Ephraim and Malah [5] has proposed the

decision directed variance estimator for the MMSE spectral magnitude estimator. This variance
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estimator uses estimation of the spectral magnitude in the last frame with the noisy spectral

magnitude in current frame. By decreasing the onsets of speech and the audible modification of

transient speech components, a larger reduction of musical noise could be achieved.

1.2.2 Dereverberation

Reverberation is generated in the process of multi-path propagation from the sound source to

the receivers. The effect of reverberation will increase as increasing distance from sound source

to receiver in a given reverberant room. Reverberation severely reduce the quality and intelligi-

bility of speech and affect the performance in many applications, such as telecommunications

and speech recognitions systems.

The dereverberation methods can be classified into two categories: (1) linear prediction (LP)

residual based methods, and (2) blind channel estimation and inversion based methods.

LP residual based methods

After applying LP analysis, the residual always contain both the reverberation effects and the

peaks which represent the excitations in voiced speech [18]. Many LP residual based methods

have been proposed using the models of speech production which aim to reduce the effects of

reverberation without destroying the original characteristics of the residual. In these methods,

the effect of reverberation on the LP coefficients is assumed to be unimportant [19]. For the

methods based on LP residual, wavelet extrema clustering [19] was used to reconstruct the LP

residual. The estimation of coarse room impulse response and a matched filter operation were

used to get the weighting functions for the reverberant residuals in [20]. A weighting function

based on the direct-to-reverberant ratio in the different regions of the LP residual was derived

in [18]. The kurtosis of the residual was proved to be an effective reverberation metric in [21].

These methods can reduce the impulse from the reverberation in LP residual, however, they

also reduce the naturalness in the restored speech. The method based on spatio-temporal which

average the LP residual could effectively solve this problem [22].

Channel estimation and inversion

Dereverberation using subspace methods in both the whole-band and sub-band was proposed

in [23]. Recently, an error function for adaptive filters which is used to derive the multichannel

LMS in time domain [25] and frequency domain [26] were proposed. The Newton algorithms

has been shown effective in identifying the order of channel taps. However, this kind of sys-

tem suffers from several limitations. Firstly, channels could not be identified when common

zeros exist. Secondly, observation noise may cause the diversion of algorithms. Finally, many

methods only assume the knowledge of the order of unknown systems.
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Reverberation can be easily removed by the inverse system after the identification of the

acoustic channels. However, it is not realistic to carry out the direct inversion because the

length may be too long and the non-minimum phase may exist. In order to solve these problems,

several methods have been proposed. For example, the least square (LS) inverse filters could be

used in adaptive framework by optimizing the errors [27]. Homomorphic inverse filter where

the impulse response is divided into all pass components and minimum phase components.

The study of the effects of delay constraints was presented in [29]. It has been shown that

observation noise can be amplified for exact inversion.

1.2.3 Noise reduction and dereverberation

For most of the speech enhancement methods, only a few researchers considered the joint effect

of noise and reverberation. For example, the standard noise reduction methods were applied

prior to the dereverberation method. However, the noise reduction process always introduce the

non-linear distortions which will affect the dereverberation process.

A joint method for deal with noise and reverberation together has been proposed in [30]

which can be regarded as the extension of Parallel Model Combination [31]. However, this

method is quite computational. Another method based on Bayesian feature was presented in

[32]. The commonality of these methods is that noise and reverberation both were assumed to

be additive in power spectral domain.

In [33], the ideal channel selection method which uses a blind single channel ratio masking

strategy to simultaneously suppress the negative effects of reverberation and noise on speech

identification performance. In this strategy, the noise power spectrum was estimated from the

non-speech segments of the speech while reverberation spectral variance is computed as a de-

layed and scaled version of the reverberant speech spectrum. Based on the estimated noise and

reverberation power spectra, a weight between 0 and 1 is assigned to each time-frequency unit

to form the final mask. This method has significant improvement in intelligibility speech.

A combination of beamformer with a single channel speech enhancement scheme was pro-

posed in [34]. In this method, the minimum variance distortionless response beamformer with

online estimated noise coherence matrix is utilized to reduce the noise and some reflections.

Then the output of beamformer is process by the single channel scheme, in which the temporal

cepstrum smoothing is used to suppress both residual noise and reverberation. This method is

more effective when the reverberation time is long.

A conventional method which suppress the noise by non-linear filtering techniques and ap-

plies linear filtering for dereverberation, has been proposed for removing the noise and rever-

beration. However, this method sometimes has bad performance because the non-linear filtered

signals do not have linear relation with the clean speech signal. An enhanced method [35] using

linear dereverberation filter followed by non-linear noise reduction filter. This method, which
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Table 1.1: PESQ grade (ODG).

ODG Quality of speech

5 Excellent

4 Good

3 Fair

2 Poor

1 Bad

showed better performance over the conventional method, is derived based on the maximum

likelihood estimation method.

However, almost all of these methods cannot improve the quality and intelligibility of speech

simultaneously.

1.3 Performance evaluation

In order to have a better view on the performance on the proposed speech enhancement methods,

this section introduce some evaluation measures for speech enhancement. Objective evaluation

of Perceptual Evaluation of Speech Quality (PESQ), Signal to error ration (SER) are always

used to evaluate the quality of speech, while SNR loss is used to evaluate the intelligibility of

speech.

Perceptual evaluation of speech quality

PESQ was particularly developed to model subjective tests commonly used in telecommunica-

tions to evaluate the speech quality by human beings according to the objective difference grand

(ODG) which ranges from 1 to 5. ODG indicating the speech quality is listed in Table 1.1.

Signal to error ratio

SER is a measure used in science and engineering that compares the level of a desired signal to

the level of background noise, which is defined as :

SER = 10 ∗ log
Psignal

Pnoise

(1.1)

where Psignal is the power of desire speech signal and Pnoise is the power of background noise.

The unit of SER is dB.
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Correlaiton

Correlaiton could be used to evaluate the similarities between the shapes of the speech signal

which ranges from 0 to 1, corresponding to quite different to exactly the same. The Correlation

is defined as:

Corr(x, x̂) =

∫ T

0
(x(t) − x)

(

x̂(t) − x̂
)

dt
√

{

∫ T

0
(x(t) − x)dt

} {

∫ T

0
(x̂(t) − x̂)dt

}

, (1.2)

where x is the clean speech, x̂ is the estimated speech and x is the mean value of speech.

SNR loss

SNR loss [103] is a kind of speech intelligibility measure which could account for the distortions

present in processed speech. SNR loss ranges from 0 to 1 corresponding intelligibility from high

to low, which is defined as:

L( j,m) = SNRX( j,m) − SNRX̂( j,m) (1.3)

where where SNRX( j,m) is the input SNR in band j, SNRX̂ is the effective SNR of the enhanced

signal in the j-th frequency band, X̂ is the excitation spectrum of the enhanced signal in the j-th

frequency band at the m-th frame.

1.4 Outline of thesis

This dissertation is organized by seven chapters as shown in Fig. 1.1.

Chapter 2 presents the background knowledge related to our study and the key technologies

for our proposed methods. Firstly, we describe the methods based on modulation analysis and

points out the advantages and drawbacks in modulation analysis. Secondly, we discuss why the

phase information is neglected in previous research and talk about the importance of phase in

recent research.

Chapter 3 describes the concept of Modulation Transfer Function (MTF) for speech en-

hancement in noisy reverberant environment. MTF concept depicted the relation between the

envelope of input and output speech signal. Therefore, the speech enhancement based on MFT

concept utilized the amplitude information in modulation domain for speech enhancement. The

Kalman filter is applied to restore the power envelope and an LP detection method is developed

to calculate the LP coefficients from noisy reverberant speech.

Chapter 4 describe a method for speech enhancement by using amplitude and phase infor-

mation simultaneously in modulation domain for noisy reverberant speech. The Kalman filter is

applied to remove the effect of additive noise and late reverberation of instantaneous amplitude
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and phase. LP coefficents are trained from early reverberant speech. Both subjective and objec-

tive experiments are carried out and it is found that both quality and intelligibility of speech can

be improved.

Chapter 5 presented the evaluation results of improvement of SER and correlation for two

proposed methods. It can be easily observed that both proposed methods can have significant

improvement.

Chapter 6 introduced applications for our proposed method. The applicability of our pro-

posed method is verified by Automatic Speech Recognition (ASR) systems and the Word

Recognition Rate (WRR) is greatly improved compared with traditional methods. The Modified

Rhyme Test (MRT) also revealed the effectiveness of our proposed method for hearing aids.

Finally, Chapter 7 summarize our study, highlights the contributions to this research filed

and introduces some directions for future research.
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Figure 1.1: Schematic outline of dissertation.
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Chapter 2

Research Background

This chapter mainly presents the concept in modulation analysis and the importance of phase

information in various kinds speech signal processing fields.

2.1 Modulation analysis

Normally speech signals can be represented as low frequency modulators which modulate high

frequency carriers. Generally speech signals can be represented by:

s(t) = mo(t)c(t) (2.1)

where mo(t) and c(t) are modulator and carrier respectively. The research based on this concept

is called modulation spectrum analysis (MSA). Many studies have revealed that the modulator

of speech signal is very important for speech reception. It is necessary to preserve the modula-

tors of speech for intelligible speech.

The modulation domain system always splits the signals into its modulators and carriers,

then only modulator is analyzed. A common method used to obtain the modulating signal of

broadband signals is to divide the signals into narrowband frequency subbands, uses filterbank

and then decompose each subband into carrier and modulator. In order to decompose each

subband into modulator and carrier, coherent and non-coherent envelope detection methods are

used.

The generalized model of modulation domain in presented in Fig. 2.1. In the modulation

domain filterbank is the core of the whole domain. Broadband signal passes through filterbank

which is set of LTI bandpass filters. The resulting subbands from filterbank decomposes to

modulator and carrier by two types of envelope detection, coherent and non-coherent. Then the

achieved modulator signal from each subband is filtered by LTI filter. After this the modulators

will be recombined with the original subband carriers. The modulation filtered broadband signal

is obtained by filterbank summation method. In the modulation domain system the envelope
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Figure 2.1: Model of modulation domain.

detection method is very important part. Magnitude like methods are used in non-coherent

envelope detection while carrier estimation methods are used in coherent envelope detection.

There are two methods used in non-coherent envelope detection: the method based on

Hilbert envelope and the method based on the magnitude operator. There are some limitations

of non-coherent envelope detection: (i) the magnitude and phase spectrums of the subbands

exceed the bandwidth of the subband signal, (ii) it assumes a conjugate symmetric spectrum

of the modulator which is unrealistic for natural signals, (iii) modulator domain is not closed

under convolution.

The coherent envelope detection includes smoothed Hilbert carrier estimator, instantaneous

frequency carrier estimator, frequency reassignment carrier estimator, and spectral center of

gravity.

2.1.1 History

The temporal amplitude envelope (TAE) and temporal fine structure (TFS) in the concept of

modulation analysis have shown great significance in automatic recognition and auditory im-

pairments evaluations. Modulation features, which describe the shape of TAE of the waveform,

rather the waveform, always have lower frequencies than acoustic spectrum. The acoustic spec-

trum usually reflect the pitch of speech and its timbre, however, modulation could reflect the

perception of rhythm, roughness and temporal structure of the speech. Temporal envelope struc-

ture is always assumed to be different with the TFS. Both are quite important for the speech

perception and many researches have tried to distinguish their roles by using vocoded speech.

Modulation seems to play an important role in auditory perception and many studies have

proved that human ear has been adapted to modulation analysis by a data driven process. These

conclusions originate from the analysis of the activities in each channel of cochlea. Modulation

sensitivity is due to the modulation filter bank in the auditory mid-brain or cortex.
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Two dimensional bifrequency system was proposed [30], where the second dimension is

the transform of the temporal variation of the frequency bin. In [31], the acoustic frequency is

defined as the Short Time Fourier Transform (STFT) of the speech signal and modulation fre-

quency is defined as the second STFT of the frequency bin. Therefore, the modulation spectrum

is a function of time, acoustic frequency and modulation frequency.

The significance in modulation analysis has been supported by psychoacoustic and physio-

logical evidences. For example, it has been shown that human auditory system could detect the

modulation frequencies [32]. Perception of temporal dynamics corresponds to the filtering in

modulation frequency domain and our perception of speech is relied on the representations of

these modulations [36]. Amplitude modulation is preserved in all levels of mammal systems,

such as the auditory cortex [37]. It is believed that acoustic spectrum can be decomposed into

modulation components by the neurons in auditory cortex [38].

The amplitude modulation with low frequency has been shown to carry the most important

information of speech [39]. Both low-pass filter and high-pass filter were used to the TAE in or-

der to evaluate the significance of modulation frequency for speech intelligibility in [40]. It has

been proved that modulation frequency between 4 to 16 Hz is most important for intelligibility,

especially 4 to 5 Hz. Similarly, [41] has showed that the bandpass filter of 1 to 16 Hz will not

affect the intelligibility of speech.

It is known that the acoustic magnitude spectrum shows the shape of vocal tract and the

modulation frequency below 1 Hz does not contain much linguistic information but could make

speech more robust. The upper limit of modulation frequency is restricted the varying speech

of the vocal tract physiologically.

2.1.2 Advantages and disadvantages

The speech signals processing in modulation domain has been popular in the research fields

of speech recognition, speech coding, and speech enhancement. Many modulation filtering

method have been proposed. For example, a band pass filtering of cubic robot compressed

power spectrum has been proposed [42] for speech enhancement. In [43], a similar band pass

filtering was developed to the time trajectory of the power spectrum. There are also limitations

in the modulation analysis methods. Firstly, they did not consider the properties of noise be-

cause thee the filter is designed on the properties of the modulation spectrum. Thus it is difficult

to remove the noise effect in the speech modulation regions. Secondly, the properties of speech

and noise always change over time, however, the modulation filters are always fixed [44].
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2.2 Importance of phase

2.2.1 Introduction

In the Fourier signals representation, different roles are played by spectral magnitude and phase.

Even in some situations, most of the important features of a signal will be lost if the phase is in-

complete. Thus, many different contexts and applications have been made from this observation

of phase, however, based on the phase-only holograms or the the magnitude-only hologram. In

general, with reconstruction from magnitude only holograms, the reconstructed object is not of

much value in representing the original object whereas reconstructions from phase only holo-

grams have many important features in common with the original objects. As a result,many

features of the original image cannot be clearly identifiable in the magnitude-only image but

in the phase-only image. In addition, the context of speech signals and X-ray crystallography

have the similar observation. For speech, specifically, when we combine the phase of the Fourier

transform and unity magnitude, the intelligibility of a sentence will be retained. In addition, in

the context of X-ray crystallography, it is X-ray diffraction data that details of the crystallo-

graphic structure are inferred from. Therefore, Fourier synthesis which uses only the correct

phase with unity magnitude does reflect the correct atomic structure, if the Fourier synthesis of

the structure from only the correct magnitude of the diffraction data with zero phase in general

does not preserve the atomic structure. Based on the discussions, the conclusion can be made

that if the true magnitude information is eliminated many important characteristics of the signal

will be retained.

The importance of phase spectrum of speech signals has been a controversial topic and

there has been disagreement on its role in different speech processing applications. While early

studies reported the unimportance of phase spectrum in perception [46], more recent studies

elaborated the potential of using phase spectrum in different speech and audio processing ap-

plications: speech enhancement, source separation, speech recognition, speaker recognition,

speech coding, formant extraction, waveform estimation, and speech analysis/synthesis. These

examples suggest that incorporating the phase information can push the limits of state-of-the-

art phase-independent solutions employed for long by scientists in different aspects of audio

and speech signal processing. The great potential of phase information in speech processing

calls for a unified effort to get a better understanding of experts from several speech and audio

processing communities.

The structure in phase spectrum of audio signals has been demonstrated and found useful in

music processing [47], e.g. in onset detection [48], beat tracking [49] or in speech watermarking

[50] where the idea was to embed the watermark data into the phase of unvoiced speech seg-

ments. The phase spectrum has also been shown to be useful in speech polarity determination

[51] and detection of synthetic speech to avoid imposture in biometric system [52]. In speech

coding and psychoacoustics, it was shown that the capacity of human perception due to phase is
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higher than expected, concluding that existing speech coders introduce certain distortions well

perceived in particular for low-pitched voice. The instantaneous higher order phase derivatives

and the phase information embedded in speech have been studied.

2.2.2 Source Separation and Speech Enhancement

From an input-output system standpoint, both speech separation and speech enhancement meth-

ods fall into the category of analysis-modification-synthesis. The key step is to select an

analysis-synthesis signal representation which satisfies two criteria: signal reconstruction and

being aliasing-free. As analysis-synthesis, STFT is commonly chosen where the time and fre-

quency resolution are restricted by the choice of the window length and type. In both separation

and enhancement tasks, conventionally the noisy phase is selected for signal reconstruction

leading to a limited quality. The choice of noisy phase for reconstruction is supported by the

fact that the noisy phase has been shown in [53] to provide the MMSE estimate for the clean

speech phase. This is only true under the assumption that the Fourier spectral coefficients are

independent (obviously not the case in practice).

In the modification stage, the separation and enhancement methods are different. In single-

channel source separation, it is common to assume prior or side information about the under-

lying signals in the mixture. The source prior knowledge could be in the form of dictionar-

ies trained on spectral amplitude of clean signals. Some examples for learning dictionary are

non-negative matrix factorization (NMF) [54], hidden Markov models (HMM) [55], Gaussian

mixture models (GMM) [56] and vector quantizer (VQ) [57]. A sense of optimality is required

to choose the states of the underlying sources. For this purpose, in single-channel source sepa-

ration, MMSE estimators in log-domain (logmax), in power spectrum domain, and in spectral

amplitude domain (Elliptic series) were previously proposed. All these MMSE estimators av-

erage out the phase information in their derivations. The systematic performance comparison

of these estimators has been performed in [58], demonstrating that considerable improvement

in parameter estimation is possible by taking the phase information into account. The optimal

states selected from dictionaries are eventually used to separate the mixture either by applying a

direct synthesis or by applying a soft [ or a binary mask onto the mixed observation. In speech

enhancement, it is common to assume a circularly symmetric complex Gaussian distribution for

complex speech spectrum and derive the MMSE estimation for the speech spectral amplitude.

The aim of the modification stage is to estimate a gain as a function of a priori and a posteriori

SNRs often tabularized using a lookup table. The gain function is applied to the noisy spectral

amplitude and the enhanced signal is synthesized using the enhanced spectral amplitude and

noisy phase.

The phase processing of speech signal dates back to 1980s where several attempts were

made to estimate the time-domain signal from a given modified spectral magnitude. This
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problem fits to several speech applications to name a few: speech enhancement, separation,

time-scale modification and speech coding, where one is provided with a modified amplitude

spectrum while there is no access to the original phase of the signal. Griffin and Lim proposed

least square error estimation approach to estimate the time-domain signal from the given STFT

spectral amplitude in an iterative way where STFT and inverse STFT steps are applied. Sev-

eral iterative-based techniques have been proposed to find an estimated phase from the spectral

amplitude estimates of the underlying sources. Detailed overviews on performance compari-

son between different iterative techniques used for phase estimation in signal reconstruction are

reported for speech enhancement and source separation.

In both speech enhancement and source separation applications described above, for the

synthesis stage, the observed noisy phase is directly used to reconstruct the enhanced signal. As

the noisy phase has remaining contributions from the interfering source, both perceived quality

and intelligibility are degraded, leading to limitation on the performance when noisy phase is

used for signal modification or reconstruction.

In single-channel speech enhancement or source separation, the issue of phase processing

is an ill-conditioned problem to solve, even for two sources, and given the oracle spectral am-

plitude of the underlying sources in the mixed signal. This makes the problem difficult and

challenging, requiring additional constraints to solve. For example, recently, a phase estima-

tion approach was proposed which relies on the geometry of interaction between the underlying

signals and the property of group delay deviation to exhibit minimum at spectral peaks. Replac-

ing the mixture phase with estimated phase in signal re-construction of the separated signals

led to improved perceived quality. In speech enhancement, it has been recently demonstrated

that replacing the noisy phase with an estimated phase leads to improvement in the perceived

quality.

As for the amplitude estimation part in modification stage, the phase importance in single-

channel source separation was shown in. The impact of phase in speech amplitude estimation

has been recently investigated with positive outcomes. The joint estimation of amplitude and

phase spectrum in a closed-loop iterative configuration has been proposed and compared with

the conventional methods using noisy phase or the open-loop configuration and upper-bound of

amplitude estimation or signal reconstruction.

In microphone array speech enhancement, the use of phase difference between microphones

in dual-microphone was demonstrated to result in robust speech enhancement and improved

ASR. The importance of phase information in speech enhancement has been studied extensively.

2.2.3 Automatic Recognition Systems

Although the usefulness of speech phase in automatic speech and speaker recognition is not

totally proven, phase spectrum has long been used for other applications like pitch and formant
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extraction [59]. Most of the automatic speech and speaker recognition systems are built on

short-term feature representation, typically calculated on the amplitude spectrum. Amplitude

spectrum can be calculated as the magnitude of complex Fourier transform or other parametric

and non-parametric spectrum estimation methods including linear prediction, multitapering and

their variants. The Mel-frequency Cepstral coefficients are among the most popular features

derived by applying a perceptually weighted filter-bank on amplitude spectrum.

Extracting useful features from Fourier phase spectrum is not straightforward. This is due

to the difficulties in phase wrapping, the dependency of phase spectrum on window starting

sample and fast changes of phase spectrum when the zeros of complex spectrum S (z) (calcu-

lated for a windowed speech s(n) of limited support) lie near the unit circle in z-plane. In the

literature, phase unwrapping methods are studied and derivative of phase spectrum as group

delay is employed which is less sensitive to phase wrapping issue. Several modifications on

the group delay calculation are proposed to deal with the zeros of complex spectrum in prepar-

ing phase-based features for ASR. Another approach to reduce the effect of zeros is to smooth

the phase spectrum of mixed-phase speech signal before arriving at group delay function and

next perform cesptral smoothing. The application of instantaneous frequency (and its deviation)

along with delta-phase spectrum are considered for feature extraction in order to account for the

large variability of phase caused by starting point of analysis window.

As a bonus of utilizing phase-based features, there are several studies demonstrating the

robustness of the group-delay based features against noise. A common way to extract phase

derived features is by directly combining the features derived from amplitude and phase in-

dividually. Features derived from Hilbert transform are considered as a way to utilize both

amplitude and phase information in a unified way for speech and speaker recognition.

2.2.4 Speech Synthesis

In speech synthesis, the phase information is not used in an explicit way. Unit selection based

text-to-speech synthesis systems try to select units using the magnitude spectrum as part of the

concatenative cost during the selection of optimal units. The only phase information that is

used is that of linear phase removals. This is in order to avoid linear phase mismatches which

may result into audible clicks [60]. In general, linear phase mismatch is avoided by estimating

a common reference point on the time domain signal, like the glottal closure instants (GCIs),

and then place analysis windows around these instances. How-ever, in some cases, like creaky

voice, voice offsets or expressive speech, these reference points are difficult to be defined and

therefore need to be estimated.

Current HMM-based text-to-speech synthesis systems make use of minimum phase [61],

since the cepstrum coefficients used in that systems are estimated by the magnitude spectrum

only. The use of minimum phase for the generation of the synthetic speech signal artificially in-
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creases the correlation of speech in areas where naturally low correlation exists (i.e., fricatives).

This is perceived as buzziness. To reduce this effect, researchers try to reconstruct the noise ob-

served in the speech magnitude spectra by what is referred to as band aperiodicity. This has the

effect to introduce a mixed excitation (pulses plus noise at different frequency bands) in order

to reduce the buzzy effect by reducing the high and unnatural correlation between consecutive

speech sounds.

Currently, there are some attempts to introduce the phase spectrum (mixed phase) into the

HMM-based text-to-speech synthesis systems, by suggesting the complex cepstrum approach.

In this case, both the magnitude and phase spectra are taken into account. Complex cepstra

require phase unwrapping which implies a relatively high dimension Fourier transform. Phase

unwrapping requires also to remove any linear phase component from the phase spectrum.

For this reason, the estimation of complex cepstra is very sensitive to the position and type

of analysis window. Especially for the position, an accurate estimation of the glottal closure

instants is required . If the paradigm of text-to-speech synthesis goes beyond HMMs (i.e.,

linear dynamical models, or deep neural networks), it may be possible to include the phase

information without the current constraints put by the HMMs.

2.2.5 Phase and intelligibility

TAE of speech is sufficient to give good speech intelligibility in quiet, but they are not enough

in the presence of background noise. This means TAE alone is not enough is separate the

mixtures of sounds perceptually. Many researches have proved that TFS is needed for the

speech perception in noisy, especially fluctuating noisy environments.

2.3 Motivation and research goal

2.3.1 Relation between modulation analysis and MTF concept

We defined the output, the input, the room impulse response (RIR), and the noise signals to be

y(t), x(t), h(t), and n(t), respectively [69]. These can be modeled as:

y(t) = h(t) ∗ x(t) + n(t), (2.2)

x(t) = ex(t)cx(t), (2.3)

h(t) = eh(t)ch(t) = a exp(−6.9t/TR)ch(t), (2.4)

n(t) = en(t)cn(t), (2.5)

where ex(t), eh(t), and en(t) are the temporal amplitude envelopes of x(t), h(t), and n(t). cx(t),

ch(t), and cn(t) are mutually independent carriers such as random variables. a and TR are con-
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stant amplitude term and the reverberation time, i.e., the time required for the power of h(t)

to decay by 60 dB. “∗“ is convolution operation. Here, 〈cl(t), cl(t − τ)〉 = δ(τ) and 〈·〉 is an

ensemble average operation. In this model, e2
y(t) can be derived as:

〈

y2(t)
〉

=
〈

h2(t) ∗ x2(t)
〉

+
〈

n2(t)
〉

, (2.6)

e2
y(t) = e2

r (t) + e2
n(t), (2.7)

where e2
r (t) = e2

h
(t) ∗ e2

x(t).

We proposed a method which is explained in detail in Chapter 3 based on the MTF con-

cept to restore the temporal power envelope from noisy reverberant speech based on constant

bandwidth filter-bank rather than on the STFT. This method utilized the Kalman filter com-

bined with a blind linear prediction and voice activity detection (VAD) to restore noisy power

envelope and inverse filter was used to restore the reverberant power envelope. The Kalman

filter is of particular interest in smooth methods of prediction in dealing with power envelope

in sub-bands. Moreover, it can be viewed as a joint estimator for the magnitude of speech,

under non-stationary conditions. We believe that the ability of the Kalman filter to process

non-stationary signals make it preferable over STFT-based methods of enhancement.

We can see that ex(t), eh(t), ey(t) and en(t) are temporal amplitude envelope defined based

on amplitude modulation (AM), therefore, manipulating temporal power envelope belong to

the filed of modulation analysis. However, this method can only restore the temporal power

envelope of the speech without considering the phase information.

2.3.2 Relation between modulation analysis and instantaneous amplitude

and phase

The instantaneous amplitude and phase of the noisy speech which are calculated as follows:

AN,k(t) = | f̃ (c, t)|, (2.8)

φN,k(t) =

∫ t

0

(

d

dτ
arg(f̃(c, τ) − ωk)

)

dτ, (2.9)

where, c = αk−K/2, α is the scale of GTFB. | f̃ (c, t)| is the amplitude spectrum defined by the

wavelet transform and arg ( f̃ (c, t)) is the unwrapped phase spectrum defined by the complex

wavelet transform [96].

Our main aim that was motivated by the effectiveness of phase manipulation from the ex-

isting literature was to propose a speech enhancement scheme acting as AMS on the filterbank

to enhance both instantaneous amplitude and phase by using a recursive Kalman filter in a

Gammatone filterbank (GTFB) which is explained in Chapter 4. As is known, speech signal

can be decomposed into TAE and TFS. In our research, we decomposed the sub-band speech
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signal into instantaneous amplitude and phase, which correspond to TAE and TFS. Therefore,

restoring instantaneous amplitude is one kind of modulation analysis.

2.4 Summary

Motivated by the advantages of modulation analysis, we have proposed the method of restoring

power envelope in noisy reverberant environments, which showed large improvement in SER

and Corr. However, this method did not take phase information into consideration and it was

impossible to obtain the restored speech. Therefore, we continuously proposed the method of

restoring instantaneous amplitude and phase simultaneously motivated by both the effectiveness

of modulation analysis and importance of phase. This method could improve much intelligi-

bility and quality of speech, according to the experiments in ASR systems and Hearing aid

experiments.
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Chapter 3

MTF-based Kalman filtering with linear

prediction for power envelope restoration

in noisy reverberant environments

This chapter proposes a method based on modulation transfer function (MTF) to restore the

power envelope of noisy reverberant speech by using a Kalman filter with LP. Its advantage

is that it can simultaneously suppress the effects of noise and reverberation by restoring the

smeared MTF without measuring room impulse responses. This scheme has two processes:

power envelope subtraction and power envelope inverse filtering. In the subtraction process, the

statistical properties of observation noise and driving noise for power envelope are investigated

for the criteria of the Kalman filter which requires noise to be white and Gaussian. Furthermore,

LP coefficients drastically affect the Kalman filter performance, and a method is developed

for deriving LP coefficients from noisy reverberant speech. In the dereverberation process, an

inverse filtering method is applied to remove the effects of reverberation. Objective experiments

were conducted under various noisy reverberant conditions to evaluate how well the proposed

Kalman filtering method based on MTF improves the signal-to-error ratio (SER) and correlation

between restored power envelopes compared with conventional methods. Results showed that

the proposed Kalman filtering method based on MTF can improve SER and correlation more

than conventional methods.

3.1 Introduction

When observed in the real environments, speech signals always suffer from distortion due to

noise and reverberation. The degradation of sound quality and intelligibility of speech signals

greatly reduce the performance of various automated speech systems such as automatic speech

recognition (ASR) systems, speech recognition systems and hearing aids. Therefore, the quality
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Figure 3.1: General scheme for STI calculations based on MTF concept.

and intelligibility of speech signals in noisy reverberant environments need to be enhanced.

A variety of methods have already been proposed to remove the effects of noise or rever-

beration in the real environments. The methods for noise reduction can be classified into two

categories. The first category is frequency domain based methods including spectral subtrac-

tion (SS) method [45] and minimum-mean square error (MMSE) short-time spectral amplitude

based techniques [80]. The advantages of these methods are that simplicity of implementation

and high flexibility. However, they have the drawbacks that the musical noise is unavoidable and

the performance depends on accurate estimation of signal to noise ratio (SNR). The other cat-

egory of noise reduction methods is time domain methods including the Scalart-Filho method

(Wiener filtering) [63]. Although this method can be widely used in all kinds continuous and

discrete stationary random process, it needs all of the observation values and cannot be used in

non-stationary random process.

The methods for dereverberation can be divided into two categories: LP residual based

methods and blind channel inversion methods. A weighting function based on the direct-to-

reverberant ratio was derived in different regions of the LP residual [82]. The adaptive filters

are applied to maximize the kurtosis of the LP residual of the reconstructed speech [65]. Al-

though these methods attenuate the room impulses due to reverberation in the LP residual, they

can also significantly reduce naturalness in the dereverberated speech. Least squares (LS) in-

verse filters has been designed by minimizing the error which can also be applied in an adaptive

framework. A study of the effect of delay constraints related to acoustic channel inversion for

dereverberation was presented [66]. Its was shown that, for exact inversion, observation noise

will be amplified and LS solutions always introduce much delay which brings significantly neg-

ative effects in many communication applications. None of these methods, however, work well

in both noisy and reverberant environments simultaneously because a combination of differ-

ent systems (representations and/or processing) cannot simultaneously deal with the effects of

additive noise and reverberation.
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There is growing psychoacoustic and physiological evidence to support the significance

of modulation domain in the analysis of speech signals. The novel concept for a modulation

transfer function (MTF) had been introduced by Houtgast and Steeneken [67] to account for

degradation of speech transmission index (STI) related to speech intelligibility due to noise and

reverberation within an enclosed space, as is shown in Fig. 3.1. Recently, a scheme for simulta-

neous denoising dereverberation based on the MTF concept has been studied deeply by Unoki

et al. [68]. This method can reduce the degradation caused by noise and reverberation with-

out clean speech. Although the MTF-based dereverberation scheme was reasonably designed

[69], the MTF-based noise reduction scheme still has the drawback [70] that it is equivalent to

subtracting the average value of temporal noise power envelope, while the fluctuations of the

temporal noise power envelope remain that are emphasized during the dereverberation process

(inverse MTF). On the other hand, the linear prediction inverse MTF filter (LP-IMTF) has been

proposed for dereverberation [71]. This method utilized all pole modeling of modulation spec-

tra of clean and degraded speech to derive the LP-IMTF filter which was implemented as an

IIR filter in the modulation domain, however, the drawback is that it needs a training phase to

obtain the parameters of LP for the LP-IMTF filter.

In this chapter, we propose an MTF-based Kalman filtering to remove the noise power

envelope by utilizing LP in modulation domain and use MTF-based inverse filter to remove

the reverberation. There are two important issues in Kalman filter. The observation noise and

driving noise should be white Gaussian noise. Furthermore, how to derive the accurate transition

matrix is quite important in Kalman filter. The accurate transition matrix of state equation is

unknown in the absence of clean speech, therefore, it is a challenging topic to set the suitable

transition matrix in Kalman filter for speech enhancement.

The power envelope is analysed as highly correlated time series signal and LP is chosen for

deriving transition matrix under various noisy reverberant conditions in this chapter. Thus the

main contribution of this chapter is to verify the validity of assumption for power envelope in

Kalman filter and focus on the calculation of transition matrix to provide the state-of-art method

of speech enhancement.

The rest of the chapter is organized as follows: In section 3.2, the concept of MTF is intro-

duced. In Section 3.3, the previous speech enhancement scheme is presented . In section 3.4,

the proposed speech enhancement scheme is discussed. In section 3.5, evaluation results and

discussions are presented. Section 3.6 contains the summaries and future work.
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3.2 Model concept

We defined the output, the input, the room impulse response (RIR), and the noise signals to be

y(t), x(t), h(t), and n(t), respectively. These can be modeled as:

y(t) = h(t) ∗ x(t) + n(t), (3.1)

x(t) = ex(t)cx(t), (3.2)

h(t) = eh(t)ch(t) = a exp(−6.9t/TR)ch(t), (3.3)

n(t) = en(t)cn(t), (3.4)

where ex(t), eh(t), and en(t) are the temporal envelopes of x(t), h(t), and n(t). cx(t), ch(t), and cn(t)

are mutually independent carriers such as random variables. a and TR are constant amplitude

term and the reverberation time, i.e., the time required for the power of h(t) to decay by 60 dB. ∗

is convolution operation. Here, 〈cl(t), cl(t − τ)〉 = δ(τ) and 〈·〉 is an ensemble average operation.

In this model, e2
y(t) can be derived as:

〈

y2(t)
〉

=
〈

h2(t) ∗ x2(t)
〉

+
〈

n2(t)
〉

, (3.5)

e2
y(t) = e2

r (t) + e2
n(t), (3.6)

where e2
r (t) = e2

h
(t) ∗ e2

x(t). (see [69] for derivation).
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Figure 3.2: Theoretical curves representing MTFs in (a) reverberant environments mR( fm), (b)

noisy environments mN( fm), and (c) both noisy and reverberant environments m( fm), and the

solid curve shows the MTF when TR = 0.5 s and SNR = 0 dB.
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3.2.1 MTF in different environments

The temporal power envelopes of the input and output signals in the reverberant environments,

e2
x(t) and e2

y(t), can be represented as:

e2
x(t) = e2

x(1 + cos(2π fmt)), (3.7)

e2
y(t) = e2

x(t) ∗ e2
h(t)

=
e2

x

α
{1 + mR( fm) cos(2π fmt)} , (3.8)

where e2
x =

1
T

∫ T

0
e2

x(t)dt. fm is the modulation frequency and α =
∫ ∞

0
h2(t)dt. The MTF in

reverberant environments is defined as:

mR( fm, TR) =
1

√

1 + (2π fm
TR

13.8
)
2
, (3.9)

The MTF in reverberant environments depends on fm which has the low-pass characteristics as

a function of TR as shown in Fig. 3.2(a).

The temporal power envelope of output, e2
y(t), is represented as:

e2
y(t) = e2

x(t) + e2
n(t)

=
(

e2
x + e2

n

)

{1 + mN( fm) cos(2π fmt)} , (3.10)

where e2
n =

1
T

∫ T

0
e2

n(t)dt. Here, e2
n(t) is assumed to be constant in the time domain and T is the

signal duration. The MTF in noisy environments is defined as:

mN( fm, SNR) =
e2

x

e2
x + e2

n

=
1

1 + 10−(SNR)/10
, (3.11)

where SNR = 10 log10(e2
x/e

2
n) in dB. This is independent of fm and reduced as a function of

SNR as shown in Fig. 3.2(b).

The MTF in noisy reverberation environments calculated from Eqs. (3.9) and (3.11), can be

represented as:

m( fm, TR, SNR) =
1

√

1 + (2π fm
TR

13.8
)
2
(1 + 10−

SNR
10 )

. (3.12)

The MTF in noisy reverberant environments depends on fm, TR, and SNR. This means the low-

pass characteristics resulting from reverberation as a function of TR and the constant attenuation

resulting from noise as a function of SNR as shown in Fig. 3.2(c).
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3.3 Previous method based on MTF concept

The previous method based on MTF for power envelope restoration has three steps: power

envelope extraction, noise power envelope subtraction, and power envelope inverse filtering.

3.3.1 Power envelope extraction

The power envelope of y(t) is extracted by:

e2
y(t) = LPF

[

∣

∣

∣y(t) + jHilbert[y(t)]
∣

∣

∣

2
]

, (3.13)

where LPF[·] is a low-pass filtering (LPF), and Hilbert[·] is the Hilbert transform. For the

computer simulation, these variables are transformed from a continuous signal into a discrete

signal on the basis of the sampling theorem, ey [k]2, y [k]. In this equation, k is the sampling

index, and the sampling frequency fs is set to 20 kHz. This method is based on a calculation of

the instantaneous amplitude of the signal and is used in low-pass filtering as post-processing to

remove the higher frequency components in the power envelopes. We used LPF with a cut-off

frequency of 20 Hz [69].

3.3.2 Subtraction of noise power envelope

A subtraction method of noise power envelope based on the MTF concept has already been pro-

posed [70]. To restore the first term in Eq. (3.6) from the power envelope of noisy reverberant

signal e2
y(t), mN( fm) is utilized as follows.

ê2
rp = e2

y(t) − e2
n, (3.14)

where ê2
rp is the estimation of reverberant power envelope by previous method based on MTF.

The robust VAD method (e.g., [72]) can be used to calculate e2
n in Eq. (3.11) from the observed

e2
y(t) in silence duration. From this equation, we can see that this method equals to the method

of subtracting the average value of noise power envelope from the output power envelope.

3.3.3 Power envelope inverse filtering

On the basis of the previous result, êx
2(t) can be recovered by from ˆerp

2(t). Here, the transmis-

sion functions of power envelopes Êx(z), Êh(z), and Êrp(z) are the z-transforms of êx
2(t), êh

2(t),

and ˆerp
2(t), respectively. Thus, the Êx(z) can be determined from:

Êx(z) =
Êrp(z)

a2

{

1 − exp

(

−
13.8

TR · fs

)

z−1

}

, (3.15)
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The estimation of clean power envelope êx
2(t) can then be obtained from the inverse z-transform

of Êx(z).

TP(TR) = min

(

arg min
tmin≤t≤tmax

∣

∣

∣êx,n,TR
(t)2 − θ

∣

∣

∣

)

, (3.16)

T̂R = arg min
0≤TR≤TR,max

{

dTP(TR)

dTR

}

, (3.17)

a =

√

1/

∫ T

0

exp(−13.8t/T̂R)dt, (3.18)

where θ is a threshold for detecting a point from the maximum of e2
rp(t). tmin and tmax are the

lower and upper limited regions for determining a point respectively.

3.3.4 Problem

Figure 3.3(a) is the clean power envelope and Fig. 3.3(b) is the noisy reverberant power en-

velope under the condition of TR = 0.5 s and SNR=0 dB. The restored power envelope by

previous method based on MTF is shown in Fig. 3.3(c). We can observe that the restored power

envelope by previous method based on MTF cannot match the clean power envelope quite well.

Although this method can remove the mean value of the noise power envelope in the noise

power envelope subtraction process, the fluctuations of the noise power envelope still remain.

As is known, the power envelope dereverberation process (inverse filtering) has a characteristic

of high-pass filter, therefore, the remaining fluctuations of noise power envelope which are high

frequency components will be emphasized during this process. Therefore, it is necessary to

remove these fluctuations in power envelope subtraction process for better speech enhancement

in noisy reverberant environments.

3.4 Proposed method based on MTF concept

The block-diagram of the proposed Kalman filtering method based on MTF is shown in Fig.

3.4. This method consists of four steps: (i) Power envelope extraction, (ii) power envelope

subtraction of the previous MTF based method, (iii) Kalman filtering combined with MTF

concept, and (iv) power envelope inverse filtering. We focus on enhancing the power envelope

subtraction process by using Kalman filter in the proposed Kalman filtering method based on

MTF.
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3.4.1 Kalman filtering

The Kalman filter, together with its basic variants, is widely applied in fields related to statis-

tical processing. It not only exploits the statistical characteristics of signal and noise but also

utilizes the speech production model based on the source-filter model. Therefore, we believe

that Kalman filter can be used to achieve the goal of removing most fluctuations of the noise

power envelope in the power envelope subtraction process.

The state and observation equations are the main equations in Kalman filter and are defined

as:

X [k] = FX [k − 1] +W [k] , (3.19)

Y [k] = HX [k] + V [k] , (3.20)

where X [k] is the state vector in sampling index k, Y [k] is the observation vector in sampling

index k. W [k] and V [k] are driving noise and observation noise which are assumed to be white

Gaussian noise.

We combine the Kalman filter with MTF concept. The state equation of power envelope is

defined as:

e2
r [k] = Fe2

r [k − 1] + ǫ [k] , (3.21)

where e2
r [k] is the state vector of reverberant power envelope. Since e2

r [k], can be modeled with

an autoregressive (AR) process of order p, this state vector then can be represented as:

e2
r [k] =

[

e2
r

[

k − p + 1
]

, e2
r

[

k − p + 2
]

, · · · , e2
r [k]

]T
, (3.22)

where e2
r [k] is the reverberant power envelope of sampling index k. F is transition matrix that

can be obtained by LP method. ǫ [k] is assumed to be white noise and the variance of ǫ [k] is Q.

The observation equation of power envelope based on Kalman filter is defined as:

e2
rp [k] = He2

r [k] + (e2
n [k] − e2

n [k]), (3.23)

where e2
rp [k] is noisy power envelope of sampling index k derived from the previous method

based on MTF. H is the observation matrix, in this research, H = [0, 0 · · ·1] and (e2
n [k]− e2

n [k])

is the mean value of the noise reduced noise power envelope whose mean value is zero and the

variance of the noise power envelope is R which is calculated by the robust VAD method. We

need five steps to calculate the optimal estimations.

Step 1: Initial state vector is set to be e2
r [1|1] = (10−12 · · · 10−12). These values are used to ini-

tialize the state vector only and will reach to the original state vector after a few iterations. Then

the power envelope of sampling index 2 could be estimated from initial state vector. Repeating

this step, we can estimate the power envelope of sampling index k from the optimal estimation
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of sampling index k − 1.

e2
r [k|k − 1] = Fê2

r [k − 1|k − 1] , (3.24)

e2
r [k|k − 1] =

[

ê2
r

[

k − p + 1
]

, ê2
r

[

k − p + 2
]

, · · · , ė2
r [k]

]T
, (3.25)

where ê2
r [k] is the optimal estimated reverberant power envelope of sampling index k and ė2

r [k]

is the estimated reverberant power envelope from the state equation. ê2
r [k − 1] is the state vector

of sampling index k − 1 as:

ê2
r [k − 1|k − 1] =

[

ê2
r

[

k − p
]

, ê2
r

[

k − p + 1
]

, · · · , ê2
r [k − 1]

]T
, (3.26)

Step 2: We define the error covariance matrix P [k|k] = E[(ê2
r [k|k]− e2

r [k])(ê2
r [k|k]− e2

r [k|k])T].

The initial error covariance matrix P [1|1] = diag(R · · ·R), where diag is diagonal matrix oper-

ation.

P [k|k − 1] = FP [k − 1|k − 1] FT + Q, (3.27)

Step 3: The current values are estimted as:

ê2
r [k|k] = e2

r [k|k − 1] + G [k] (e2
rp [k] −He2

r [k|k − 1]), (3.28)

where G [k] is the Kalman gain and E = G [k] (e2
rp [k] −He2

r [k|k − 1]) is called innovation.

Step 4: We update the Kalman gain by:

G [k] = P [k|k − 1] HT/(HP [k|k − 1] HT + R), (3.29)

Step 5: We update the error covariance matrix by:

P [k|k] = (I − G [k] H)P [k|k − 1] , (3.30)

where I is unit matrix.

3.4.2 Linear prediction

We used LP analysis to obtain the coefficient of F in Eq. (3.21) for Kalman filter. Accurate LP

coefficients could be calculated from e2
r (t) which needs clean speech and RIR. In this chapter,

the Kalman filter with accurate LP is referred as ideal Kalman filtering method based on MTF.

Unfortunately, clean speech and RIR may not be available in real environments for LP analysis.

Therefore, it is necessary to propose a blind LP detection method as a general method of speech
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enhancement for real environments. The ideal Kalman filtering method based on MTF could be

used to check the upper limitation of improvement of proposed Kalman filtering method based

on MTF.

Ideal LP detection

Assume that the sampling sequence of reverberant power envelope is e2
r [k], k = 1, 2, · · · ,K.

This can be regarded as the output of a p-th order AR process. The model of LP can be repre-

sented as:

ê2
r [k] =

p
∑

i=1

bie
2
r [k − i] , (3.31)

where ê2
r [k] is the optimal estimated power envelope of e2

r [k] under the principle of MMSE,

b1, b2, · · · , bp are LP coefficients, and p is the prediction order.

There are two methods for calculating the prediction coefficients: methods of autocorrela-

tion and covariance. We chose the autocorrelation method to calculate the prediction coeffi-

cients in this chapter, and bp can be obtained by solving the Yule-Walker equation as:

R
[

q
]

−

p
∑

i=1

biR
[

q − i
]

= 0, (3.32)

where R
[

q
]

is the autocorrelation function of the reverberant power envelope e2
r [k] as:

R
[

q
]

= E
[

e2
r [k] e2

r

[

k − q
]

]

q = 1, 2, 3..., p, (3.33)

where E is expectation operation. Then we can obtain the transition matrix F for Kalman filter

as:

F =























































0 1 0 · · · 0

0 0 1 · · · 0
...

...
...
. . .

...

0 0 0 · · · 1

bp bp−1 bp−2 · · · b1























































. (3.34)

Blind LP detection

In a real environments, LP coefficients cannot be obtained accurately because R
[

q
]

is calculated

from accurate reverberant power envelope in ideal Kalman filtering method based on MTF.

Therefore, we need to develop blind LP detection method for estimating R
[

q
]

.

A LP detection method from noisy speech has been reported by Un and Choi [73] and we
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incorporate MTF concept in this method. The autocorrelation function of the noisy reverberant

power envelope Ryy(q) is given by:

Ryy(q) = Rrr(q) + Rnn(q) + Rrn(q) + Rnr(q), (3.35)

Rrr(q) = E
[

e2
r [k]e2

r [k − q]
]

,

Rrn(q) = E
[

e2
r [k]e2

n[k − q]
]

,

Rnr(q) = E
[

e2
n[k]e2

r [k − q]
]

,

Rnn(q) = E
[

e2
n[k]e2

n[k − q]
]

,

If we assume that the noise power envelope and the reverberant power envelope are uncorre-

lated, Rrn and Rnr become zero. Thus, we can obtain the estimated autocorrelation function

as:

R̂rr(q) = Ryy(q) − R̂nn(q), (3.36)

where R̂rr(q) and R̂nn(q) are the estimated values.

We calculate the periodogram of the noise power envelope Inn(ωk), which is given by:

Înn(ωk) =

N−1
∑

q=−N

R̂nn(q) exp(− jωkq), (3.37)

where R̂nn(q) can be estimated using VAD method. The periodogram of noisy power envelope

Iyy(ωk) can be defined as:

Iyy(ωk) =

N−1
∑

q=−N

Ryy(q) exp(− jωkq), (3.38)

where N is the frame length. When Iyy(ωk) ≥ Înn(ωk), we have:

Îrr(ωk) = Iyy(ωk) − Înn(ωk), (3.39)

Otherwise, Îrr(ωk) = 0.

In this equation, Înn(ωk) and Iyy(ωk) are calculated by Eqs. (3.37) and (3.38). Therefore, we

can obtain R̂rr by using inverse Discrete Fourier Transform (IDFT). We can easily obtain the LP

coefficients from Eq. (3.32).

In the dereverberation process, we apply the same inverse filtering as in the previous method

based on MTF.
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3.4.3 Properties of noise

The Kalman filter can provide the best estimation when W and V are white Gaussian noise. In

order to verify this point, we checked the statistical properties of W and V in different channels

by calculating the normalized power spectrum density (PSD) and distribution. PSD shows the

power of spectral components which is almost constant for white noise. We used five samples

of white noise to verify the PSD and Gaussianity in each channel. VAD method is applied to

obtain the observation noise power envelope and driving noise power envelope is considered as

LP residual. Figures 3.5(a) and 3.6(a) show the normalized PSD of W and V, separately. It is

easily observed that the power envelopes have constant power.

In order to verify the Gaussianity of the noise power envelopes, we used the histograms of

distribution for the values of W and V . The histogram for W and V are shown in Figs. 3.5(b)

and 3.6(b). It can be observed that they are similar to Gaussian distribution. We also used K-S

test to check the Gaussianity of noise power envelope, the result showed that only W could be

partially satisfied. The values of V is always positive which may be the reason for rejection of

Gaussianity.

We only show the result of observation power envelope and driving noise power envelope in

a specific channel but we have confirmed that W and V in all channels are white noise. Further-

more, the distribution of W and V also prove that they are all similar to Gaussian distribution.

3.5 Summary

We proposed MTF-based Kalman filtering with LP method to compensate for the degraded per-

formance of the dereverberation process caused by the fluctuations of the noise power envelope.

The results revealed our proposed Kalman filtering method based on MTF had improvements in

correlation in some channels and SER in all channels under all noisy reverberant conditions. In

the future work, we will improve the performance of our proposed MTF-based Kalman filtering

by improving the accuracy of calculation of LP coefficients in noisy reverberant environments.
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Figure 3.3: Example of power envelopes comparison: (a) clean power envelope, (b) noisy

reverberant power envelope, (c) restored power envelope by previous method based on MTF, (d)

restored power envelope by proposed Kalman filtering method based on MTF, and (e) restored

power envelope by ideal Kalman filtering method based on MTF, under the conditions of TR =

0.5 s and SNR=0 dB in 44th channel.
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Figure 3.5: Analysis of observation noise power envelope under the condition of TR = 2 s and

SNR=0 dB: (a) normalized PSD and (b) histogram of distribution in 30th channel.
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Figure 3.6: Analysis of driving noise power envelope under the condition of TR = 2 s and

SNR=0 dB: (a) normalized PSD and (b) histogram of distribution in 30th channel.
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Chapter 4

Restoration of instantaneous amplitude

and phase of speech signal in noisy

reverberant environment

In the last chapter, we have proposed the method based on MTF concept which belongs to mod-

ulation analysis to restore the power envelope without restoring the phase information because

the wrapped phase is difficult to handle by that proposed method. Therefore in this chapter,

we remove both the effects of noise and reverberation by restoring instantaneous amplitude and

phase simultaneously by using Kalman filter. Objective and subjective experiments were con-

ducted under various noisy reverberant conditions to evaluate the effectiveness of the extension

of the proposed scheme. The signal to error ratio (SER), correlation, PESQ, and SNR loss were

used in objective evaluations. The normalized mean preference score was used in subjective

evaluations. We also tested how effective our proposed scheme is as a front-end for automatic

speech recognition (ASR) system in real noisy reverberant environments. The results of all eval-

uations revealed that the proposed scheme could effectively improve quality and intelligibility

of speech signals under noisy reverberant conditions.

4.1 Introduction

In real environments, the quality and intelligibility of speech are always degraded due to back-

ground noise and reverberation. Especially, the performance of applications such as automatic

speech recognition (ASR) systems and speech coders might be severely reduced in the presence

of background noise and reverberation. Therefore, it is necessary to simultaneously remove

these effects.

Many popular speech enhancement methods utilize the anal-ysis-modification-synthesis

(AMS) framework in the acoustic spectral domain. The AMS framework consists of three
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stages: (1) the analysis stage, where the input speech signal is processed by short-time Fourier

transform (STFT) analysis; (2) modification stage, where the degraded spectrum is modified by

some algorithms; (3) the synthesis stage, where the inverse STFT is followed by overlap-add

synthesis to construct the output signal.

Among the many methods developed for noise reduction, the spectral subtraction has been

shown to be effective in suppressing stationary noise[77]. However, there exists musical noise

due to the removing by this method. Recently an enhanced spectral subtraction method com-

bined with weighting function [78] was proposed which can eliminate the musical noise. Ephraim

and Malah derived the minimum mean-square error short-time spectral amplitude estimator

(MMSE-STSA) [79] which is also efficient at removing musical noise. Other methods, such

as Wiener filtering [80] has been considered and enhanced through the soft decision scheme.

Recently, denoising autoencoder (DAE) [81] has been shown to be effective in many noise re-

duction applications because higher level presentations and increased flexibility of the feature

mapping function can be learned. For dereverberation, Cepstral mean normalization (CMN)

[82] may be considered as the most general approach. It has been extensively examined and

shown as a simple and effective way of reducing reverberation by normalizing cepstral features.

However, the dereverberation of CMN is not completely effective in environments with late

reverberation. A reverberation compensation method based on spectral subtraction, in which

late reverberant speech is treated as additive noise was proposed. Another method based on

multiple-step linear prediction (MSLP) [83] was proposed for single and multiple microphones.

This method firstly estimates late reverberation using long-term MSLP and then suppress these

with subsequent spectral subtraction. All these methods employ the STFT-AMS framework for

speech enhancement.

There is a growing psychoacoustic and physiological evidence to support the significance of

modulation domain in the analysis of speech signals [84]. Experiments of Bacon and Grantham

showed that there are sub-bands in the auditory system which are tuned for the detection of

modulation frequencies. Therefore, low frequency modulation spectrum has been shown to be

a good predictor of speech intelligibility and many speech enhancement methods in modulation

domain have been proposed, such as band-pass filtering of the time trajectories of cubic-root

compressed short-time power spectrum.

Consequently, corpus based approach [85], speech enhancement using nonnegtive matrix

factorization (NMF) [86] are proposed as modern speech enhancement methods. However, all

of the existing methods process the smeared speech signals only by modifying the temporal or

spectral magnitude.

Early studies have reported the unimportance of phase spectrum in perception. Recently,

the structure in phase spectrum of audio signals has been found useful in music processing [87].

The phase spectrum has also been shown useful in speech polarity determination and detection

of synthetic speech to avoid imposture in biometric system [88]. A phase estimation approach
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was proposed which relies on the geometry of interaction between the underlying signals and

the properties of group delay deviation [89]. Replacing the mixture phase with estimated phase

in signal reconstruction led to improved perceived quality. The impact of phase in speech

enhancement has been investigated with positive outcomes.

It is well-known that all existing speech enhancement algorithms based on STFT-AMS can

improve speech quality but not speech intelligibility [90]. The reasons for that are still unclear

so that many researchers have investigated the expected strategy for reducing distortions and

enhancing features related to speech intelligibility. On the other hand, from psychoacoustical

studies, it is found that temporal amplitude envelope (TAE) and temporal fine structure (TFS)

are important cues for speech perception [91, 92]. It is also revealed that TAE and TFS play

an important role of improving intelligibility of noise-degraded speech [93, 94]. Therefore,

AMS in the filterbank is suitable framework for speech enhancement, rather than AMS in the

STFT. Hence, it is expected that TAE and TFS manipulations as the AMS in the filterbank can

drastically improve quality as well as intelligibility of noise degraded speech.

Motivated about the effectiveness of phase manipulation from the existing literature, we

therefore have previously proposed a speech enhancement scheme motivated by the effective-

ness of phase manipulation [95] which can significantly improve the quality and intelligibility

of noisy speech. However, this scheme can only deal with additive noise without modelling the

convolved noise such as late reverberant speech, due to the properties of convolved noise.

In this chapter, we concentrate on the derivation of the accurate transition matrices which are

quite important parameters in Kalman filtering from noisy reverberant speech. This is because

of enhancement performance of Kalman filter, is dependent on the accuracy and reliability of

transition matrices. These transition matrices of the state-equation of both instantaneous ampli-

tude and phase are unknown, thus, it is difficult to set these transition matrices in the Kalman

filtering for suitable speech enhancement. We also considered the derivation of the observation

noise since the convolved noise is not existed in the non-speech section. The main contribution

of this chapter is to extend the previous scheme to be a general speech enhancement of removing

the effects of noise and reverberation simultaneously with consideration of phase information.

A novel point is that effects of noise corresponding to additive and convolved noises (late rever-

berant speech) on instantaneous amplitude and phase can be removed by Kalman filtering with

efficient linear prediction (LP).

The rest of the chapter is organized as follows. Section 4.2 describes the previous scheme for

speech enhancement in noisy environments. Section 4.3 describes the details of the proposed

scheme in noisy reverberant environments. Section 4.4 describes the subjective and objective

evaluation results. Section 4.5 describes the experiment results in ASR system. In section 4.6,

we conclude with summary and future works.

40



4.2 Previous scheme

Our previous scheme [95] intends to improve both instantaneous amplitudes and phases on

output of the Gammatone filterbank (GTFB) which was designed by considering the properties

of auditory system for noisy speech. In this scheme, the noisy speech yN(t), where yN(t) =

x(t) + n(t), is only observed. Here, x(t) is the clean speech and n(t) is background noise. The

output of the k-th sub-band, YN,k(t), is represented as the analytical form by:

YN,k(t) = YN,1,k(t) + YN,2,k(t),

= AN,k(t) exp
(

jωkt + jφN,k(t)
)

, (4.1)

where YN,1,k(t) and YN,2,k(t) are the sub-band components of x(t) and n(t), respectively. In addi-

tion, ωk is the center frequency of the k-th sub-band.

4.2.1 Gammatone filterbank

The Gammatone filter is an auditory filter designed by Patterson et al. which simulates the

response of the basilar membrane. The impulse response is given by:

gt(t) = AtN−1exp(−2πb f ERB( f0)t)cos(2π f0t), t ≥ 0.

where A, b f and N are parameters and AtN−1exp(−2πb f ERB( f0)t) is the amplitude term repre-

sented by Gamma distribution, f0 is the center frequency, and ERB( f0) is an equivalent rectan-

gular bandwidth in f0(t).

4.2.2 Instantaneous amplitude and phase derivation

AN,k(t) and φN,k(t) are the instantaneous amplitude and phase of the noisy speech which are

calculated as follows:

AN,k(t) = | f̃ (c, t)|, (4.2)

φN,k(t) =

∫ t

0

(

d

dτ
arg(f̃(c, τ) − ωk)

)

dτ, (4.3)

where, c = αk−K/2, α is the scale of GTFB. | f̃ (c, t)| is the amplitude spectrum defined by the

wavelet transform and arg ( f̃ (c, t)) is the unwrapped phase spectrum defined by the complex

wavelet transform [96]. Then, Kalman filter with trained LP is applied to remove the effects of

noise on the instantaneous amplitude and phase because it is particularly effective in smooth pre-

diction with the instantaneous amplitude and phase in sub-bands. Moreover, it can be regarded

as the optimal estimator for both instantaneous amplitude and phase under non-stationary condi-
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tions. Finally, the restored signal, x̂(t) is resynthesized from the restored sub-bands components

by inverse GTFB. However, this method cannot be applied in noisy reverberant environments

because the reverberation is not considered in this model and the parameters in Kalman filter

need to be adapted for noisy reverberant environments.

4.3 Proposed scheme

The proposed scheme (PS) is an extension of the previous scheme and the block diagram of the

PS is shown in Fig. 4.1. The PS consists of three stages: analysis stage, modification stage, and

resynthesis stage.

The noisy reverberant speech, yNR(t) = x(t) ∗ h(t) + n(t), is observed. Here, h(t) is the

room impulse response (RIR). The RIR, h(t), contains both effects of early reflection and late

reverberation so that this can be represented as h(t) = hE(t)+hL(t), where hE(t) is early reflection

and hL(t) is late reverberation, as shown in 4.2. Then we have yNR(t) = x(t) ∗ hE(t) + x(t) ∗

hL(t) + n(t) = xE(t) + xL(t) + n(t), where xE(t) is early reverberant speech and xL(t) is late

reverberant speech. Early reflection may not significantly degrade the quality and intelligibility

of speech because human beings cannot distinguish short echo and original speech while late

reverberation is detrimental to the quality and intelligibility.

The output of the k-th sub-band, YNR,k(t), is represented as the analytical form by:

YNR,k(t) = YNR,1,k(t) + YNR,2,k(t),

= ANR,k(t) exp
(

jωkt + jφNR,k(t)
)

, (4.4)

where YNR,1,k(t) and YNR,2,k(t) are the components of x(t)∗hE(t) and x(t)∗hL(t)+n(t), respectively.

ANR,k(t) and φNR,k(t) are the instantaneous amplitude and phase of the noisy reverberant speech

YNR,k(t).

In this chapter, we focus on dealing with the summation of late reverberation as convolved

noise and additive noise and the effect of early reflection can be removed by CMN.

4.3.1 Kalman filtering

The state and observation equations are defined in the Kalman filter. The state equations of k-th

sub-band for instantaneous amplitude and phase are defined as:

SA,k[m] = FASA,k[m − 1] +WA,k[m], (4.5)

Sφ,k[m] = FφSφ,k[m − 1] +Wφ,k[m], (4.6)
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where m is sampling number (m = 0, 1, 2, · · · ,M; t = m/Fs), M is the number of time samples

and Fs is the sampling frequency. FA and Fφ are the transition matrices that can be obtained by

the LP method. WA,k[m] and Wφ,k[m] are assumed to be Gaussian white noise of k-th sub-band,

and the variances of WA,k[m] and Wφ,k[m] are QA and Qφ, respectively. SA,k[m] and Sφ,k[m] are

the state vectors of instantaneous amplitude and phase of early reverberant speech at sampling

point m in k-th sub-band respectively.

The observation equations for the instantaneous amplitude and phase of k-th sub-band are

defined as:

OA,k[m] = HASA,k[m] + VA,k[m], (4.7)

Oφ,k[m] = HφSφ,k[m] + Vφ,k[m], (4.8)

where OA,k[m] and Oφ,k[m] are the observed instantaneous amplitude and phase of the noisy re-

verberant speech at sampling point m in k-th sub-band. HA and Hφ are the observation matrices

which are [0, 0, · · · , 1]. VA,k[m] and Vφ,k[m] are observation noise (Gaussian white noise) and

the variances of VA,k[m] and Vφ,k[m] are RA and Rφ.

We need five steps to calculate the optimal estimations for both instantaneous amplitude and

phase.

Step 1: Initial state vectors are set to be ŜA,k[1|1] = [10−12 · · · 10−12] and Ŝφ,k[1|1] = [10−12 · · · 10−12].

These values are used to initialize the state vector only and will reach close to the original state

vector after a few iterations.

ŜA,k[m|m − 1] = FAŜA,k[m − 1|m − 1], (4.9)

Ŝφ,k[m|m − 1] = FφŜφ,k[m − 1|m − 1]. (4.10)

The state vector of m is estimated from the state vector of m − 1 under the principle of MMSE.

Step 2: The initial error covariance matrices PA[1|1] = diag(RA

· · ·RA) and Pφ[1|1] = diag(Rφ · · ·Rφ) are set as:

PA[m|m − 1] = FAPA[m − 1|m − 1]FA
T + QA, (4.11)

Pφ[m|m − 1] = FφPφ[m − 1|m − 1]Fφ
T + Qφ. (4.12)

Step 3: The current values are estimated as:

ŜA,k[m|m] = ŜA,k[m|m − 1] + eA, (4.13)

Ŝφ,k[m|m] = Ŝφ,k[m|m − 1] + eφ. (4.14)

Here, eA = GA[m](OA,k[m] −HAŜA,k[m|m − 1]) and eφ = Gφ[m]
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(Oφ,k[m]−HφŜφ,k[m|m−1]) are called innovation, where GA[m] and Gφ[m] are the Kalman gains.

Step 4: We update the Kalman gains by:

GA[m] =
PA[m|m − 1]HA

T

(HAP[m|m − 1]HA
T + RA)

, (4.15)

Gφ[m] =
Pφ[m|m − 1]Hφ

T

(HφPφ[m|m − 1]Hφ
T + Rφ)

. (4.16)

Step 5: We update the error covariances matrices by:

PA[m|m] = (I − GA[m]HA)PA[m|m − 1], (4.17)

Pφ[m|m] = (I − Gφ[m]Hφ)Pφ[m|m − 1], (4.18)

where I is the unit matrix.

4.3.2 Linear prediction

LP analysis was used to obtain transition matrices FA and Fφ in Eqs. (4.5) and (4.6). We extract

the LP coefficients for Kalman filtering from early reverberant speech which can be regarded as

the output of a p-th order auto-regressive process by autocorrelation method as follows:

R[qa] −

p
∑

i=1

aiR[qa − i] = 0, (4.19)

R[qb] −

p
∑

i=1

biR[qb − i] = 0. (4.20)

Here, R[qa] and R[qb] are the autocorrelation functions of the instantaneous amplitude and phase

of early reverberant speech, R[qa]

= E
{

S A,k[m]S A,k[m − qa]
}

and R[qb] = E{S φ,k[m]S φ,k[m−qb]}, where E{·} is the expectation. We

can then obtain the transition matrices, FA and Fφ, given in Eqs. (4.19) and (4.20) to estimate

instantaneous amplitude and instantaneous phase by using the Kalman filter. The boundary be-

tween early reverberant speech and late reverberant speech varies from 30 to 100 ms depending

on the phoneme of interest [83]. We therefore chose 30 ms to calculate the early reverberant

speech by calculating the convolution between clean speech and early reflection hE(t). The

Kalman filtering with transition matrices obtained from clean speech is referred as an ideal

scheme (IS) which could be used to check the upper limitation of the improvement for speech

enhancement.

We studied the properties of LP coefficients for instantaneous amplitude and phase to es-

timate them under various conditions. This investigation revealed that these LP coefficients
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had similarities in modulation domain between speakers, gender, and contents. An example

of similarities of LP coefficients on modulation domain for three different speakers is shown

in Fig. 4.3. We calculated the LP coefficients of each sub-band from the closed clean dataset

and converted them to line spectral frequencies (LSFs) to obtain FA and Fφ. LSFs have a well

behaved dynamic range while LP coefficients have a large dynamic range of values, therefore it

is easier to guarantee the stability of the resulting synthesis filter in LSF domain. We averaged

the computed LSFs and converted them to LP coefficients as trained LP coefficients in FA and

Fφ. The traning phase is also shown in Fig. 4.1. It is well known that LSFs have some useful

properties over LP coefficients. LP parameters have a large dynamic range of values, which

is not beneficial for quantization [97]. LSFs, on the other hand, have a well behaved dynamic

range. It is easier to guarantee the stability of the resulting synthesis filter when interpolation

is done in the LSF domain. Whenever LP coefficients are encoded as LSFs, we do not need to

spend the same number of bits for each LSF. This is because higher LSFs correspond to high

frequency components and high frequency components have less effect in speech perception.

Consequently, higher LSFs can be quantized using fewer bits than lower LSFs. This reduces the

bit rate while keeping the speech quality almost the same. A short segment of speech in the LP

analysis of speech is assumed to be generated as the output of an all-pole filter, 1/A(z), where

A(z) is the inverse filter defined as:

A(z) = 1 + a1z−1 + ... + apz−p, (4.21)

In order to define LSFs, the inverse filter polynomial is used to construct two polynomials:

P(z) = A(z) + z−(M+1)A(z−1), (4.22)

Q(z) = A(z) − z−(M+1)A(z−1). (4.23)

where P(z) and Q(z) are symmetric and antisymmetric polynomials. The roots of these polyno-

mials are called LSFs. Thus, we incorporated an offline training phase with the PS to train the

LP coefficients of each sub-band for the early reverberant speech from closed dataset and con-

verted them to LSFs. We averaged the computed LSFs and converted them to LP coefficients

as trained LP coefficients. This is referred as the PS, to compare the PS with the IS. The trained

FA and Fφ are as follows:

FA =


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, (4.24)
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Fφ =




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. (4.25)

where âp and b̂p are the trained LP coefficients for instantaneous amplitude and phase, sepa-

rately.

4.3.3 Estimation of observation noise

The estimation is derived under the assumption that noise is wide sense stationary. The true

state vector SA,k[m] and Sφ,k[m] are unknown, therefore VA,k[m] and Vφ,k[m] cannot be exactly

determined. In order to estimate the mean vector of observation noise, the approximation of

state vectors are used:

V̂A,k[m] = OA,k[m] − ŜA,k[m|m − 1], (4.26)

V̂φ,k[m] = Oφ,k[m] − Ŝφ,k[m|m − 1]. (4.27)

The estimation of mean vector of the observation noise is based on the last M measurements as

follows:

V̂A,k[m] =
1

M

M−1
∑

i=0

V̂A,k[m − i], (4.28)

V̂φ,k[m] =
1

M

M−1
∑

i=0

V̂φ,k[m − i]. (4.29)

In order to estimate the covariance matrices RA and Rφ, the innovation eA and eA can be written

as:

eA[m] = OA,k[m] − ŜA,k[m|m − 1], (4.30)

= VA,k[m] + S̃A,k[m|m − 1], (4.31)

eφ[m] = Oφ,k[m] − Ŝφ,k[m|m − 1], (4.32)

= Vφ,k[m] + S̃φ,k[m|m − 1], (4.33)

where S̃ A,k[m|m − 1] and S̃ φ,k[m|m − 1] are the state error vectors and their covariance matrices

are PA[m|m − 1] and Pφ[m|m − 1].
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The covariance matrices of eA and eA are represented by:

CeA
[m] = PA[m|m − 1] + RA, (4.34)

Ceφ[m] = Pφ[m|m − 1] + Rφ, (4.35)

The estimation of CeA
[m] and Ceφ[m] are computed as follow:

ĈeA
[m] =

m − 1

m
ĈeA

[m − 1] +
1

m
ẽA[m].ẽA[m]T, (4.36)

Ĉeφ[m] =
m − 1

m
Ĉeφ[m − 1] +

1

m
ẽφ[m].ẽφ[m]T, (4.37)

where ĈeA
[m] and Ĉeφ[m] are the mean values from all past values. ẽA[m] = eA[m] − ēA[m] and

ẽφ[m] = eφ[m] − ēφ[m].

R̄A = ĈeA
[m] −

1

m

m
∑

i=1

PA[i|i − 1], (4.38)

R̄φ = Ĉeφ[m] −
1

m

m
∑

i=1

Pφ[i|i − 1]. (4.39)

Therefore, the mean and variance of observation noise can be obtained.

4.3.4 Properties of driven noise and observation noise

To verify the properties of driven noise and observation noise, we calculated the power spectrum

density (PSD) and the distribution of VA,k[m], Vφ,k[m], WA,k[m], and Wφ,k[m] in each sub-band.

The PSD and distribution of a specific sub-band are shown in Fig. 4.4 to Fig. 4.7. We can see

that the PSDs of both driven noise and observation noise in frequency domain are almost con-

stant and magnitude in time domain follow Gaussian distribution. Therefore it can be regarded

that the driven noise and observation noise satisfy the requirements in Kalman filter.

4.3.5 Early reverberant speech enhancement with CMN

CMN is a way to high-pass cepstral coefficients. In the cepstral normalization, the mean of

ceapstral vectors is subtracted from the cepstral coefficients of the utterances. We compensate

early reverberant speech by subtracting the cepstral mean of the utterance. The cepstrum of the

restored speech x̂E[m] by our proposed method is calculated as:

Cx = IDFT
(

log(|X(ω)|2)
)

, (4.40)
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where X(ω) is the spectrum of restored speech x̂E[m]. The early reverberant speech is nor-

malized by cepstral mean C in cepstral domain and then it is converted into spectral domain

as:
∣

∣

∣X̂(ω)
∣

∣

∣

2
= e|DFT(Cx−C)|, (4.41)

Finally. the estimation of restore speech can be obtained by:

x̂ =
∣

∣

∣X̂(ω)
∣

∣

∣ .exp(i ∗ angle(X(ω))) (4.42)

4.4 Summary

We proposed a scheme for speech enhancement by using Kalman filter with a training phase

in sub-bands on the Gammatone filterbank in noisy reverberant environments. The proposed

scheme dealt with the temporal variations of instantaneous amplitudes and phases simultane-

ously. The results of objective evaluations revealed that the proposed scheme can improve much

of the quality and intelligibility of speech. The results of subjective evaluations also indicated

the importance of phase information for speech enhancement. We believe that the combina-

tion of the instantaneous amplitude and phase with accurate estimation of LP coefficients in

sub-bands can contribute much to speech enhancement.
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Figure 4.4: Analysis for instantaneous amplitude of observation noise: (a) normalized PSD of

VA,k and (b) distribution of VA,k in 29-th sub-band.
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Figure 4.5: Analysis for instantaneous phase of observation noise: (a) normalized PSD of Vφ,k
and (b) distribution of Vφ,k in 29-th sub-band.
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Figure 4.6: Analysis for instantaneous amplitude of driven noise: (a) normalized PSD of Vφ,k
and (b) distribution of Wφ,k in 29-th sub-band.
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Figure 4.7: Analysis for instantaneous phase of driven noise: (a) normalized PSD of Vφ,k and

(b) distribution of Wφ,k in 29-th sub-band.
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Chapter 5

Evaluation

The measurements of SER and correlation were used to evaluate the performance of proposed

methods in chapter 3 and 4, separately.

5.1 Evaluation for restoration of power envelope

To evaluate the effectiveness of the restoration method for power envelope based on MTF con-

cept, we carried out experiments using three Japanese words (/aikawarazu/, /shinbun/, /joudan/)

uttered by ten speakers (five males and five females) from the ATR database [74]. We used 10

artificial impulse responses h(t)s [75], and three noises (white, pink and factory) from NOISEX-

92 database [76], n(t)s. TRs, were set to 0.5 s and 2.0 s, and SNRs between x(t) and n(t) were

fixed at 10 and 0 dB. All noisy reverberant signals, y(t), were generated by convolving x(t) with

h(t) and adding n(t) to x(t) ∗ h(t). We used a filterbank for power envelope restoration, and de-

composed the signal into 100 channels (bandwidth is 100 Hz). All of extracted power envelope

in each channel were re-sampled from 20000 Hz to 100 Hz. We used the Hanning window of 1

s with frame shift of 1
2

for analysis. The LP order was set to eight.

We evaluated the improvement in correlation and signal to error ratio (SER). Correlation

stands for the similarity between the shapes of clean power envelope and restored power enve-

lope or degraded power envelope, while SER shows the level of the error we can reduce. These

measures are defined as:

Corr(e2
x, ê

2
x) =

∫ T

0

(

e2
x(t) − e2

x

) (

ê2
x(t) − ê2

x

)

dt
√

{

∫ T

0
(e2

x(t) − e2
x)dt

} {

∫ T

0
(ê2

x(t) − ê2
x)dt

}

, (5.1)

SER(e2
x, ê

2
x) = 10 log10

∫ T

0
(e2

x(t))
2dt

∫ T

0
(e2

x(t) − ê2
x(t))

2dt
, (5.2)
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where e2
x(t) is the clean power envelope, ê2

x(t) is the restored power envelope, e2
x is the average

value of e2
x(t), and ê2

x is the average value of ê2
x(t) .

Figure 3.3 compares the shapes of power envelope with clean speech, noisy speech, restored

by the previous method based on MTF, restored by the ideal Kalman filtering method based on

MTF, and restored by the proposed Kalman filtering method based on MTF. We can see that

the restored power envelope of the ideal Kalman filtering method based on MTF can eliminate

most fluctuations of the noise power envelope. The proposed Kalman filtering method based on

MTF makes smaller improvements than the ideal Kalman filtering method based on MTF but

larger improvements than the previous method based on MTF.

The ideal Kalman filtering method based on MTF can work well under all noisy reverberant

conditions and eliminate most of the fluctuations of the noise power envelope, however, we

need the clean power envelope to derive the LP coefficients which is unrealistic. Although

our proposed Kalman filtering method based on MTF cannot reach the maximum performance

compared with ideal Kalman filtering method based on MTF, it does not need the clean power

envelope to calculate LP coefficients.

Figure 5.1 and 5.2 show the improvements in correlation and SER respectively in each chan-

nel between ideal Kalman filtering method based on MTF and previous method based on MTF

under white noisy and reverberant conditions. We defined the improved correlation as the sub-

traction of correlation between clean power envelope and restored power envelope from the cor-

relation between clean power envelope and noisy reverberant power envelope in sub-bands. The

improved SER is also defined in the same way. This result can be used to check the maximum

improvements by our proposed Kalman filtering method based on MTF. It is easily observed

that the ideal Kalman filtering method based on MTF have large improvements in correlation

in almost all channels and SER in all channels. Figure 5.3 and 5.4 shows the improvements in

correlation and SER between our proposed Kalman filtering method based on MTF and previ-

ous method based on MTF for white noisy and reverberant condition. We can see our proposed

Kalman filtering method based on MTF can have improvement in correlation in some channels

and have improvement for SER in all channels. The improvements of our proposed Kalman

filtering method based on MTF is smaller than ideal Kalman filtering method based on MTF

due to the estimated LP coefficients from noisy reverberant speech. Figures 5.5 to 5.12show the

improvements by ideal Kalman filtering method based on MTF and proposed Kalman filtering

method based on MTFs for pink and factor noisy reverberant conditions, separately. We can see

that the ideal Kalman filtering method based on MTF and proposed Kalman filtering method

based on MTF can also work well under these conditions. In order to compare our proposed

Kalman filtering method based on MTF with conventional method, we chose Wiener filtering

method as baseline method for comparison. We can see that our proposed Kalman filtering

method based on MTF has much more improvement than Wiener filtering method in Fig. 5.13

and 5.14.
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From these results, we can see the ideal Kalman filtering method based on MTF and pro-

posed Kalman filtering method based on MTF have small improvement in the low frequency

bands and large improvement in high frequency bands because the SNR in high frequency

bands are always low. These two methods have better improvement when SNR becomes lower

and TR becomes longer. Although the proposed Kalman filtering method based on MTF has

worse performance than ideal Kalman filtering method based on MTF, it still have much more

improvement than conventional methods.

5.2 Evaluation for restoration of instantaneous amplitude and

phase

We used a closed dataset, containing four sentences from two males and two females from the

AURORA-2J database [98] to determine FA and Fφ. We then used ten different sentences ut-

tered by five males and five females as an open dataset, to evaluate the PS. We added three kinds

of noise n(t)s (white, pink, and factory) of NOISEX-92 [99]. Signal to noise ratios (SNRs) be-

tween x(t) and n(t) of 20, 10, and 0 dB. Eight kinds of RIRs h(t)s from SMILE2004 [100] were

used. The sampling frequency, Fs, was set to be 8 kHz. We used a GTFB [96] to decompose

the signal into 32 sub-bands (K = 32). The frame size was 25 ms. The LP order, p, was set to

12-th order.

We evaluated the improvement of the restored speech by measuring correlation (Corr) and

signal to error ratio (SER). Correlation shows the similarity between the shapes of clean instan-

taneous amplitude and phase and restored instantaneous amplitude and phase and SER shows

the level of the error that we can reduce. where xk(t) and x̂k(t) are clean and the restored speech

in k-th sub-band. These two measures were used to evaluate the reduction of effects of addi-

tive and convolved noise on the instantaneous amplitudes and phases in sub-bands. We defined

the improved correlation as the subtraction of correlation between clean speech and restored

speech from the correlation between clean speech and noisy reverberant speech in sub-band.

The improved SER is also defined in the same way.

We only show the results under the combination of best and worst SNR and reverberation

time conditions because of space limitation. Figure 5.15 shows that the PS can have large

improvements in Corr. and SER in various reverberant conditions and Fig. 5.16 shows that

by restoring instantaneous amplitude only has quite small improvement in reverberant condi-

tions. Figures 5.17 and 5.18 show that the PS has large improvement in both Corr. and SER

for restoring instantaneous amplitude and phase simultaneously under the best and worst noisy

reverberant condition. Figures 5.19 and 5.20 show the improvement of only restoring instanta-

neously amplitude by our PS (Ref (PS)) which indicates the importance of phase information.

We can easily see that by restoring instantaneous amplitude and phase simultaneously can im-

58



prove more Corr and SER.
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Figure 5.2: Improvements in restoration accuracy between the ideal MTF-based Kalman filter-

ing with the LP method and the previous method based on MTF for white noise: (b) improved

SERs.
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Figure 5.3: Improvements in restoration accuracy between the proposed Kalman filtering

method based on MTF and the previous method based on MTF for white noise: (a) improved

Corrs.
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Figure 5.4: Improvements in restoration accuracy between the proposed Kalman filtering

method based on MTF and the previous method based on MTF for white noise: (b) improved

SERs.
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Figure 5.5: Improvements in restoration accuracy between the ideal MTF-based Kalman filter-

ing method based on MTF and the previous method based on MTF for pink noise: (a) improved

Corrs.
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Figure 5.6: Improvements in restoration accuracy between the ideal MTF-based Kalman filter-

ing method based on MTF and the previous method based on MTF for pink noise: (b) improved

SERs.
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Figure 5.7: Improvements in restoration accuracy between the proposed Kalman filtering

method based on MTF and the previous method based on MTF for pink noise: (a) improved

Corrs.
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Figure 5.8: Improvements in restoration accuracy between the proposed Kalman filtering

method based on MTF and the previous method based on MTF for pink noise: (b) improved

SERs.
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Figure 5.9: Improvements in restoration accuracy between the ideal Kalman filtering method

based on MTF and the previous method based on MTF for factory noise: (a) improved Corrs.
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Figure 5.10: Improvements in restoration accuracy between the ideal Kalman filtering method

based on MTF and the previous method based on MTF for factory noise: (b) improved SERs.
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Figure 5.11: Improvements in restoration accuracy between the proposed Kalman filtering

method based on MTF and the previous method based on MTF for factory noise: (a) improved

Corrs.
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Figure 5.12: Improvements in restoration accuracy between the proposed Kalman filtering

method based on MTF and the previous method based on MTF for factory noise: (b) improved

SERs.
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Figure 5.13: Improvements in restoration accuracy between the proposed Kalman filtering

method based on MTF and the Wiener filtering method based on MTF for white noise: (a)

improved Corrs.
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Figure 5.14: Improvements in restoration accuracy between the proposed Kalman filtering

method based on MTF and the Wiener filtering method based on MTF for white noise: (b)

improved SERs.
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Figure 5.15: Improvements in restoration accuracy of PS: (a) improved Corrs and (b) improved

SERs in reverberant environments.
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Figure 5.16: Improvements in restoration accuracy of ref (PS): (a) improved Corrs and (b)

improved SERs in reverberant environments.
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Figure 5.17: Improvements in restoration accuracy of PS: (a) improved Corrs and (b) improved

SERs in white noisy reverberant environments.
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Figure 5.18: Improvements in restoration accuracy of PS: (a) improved Corrs and (b) improved

SERs in white noisy reverberant environments.
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Figure 5.19: Improvements in restoration accuracy of Ref (PS): (a) improved Corrs and (b)

improved SERs in white noisy reverberant environments.
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5.3 Discussion

The MTF based ideal Kalman filtering method showed significant improvement in both SER

and Correlation compared with previous MTF based method for all kinds of noisy reverber-

ant conditions, while the proposed MTF based Kalman filtering method only showed slight

improvement in SER and Correlation. The differences between these results are due to the ac-

curacy of LP coefficients. Therefore, improving the accuracy of the prediction of LP coefficients

need to be addressed in the future work.

As is shown in the results, the improvement of SER and Correlation were quite large in

high frequency bands (above 8000 Hz) compared with low frequency bands. This is because

the local SNRs of high frequency bands are quite low based on the fact that the power of high

frequency components of clean speech is almost zero in these bands, while the noise power

is relatively high. Therefore, we could get large improvement of SER and Correlation when

setting the power to be zero in high frequency bands.

The proposed restoration method for instantaneous amplitude and phase (PS) showed large

improvement in SER and Correlation in various noisy reverberant environments. It has been

found that the LP coefficients of instantaneous amplitude and phase could be trained because

they were similar among different speech spoken by different speakers. The results also re-

vealed that without restoring instantaneous phase will lead to less improvement in SER and

Correlation.

5.4 Summary

The ideal MTF based method has much improvement in Corr and SER compare with previous

method in various noisy reverberant conditions while the proposed MTF based method has less

improvement compare with ideal method. Therefore, the accuracy of LP coefficients should be

improved in future work. The restoration method for instantaneous amplitude and phase showed

that taking phase information into consideration could improve more SER and Correlation than

that without considering phase.
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Figure 5.20: Improvements in restoration accuracy of Ref (PS): (a) improved Corrs and (b)

improved SERs in white noisy reverberant environments.
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Chapter 6

Applications

The proposed method presented in chapter 4 was evaluated for two kinds of applications: ASR

systems and hearing aids, in this chapter.

6.1 Applicaiton in ASR system

6.1.1 Introduction

The applications with ASR are quite popular in recent years, for example, controlling the de-

vices by speech and input the contents in computer by speech instead of keyboard. They provide

much convenience to our daily life.

An automatic speech recognition system which is shown in Fig. 6.1 includes: a feature

extraction module for obtaining the acoustic features from the input speech signal; a training

module for determining the acoustic models and language models; a classification module for

classifying the features by the acoustic models; a search module for recognizing the word se-

quence using the language models. In this section, we tested our proposed method for in various

ee signal

eature

e tra tion
lassifi ation

ousti

odels

anguage

odels

ear

raining data

ord se uen e

Figure 6.1: The conceptual model of ASR system.
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real noisy reverberant environments as front-end processor for ASR.

6.1.2 Feature extraction

o er envelo e

e tra tion

o er envelo e

e tra tion

o er envelo e

e tra tion

eature

e tra tion

.

.

.

.

.

.

eature ve tor

Figure 6.2: Pre-process of feature extraction for proposed method.

In our previous experiments [105] on speech recognition, it was found that the features

based on constant bandwidth filterbank (CBFB) are always equivalent or slightly better than

Mel frequency cepstral coefficient (MFCC) features. In view of the sub-band filtering and the

temporal power envelope used in our method, we extract the features based on CBFB from the

restored speech of our PS to make comparison with previous methods. Figure 6.2 shows the

feature extraction process: the noisy reverberant speech is restored by our PS, then the power

envelope for the restored speech is calculated for each sub-band after CBFB by the following

equation:

e2
x(t) = LPF

[

∣

∣

∣x(t) + jHilbert[x(t)]
∣

∣

∣

2
]

, (6.1)

where LPF[·] is a low-pass filtering (LPF), and Hilbert[·] is the Hilbert transform. We used

LPF with a cut-off frequency of 20 Hz. Finally the feature vectors can be obtained from power

envelope.

The feature extraction process in detail is shown in Fig. 6.3. The first step is smooth-

ing which consists of frame integration and log compression utilizing low-pass filtering with

a forgotten parameter, λ, to smooth the envelope dips in each sub-band in order to reduce the

negative effects from sub-bands:

ex,k[t] = λex,k[t − 1] + (1 − λ)êx,k[t], (6.2)
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Figure 6.3: Extraction of speech features from power envelopes in sub-bands.

where êx,k[t] is the original restored sub-band power envelope, and ex,k[t] is the smoothed out-

put. In this paper, λ is set to 0.98. We used 32 ms frame with a Hamming window to integrate

the frames and the frame rate is 16 ms. Log compression was used for the integrated spec-

trum. The discrete cosine transform (DCT) was used for dimentional decorrelation. The first

12 dimentions of the decorrelated log power spectrum were used. Together with the log power

energies, the first and second order delta dynamic values, a 39 dimentional feature vectors was

formed. HTK 3.2 was used for training the HMM acoustic models, which were the same with

those used in AURORA-2J experiments.

6.1.3 Evaluations in realistic environments

We used 8840 clean speech from AURORA-2J database to train the acoustic models and 1001

clean speech were used to generate the noisy reverberant speech. Eight room impulse responses

from SMILE2004 which were selected based on reverberation time and three kinds of noise

(white, pink and factory) from NOISEX-92 were for generating noisy reverberant speech of

realistic environments. Three SNR conditions (20 dB, 10 dB, and 0 dB were considered. There-

fore 272072 (1001 × 8 × 4 × 3) noisy reverberant speech were used. The sampling frequency fs

is 8 kHz, therefore 40 sub-bands were used to cover the frequency region from 0 Hz to 4 kHz.

As for comparision, the MFCC feature was used as baseline. The CBFB feature, the spectral

subtraction method on the CBFB feature (CBFB SS), and the combination of RASTA filtering

with CBFB (CBFB RASTA) were also tested for better comparison.

The results of word recognition rate (WRR) in noisy environments is shown in Fig. 6.4.

MFCC features are worse than CBFB features under 20 dB but similar with CBFB features
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under 10 dB and 0 dB. CBFB RASTA features are always better than CBFB features. Al-

though CBFB SS features are better than CBFB RASTA features in high SNR conditions, it

cannot work well under low SNR conditions. It is easily observed that our proposed method

outperforms all of the other methods in all conditions.

The results of WRR in reverberant environments is shown in Fig. 6.5. CBFB features

are always better than MFCC features. The CBFB SS features are better than CBFB RASTA

feature under short reverberation time conditions and become worse under long reverberation

times. We can see taht our proposed method has the best performance.

The results of WRR for various noisy reverberant environments are shown in Fig. 6.6 to

Fig. 6.14. It is easily observed that the WRR decreases as reverberatioon time increases and

SNR decreases. The WRR of CBFB features are better than MFCC features in most of the

conditions. RASTA filtering can improve the WRR of CBFB features and CBFB SS is better

than CBFB RASTA in most cases. It is obvious that our proposed method has the best per-

formance among all methods. We can conclude that restoring the instantaneous amplitude and

phase simultaneously can significantly improve the WRR in ASR systems.

6.2 Application for hearing aid

6.2.1 Introduction

Hearing aid is a kind of electro device that is used to amplify and enhance the sound for the

hearing impaired people. The target of hearing aid is to make the speech more intelligible and

correct the impaired hearing by audiometry.

6.2.2 Speech quality test

Sentence-pair listening test was chosen for subjective evaluation. Noisy reverberant speech

signals were generated under four noisy reverberant conditions: SNRs at 10 and 0 dB and

reverberation times TRs at 0.5 and 2 s, for two male and two female speakers from TIMIT

database. We made comparison for six categories of speech (clean (CL), IS, Ref (IS), PS, Ref

(PS), and noisy reverberant (NR)), where CL is clean speech. Each of these six was compared

with the other five categories. Therefore we have 30 sentence pairs 30 (= 5×6) under each noisy

reverberant condition. These sentence pairs were randomly shuffled and listeners were required

to choose one of the three choices for each sentence pair: prefer the first one, prefer the second

one, and no preference. Pairwise scoring was employed: 1 point is added to the preferred speech

and 0 to the other and 0.5 point is added for both ones with no preference. The experiment was

conducted in sound-proof room and ten subjects with normal hearing were participated in this

experiment. These participants were familiar with the task after a short practice session before
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Figure 6.4: Comparison of WRR for different noise conditions.
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Figure 6.5: Comparison of WRR for different reverberant conditions.
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Figure 6.6: Comparison of WRR for white noise under 20 dB.
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Figure 6.7: Comparison of WRR for white noise under 10 dB.

88



Figure 6.8: Comparison of WRR for pink noise under 0 dB.
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Figure 6.9: Comparison of WRR for pink noise under 20 dB.
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Figure 6.10: Comparison of WRR for pink noise under 10 dB.
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Figure 6.11: Comparison of WRR for pink noise under 0 dB.
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Figure 6.12: Comparison of WRR for facotry noise under 20 dB.
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Figure 6.13: Comparison of WRR for factory noise under 10 dB.
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Figure 6.14: Comparison of WRR for factory noise under 0 dB.
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Figure 6.15: Results of preference test in noisy reverberant environments: (a) TR = 0.5 s and

SNR=10 dB, (b) TR = 2 s and SNR=10 dB, (c) TR = 0.5 s and SNR=0 dB, (d) TR = 2 s and

SNR=0 dB.

formal test. Each listener listened 30 sentence pairs for each noisy reverberant condition and

totally listened to 120 (30 × 4) sentence pairs.

Figure 6.15 shows the comparison of normalized mean preference score for various noisy

reverberant conditions in our experiment. It was obvious that the clean speech had the best and

the noisy reverberant speech had the worst score.. We found that IS was always better than

PS and Ref (IS) was always better than Ref (PS) in all conditions, which means the trained

FA and Fφ still had a little bit minor negative effects on speech restoration. However, if the

training effects of FA and Fφ under various conditions will be improved, these gaps could be

eliminated. We also found that IS was always better than Ref (IS) and PS was always better than

Ref (PS) in all conditions which indicated that the use of instantaneous phase plays an important

role for speech enhancement in noisy reverberant environments. Hence, it revealed that both

instantaneous amplitude and phase need to be incorporated for general speech enhancement.
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Speech intelligibility test

The modified rhyme test (MRT) was used in the subjective test for intelligibility. The database

is provided by Public Safety Communication Research (PSCR) [104] which contains speech

of four female and five male speakers. There are 50 word lists of rhyming or similar sounding

monosyllabic English words for each speaker and every word is in a consonant-vowel-consonant

sound sequence. The six words in each list only differ in the initial or final consonant sound.

We carried out MRT with six subjects in this evaluation. The result indicated errors in discrim-

inating both initial or final consonant sounds.

Noisy reverberant speech signals were generated under four noisy reverberant conditions:

SNRs at 10 and 0 dB and reverberation times TRs at 0.5 and 2 s, for two male and two female

speakers. Six participant joint this experiment and each participant listened to six categories of

speech (clean (CL), IS, Ref (IS), PS, Ref (PS), and noisy reverberant (NR)) under four condition.

There were six word lists for each category in each condition. We calculated the correctness

rate for the words for each category. The results are shown in Fig. 6.16. The results showed

that restoring phase could contribute to the word correctness and the accuracy LP coefficients

is also quite important for improving intelligibility. T test in analysis of variance (ANOVA)

was chosen to evaluate the difference between the mean values of improvements by PS and

Ref (PS) to show the significance of restoring instantaneous phase. In this test, the significance

level is set to 0.05. The results are shown in table 6.1 and 6.2 for the results of MRT test and

preference test, separately. We should notice that the p ≤ 0.05 mean the significant difference,

especially when p ≤ 0.01. From 6.1, we can easily see that under the condition of SNR=20 dB

and TR = 0.36s, the difference is not significant, while in the other conditions the differences are

significant. It proves that restoration of the instantaneous phase is critical to the intelligibility

in bad noisy reverberant conditions while it is not quite important in good noisy reverberant

conditions. From 6.2, it is observed that the restoring instantaneous phase could largely improve

quality in all conditions.

6.2.3 Objective evaluations

Perceptual evaluation of sound quality (PESQ) [101, 102] in the objective difference grades

(ODGs) that covers from −0.5 (very annoying) to 4.5 (imperceptible) was used to evaluate

subjective quality of the restored speech signals under noisy reverberant conditions. SNR loss

[103] was also used to predict the improvement of speech intelligibility which ranges from 0 to

1.0, corresponding to the percent correctness (100% to 0%), under noisy reverberant conditions.

The results under the combination of best and worst SNR and reverberation time condi-

tions are listed in Table 6.3. We made comparisons among noisy reverberant speech (NR),

the restored speech by ideal scheme (IS), the restored speech by IS with only instantaneous
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Figure 6.16: MRT evaluation in noisy reverberant environments: (a) TR = 0.36 s and SNR=20

dB, (b) TR = 0.36 s and SNR=0 dB, (c) TR = 3.62 s and SNR=20 dB, (d) TR = 3.62 s and

SNR=0 dB.

amplitude (Ref (IS)), the restored speech by PS, the restored speech by Ref (PS), the restored

speech by only CMN (CMN), and the restored speech by PS without CMN (Ref2 (PS)). From

the results of PESQ, we found that the phase information could improve the quality of speech,

comparing IS and PS with Ref (IS) and Ref (PS) respectively. Furthermore, applying CMN only

could improve a little PESQ compared with noisy reverberant speech but much worse than the

other methods based on PS. The Ref2 (PS) had a little worse performance than PS which indi-

cated that CMN had benefit for removing early reflection effect. From the results of SNR loss, it

could be observed that phase information played an important role for improving intelligibility

of speech, comparing IS and PS with Ref (IS) and Ref (PS) respectively. CMN can only im-

prove quite a little SNRloss. The Ref2 (PS) had worse performance than PS which proved that

PS could improve more intelligibility than PS without CMN. From the results of evaluations,

we could conclude that the PS can effectively reduce the effects of noise and reverberation by

restoring the instantaneous amplitude simultaneously. Furthermore, phase information is quite

important for improving the quality and intelligibility of speech under noisy reverberant condi-

tions and combining CMN could lead to more improvement.
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Table 6.1: T test for PS and Ref(PS) for MRT test.

Conditions P values H

20 dB/ 0.36 s 0.2839 0

20 dB/ 3.62 s 0.0409 1

0 dB/ 0.36 s 0.0412 1

0 dB/ 3.62 s 0.0217 1

Table 6.2: T test for PS and Ref(PS) for preference test.

Conditions P values H

10 dB/ 0.5 s 0.4183e-07 1

10 dB/ 2 s 5.3585e-06 1

0 dB/ 0.5 s 1.8236e-04 1

0 dB/ 2 s 0.0039 1

Table 6.4 shows the comparison of PESQ and SNR loss among PS and two conventional

methods: Wiener filtering and MMSE method. It is obvious that PS has much better perfor-

mance than both conventional methods.

6.3 Summary and discussion

In our study, it was found that the AMS framework in Gammatone filterbank for restoring not

only instantaneous amplitude but also instantaneous phase could improve both quality and in-

telligibility of noisy reverberant speech. This result is in agreement with previous studies which

emphasize phase importance [87, 88, 89]. Compared with previous scheme, it was confirmed

that the proposed scheme could restore the early reverberant speech by dealing with the noise

corresponding to additive and convolved noises, then the early reflection effect was removed

by CMN. There are mainly three differences between these schemes, firstly, we trained LP

coefficients from early reverberant speech rather than clean speech. Secondly, we proposed an

estimation method for observation noise because the voice activity detection (VAD) used in pre-

vious scheme cannot work in noisy reverberant environment for estimating observation noise.

Finally, the CMN method was combined as post-processing.
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Table 6.3: Comparisons: PESQ and SNR loss (AVG.)

❍
❍
❍

Method Ideal scheme (IS) Ref (IS) Proposed scheme (PS) Ref2 (PS) Ref (PS) CMN

SNR/TR
❍
❍
❍

PESQ SNR loss PESQ SNR loss PESQ SNR loss PESQ SNR loss PESQ SNR loss PESQ SNR loss

20 dB/0.36 s 3.01 0.62 2.72 0.74 2.79 0.62 2.61 0.75 2.59 0.71 1.98 0.82

20 dB/3.62 s 2.82 0.69 2.52 0.79 2.56 0.71 2.31 0.81 2.41 0.74 1.61 0.90

0 dB/0.36 s 2.81 0.68 2.59 0.80 2.39 0.71 2.35 0.82 2.29 0.73 1.48 0.89

0 dB/3.62 s 2.66 0.72 2.41 0.82 2.21 0.75 2.12 0.93 2.18 0.78 1.12 0.92

Table 6.4: Comparisons: PESQ and SNR loss (AVG.) with conventional methods

❍
❍
❍
❍

Method PS Ref(PS) Previous method Wiener filtering MMSE-STSA

SNR/TR

❍
❍
❍
❍

PESQ SNR loss PESQ SNR loss PESQ SNR loss PESQ SNR loss PESQ SNR loss

20 dB/0.36 s 2.79 0.62 2.61 0.75 2.55 0.81 2.02 0.88 2.60 0.84

20 dB/3.62 s 2.56 0.71 2.31 0.81 2.12 0.79 1.65 0.91 1.92 0.89

0 dB/0.0.36 s 2.39 0.71 2.35 0.82 2.11 0.84 1.64 0.95 1.96 0.93

0 dB/3.62 s 2.21 0.75 2.12 0.93 2.01 0.98 1.14 0.99 1.34 0.99
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Chapter 7

Conclusions

7.1 Summary of thesis

Speech is necessary and the most important carrier of information in our daily life. However, in

real-world listening environments, speech signals are often smeared by various types of acoustic

interference, such as background noise and reverberation. Though many advanced speech tech-

nologies are ubiquitously used in real applications with great success, single channel speech

enhancement, where the signal is derived from a single microphone, has not yet developed

enough to make its way out of laboratories, because this is the most difficult task since the

speech and interference are in the same channel without knowing additional information, such

as sound location information. The performance of important applications, such as telecommu-

nication systems and ASR systems, where only one microphone is available due to cost and size

considerations, may severely reduce when the speech are subjected to the acoustic interference.

In order to reduce the effects brought by the acoustic interference and facilitate the performance

in the important applications, it is of great necessity to conduct some research about the single

channel speech enhancement to improve the performance of speech applications.

Many conventional single channel speech enhancement methods have been proposed in re-

cent years. These methods can suppress the effects of noise or reverberation well but they

still mainly have two drawbacks: Firstly, all these methods cannot remove the effect of noise

and reverberation simultaneously. Secondly, these methods could not improve the quality and

intelligibility of speech simultaneously. There is growing psychoacoustic and physiological ev-

idence to support the significance of modulation domain in the analysis of speech signals and it

has been shown that modulation frequency between 4 Hz and 16 Hz contain the most important

information of speech. The concept is useful for describing, representing, and modifying acous-

tic signals. Representations of modulation analysis consist of a transform of a one-dimensional

signal into a two dimensional joint frequency representation, where one dimension is acous-

tic frequency and the other dimension is modulation frequency. Modulation analysis has the
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advantage that the energy from signal and interference is largely non-overlapping in the mod-

ulation frequency domain. The methods based on modulation analysis have extensively been

studied in the field of single channel speech enhancement which can remove the effects of the

noise and reverberation simultaneously. Furthermore, the modulation spectrum has been proved

important not only for proving the basis for syllabic segmentation, but also important for defin-

ing the phonetic information, such as the manner of articulation. The modulation spectrum

with the representation of amplitude and phase together has been verified to have the ability of

improving the intelligibility of speech.

Based on the novel concept of MTF which had been introduced to account for degradation of

the STI related to speech intelligibility due to noise and reverberation within an enclosed space,

an speech enhancement methods for restoring temporal power envelope by using Kalman filter

combined with LP was proposed. This method removes the noise power envelope by utilizing

LP in modulation domain because the power envelope is analyzed as a highly correlated time

series signal and use an MTF-based inverse filter to remove the reverberation. There are two

important issues in the Kalman filter. The observation noise and driving noise should be white

Gaussian noise which have been verified by PSD and distribution histogram. Furthermore, how

to derive the accurate transition matrix is quite important in a Kalman filter. The accurate transi-

tion matrix of a state equation is unknown in the absence of clean speech, so setting the suitable

transition matrix in a Kalman filter for speech enhancement is a challenging topic. A blind LP

detection method had been developed and it could obtain significant improvements in SER and

Correlation. Although it has been verified that our proposed method could effectively restore

the noisy reverberant temporal power envelope in modulation domain with the measurements

of SER and correlation, it still cannot restore the wrapped phase. Therefore the intelligibility of

speech is difficult to be evaluated in this proposed method.

Recent studies have shown that not only the amplitude spectrum but also the phase spec-

trum contains important information for speech enhancement. They have also reported that

both the TAE and TFS are important for speech perception. Many researches conducted on

patients with cochlear hearing loss and cochlear implant users have proved that TFS play an

important role in pitch perception, speech recognition with background noise, and sound local-

ization, etc. Therefore, the method for restoring the amplitude and phase simultaneously should

be proposed. In our proposed method, we removed the summation of additive noise and late re-

verberant speech by using Kalman filter with trained LP and the early reflection effect could be

removed by CMN. The LP coefficients were trained and an method for estimating observation

noise was developed. It has been shown that this proposed method could improve much SER,

Correlation, PESQ and SNR loss. Subjective experiments of preference test and MRT were also

conducted. Both objective and subjective experiments revealed that by manipulating amplitude

and phase information simultaneously, it could achieve significant improvement in quality and

intelligibility of speech.
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The proposed method of restoring instantaneous amplitude and phase was further evaluated

in two kinds of applications: ASR systems and hearing aids. In the ASR systems, our proposed

method was used as the front-end of ASR systems. Firstly, the noisy reverberant speech was

restored by our proposed method combined with CMN, then power envelope was extracted in

each channel of CBFB. The features from power envelopes were calculated and the WRR which

reflects the quality of speech could be obtained. The results showed the WRR of our proposed

method is superior to the other conventional methods. In the hearing aid experiments, both

subjective evaluation of MRT test and objective evaluation of SNR loss were carried out. The

results showed that our proposed method could have significant improvement in both quality

and intelligibility of speech. From these results, the applicability of proposed method could be

confirmed.

7.2 Contributions

Being inspired by the effectiveness of modulation analysis and characteristics of phase. This

study investigated the feasibility of improving quality and intelligibility for noisy reverberant

speech by using modulation analysis and taking phase information into consideration. The

major contributions cab be summarized as follows:

• The first contribution is a proposal of sophisticated method for restoring power envelope

based on MTF concept. As the joining effect of noise and reverberation is difficult to

remove simultaneously, most methods processed the noisy reverberant speech in two sep-

arated processes for speech enhancement. The proposed method could restore the noisy

reverberant power envelope systematically. This proposed method also does not need

the estimation of room impulse response and a blind LP detection method based on MTF

concept has been developed for Kalman filter. These are the novel aspects in the proposed

method.

• The second contribution is the implementation of the method of improving quality and

intelligibility of speech by manipulating instantaneous amplitude and phase for noisy

reverberant speech. This method removed the summation of additive noise and late rever-

berant speech in modulation domain by using Kalman filter, In this process, an estimation

method for the variance of observation noise was also developed for Kalman filter. The

effectiveness has been verified with good improvement in speech quality and intelligibil-

ity.

• The last contribution of this study is the two applications of the proposed method in ASR

systems and hearing aid. It verifies the effectiveness and applicability of proposed method

to solve the real problems in our daily life.
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7.3 Future work

In this dissertation, an efficient and applicable speech enhancement method for noisy rever-

berant speech has been proposed based on modulation analysis with phase manipulation. It

has been demonstrated that the proposed method is capable of solving the realistic problems.

However, there are still a number of aspects for future work.

• For the method based on MTF concept, although estimated LP form the blind LP detec-

tion method could have some improvement in SER and correlation, it is still far from the

performance using estimate LP from clean speech. Therefore, a better blind LP detection

method should be considered in the future work.

• For the method of restoring instantaneous amplitude and phase which is evaluated in

the ASR experiments. Although we considered the phase manipulation in the proposed

method, we only extracted the features from power envelope of restored speech without

using phase. We expect to obtain more improvement in WRR by extracting the features

from both amplitude and phase in ASR system in future work.

• In both proposed methods, the Kalman filter were applied to deal with amplitude and

phase, separately. In the past few decades the Kalman filter has been modified to apply

to the complex form of speech signal. Therefore, in the future work, we will make use

of the widely linear processing to develop complex Kalman filters for complex states for

restoring instantaneous amplitude and phase simultaneously.

• In both proposed methods, the constraint of smoothness is used in the Kalman filter.

Smoothness is one of the constraints in the psychoacoustical concept of Computational

auditory scene analysis, we will consider to use the other constraints, such as common

onset/offset, co-modulation, harmonicity to develop the speech enhancement method in

modulation domain.
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Appendix A

Restoration of instantaneous amplitude

and phase in noisy environments

Objective Evaluation

Objective measures include the SER, Correlation, PESQ, and SNR loss. To evaluate the ef-

fectiveness of both proposed methods, we carried out experiments using 50 different English

sentences uttered by male and female speakers from the Texas Instruments and Massachusetts

Institute of Technology (TIMIT) database. Half of the utterances were selected from male and

another half were selected from female speakers from the open data set. Before doing this, we

create a closed data set, containing five sentences from two male and three female speakers of

TIMIT database to train the LP coefficient. We define other data set as a open data set. We

use white, bubble and pink noise to evaluate the proposed scheme. The signal to noise ratios

(SNRs) for white noise between x(t) and n(t) were fixed at from 20 dB to −10 dB at intervals

of 10 dB. All noisy signals y(t) were generated by adding x(t) with n(t). We used a Gammatone

filterbank to divide the signal into 128 channels (K = 128). We used the sampling frequency

(Fs) of 20 kHz. We utilized a 25-ms-long rectangular window. The LP order, p, was set to 12.

We have evaluated the improvement of the restored speech by measuring correlation and

signal to error ratio (SER). Correlation shows the similarity between the shapes of clean instan-

taneous amplitude and phase and restored instantaneous amplitude and phase and SER shows

the level of the error that we can reduce.

Figure A.2 shows the improvement in correlation and SER in each channel using non-blind

method (non-blind Kalman filtering) under the mentioned white noise conditions. In the figure,

the height of the bar indicates the mean value of the improvement in SER. All the channels

have positive improvement in SER in 20, 10, 0, and −10 dB noise conditions, except with case

of higher channels in 20-dB condition. This is because signal components in higher channels

in 20-dB condition are almost similar to those of clean signal. Thus, it is easy to see that the
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Table A.1: Comparison of result of PESQ and SNR loss (averaged values).

Methods

Noisy Speech Proposed

(Non-blind)
Proposed (Blind)

SS [1] MMSE [2] Wiener filter [3]

SNR PESQ SNR loss PESQ SNR loss PESQ SNR loss PESQ SNR loss PESQ SNR loss PESQ SNR loss

20 dB 2.99 0.57 3.61 0.53 3.50 0.54 3.11 0.83 2.73 0.84 2.72 0.88

10 dB 2.31 0.74 3.59 0.62 3.06 0.62 2.42 0.78 2.11 0.93 1.94 0.94

0 dB 1.65 0.87 3.10 0.67 2.47 0.71 1.75 0.91 1.71 0.94 1.76 0.97

−10 dB 1.15 0.95 2.84 0.73 1.62 0.82 1.09 0.90 1.01 0.94 1.35 0.96

proposed method can effectively reduce the noise in both instantaneous amplitude and phase.

The performance of the blind method (blind Kalman filtering) is shown in Fig. A.4. The

results prove that blind Kalman filter with the trained LP coefficients also works well, thus we

always obtain positive improvements in correlation and SER in all noise conditions, except with

the same case mentioned in the above. From the comparison of result between non-blind and

blind Kalman filtering, it is observable that, we achieve almost same improvement in correlation

and SER. This is because, our trained LP coefficients act as a clean LP coefficients and it can

be used as gender and content independent LP coefficients. Figure A.5 shows the example of

restored instantaneous amplitude and phase in a particular sub-band by the proposed method

(blind Kalman filtering). We can observe that the restored amplitude and phase are matched

with the clean amplitude and phase.

Moreover, we also choose the Wiener filtering method (Scalart-Filho algorithm) under the

same conditions to compare its effectiveness with that of our proposed method. Based on the

results in Fig. A.7, we can see that both of our proposed methods can obviously improve the

SER and Corr much more than the Wiener filtering method.

To evaluate the quality and intelligibility of the restored speech, we calculated the perceptual

evaluation of sound quality (PESQ) and SNR loss for all stimuli that we used the above evalu-

ations. PESQ in the objective difference grades (ODGs) that covers from −0.5 (very annoying)

to 4.5 (imperceptible) was used to evaluate subjective quality. SNR loss that ranges from 0.0

to 1.0 was used to evaluate intelligibility of speech. SNR losses (0 to 1.0) are corresponded

to the percent correctness (100% to 0%). The results of objective measures are listed in Table

1. The results indicate that both of our proposed methods provide better quality and improved

intelligibility in the restored speech much more than the existing speech enhancement methods.

From the result of evaluations, we can say that the proposed method can effectively reduce the

noise from both the amplitude and phase and also improve the quality and speech intelligibility.

We carried out our simulation in pink and bubble noise condition. The restoration accuracy

of the proposed blind Kalman filtering on pink and bubble noise condition are shown in Figs.

A.8 and A.9. The proposed method can reduce the error and improve the correlations in the

pink and bubble noise in all channels except some higher channels. We investigate that, the
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Table A.2: Comparison of Mean Preference Score

Methods Clean Noisy Proposed Non-blind Proposed Blind MMSE Wiener

White Noise 8.78 0.64 6.64 6.24 3.28 2.82

Pink Noise 9.64 0.71 6.44 6.17 4.21 2.64

Babble Noise 9.21 0.28 6.28 6.18 4.07 2.21

signal components in higher channels are almost similar to clean speech and have a very high

SNR condition. Thus, it is very difficult to reduce noise in higher channel since it is almost

similar to the clean speech.

Subjective Evaluation

The subjective evaluation was performed through a sentence- pair listening test. The listening

materials included three noise types (white, pink, and babble) at SNR of 0 dB for two male

speakers and two female speakers, from TIMIT database. We restored the noisy speech using

four methods (MMSE, Wiener filter, proposed non-blind method and proposed blind method).

We made the comparison among the six conditions (MMSE, Wiener filter, proposed non-blind

method, proposed blind method, clean speech and noisy speech). Each of these six was com-

pared with other five restored signals. Thus we have 30 sentence pairs (5 × 6 = 30) for each

type of noise and we have total (30×3 = 90) sentence pairs. These sentence pairs are randomly

shuffled and divided into three groups where each group contains 30 sentence pairs. Listeners

were required to mark one of the three choices for each sentence pair: prefer the first one, prefer

the second one, and no preference.

Pairwise scoring was employed: a score of +1 was awarded to the preferred method and

+0 to the other, and for the no preference response each method was awarded a score of +0.5.

Fourteen subjects with normal hearing, were participated in the experiment. The listening test

was conducted in a sound-proof room. The fourteen participants were familiarized with the

task during a short practice session before the formal test. Each listener evaluated three groups

of sentence pairs. The normalized mean preference score from the subjective evaluation ex-

periment is shown in Table 2. Figures A.10, A.11, and A.12 show the comparison among the

methods in white, pink, and babble noise conditions, respectively. From these comparison, we

found that the proposed methods have the preference over conventional methods. It is also

easily understandable that, the proposed blind method has very similar performance with the

proposed non-blind method for all noise types.
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Table A.3: Comparison of restored speech with amplitude only restoration and phase only

restoration (averaged values).

Methods

Noisy Speech
Restored

Speech

(Blind)

Amplitude only

Restoration (Blind)

Phase only

Restoration (Blind)

SNR PESQ SNR loss PESQ SNR loss PESQ SNR loss PESQ SNR loss

20 dB 2.99 0.57 3.50 0.54 3.46 0.55 3.08 0.61

10 dB 2.31 0.74 3.06 0.62 2.97 0.66 2.44 0.73

0 dB 1.65 0.87 2.47 0.71 2.39 0.77 1.83 0.85

−10 dB 1.15 0.95 1.62 0.82 1.47 0.88 1.30 0.94
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Figure A.1: Improvements in restoration accuracy of the non-blind Kalman filter method: (a)

improved Corr.
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Figure A.2: Improvements in restoration accuracy of the non-blind Kalman filter method: (b)

improved SERs. SNR = 20 dB to −10 dB.
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Figure A.3: Improvements in restoration accuracy of the blind Kalman filter method: (a) im-

proved Corrs.
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Figure A.4: Improvements in restoration accuracy of the blind Kalman filter method: (b) im-

proved SERs. SNR = 20 dB to −10 dB.
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Figure A.6: Improvements in restoration accuracy of the Wiener filter method: (a) improved

Corrs.
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Figure A.7: Improvements in restoration accuracy of the Wiener filter method: (b) improved

SERs. SNR= 20 dB to −10 dB.
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Figure A.8: Improvements in restoration accuracy of the blind Kalman filter method in pink

noise condition: (a) improved Corr. and (b) improved SER. SNR= −2.07 dB.
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Figure A.9: Improvements in restoration accuracy of the blind Kalman filter method in babble

noise condition: (a) improved Corr. and (b) improved SER. SNR= −5.60 dB.
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Figure A.10: Subjective evaluation in white noise condition
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Figure A.11: Subjective evaluation in pink noise condition
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Figure A.12: Subjective evaluation in babble noise condition
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Figure A.13: Improvements in restoration accuracy of amplitude only using the blind Kalman

filter method: (a) improved Corr.
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Figure A.14: Improvements in restoration accuracy of amplitude only using the blind Kalman

filter method: (b) improved SERs. SNR= 20 dB to −10 dB.
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