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Abstract

This research describes a robot architecture based on the epigenetic approach that is able

to model robot behaviors using the robot past experience and contextual information.

When two humans interact, an interaction gap may arise between them when they re-

fer to the same object, concept or event in the real-world, but they associate it with a

different meaning. However, as long as the interaction progresses, the gap can be re-

duced by continuous interaction and adaptation to form a sort of mutual understanding.

In human-robot interaction processes, the interaction gap can be present and it is diffi-

cult to reduce, given the limited capabilities of current robot architectures in knowledge

acquisition, revision, and adaptation. We posit that it is possible to enforce mutual under-

standing between a human and a robot providing the latter with the possibility of building

a personalized experience as far as the interaction with the former is concerned, and we

propose a conceptual design and implementation of Epigenetic Robot Intelligent System

(ERIS), a robot architecture that is capable of acquiring and revising relevant knowledge

during the interaction process. Experiments are aimed at demonstrating how different

robots when exposed to different stimuli and interaction processes, are capable of con-

ceptualizing different past experiences and memories, and ultimately engaging humans in

contextualized interaction.

Keywords: Epigenetic architecture, developmental learning, memory-inspired architec-

ture, long-term knowledge acquisition, context-based memory retrieval
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Chapter 1

Introduction

Knowledge is in the end based on

acknowledgement.

Ludwig Wittgenstein

When two humans who do not know each other interact, either verbally or through

gestures, it may be observed that misunderstandings originate because of their different

opinions, personality, wishes, past experience, and ultimately culture. Even if they are

referring apparently to the same object, concept or event, they may associate it with dif-

ferent properties (e.g., because of differences in perception), meaning (e.g., for the two

have a different past experience) or implications (e.g, because the context in which they

frame it differs). However, this is what makes interaction between humans so compelling

and engaging. In such cases, we say that an interaction gap exists between the two

humans, which can be mitigated through continuous learning, understanding and adap-

tation on both sides during the interaction process. This result is referred to as a shared

understanding, i.e., the fact that although different, a mutual understanding of objects,

concepts or events can reach at least a qualitative consensus (Glenberg, 1997; Gibbs Jr,

2005).

In a Cognitive Science perspective, this phenomenon may be linked to the Symbol
Grounding problem raised by Harnad (1990), also in its version rephrased in the Devel-

opmental Robotics framework by Stoytchev (2009) as the Principle of Subjectivity. The

same symbol in two similar developmental architectures of a robot or any other com-

putational devices may be associated with different objects, concepts or events in the

real-world. In such a case, the interaction gap is still present, and it appears whenever

the two entities must exchange information and react accordingly.
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1.1. THESIS PROBLEM CHAPTER 1. INTRODUCTION

In human-robot interaction (HRI) processes, the presence of interaction gaps is partic-

ularly deleterious, because it leads to stereotyped and unnatural patterns of interactions

perceived by the human side. Eventually, this causes distress and a lack of interest in the

interaction itself, which leads to an impossibility of accepting the robot one is interacting

with: people tend to lose interest in the interaction after some time or after interacting

with the same robot multiple times. This evidence is reported by a number of surveys

related to long-term human-robot interaction in a variety of domains, such as health care,

robot-assisted therapy, and education, as well as in different environments, such as work

and home settings, and public spaces (Salter, Dautenhahn, & Bockhorst, 2004; Gockley

et al., 2005; Leite, Martinho, Pereira, & Paiva, 2008; Fernaeus, Hrakansson, Jacobsson, &

Ljungblad, 2010; Leite, Martinho, & Paiva, 2013).

However, there is a fundamental difference between human-human and human-robot

interaction dynamics. Between humans, the interaction gap can be usually reduced as

long as the interaction progresses through a continuous learning and adaptation process:

the two have to get acquainted and to trust each other. A similar process involving humans

and robots has not been considered in detail yet.

1.1 Thesis Problem

In order to foster the debate around such issues, the work presented in this dissertation

aims at designing a robot architecture based on the epigenetic paradigm, which considers

the specific robot experience and the context framing the interaction with a human as

prerequisites for human-robot interaction processes. To this aim, we argue that a robot

should exhibit a kind of individuality originated from artificial personality, i.e., a purposive

interaction with humans based on both a robot-specific experience and a given context.

In the past few years, various research efforts have been put forward to understand the

role of robot behaviors and artificial emotions to form a sort of robot personality, as per-

ceived by humans during the interaction process (Miwa, Umetsu, Takanishi, & Takanobu,

2001; Lee, Peng, Jin, & Yan, 2006; Chastagnol, Clavel, Courgeon, & Devillers, 2014; Tiel-

man, Neerincx, Meyer, & Looije, 2014). Surprisingly enough, this issue has not been con-

sidered from a developmental perspective. With the aim of allowing both the bootstrap of

a robot-specific experience and the use of contextual information when interacting with

humans, the need arises for an open robot architecture based on the epigenetic paradigm

that supports these two requirements.

On these premises, we identify the thesis problem from the challenging issues of the

2



1.2. THESIS STATEMENT CHAPTER 1. INTRODUCTION

research work as follows:

Thesis Problem:

Interaction gap present during human-robot interaction is difficult to mitigate,

in particular, when the robot’s AI framework is not designed according to devel-

opmental paradigm.

1.2 Thesis Statement

To solve the thesis problem, we state our thesis statement as follows:

Thesis Statement:

We posit that it is possible to reduce the interaction gap by enforcing mutual

understanding between a human and a robot, in particular, providing the latter

with the possibility of building a personalized experience as far as the interaction

with the former is concerned.

1.3 Thesis Approach

Based on the thesis statement, we propose a robot architecture called ERIS (Epigenetic

Robot Intelligent System), which is characterized by the following features:

• Autonomous bootstrap and continuous adaptation of knowledge from the in-

teraction with humans and the environment, i.e., a robot-specific experience or

memory. In principle, we expect that two identical robots exposed to different per-

ceptions may end up in having different experiences. At the same time, if the two

robots were exposed to the same stimuli, but as part of a different human-robot in-

teraction process, their experiences should differ as well. This idea is closely related

to the Principle of Subjectivity, as advocated by Stoytchev (2009).

• Ability to conceptualize, consolidate and describe the previously acquired robot-

specific experience using contextual information provided by a human. If inquired

about their experience, robots should provide a response of their own on the basis

of past interactions with humans and the environment, as well as of the appropri-

ate context framing each human request. Such a process is expected to adjust over

time, thereby causing a continuous progression and adaptation of the robot-specific

3



1.3. THESIS APPROACH CHAPTER 1. INTRODUCTION

experience. As a matter of fact, this ability is aimed at enforcing the interaction (in

terms of engagement) at the cognitive level in human-robot interaction processes.

On the one hand, these requirements assume the availability of models for creating

robot-specific experiences, provocatively referred to as a robot memory. On the other

hand, it is necessary to ground such memory models in an architecture integrating percep-

tion, representation and action. Currently, no integrated and context-based robot frame-

work is available, which is aimed at a long-term human-robot interaction using a precise

characterization of memory components and their roles, i.e., taking into account their

interconnections. Furthermore, in spite of recent research activities on memory-inspired

architectures (Nuxoll & Laird, 2004; Morse, de Greeff, Belpeame, & Cangelosi, 2010; Bel-

las, Faina, Varela, & Duro, 2010), which are based on individual memory components,

no holistic approach has been devised to provide robot architectures with the necessary

flexibility to efficiently deal with contextual information.

In order to validate ERIS, we have performed a number of human-robot and robot-

environment interaction experiments involving the use of two identical robots that are

exposed to different visual stimuli and interact with humans through simple sentences

(in principle, also by means of simplified grammars), while consolidating specific events

in their memory. Various objects are presented to the two robots on a table in front of

them. The configuration of the objects is changed as time passes. In the meantime, a

human interacts with the robots in order to revise their knowledge and to inquire them

about their past experiences. The idea of an underlying revision process done by humans

is aimed at mimicking a continuous cognitive interaction and knowledge assessment that

usually occurs when two humans interact. In this case, the human counterpart just assigns

labels to specific fragments of robot memory, be them sensory knowledge or predicative

symbols. Then, the two robots are able to assess the familiarity of the detected objects on

the basis of their individual past experience and the associated human-provided labels,

both as part of perception (e.g., when detecting a previously seen object) and conceptual-

ization (e.g., during the recollection of robot-specific experiences). Examples of possible

inquiries that may be posed by humans include: Have you been presented with a purple
box before a green ball? Did you move the blue box to the right hand side? or How many
objects do you recall that are related to a box?

4



1.4. THESIS OUTLINE CHAPTER 1. INTRODUCTION

1.4 Thesis Outline

We begin this dissertation by providing a strong motivation of the research work and its

impact to the research field, and then reviewing some of the efforts done to address the

problem in developmental (epigenetic) robotics field from various perspective in Chapter

2. Then we discuss the fundamentals of human memory organization in Chapter 3, which

is the main insight of the research work.

In Chapter 4, we introduce ERIS (Epigenetic Robot Intelligent System), that allows

robot to progressively self-develop its knowledge through interaction. Extensive formal-

ism of ERIS is provided, which interconnection between components and memory items

are explicitly expressed and evident. Its implementation as a ROS stack is also elabo-

rated, which emphasize the flexibility of integration with ROS-compliant general purpose

robots. After explaining the formalism and implementation, we discuss the familiarity

mechanism used (tagging process), including motivations, influence to robot personal ex-

perience, as well as the flow of sequence in Chapter 5. Four major memory processing

phases are also discussed, to provide readers a better comprehension from the perspective

of developmental psychology.

As the validation of our proposed work, we explore two different experiments. The

first one, elaborated in Chapter 6, has an emphasis on one of the major features of ERIS,

to allow robots to manifest personal experience and gather knowledge in a progressive

fashion. Two phases of interaction are covered in the experiment, robot-environment and

human-robot interaction. For the robot-environment interaction phase, the robot interacts

with objects in a workspace, in particular, by displacing one object at a time to a different

position within the workspace (hence resulting in a different workspace configuration),

and observes the visual changes occurred in the workspace. This phase is then followed

by the human-robot interaction phase, where a human may pose some questions, in the

form of query-based simplified natural language, regarding the past events experienced

by the robot.

The second experiment highlights one of the most significant principles of epigenetic

robotics, The Principle of Subjectivity, addressed by Stoytchev (2009). The principle states

that human interaction history and received stimuli affect the robot personal development

and past experiences gained. Using ERIS, we validated that the Principle of Subjectivity

through illustrative scenario with the corresponding procedures in Chapter 7. We finish

in Chapter 8 with a summary of the dissertation along with contributions to the robotics

community in general, especially to the field of epigenetic robotics. In addition, we pro-

5



1.4. THESIS OUTLINE CHAPTER 1. INTRODUCTION

vide some insights for the future research direction of the work.
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Chapter 2

Literature Review

Our problem, from the point of view of

psychology and from the point of view

of genetic epistemology, is to explain

how the transition is made from a

lower level of knowledge to a level

that is judged to be higher.

Jean Piaget

In order to reduce the interaction gap between humans and robots, we argue that

it is necessary to provide robots with the capability of developing a sort of personalized
experience of the interaction process, on the basis of a context defined by the interacting

human. The proposed approach is loosely inspired by theories related to the organization

of human memory, since memory is a fundamental aspect in human development and

learning, and therefore a key factor in long-term interactions with other humans and the

environment. In the following paragraphs, we discuss relevant cognitive architectures,

as well as epigenetic architectures that exhibit autonomous development capabilities. Fi-

nally, we comment upon general concepts useful for a comprehensive cognitive theory of

human-robot interaction processes.

2.1 Relevant Cognitive Architectures

Cognitive architectures are aimed at modeling a number of aspects of the human mind

related to how information is stored and processed. The emphasis is on the interconnec-

tions among the components of the architecture, which are aimed at resembling specific
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functions of brain activity. The resulting models are typically static, meaning that they are

neither learned nor adapted over time in a general fashion.

In a sense, the majority of the existing robot cognitive architectures are characterized

by contradicting aims. On the one hand, their target is to mimic very general-purpose

knowledge representation structures and processes associated with human cognition. On

the other hand, in order to be effective, it is necessary to develop specific models and the

definition of all the related assumptions. Models are then applied to specific (yet complex)

problem domains, such as the Tower of Hanoi puzzle (Altmann & Trafton, 2002), relevant

traits of human behavior during flying experiences (Byrne & Kirlik, 2005), as well as in

tutoring (Lewis, Milson, & Anderson, 1987). It is noteworthy that these activities require

a very modest interaction with other humans and the environment. If we consider Brooks’

arguments in Elephants don’t play chess (Brooks, 1990), we argue that the interaction with

humans and the environment is fundamental for a wide range of robot cognitive activities,

which fact is overlooked by available robot cognitive architectures.

Despite these similarities, the architectures described in the literature differ above

all in their overall conceptual design. A few of them include SOAR (Laird, Newell, &

Rosenbloom, 1987), Dual (Kokinov, 1994), ACT-R (Anderson, Matessa, & Lebiere, 1997)

(and the predecessor ACT* (Anderson, 1983)), CLARION (Sun, 2006), OpenCog (Hart &

Goertzel, 2008), and CHREST (Gobet & Lane, 2010), just to name a few. In this Section,

we focus on those architectures that are most relevant to our work.

One of the most popular general-purpose cognitive architectures (not specifically aimed

at robotics) is ACT-R, which has been proposed by Anderson (1993) after a number of

previous releases, including ACT* (Anderson, 1983). The architecture of ACT-R is heavily

based on features typically associated with human memory, such as priming and attentive

processes. However, it has been used for more general cognitive tasks, such as natural lan-
guage processing (Budiu & Anderson, 2004), and reasoning (Anderson, Reder, & Lebiere,

1996; Altmann & Trafton, 2002).

ACT-R advocates the difference between declarative memory (i.e., knowledge about

facts) and procedural memory (i.e., a rule-based production system used to derive new

knowledge from already available facts). Recent developments include the integration of

connectionist elements within the main ACT-R architecture (Lebiere & Anderson, 2008).

The main limitation of ACT-R with respect to human-robot interaction processes is that

the acquired knowledge cannot be easily adapted nor personalized, thereby being not

useful at all in reducing the arising interaction gap. However, a notable theoretical result

of ACT-R is the emphasis on Rational Analysis, namely the insight that human cognitive
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functions reflect a number of properties of the environment, i.e., the context. This is a

key feature of our system as well.

OpenCog is a general-purpose framework aimed at implementing the notion of Arti-

ficial General Intelligence (AGI), i.e., to simulate relevant traits of human cognition and

reasoning (Hart & Goertzel, 2008). OpenCog is still under development, but recently

efforts have been made to integrate it with the robots by Hanson Robotics. However, dif-

ferently from ACT-R, the architecture is organized in functional components, specifically

dealing with (probabilistic) knowledge representation structures, attention, learning, nat-

ural language processing and emotional states.

In contrast with the approach taken in OpenCog, our architectural design is inspired

by psychological studies of human memory. Furthermore, although OpenCog includes

specific modules that may be used for human-robot interaction purposes, it does not con-

sider knowledge acquisition, revision and adaptation, which is a core part of our approach

and of the utmost importance to reduce the interaction gap between humans and robots.

2.2 On the Epigenetic Approach to Robot Architectures

The epigenetic (or developmental) approach to robot architectures foresees robots able to

adapt their knowledge and to learn new facts, also interacting with humans and the envi-

ronment. In the following paragraphs, we refer to general design concepts in epigenetic

architectures that are relevant for our approach.

The notion of Self-Aware Self-Effecting (SASE) agent has been proposed by Weng (2004)

to grasp what we have called interaction gap. In particular, Weng postulates the need for

two different internal representation structures, namely the world concept and the mind
concept structures. The former refers to objective knowledge, i.e., factual knowledge that

is actually true in the real-world, whereas the latter is related to subjective knowledge,

i.e., partial knowledge about facts and events that is accessible by the robot. Since, in

order to ground symbols to actual perceptions, it is necessary to establish a mapping be-

tween the discrete, symbolic level and the continuous, numerical one, depending on their

perception capabilities different robots may establish different mappings. Eventually, this

fact may lead to different numerical and sub-symbolic representation structures for the

same symbol. In a sensing perspective, the presence of different mappings is considered

negative and it usually requires ad hoc calibration processes in order to uniform sensor

responses (Denei, Mastrogiovanni, & Cannata, 2015; Youssefi, Denei, Mastrogiovanni, &

Cannata, 2015) whereas, in a Cognitive Science perspective, the presence of different
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mappings corresponds to having different meanings for the same concept.

This argument is related to the so-called Symbol Grounding problem introduced by

Harnad (1990), and later discussed by Stoytchev (2009) from an epigenetic perspective.

While the basic version of the Symbol Grounding problem refers to the correspondence

between symbols and represented entities in the real-world, in the case we consider,

symbols originate as a consequence of the interaction process between robots and humans

or the environment. As such, in our case the symbol grounding is performed by a human-

assisted revision process occurring during the interaction with the robot. The result of the

revision process is a semantic representation of the past robot experience.

Blank, Kumar, Meeden, & Marshall (2005) posit that self-exploratory behaviors be

the central paradigm to allow robots to expand their repertoire of skills, without hu-

man supervision. Although the study of such emergent robot competencies is at the core

of studies about intelligence, such approach may not be the most suitable solution for

human-robot interaction processes, where a context associated with the interaction is

usually available and defines at least part of the unexpressed semantics of the interaction

itself.

Prince, Helder, & Hollich (2005) went further in this direction and introduce the no-

tion of Ongoing Emergence, which introduces six fundamental requirements that must be

exhibited by robots to be labeled as epigenetic. The six criteria are continuous skill ac-
quisition using already available skills, features of the environment and the robot internal

state; integration of novel and existing skills, in order to form a repertoire; autonomous
development and adaptation of skills on the basis of current knowledge and goals; boot-
strapping of basic skills; stability of skills over long periods of time; reproducibility of skills
among robots undergoing a similar experience.

With respect to the criteria posited by Prince and colleagues, the one related to repro-

ducibility plays a central role also in our architecture. As a matter of fact, we argue that

the human-robot interaction process (also by means of the revision procedure) defines

the specific robot experience that is exhibited in later stages.

Stoytchev (2009) identifies five principles that underlie any robot architecture based

on the developmental paradigm. Among them, of particular interest for the architecture

we propose is the Principle of Subjectivity, which originates from the Verification Principle.

Since, according to the developmental approach, a robot is expected to bootstrap and

verify its own knowledge, in doing so it can only verify it subjectively, which leads to

a subjective, personalized, robot experience. It is noteworthy that this process imposes

limitations on the amount of information that can be acquired by a robot. As argued by
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Stoytchev, since a robot has to experience any relevant knowledge, time limits the amount

of knowledge it can learn, unless it relies on experiences provided by others.
If we ground the learning process in a human-robot interaction framework, we achieve

two important points raised by Stoytchev. In fact, the human-assisted revision process

taking place during the interaction serves two purposes: on the one hand, as we discussed

previously, it is expected to reduce the interaction gap because the robot experience would

depend on human conceptualization; on the other hand, it allows us to reproduce an

experiential teaching process that speeds up robot learning.

2.3 Missing Elements in Existing Epigenetic Architectures

As we discussed in the previous Section, the main principles of the epigenetic approach

to robot architectures are open-ended learning, continuous knowledge acquisition, em-

bodiment, and self-motivation. A few approaches in the Literature address one or more

of these points. Although the systematic study of human memory traces back to 1960s

(refer to the book by Squire & Kandel, 2000; Baddeley, Eysenck, & Anderson, 2014, for

an extensive historical account and the references therein), only in the past few years

a number of approaches have been presented, which aim at modeling different aspects

of human cognition and reasoning, as well as at developing computational paradigms to

encode them in robot cognitive architectures. In the following paragraphs, we limit our

attention to literature explicitly taking memory components modeling into account, pos-

sibly grounded in a robot implementation. In the past few years, two approaches have

been presented, which attempt at modeling architectural aspects of memory as a whole,

namely the work by Morse, de Greeff, et al. (2010) and Bellas et al. (2010). Both the

approaches put a great emphasis on memory components and their interconnections.

Bellas et al. (2010) consider a learning by evolution perspective using a Multi-level
Darwinist Brain (MDB) proposed by Bellas & Duro (2004) to develop an evolutionary

behavior-based robot architecture. The framework is based on an Artificial Neural Net-

work (ANN) neuro-evolutionary approach. MDB aims at providing systems with life-long

learning capabilities by adopting an evolutionary approach. The architecture potential is

showcased using an AIBO robot, which learns a basic skill for catching a ball. Once the

skill is learned the first time, the ball can be placed anywhere in robot sight. The frame-

work allows for concurrent behavior execution and ANN-based continuous knowledge

evolution. Unfortunately, the learning process can only be based on parameters specified

in advance, such as the distance and the angle between the robot and the ball, as well as

11
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the ball’s angular speed. Furthermore, a clear description of the advantages of applying

evolutionary approaches to a robot cognitive architecture is not adequately motivated,

and the proposed framework lacks much detail about the actual organization of the com-

ponents, as well as their mutual relationships. At its core, MDB employs a multi-layer

perceptron network, which limits self-developed knowledge acquisition. In fact, its con-

figuration is adjusted in advanced and requires a manual tuning process to obtain optimal

results. For this reason, we argue that MDB is not suitable for human-robot interaction

processes, which require an autonomous adaptation of robot’s knowledge.

The ERA architecture by Morse, de Greeff, et al. (2010) is a behavior-based robot ar-

chitecture employing Kohonen’s Self-Organizing Maps (Kohonen, 1998). ERA has been

designed to exhibit a wide range of robot behaviors based on psychological traits. To as-

sess the congruence between robot behaviors and such traits, so-called modi experiments

are carried out using an iCub robot as the experimental platform (Parmiggiani et al.,

2012; Smith & Samuelson, 2009). The modi experiment (also known as the binding ex-

periment) is a procedure used in child language studies, where it demonstrates the role of

embodiment in children early linguistic learning stages (Cangelosi & Schlesinger, 2014),

and in particular their ability to correlate objects with words. In short, the procedure is

as follows: first a child is presented with two objects in two distinct visual spots (e.g.,

on the left and the right hand side); after a short time, objects are removed from sight;

having both visual spots free from cues, the child is introduced to the word “modi” at one

of the two spots; after both objects are presented in a different location within the two

available spots, the child is asked to find the modi; the majority of the children correctly

select the correct object. In case of robots, the procedure is applied in a similar way, and

the correlation is managed by a SOM structure.

Although thoroughly discussed from the Neuroscience perspective and the experimen-

tal procedure is later discussed by Morse, Belpaeme, Cangelosi, & Smith (2010), all the

corresponding implementation details are left unclear. According to the authors, ERA

is consistent with constructivist sensorimotor theories, and it also encompasses the Echo
State Network framework (Yildiz, Jaeger, & Kiebel, 2012). The main drawback of ERA is

the inability to capture temporal relationships and complex interaction patterns, which

is significant in an epigenetic approach. This is due to the fact that both Self-Organizing

Maps and Echo State Network configurations are defined in advance, which limits the

development of new knowledge.
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2.4 The Role of Context in Reducing the Interaction Gap

The role of contextual information in human and animal behavior is fundamental at var-

ious levels (Mehl & Conner, 2012). In humans, experimental evidence suggests that

context-aware processes are represented mostly in the hippocampus (Smith & Mizumori,

2006). Given any situations, such processes allow for the execution of the most appro-

priate behavioral response or the retrieval of the most relevant memory item. Eventually,

contextual information influences the way we create mental models of what we perceive

and remember (Godden & Baddeley, 1975; Smith & Kosslyn, 2009).

To design robots able to proactively and sensibly understand their environment and

to engage humans in long-term interaction processes, a similar concept has to be de-

fined and integrated into its architecture. The proposed architecture assumes the onset

of contextual information during the interaction process, and exploits such information

to influence the retrieval of personalized robot experiences. When a human-robot inter-

action process occurs, we say that the process itself enables an interaction context, which

defines implicit (social) rules and dynamics (Allen & Bekoff, 1999).

Since contextual information assumes the availability of mental models reflecting rel-

evant traits of the interaction, and knowledge representation structures akin to memory,

we emphasize in this Section relevant approaches aiming at computational models of

human memory.

An analysis of the Literature shows that the focus is mainly on single memory com-

ponents, such as the Working Memory (WM) (Phillips & Noelle, 2005), the Semantic

Memory (SM) (Dodd, 2005; Dayoub, Duckett, Cielniak, et al., 2010), the Episodic Mem-

ory (EM) (Nuxoll & Laird, 2004; Dodd & Gutierrez, 2005; Kuppuswamy, Cho, & Kim,

2006; Jockel, Westhoff, & Zhang, 2007; Jockel, Weser, Westhoff, & Zhang, 2008; Nuxoll,

2007; Kasap & Magnenat-Thalmann, 2010; Stachowicz & Kruijff, 2012; Nuxoll & Laird,

2012; Tecuci & Porter, 2007) and the Procedural Memory (PM) (Salgado, Bellas, Caa-

mano, Santos-Diez, & Duro, 2012).

Stachowicz & Kruijff (2012) provide a detailed explanation of both design require-

ments and formal concepts needed to characterize the episodic memory and its storage

structure. However, the focus of their work is on the notion of event and its properties.

Despite their claim of having designed a structure resembling the episodic memory, they

do not take into account the notion of context, which is considered of the utmost impor-

tance discussed by Smith & Kosslyn (2009); Godden & Baddeley (1975) to frame memory

consolidation.
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When an attempt is made to design a more comprehensive memory-based robot ar-

chitecture (Nuxoll & Laird, 2004; Morse, de Greeff, et al., 2010; Bellas et al., 2010), the

goal is restricted to finding a solution to a very specific problem, rather than providing

the robot with the capability to develop its own knowledge. Furthermore, neither the

relationship between the different components is explicitly addressed, nor the mutual in-

fluence between components is usually considered. In any case, no clear use of the notion

of context is provided.

2.5 Conceptual and Lexical Processes

As discussed by Martin, evidence suggests that the representation of real-world objects

in the human brain is distributed Martin (2007). On the one hand, object properties

(mostly related to their shape, e.g., exploiting visual and tactile information) are main-

tained within sensory and motor areas, as a result of the interaction with those objects. On

the other hand, a categorical organization seems to be present as well, then encompassing

more conceptual and even lexical layers. The conceptual representation corresponds to

exemplar forms or basic categories, whereas the lexical representation refers to labels or

references to the represented object.

To corroborate this insight, studies by Schacter and colleagues (Koutstaal et al., 2001;

Simons, Koutstaal, Prince, Wagner, & Schacter, 2003) show that the repetition suppres-

sion phenomenon holds for both previously seen objects and, to a lesser extent, also

for objects belonging to the same category but characterized by a different visual shape

with respect to previously presented objects. In order to allow for a simple categoriza-

tion mechanism, the outcome of the revision process is to provide robot knowledge with

semantic labels, with the aim of exploiting labels to associate different (yet related) infor-

mation.

2.6 Chapter Summary

This chapter draws a distinct borderline between the notion of epigenetic architectures

(also known as developmental architectures) and cognitive architectures. This is con-

sidered to be significant, as the two architectures serves different purposes: cognitive

architectures are aimed to simulate specific human cognition in a robotic system, while

epigenetic architectures are aimed to provide the system the capability to develop intel-

lectually in general. We also discussed profound conceptual and philosophical proposals
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from other researchers, and what is missing from the currently available epigenetic ar-

chitectures. In principle, from the developmental psychology perspective, we consider

the role of context to be significant in reducing the interaction gap, which is currently

missing in the available epigenetic architectures. The fundamental philosophy of human

development supported with these related findings motivates us further to enforce the

mutual understanding between a human and a robot through a developmental system.

As natural phenomena occurs during human development, the capability of progressive

knowledge acquisition, revision and adaptation, are considered to be the main contribu-

tion and features of the proposed system.
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Chapter 3

High-level Memory

Without memory, there is no culture.

Without memory, there would be no

civilization, no society, no future.

Elie Wiesel

In this chapter, we discuss the fundamentals of human memory organization, which

is analogous to the conceptual and formulation proposed here, specifically designed for

ERIS.

3.1 Overview

Study of human memory suggests that memory consists of three major components: Sen-

sory Memory, Working Memory (WM - previously called Short-Term Memory), and Long-

Term Memory (LTM). The interplay between these components determines whether stim-

uli received by five senses and either put them to be processed, stored for later used,

or even ignored eventually. As depicted in Figure 3.1, LTM is categorized into explicit

(declarative) memory and implicit (non-declarative) memory. Explicit memory stores

information that can be recalled in a conscious fashion. This includes facts about the

world and personal experiences (experienced past events relative to a particular time and

space). On the other hand, implicit memory stores procedural-like and sort of abstract

information that cannot be consciously recalled. There are quite a lot of variety informa-

tion that can be stored in implicit memory, including procedural-like motor skills (e.g.,

how to ride a bicycle), perceptual priming (e.g., people tend to guess the word “prime”

when a word-stem “ rime” is presented, if the word “prime” was displayed before the
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Figure 3.2: Human memory processing

word-stem), response between stimuli (e.g., skeletal muscle related stimuli), as well as

habituation (e.g., decreased response due to a repeated stimulus) and sensitization (e.g.,

increased response due to a repeated stimulus).

An example of habituation is factory workers that already accustomed to the sound of

machinery in the surroundings, and example of sensitization would be an annoyed person

due to his neighbor keeps knocking on his wall for no reason. Habituation tends to be a

stimulus-specific, and sensitization is rather a stimulus-general.

Figure 3.2 depicts the memory processing between sensory memory, WM, and LTM.

The stimuli from five senses perceived through sensory memory. Here, stimuli is pro-

cessed into raw information corresponding to each senses in less than a second. Then,

if a stimulus is attended, it will go to the WM to be processed consciously. Unattended

stimulus will result in information loss. In the WM, a component called Central Executive
is believed to be managing all the processing details, including consolidation of mem-

ories, recollection, as well as rehearsal. The process in the WM occurs in a short time

(less than a minute), a little bit longer than the sensory memory. Rehearsal process is a

means to maintain the information to be processed, since unrehearsed memory leads to

information loss. Rehearsal process can be either physically (e.g., verbally repeating the

desired information to be remembered) or mentally occurs (e.g., keep thinking the same

idea). A consolidated memory within LTM storage can be used for future use, until it is

forgotten.

3.2 Sensory Memory

This kind of memory deals with initial process of storing information that is perceived

through our five senses. It lasts for a very short period of time and being replaced con-
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Figure 3.3: The iconic memory partial report experiment.

stantly as our senses work continuously. This short period varies among the different

kinds of sensory memory. Due to the massive amount of information being processed, it

is virtually impossible to consciously recognize all of this information. As sensory mem-

ory channels a lot of details within a short amount of time to our brain, there exists five

different kinds of sensory memory corresponds to our five senses that are fed with these

details of information very rapidly. When information that go through sensory memory

are attended, they end up consciously processed by our brain in WM and consolidated

into LTM. This leads us to the fact that, sensory memory allows us to decide whether an

information is useful and make a quick reaction (e.g., physical reflexes) and judgement

without having to wait for the information to be processed in WM.

There are three kinds of sensory memory that are main topics in recent study of the

subject: Iconic Memory, Echoic Memory, and Haptic Memory; corresponds to visual, au-

ditory, and touch senses. This is because, although all five senses influences the sen-

sory memory, only visual, auditory, and haptic stimuli received more attention from re-

searchers. The sensory memory related to the stimuli obtained by smell (olfactic memory)

and taste (gustic memory) are rather enigmatic at the current research development of

the topic.

3.2.1 Iconic Memory

Iconic memory deals with visual sensory information. An early experiment conducted

by Sperling (1960) to see how many letters his subject could read during the brief flash

of a tachistoscope. Seven years later, the term iconic memory coined by Ulric Neisser in

his book (Neisser, 1967). During the early days, a tachistoscope was a device that dis-

plays an image for a specific amount of time. It was created to improve people’s reading

speed or enhance memory, and often used in psychological experiments related to visual

stimuli. Although seven experiments were conducted, here we highlight the major two
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experiments. For extensive details of the rest of the experiments, readers are encouraged

to refer to the publication (Sperling, 1960). In the first experiment (also called whole re-
port condition), the tachistoscope was used to display various grid arrangement of letters

(i.e., 1 × 3, 2 × 3, 3 × 3, 3 × 4, etc.), to his subjects for a 50ms of exposure. The result

suggests that on average, the test subjects could read three to four letters in the 3 × 4
letters arrangement. The second experiment was the extension of the first one. It is also

called partial report condition, because the subject needs only to report the requested row

from the given letters in the grid arrangement. This experiment is designed to make sure

the partial report is four letter or less, which lies within the subject immediate-memory

span. This was done in a similar fashion with the first experiment only for 3 × 3 and

4×4 grid arrangement of letters, with the addition of tone introduced after the letters are

displayed, depicted in Figure 3.3.

The variety of the tone depends on the number of rows in the letter grid arrangement,

i.e., high (2500hz), medium (650hz), and low tones (250hz) for both arrangement, in

particular, a more differentiated medium tones for the 4 × 4 arrangement). Overall, the

subjects are able to successfully report three to four letters of the requested row. Sperling

came to a conclusion that the subjects are able to capture a visual representation of the

whole grid of letters in a fraction of a second, which then later still accessible to be

recalled after the tune was heard. As the visual image fades in a fraction of a second, the

legibility of the content decreases, which eventually decrease the recollection accuracy as

well. Another experiment by Sperling (1963) is about process called masking, where the

perception and/or storage of the stimulus is influenced by external factors. The external

factors can be either occurred before the presentation (forward masking), or after the

presentation (backward masking). In the experiment, he found out that the higher the

brightness level during the interval seems to interfere with the memory trace.

3.2.2 Echoic Memory

Echoic memory, which also coined by Neisser (1967), corresponds to the auditory sensory

information. After Sperling’s model of iconic memory became popular, researchers started

to find out the auditory counterpart of sensory memory. A little bit different from iconic

memory where it scans stimuli in a continuous manner, echoic memory does not (Carlson,

Heth, Miller, Donahoe, & Martin, 2009). Auditory stimuli are received once before being

processed and consciously understood. As a matter of fact, once heard, auditory stimulus

resonates in our mind and replayed until it fades, which lasts up to 4 seconds, based on
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the finding from Darwin, Turvey, & Crowder (1972). Another result from a variation of the

experiment, conducted by Glucksberg & Jr. (1970), suggests that the mental resonance of

the stimulus lasts up to 20 seconds without interference. This makes echoic memory has

a slightly longer duration than iconic memory.

An experiment about remembering patterns of telephone number is conducted by

Murdock (1967). The result suggests that using visual presentation of the numbers sys-

tematically increase the likelihood of error in remembering the numbers from the begin-

ning to the end of the sequence; while when aurally presented, it is more likely to be

correct at the last one or two numbers compared to the rest of the sequence. A more re-

cent research by Alain, Woods, & Knight (1998) suggests that damage to the frontal lobe,

parietal lobe, or hippocampus, may have negative impact on echoic memory (shorter span

or slower reaction time).

3.2.3 Haptic Memory

Haptic memory correspond to the sensory information acquired by touch. In general,

haptic is classified as tactile and kinesthetic (Lederman & Klatzky, 2009). On the one

hand, tactile refers to the perception on the surface of the skin, such as touch, pressure,

texture, and vibrations. On the other hand, kinesthetic refers to the perception related to

muscle, tendons, and joints. For instance, while holding a coffee-mug in your hand, you

can estimate the physical properties of the mug (i.e., size and weight) and how the mug

is held relative to your body.

During the early days, the study by Bliss, Crane, Mansfield, & Townsend (1966),

provides insights about brief tactile stimuli applied to hand, which the procedures are

inspired from the iconic memory experiment by Sperling (1960) (whole and partial re-

port). They found out that the performance during the partial report was significantly

improved. The study was then later backed up with additional supporting evidence by

Gilson & Baddeley (1969). Gordon, Westling, Cole, & Johansson (1993) studied haptic

memory in relation to interaction with environment by the means of assessing and adjust-

ing gripping force. Another recent study by Shih, Dubrowski, & Carnahan (2009) suggests

that the duration of haptic memory is less than 2 seconds, which makes the duration and

decay similar to iconic memory.
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Figure 3.4: Baddeley’s updated Working Memory model

3.3 Working Memory

The term of Working Memory and Short-Term Memory seems often to be used interchange-

ably. However, it is advisable to know the difference between the two. The term Short-
Term Memory is neutrally used for a temporary storage involving retention of small in-

formation for a short period of time. On the other hand, Working Memory can be think

as a system of a mental workspace that actively maintain and also process information

temporarily, such as reasoning, learning and comprehension. Up to now, the WM model

by Baddeley (2000), which is an updated model based on a previous design by Baddeley

& Hitch (1974), is influential and widely used in all studies in neuropsychology about

human memory. Figure 3.4 depicts Baddeley’s updated WM model (Baddeley, 2000).

3.3.1 Memory Span and Chunking

One of the metrics to measure the performance of WM is the memory span. Fundamen-

tally, to determine the memory span, we should know two things:

1. remembering what the items are

2. remembering the order of the presentation.

The term item here is rather vaguely and subjectively interpreted, and this is closely re-

lated with a term called chunking. Chunking is the ability to cluster into something more

useful. The usefulness itself is something that is relative and different for one person to
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another. Tulving (1962) addressed this chunking process as subjective organization. For

example, try to remember this: UESFSLSUNE. It is rather difficult to remember the letters

and their order of presentation. Using the same set of letters, try again with this sequence

of letters: USEFULNESS. This time, it is very easy to remember them. This is because our

brain tries to cluster the letters into something more useful called a chunk (in this case, a

word-like groupings of letters).

In the first case, since the letters are presented in a rather jumbled order, nothing use-

ful can be extracted from the sequences of letters. Therefore, our brain tries to remember

the exact letters one by one, as well as the order of the presentation. Eventually, since

they cannot be clustered further into something more useful that retains the presenta-

tion order, ten chunks should be remembered, with a chunk representing a letter. In the

second case, the sequence of letters is able to be grouped into a word, since our brain

recognize the word “usefulness”. Therefore, instead of remembering ten items, our brain

remembers only one chunk representing the word “usefulness”, which is much easier. The

chunk itself already representing all the letters and the order of the presentation, because

it linked back to our general knowledge stored in the LTM about the word “usefulness”.

According to Miller (1956), the number of chunks that needs to be remembered influ-

enced the memory capacity, instead of the number of items. This also implies that LTM

can influence WM.

3.3.2 The Phonological Loop

According to Baddeley & Hitch (1974), the phonological loop consists of two subcompo-

nents:

1. short-term store

2. articulatory rehearsal processing module

The short-term store duration lasts for a few seconds, and stores only memory traces of

audio information. The purpose of articulatory rehearsal processing module is to refresh

these memory traces. Aside from the auditory stimuli, visual stimuli can be manually

transformed into phonological code through articulation, and therefore processed in the

phonological loop instead of visuospatial sketchpad. There is also one popular finding

about phonological loop, which is the psychological similarity effect, which is related to

chunking process. Conrad & Hull (1964) demonstrated that lists of words that sound sim-

ilar are more difficult to remember than words that sound different. This effect does not
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apply for similarity in meanings of the words. For instance, as from an experiment of Bad-

deley (1966b), recalling pit,day,cow,pen,top or big,wide,large,high,tall is easier compared to

mad,can,man,mat,cap.

Baddeley (1966a) explained that under this circumstances, the semantic meaning

plays an important role to determine the memory span. The second popular finding is

by Baddeley, Thomson, & Buchanan (1975) about articulatory suppression, which states

that something irrelevant that is repeatedly said (e.g., the word “the”) may block the ar-

ticulatory rehearsal process, which makes all the memory traces in the phonological loop

to decay.

3.3.3 Visuospatial Sketchpad

Visuospatial sketchpad is the WM component based on the model of Baddeley & Hitch

(1974), responsible for facilitating the processing of visual stimuli, including image ma-

nipulation, visualization, and visual recollection. Visual imagination in our mind is related

with the details of the memory (i.e., about what can we see) and spatial relationship (i.e.,

where they are located within the virtual environment). This component is influenced by

the way our eyes movement to “scan” the scene in an underlying discrete manner, instead

of a smooth, continuous flow, to recognize different parts of the scene. This means, al-

though we “seem” to continuously scan the scene, our brain divide the movements into

a series of brief eye movements. A study by Logie (1995), the visuospatial sketchpad is

composed of two subcomponents:

1. visual cache (stores form and color of detected objects)

2. inner scribe (spatial relationship and movement information of detected objects)

3.3.4 Central Executive

As the only active components of the WM, central executive responsible in supervising all

the process occurs within all other components. Norman & Shallice (1986) proposed that

central executive has two modes of control scheme:

1. based on habit (i.e., autonomous and semi-autonomous control)

2. supervisory attentional system.
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Driving car routinely everyday from your home to your office is a good example of a

semi-automatic control of central executive. In this situation, the knowledge of “driving a

car” is not something new, the procedures are already learned beforehand, and the expe-

rience faced during the process is less likely different than most of the time. These facts

help us by requires less conscious control. Assuming there is a sudden, novel situation

occurs during the driving process (e.g., a roadblock that force you to find an alternative

route), the situation will be handled by the supervisory attentional system. The supervi-

sory attentional system responsible for intervening the novel situation out of the habit,

and finding strategies to seek these alternative solutions.

3.3.5 Episodic Buffer

Episodic buffer is the new component as part of the Baddeley (2000) model, which pur-

pose is to explain the interconnection between the WM and LTM. As agreed by Baddeley

& Andrade (2000), information processed in the WM is not solely depends on individual

components, and they agreed that there should be a component that links all the mem-

ory components. The Baddeley & Hitch (1974) model is not able to explain that fact. A

motivation for the addition of the component is due to the evidence obtained from pa-

tients with amnesia based on the study of Baddeley & Wilson (2002), which the patients

were not able to to encode new memories to the LTM, but have a good memory recalling

capabilities from STM.

The episodic buffer is assumed to be a multidimensional components that able to hold

four chunks of information, episodes (or chunks) based on different dimension (either

visual, verbal, semantic originated from perception, WM, and LTM) (Baddeley et al.,

2014), and binds the information if necessary. Baddeley (2012) updated the model for

the second time. The changes is that episodic buffer have a direct access to the central

executive and the other two passive subcomponents, due to the evidence based on the

study of Luck & Vogel (1997); Vogel, Woodman, & Luck (2001); Daneman & Carpenter

(1980); Kintsch & Van Dijk (1977) suggesting that information in visuospatial sketchpad

and phonological loop are accessible through the episodic buffer directly.

3.4 Long-Term Memory

Human brains are integrated with a passive storage called the Long-Term Memory (LTM),

to store experienced past events that we can recall in the future. Long-Term Memory
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are not constant, and human often revise their memory as they gained experiences, i.e.,

merging with another memory or modifying the memory contents. For the majority of

the human population, the memories stored in the long-term memory do not last forever.

The exception applies to a substantially small portion of human population, who claimed

to have eidetic memory, or also known as photographic memory. A relatively new findings

by Hadziselimovic et al. (2014) suggest that

1. human brains store only information that considered to be important, and

2. less important memories are deliberately forgotten by our brain (in unconscious

manner) in order to remain efficient and reduce mental burden

The findings implies that human brains are actively filtering those unnecessary informa-

tion that we receive everyday, by forgetting them.

Long-term memory storage has different forms to store different kinds of memories. As

shown in Figure 3.1, long-term memory is distinguished as explicit and explicit memory.

On the one hand, explicit memory, also known as declarative memory, corresponds to all

the memory that can be retrieved consciously. Two major divisions of explicit memory are

Semantic Memory and Episodic Memory. Semantic memory stores mainly facts about the

world, and episodic memory stores specific events in a particular time. On the other hand,

implicit memory, also known as non-declarative memory, corresponds to all the memory

that does not necessarily require conscious thought. The example for this kind of memory

is the things that you learn by rote, e.g., related to muscle memory. Implicit memory con-

sists of several divisions, such as Procedural Memory, Perceptual Representation System,

Classical Conditioning, and non-associative learning.

3.4.1 Semantic Memory

Semantic memory provides us a specialized container to store memories about facts and

general knowledge of the world. For instance, we know that one minute is equal to 60

seconds, and a dog barks. Those memories are categorized to be independent with respect

to any particular event. A clear definition about semantic memory is provided by Binder &

Desai (2011), which states that “it is an individual’s store of knowledge about the world.

The content of semantic memory is abstracted from actual experience and is therefore said

to be conceptual, that is, generalized and without reference to any specific experience”. A

study by Wheeler, Stuss, & Tulving (1997) suggests that recollecting details of information

from the episodic memory is related to conscious recollection process. On the contrary,
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Figure 3.5: An example of hierarchical Semantic Memory model by Collins & Quillian
(1969)

the semantic memory recollection can be performed in an unconscious manner. This fact

is supported by additional evidence by Kan, Alexander, & Verfaellie (2009); Irish et al.

(2011), which suggests that during episodic memory recollection, amnesic patients have

more severe problems, and dementia patients have less severe problems; however, it is

the opposite for both patients during the semantic memory recollection. The result of an

experiment by Loftus & Suppes (1972) suggests that, for human, recalling words belong

to a certain category using the first letter as the cue is faster than the last letter (e.g.,

recalling a fruit with the first letter T is faster than recalling with the last letter t). For

computer, however, it is possible to create a filtering program that searches the desired

words with either cues equally fast. The category fruit was used as a filter to limit the

search domain, which speeds up the filtering process.

Collins & Quillian (1969) proposed a hierarchical model of semantic memory. The

model revolves around the notion of concept, where one represented as a node and has

one or multiple properties associated to it. The properties can be either general or specific.

Each concept also hierarchically structured through association with other nodes, which

example depicted in Figure 3.5. Canary is a concept node, and is yellow is one of the

associated properties. The higher the node level, the more general the concept node is;

and the lower the node level, the concept node becomes more specific. The statement

such as shark has skin was recalled slower than shark has fins due to the gap between

the hierarchy. Later, Collins & Loftus (1975) proposed a spreading activation model of

semantic memory, because the hierarchy organization was considered to be inflexible.

The spreading activation model was based on the notions of semantic relatedness and
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Figure 3.6: An example of spreading activation Semantic Memory model by Collins &
Loftus (1975)

semantic distance, which is indicated by the distance between nodes. Both notions are

measured by asking people to build the statistics. Shown in Figure 3.6, red is more related

to fire rather than sunrises.
The spreading activation model is more flexible and successfully explain various phe-

nomenon based on multiple findings. Despite the flexibility, the model yields less accurate

prediction. Furthermore, the model oversimplified the representation of a concept into a

single node with no associated individual properties, and with the assumption that a con-
cept represent a single and fixed representation of an idea. An experiment by Chaigneau,

Barsalou, & Zamani (2009) provides us some evidence along with insights about object

categorization in two conditions: isolated and given a situational information, or in other

words, contextual information. The result is contextual information improve the recollec-

tion accuracy.

3.4.2 Episodic Memory

When one starts to recall a specific event occurred in the past, the memories correspond to

it are called Episodic Memory. Tulving (2002) defines it as a way to mentally time travel to
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Table 3.1: The distinction between episodic-semantic memory according to Tulving
(1972)

Episodic Semantic

Type of information
represented

Specific events, objects,
people

General knowledge or facts
about the world

Type of organization
in memory

Chronological (by time) or
spatial (by place)

In schemas or in categories

Source of information Personal experience Abstraction from repeated
experience or generaliza-
tions learned from others

Focus Subjective reality: the self Objective reality: the world

re-experience past events. Episodic memory considered not only to ‘relive the past’, but as

a platform to mentally simulate previously non-existent events, or to travel forward and

plan events for future execution/occurrence. As semantic memory and episodic mem-

ory are considered a distinct memory storage, Tulving (1972) distinguish the difference

between them based on several categories, listed in Table 3.1.

Baddeley et al. (2014) states that the accumulated events in the episodic memory

might accumulate into the basic form of semantic memory. The proposal of Tulving (1972)

and findings from Conway, Cohen, & Stanhope (1992) suggest that information within the

episodic memory are recalled as episodes, and the recollection of episodes are somehow

interconnected with the semantic memory. Closely related with the semantic memory def-

inition previously by Binder & Desai (2011), they also provide one for episodic memory,

which states that “it is a memory for specific experiences, although the content of episodic

memory depends heavily on retrieval of conceptual knowledge. Remembering, for exam-

ple, that one had coffee and eggs for breakfast requires retrieval of concepts of coffee,

eggs and breakfast. Episodic memory might be more properly seen as a particular kind of

knowledge manipulation that creates spatial-temporal configurations of object and event

concepts.”

Bartlett (1932) presented his students with North American Indian Folk Tales and

asked them to recalled the story. He found that the recalled story was always shorter,

more coherent and rather told from the third person/individual perspective rather than

the original story. This indicates that instead of completely preserve the contents of the

story and remember them as they originally told, all the listeners were clearly trying to

find essential meaning of the story interpreted from their viewpoint. Categorized also as

explicit memory, there is interconnection between episodic memory and semantic mem-
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Table 3.2: Ten characteristics of episodic memory according to Conway (2005)

1 Retain summary records of sensory-perceptual-conceptual-affective process-
ing derived from working memory.

2 Retain patterns of activation/inhibition over long periods.
3 They are predominately represented in the form of (visual) images.
4 Represent short time slices, determined by changes in goal-processing.
5 Represented roughly in their order of occurrence.
6 They are only retained in a durable form if they become linked to conceptual

autobiographical knowledge. Otherwise they are rapidly forgotten.
7 Their main function is to provide a short-term record of progress in current

goal processing.
8 They are recollectively experienced when accessed.
9 When included as part of an autobiographical memory construction they pro-

vide specificity.
10 Neuroanatomically they may be represented in brain regions separate from

other (conceptual) autobiographical knowledge networks.

ory. This is best illustrated by an example as follows: imagine yesterday you ordered a

spaghetti and a cup of coffee at a restaurant. Now, the process of remembering that event

corresponds to the episodic memory recollection. In addition, remembering the episodic

memory automatically interconnected with the semantic memory of the detailed informa-

tion of that event. In this case, when you remember the event, you also remember about

the coffee and spaghetti that served during that event. This interconnection reminds you

the taste of coffee in general or the visual of a spaghetti typically served from your own

experience, which makes it possible for you to compare the taste and determine which

one is more delicious, and so on.

Conway (2005) defined ten characteristics of episodic memory, listed in Table 3.2. The

characteristic number 8, recollective experience, is also known as autonoetic consciousness,
which refers to the mental time travel discussed by Tulving (2002). It also means that the

memories is often experienced in the form of imagery or other sensory-perceptual details

as the original event during the recollection process. Episodic memory is somehow related

with Autobiographical memory, as we will discuss in the next subsection.

Another influential finding is called the dual-coding theory, which is closely related to

mental imagery. The theory states that human brain uses two representations to represent

information stored as memory: visual and verbal information. Those two information are

processed differently with our mind (Sternberg, 2003). For instance, the lexical stimulus

“dog” can be encoded and recalled visually as a dog image, or verbally as the word dog.
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Figure 3.7: Interactive and interdependent relationship between episodic-semantic mem-
ory

This process tends to be more difficult as the stimulus becomes more abstract, such as the

word life, knowledge, or honor.

3.4.3 Autobiographical Memory

As we have learned the distinction between the episodic memory and semantic memory

in Table 3.1 due to their different purposes, studies by Dritschel, Williams, Baddeley, &

Nimmo-Smith (1992) and Conway & Holmes (2005) suggest that both episodic memory

and semantic memory are in an interactive and interdependent relationship, instead of

a completely separate structures. Such relationship is clarified due to the fact that se-

mantic knowledge is derived from personal experiences by abstraction and generalization

process, and the recollection or interpretation of episodic memory is based on the gen-

eral semantic knowledge in the form of schemas or categories, depicted in Figure 3.7.

Researchers then came up with the term Autobiographical memories, which is a declar-

ative memory originates from the relationship between the episodic-semantic memory in

Figure 3.7 and self-related information.

Williams, Conway, & Cohen (2008) identified several dimensions of autobiographical

memory:

1. Autobiographical memories may sometimes consist of biographical facts, for exam-

ple, I may remember the fact I was born in Liverpool without having any actual

memory of having lived there. Tulving defined this type of factual information as

noetic memory, in contrast to autonoetic memory which is experiential. An example

of an autonoetic-autobiographical memory is that I can relive the past experience

with sensory imagery and emotions when I recall that I went to school in Wales.
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2. Brewer (1986) argues that consolidated memories are, to a certain degree, either

copies or reconstruction of the original event. This is due to some personal memo-

ries are vivid and remembered in a great detail, and some are not so accurate. Also,

instead of being raw experiences, they incorporate the interpretation of the subject

regarding the event. He also argues that it is plausible that noetic memories is more

likely to be reconstructed.

3. Autobiographical memories may be specific or generic, for example, I may remember

eating lunch at a particular restaurant on a particular occasion, or I may have a

generic memory of family dinners. Neisser (1986) noted that a personal memory

may be one that is a representative of a series of similar events, and he termed this

type of blended memory as repisodic.

4. Autobiographical memories may be represented from an observer perspective or

from a field perspective. A finding from Nigro & Neisser (1983) suggests that when

people examined their own memories some were remembered from the original

viewpoint of the subject (the field perspective), but a larger number of memories

seemed like viewing the event from the outside, as if recalling them from an external

observer viewpoint. As stated in the item 2 about the copy and reconstructed mem-

ories, Nigro and Neisser are convinced that memory from an external observer per-

spective must have to be reconstructed, and cannot be copies of the original event.

They also reported that recent memories were more likely to be copy-type mem-

ories re-experienced from the original viewpoint, but older memories were more

likely to be reconstructed ones seen from the observer’s perspective. Robinson &

Swanson (1993) replicated this finding and noted that field memories were more

vivid, as it is considered a copy from the original event instead of the reconstruc-

tion ones. They asked students to recall personal memories from different period

of their lives, to report on the perspective of each memory recollection. They also

found that changing perspective from a field to an observer perspective or to recall

it from other perspective is possible, but has diminishing effect, and it was harder

to switch perspective if the memory was old and not very vivid. These evidence are

consistent with the reconstructive theories as discussed in item 2.

Based on various evidence and studies, Williams et al. (2008) defined three functions

of autobiographical memory, which has a directive, social, and self functions.

• Directive
As addressed by Baddeley (1987), the directive function of autobiographical mem-
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ory involves using memories of past events to guide and shape current and future

behavior, as an aid to problem solving, and as a tool for predicting future behav-

ior. This is due to the fact that general knowledge abstracted from past experience

may not always be relevant, and to solve the problem it may be useful to search

back autobiographical memory to find a specific experience where similar problem

was encountered. Pillemer (1998, 2003) elaborates the significance of this directive

function and provides example of how autobiographical memory directed behavior

on a large scale through a discussion on how terrorist attack on the World Trade

Center on September 11, 2001 changed the behavior of Americans. Weeks after the

tragedy, Pillemer (2003) found out that Americans chose not to travel by air and

avoided public places for fear of their personal safety. He emphasized that although

facts of the tragedy may affects the behavior, the personal autobiographical memo-

ries of seeing the horrific images of the collapsed Twin Towers on television has a

direct impact on intensifying the reaction of the behavior.

• Social
Neisser (1988) consider this social function of autobiographical memory to be the
most fundamental function of memory. As a social being, people share memories as

a conversational material and exchange personal narratives to reduce interaction

gap, which makes autobiographical memories a perfect means to facilitate social

interaction. As of the studies by Fivush, Haden, & Reese (1996) and Bluck (2003)

suggest, they discuss the self-disclosure of autobiographical memories in two fol-

lowing conditions; (1) sharing autobiographical memories with someone who was

not present at the original event is considered to be a means of increasing intimacy

in multiple ways, including pooling experiences and exchanging sympathy, and a

way of “placing ourselves” in a given situation, culture, and context. (2) sharing

autobiographical memories with someone who was present at the original event is

considered to be a means of social bonding and to increase intimacy between the

two sides of individual. Other numerous researches in this area including the study

by Robinson & Swanson (1990) which suggests that social relationship may suffer

when episodic remembering of autobiographical memory is impaired; and the study

by Neisser (1988) and Nelson (2003) addressing the relationship between the social

function of autobiographical memory with the potential evolutionary adaptivity.

• Self
Conway (2005) considers that autobiographical memory has a significant role to
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the notion of “self” of an individual, which is: events that are remembered are

of personal significance and are the database from which the self is constructed.

It is also viewed as an essential element that build one’s personal identity. The

notion of Autobiographical knowledge is proposed by Conway (2005) to constrain

what the self is, has been, and can be in the future. There was also a study case

by Scogin, Welsh, Hanson, Stump, & Coates (2005) where patients experienced

memory loss through trauma or disease were not able to recall their own personal

history, which makes them lose their sense of self. Woods, Spector, Jones, Orrell,

& Davies (2005) treated patients with dementia using reminiscence therapy, which

found to be improve cognition, mood, and general behavior functioning.

3.4.4 Procedural Memory

Procedural memory is a passive storage as a part of the long-term memory, responsible for

storing instructional memory of how to do things, such as motor skills related memory.

Different from the explicit memory (episodic memory and semantic memory), the memo-

ries within the procedural memory are accessible without the need of conscious thought.

Some examples of procedural memories are: riding a bicycle, playing a piano, playing

hockey, building a machine, fixing a radio. Despite the differences from explicit memory,

procedural memory is interconnected to both episodic memory and semantic memory.

One of the characteristics of procedural memory is that it is more difficult to verbalized

for most people and verbal interpretation for each person is most likely different for most

of the time. For instance, describing a particular event happened in the past is easier than

describing how to play a piano, and the verbal explanation of building the same machine

is less likely to be the same for two different people.

In human brain, it is believed that procedural memories are formed through reinforc-

ing the same stimuli multiple times, which is something that we learn by rote, instead

of through an explicit, conscious memory consolidation. Early studies by Milner (1962)

reported from her experiment with severely amnesic patient H.M., that he was able to

learn hand-eye coordination from skills because he previously learned the skills, without

having any explicit memory. Since procedural memory can be recalled without conscious

thought, we can say that in some sense, procedural memory defines our behavior and

determines how we react to something. This also allows us to perform multitasking, for

instance, ironing a shirt and talking to someone on the phone at the same time.
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3.4.5 Perceptual Representation System

A common example of perceptual representation system is priming. It is a technique used

in psychology to train a person’s memory. Similar to procedural memory, priming occurs

below our conscious level of perception and still persist for a long period of time even

after single experience (Squire & Kandel, 2000). Priming can be used both in positive

and negative way. A positive priming can be performed by exposing images or words to

an individual. This is done to trigger the stimuli and the associated memories for the

future memory recollection. This is influenced by spreading activation model of semantic

memory.

A negative priming, on the contrary, slows down the memory process. This can be

done by exposing stimuli which are not related to the desired stimulus to be remembered

later in the future, and when the brain tries to remember, the stimuli interferes with the

memory recollection process. In other words, priming heavily influences the subject’s per-

ception by either improving recent encounter stimulus for future memory recollection or

impairing desired stimulus by exposing stimuli non-associated with the desired stimulus.

In human brain, perceptual priming occurs in the posterior cortex.

3.4.6 Classical Conditioning

A popular example of classical conditioning is muscle memory. Muscle memory is the

one responsible to the phrase “Practice makes Perfect” in our daily lives. It helps us

learning physical activities by repeating a particular section of that activity. According to

Bruusgaard, Liestøl, Ekmark, Kollstad, & Gundersen (2003), muscles cells are commonly

large, especially in the vertebrate body, possess multiple nuclei, and constitute one of

the few syncytia in the mammalian body. In other words, muscles cells are one of the

few multi-nuclei cells in our bodies. A study by Bruusgaard, Johansen, Egner, Rana, &

Gundersen (2010) shows that by overloading your muscles through strength training,

new nuclei are added to the muscles, before any major increase in size occurs during the

overload. In fact, according to an evidence by Gundersen (2011), muscles size regulation

is determined by the number of nuclei in the muscle tissues. The internal mechanism

of muscle memory itself does not distinguish whether what you learn is good or bad,

therefore it is beneficial for one to take some time when training the muscle memory, to

make sure that the procedure learned through repetition is the “good” one.
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3.4.7 Non-associative Learning

Habituation and sensitization are the forms of a learning related to Long-Term Memory,

which closely related to the response of a repeated stimulus. The most widely acknowl-

edge contributions came from the study by Groves & Thompson (1970) and Thompson &

Spencer (1966). As mentioned in Section 3, habituation is a decreased response due to a

repeated stimulus, and sensitization is an increased response due to a repeated stimulus.

An example of habituation is factory workers that already accustomed to the sound of

machinery in the surroundings, and example of sensitization would be an annoyed per-

son due to his neighbor keeps knocking on his wall for no reason. Habituation tends to

be a stimulus-specific, and sensitization is rather a stimulus-general. Since the study of

sensitization is rather lack of attention from researchers, we shall take a closer look into

the study of habituation.

According to Thompson & Spencer (1966), habituation is defined as a behavioral re-

sponse decrement that results from repeated stimulation and that does not involve sen-

sory adaptation/sensory fatigue or motor fatigue. They also described nine characteristics

of habituation. As of August 2007, a group of 15 researchers (Rankin et al., 2009) special-

ized in habituation in a wide variety of species, decided to refine the characteristics and

added one additional characteristics. The revised characteristics becomes the following.

Characteristic #1 Repeated application of a stimulus results in a progressive decrease

in some parameter of a response to an asymptotic level. This change may include de-

creases in frequency and/or magnitude of the response. In many cases, the decrement

is exponential, but it may also be linear; in addition, a response may show facilitation

prior to decrementing because of (or presumably derived from) a simultaneous process

of sensitization.

Characteristic #2 If the stimulus is withheld after response decrement, the response

recovers at least partially over the observation time (“spontaneous recovery”).

Characteristic #3 After multiple series of stimulus repetitions and spontaneous recov-

eries, the response decrement becomes successively more rapid and/or more pronounced

(this phenomenon can be called potentiation of habituation).

Characteristic #4 Other things being equal, more frequent stimulation results in more

rapid and/or more pronounced response decrement, and more rapid spontaneous recov-

ery (if the decrement has reached asymptotic levels)

Characteristic #5 Within a stimulus modality, the less intense the stimulus, the more

rapid and/or more pronounced the behavioral response decrement. Very intense stimuli

may yield no significant observable response decrement.
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Characteristic #6 The effects of repeated stimulation may continue to accumulate even

after the response has reached an asymptotic level (which may or may not be zero, or

no response). This effect of stimulation beyond asymptotic levels can alter subsequent

behavior, for example, by delaying the onset of spontaneous recovery.

Characteristic #7 Within the same stimulus modality, the response decrement shows

some stimulus specificity. To test for stimulus specificity/stimulus generalization, a sec-

ond, novel stimulus is presented and a comparison is made between the changes in the

responses to the habituated stimulus and the novel stimulus. In many paradigms (e.g.

developmental studies of language acquisition) this test has been improperly termed a

dishabituation test rather than a stimulus generalization test, its proper name.

Characteristic #8 Presentation of a different stimulus results in an increase of the

decremented response to the original stimulus. This phenomenon is termed “dishabitu-

ation.” It is important to note that the proper test for dishabituation is an increase in

response to the original stimulus and not an increase in response to the dishabituating

stimulus (see point #7 above). Indeed, the dishabituating stimulus by itself need not

even trigger the response on its own.

Characteristic #9 Upon repeated application of the dishabituating stimulus, the amount

of dishabituation produced decreases (this phenomenon can be called habituation of

dishabituation).

Characteristic #10 Some stimulus repetition protocols may result in properties of the

response decrement (e.g. more rapid rehabituation than baseline, smaller initial re-

sponses than baseline, smaller mean responses than baseline, less frequent responses

than baseline) that last hours, days or weeks. This persistence of aspects of habituation is

termed long-term habituation.

Readers are encouraged to check out the details, including evidence and reasoning be-

hind the revised characteristics in Rankin et al. (2009). Although the ten characteristics

clarifies further our concept of habituation, it seems that habituation, which is known to

be “the simplest form of learning” is not so simple anymore. What Rankin et al. (2009)

considered simple is the acquisition of habituation. There are complex mechanisms un-

derlying the simple concept of habituation, deals with the nervous systems that constantly

evaluating incoming stimuli and distinguish the stimuli which are important or not. This

remains a challenge to the related researchers to figure out the details regarding the

mechanisms.
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3.5 Recent Models of Personal Memory Organization

The consensus from a wide range of studies views that there are two principle of human

memory organization: temporal and thematic. Temporal organization deals with either

chronological order of the experienced events or based on lifetime periods of one individ-

ual, and thematic organization deals with event-specific themes, such as holidays, family,

or meetings. Robinson (1976) conducted an experiment about experience recollection in-

volving activity (e.g., throwing) or an object (e.g., car) associated with an emotion word

(e.g., happy). He evaluated the experiment through the memory recollection time, and

found out that recalling with emotion as one of the cues slows down the recollection time.

He then argues that people do not organized their memory based on emotions, because

many different life experiences share the same emotions. However, Schulkind & Woldorf

(2005) tried a different approach using musical cues to represent the underlying emotion,

instead of using emotional word as the cue. They suspected that emotion words will was

not best representing the emotional memories, as musical cues induce a particular mood

to the subject as an emotion. After the recollection, they asked the participants to date the

memories, rate the valence of emotions in the degree of positive to negative valence, and

also arousal. What they found out was valence rating is higher elicited by positive music

compared to the negative counterparts, and they concluded that emotion does have a role

in the personal memory organization, and a better memory model needs to be considered.

3.6 Chapter Summary

Figure 3.8 depicts a more detail interconnection between Sensory Memory, Baddeley’s

updated WM model, and LTM storage. The chapter is intended to serve as a brief coverage

of supporting evidence with respect to the core materials presented in the dissertation,

instead of a comprehensive literature. Therefore, there are a lot more materials for the

future prospect of this research to be covered in a deeper level that is not addressed here,

such as forgetting, role of emotion in personal experience, memory reminiscence and

abstraction, false memories, factors that influences memory recollection, just to name a

few. In the next chapter, we discuss the implemented developmental robot architecture

inspired from the insights and evidence discussed in this chapter.
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Figure 3.8: Component-wise relationship between Sensory Memory, Working Memory,
and Long-Term Memory
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Chapter 4

Interconnectivity of System Architecture

No memory is ever alone; it’s at the

end of a trail of memories, a dozen

trails that each have their own

associations.

Louis L’Amour

We introduce ERIS (Epigenetic Robot Intelligent System), inspired by current knowl-

edge in human memory organization, as discussed in the previous chapter. In this chap-

ter, the formalism of ERIS is elaborated and the interconnectivity between components,

which is the main emphasis of the chapter, is evident. We begin the chapter by providing

overview to the chapter, as well as literatures of relevant robotics application with respect

to memory-based architecture that has been proposed in the past few years.

4.1 Overview

In order to acquire knowledge (and therefore experience), humans interact with each

other and their environment to assess, confirm or revise their beliefs. As we posited in

previous Sections, we argue that a similar process may be beneficial also for robots. In

particular, we envisage a human-robot interaction scenario where robot knowledge goes

through a human-assisted revision process, which is based on a labeling procedure.

In principle, robot knowledge can be classified as raw and revised, the latter being

validated by a human during the interaction process. Whilst raw knowledge represents

robot memory item initially consolidated during the interaction, revised knowledge orig-

inates as a result of the human-assisted assessment of raw knowledge. At any time, a
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human can provide robot knowledge with appropriate semantic labels, which constitute

an assessment of initially acquired knowledge. As humans are able to confirm and revise

their knowledge and beliefs multiple times, revised robot knowledge can still be subject

to further revision. Such semantic labels (henceforth referred to also as tags) are then

used by a robot when inquired about its own experience. When an inquiry is made by

the interacting human, the information in the inquiry defines a context, which is used by

the robot to frame its response. Terms in the inquiry are matched against tags associated

with revised knowledge, a process we refer to as familiarity mechanism based information
retrieval. On the basis of this mechanism, the robot can provide appropriate responses.

Although a precise characterization of the human memory architecture is still sub-

ject of active research, it is believed that three main components are present, namely

Sensory Memory, Working Memory (previously known as Short-Term Memory) and Long-

Term Memory. Sensory memory is responsible to handle the reception of the perceived

stimulus by our five senses. While working memory is responsible for processing active
information, long-term memory is considered as an almost infinite storage used to store

memory item consolidated from working memory for a later use. Long-term memory con-

sists of three sub-components, namely Semantic Memory (SM), Episodic Memory (EM),

and Procedural Memory (PM). Each sub-component is responsible for different kinds of

information: SM for storing facts and general knowledge about the environment, EM for

storing experienced events related information, and PM for storing procedural informa-

tion, such as motion commands or other behavioral skills. Information within SM and

EM can be explicitly recalled as part of conceptualization processes whereas – usually –

information within PM cannot.

In our human-robot interaction scenario, the robot is capable of gaining knowledge

progressively from visual stimuli. Initially, memory items are consolidated as raw knowl-

edge. This means the memory items are stored in Long-Term Memory and can be used

by the robot, but they are not suitable to be used for human-robot interaction, since they

must first go through the human-assisted knowledge revision process (which, in our case,

mimics the progression towards mutual understanding). A human-computer interface

has been implemented to facilitate knowledge revision, as the part of robot interaction

module of ERIS.
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4.1.1 Memory Models and Terminology

Albeit there is no widespread consensus about a general framework, memory models

typically assume a multi-storage organization. Two models constitute fundamental mile-

stones in the literature, namely the multi store model by Atkinson & Shiffrin (1968) and

the working memory model by Baddeley & Hitch (1974).

Adopting a computational approach, the multi store model describes how informa-

tion are formed into memory items and organized into different memory models. Three

stores are usually identified, namely the Sensory Memory, the Short-Term Memory (STM)

and the Long-Term Memory (LTM). Different processes are involved in the management

of such an information flow. After being perceived and properly conveyed to the brain

through relevant neural pathways, sensory information is represented inside Sensory

Memory (in general, available for less than a minute). If sensory information is attended,

the relevant part of it is transferred to STM, where it is processed for immediate use (oc-

curring less than a minute). Then, if such a representation is rehearsed (an elaborative

process further developed by Raaijmakers & Shiffrin (2003)), it is transferred to LTM

(in principle, therein available forever). Otherwise, it is lost from STM according to a

memory-trace decay process.

Baddeley & Hitch (1974) proposed a model for Short-Term Memory (which they call

Working Memory - WM) that aims at better characterizing its subcomponents, each one

devoted to represent and process different types of information. Specifically, WM consists

of the Central Executive that orchestrates the behaviors of two subcomponents, namely

the Visuospatial Sketchpad and the Phonological Loop. Central Executive is believed to

deal with cognitive tasks related to logic and to make an on-demand use of subcompo-

nents. Visuospatial Sketchpad processes visual and spatial based information, e.g., related

to any motion in the environment. Phonological Loop deals with symbol-mediated infor-

mation (i.e., which can be written or spoken), and can be further divided in two parts,

namely the Phonological Store (linked to speech perception) and the Articulatory Con-

trol Process (linked to speech production) (see Jones, Macken, & Nicholls, 2004; Shaw &

Tiggemann, 2004).

As a consequence of follow-up experiments, the original model has been updated by

Baddeley (2000) to include a third subcomponent managed by the Central Executive,

namely the Episodic Buffer. The role of the Episodic Buffer is to mediate between LTM

and other components of WM: when WM is capable of identifying an observable rele-

vant event (as a result of Visuospatial Sketchpad and Phonological Loop processing), the

Episodic Buffer appropriately manages its storage in LTM. Nowadays, there is no shortage
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of reasons to believe that STM is made-up of a number of subcomponents. The WM model

accounts for a number of real-world functional behaviors, such as task and verbal-level

reasoning, reading and comprehension, problem solving, as well as visual and spatial

information processing.

With respect to LTM, as proposed by Atkinson & Shiffrin (1968), two parts can be

identified, i.e., explicit and implicit memory (Wood, Baxter, & Belpaeme, 2012). Explicit

memory (also referred to as Declarative Memory) refers to consciously available memory

items. It can be further divided in three subcomponents, namely the Episodic Memory

(EM), the Semantic Memory (SM), and the Autobiographical Memory. EM is related

to the encoding of generic events localized in time. An example of EM is the set of

specific event occurred during the interaction with someone or with the environment.

Knowledge about facts and their meaning is stored in SM. Differently from the content

of EM, SM is not believed to depend on contextual information (Spaniol, Madden, &

Voss, 2006). Autobiographical Memory is the knowledge related to both personal events

and self-related information. However, it is noteworthy that Autobiographical Memory is

different from EM, in that it refers to events strictly performed by the person, as pointed

out by Conway & Pleydell-Pearce (2000) and Nelson & Fivush (2004). Finally, implicit

memory (in particular, Procedural Memory) widely refers to motor action, specifically

actions involved in the use of objects (including grasping, manipulation and tool use), as

well as body motions (Bullemer, Nissen, & Willingham, 1989).

4.1.2 Models of Memory Components

Aside from the whole architecture literatures discussed in Chapter 2, a number of ap-

proaches are devoted to model specific memory components in robotics domain. With

respect to Semantic Memory, two approaches are particularly interesting in our case,

namely those put forward by Dodd (2005) and Dayoub et al. (2010).

The objective of the SM component designed by Dodd (2005) is to maintain informa-

tion about objects located in the environment. This is achieved using a novel architecture

combining the so-called Sensory EgoSphere later refined by Peters II, Hambuchen, & Bo-

denheimer (2009), as well as SM, WM and Central Executive. Although interesting, the

framework is characterized by a number of drawbacks, as follows: (i) a priori knowledge

about objects and the associated symbol grounding (Harnad, 1990) is required; (ii) since

SM is designed to model and recognize objects in a very specific application domain, SM

lacks the ability to represent anything that is not related to objects. In spite of these flaws,
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the framework has nonetheless the advantage of exhibiting a partial interconnectivity be-

tween the memory items pertaining to EM and SM.

Dayoub et al. (2010) proposed a SM component based on the multi store model of

human memory advocated by Atkinson & Shiffrin (1968), specifically in the context of

semantic mapping tasks carried out by a mobile robot. The robot is able to track the

displacement of several objects using omni-directional vision and provide humans with

the most likely suggestion about the location of any tracked object within the map. The

overall behavior is managed using finite state machines. The advantages of the framework

include: (i) a strong interconnection between the representation of objects, their locations

and the capability of updating the internal model of the environment (i.e., the map);

(ii) SM is tightly connected with the object tracking module, and it provides humans

with comprehensive information about the map as a result of a human-robot interaction

process. Specifically, humans may pose questions such as Where was object x the last time
you have seen it? or What are the most likely locations to find object x in the map? Since

robot knowledge is only limited to object properties and locations, the scope of questions

that can be posed by humans is quite limited. However, the possibility of posing questions

inspired us to implement a question-based knowledge information retrieval process.

As far as PM is concerned, the approaches by Salgado et al. (2012) and Dodd (2005)

have been considered. The PM component by Salgado et al. (2012) stores basic skills

and behaviors as a library to ground robot learning. Specifically, a Sony AIBO robot

is expected to learn a ball catching behavior, strikingly similar to the work by Bellas et

al. (2010). Whilst the architecture has been designed to implement adaptive learning

techniques, it features a model of PM that turns out not to be consistent with state of the

art of psychological studies. Furthermore, the information that can be obtained as a result

of human-robot interaction processes is limited due to the inability of the system to store

any information other than the learned associated behavior.

In the PM design proposed by Dodd (2005), robot motions are represented as nodes

in a graph-like structure labeled as behavior nodes, motion primitive nodes, and example

nodes. The architecture is designed to select PM nodes and to properly sequence them

(Ratanaswasd, Gordon, & Dodd, 2005; Mastrogiovanni & Sgorbissa, 2013). Even though

motions generated by sequencing robot behaviors are claimed to be fairly smooth, the

PM design is highly dependent on the employed modular controller, as it as been pointed

out by Ratanaswasd et al. (2005), the used behavior interpolator, and the trajectory error-

reduction algorithm. Furthermore, since the structure of PM nodes only contains informa-

tion about the associated behavior and the corresponding 3D trajectory, no comprehensive
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memory component interconnection is actually possible.

Finally, three approaches to model EM have been considered in our analysis, namely

the work by Jockel et al. (2007); Stachowicz & Kruijff (2012) and, again, by Dodd (2005).

Consistently with the notion of EM, the approach proposed by Stachowicz & Kruijff (2012)

is focused on a formal framework used to represent and relate events occurring in both

space and time into spatiotemporal contexts. In particular, a hierarchy of events is envis-

aged, where an event can be either atomic or complex. Atomic events can be combined

in different ways to form so-called subevents and superevents. Unfortunately, no formal

account is provided about the adopted notion of context and – above all – its influence

on the other components of the architecture. The proposed EM design also lacks any cor-

relations between EM and Episodic Buffer, specifically in view of a continuous knowledge

acquisition process while interacting with the environment.

The design for EM proposed by Jockel et al. (2007) assumes that an event is hierarchi-

cally classified as belonging to one of the following classes: perceptional event, command

event, and executive event. In this case, an event is associated with procedural callback

mechanisms. There are two among the claimed advantages of the architecture: the possi-

bility of storing past experiences in a life-long memory storage component, and the ability

to perform one shot learning processes. Again, no formal definition of such a notion of

event is provided. This is surprising, given the argument that EM essentially consists of

sequences of events.

Finally, the EM component designed by Dodd (2005) assumes it to be a medium for

robot learning processes. Temporally sequenced records of specific events are stored as

memory items called episodes. An association is maintained between EM items and the

content of SM and WM, as well as task-related information (in a sense, mimicking the

availability of PM). Episodes are retrieved from EM using an approach similar to what

has been discussed by Anderson (1990) in the context of the ACT-R architecture. The

main disadvantage of the approach is the difficulty of determining the correctness of a

retrieved episode. The authors argue that this is due to the lack of a formal context
definition. Nonetheless, our definition of EM is inspired by these design choices.

From the analysis of the literature, it emerges that two topics are fundamental to

design a memory-inspired robot framework, namely a clear design of the architecture

(including all its relevant components and interconnections) and an assessment about

how contextual information impacts on memory items storage and retrieval.
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Figure 4.1: A graphical representation of the proposed memory architecture: parts in
green corresponds to currently implemented components.

4.2 Connections with Memory Architecture

We introduce our proposed memory-inspired architecture called Epigenetic Robot Intel-

ligent System (ERIS), which the structure is outlined in Figure 4.1. ERIS is implemented

as a ROS stack, and the general architectural design is inspired by the multi store model

by Atkinson & Shiffrin (1968) updated with the WM model by Baddeley (2000). Each

store can be further divided in subcomponents, according to the current understanding

of memory organization in humans and other beings (Baddeley & Hitch, 1974; Wood et

al., 2012). We assume the presence of a number of sensory components feeding differ-

ent parts of the Sensory Memory. Currently, ERIS supports visual maps (in the form of

bitmaps, but other approaches may be used as complimentary as well, for instance the

framework by Antonelli et al. (2014)), and a simple mechanism to represent questions
that can be posed to the system (as context-based cues), in a spirit similar to the work by

Dayoub et al. (2010), as well as robot answers (as familiarity-based cues). Visual maps

correspond to the basic representation used by the adopted vision algorithms. In princi-

ple, Sensory Memory can accommodate other sensory maps, such as tactile and auditory

maps (Kallaluri, Even, Morales, Ishi, & Hagita, 2013; Denei et al., 2015).

In our current implementation, the visual map is manually segmented as a perceived

scene from a continuous stream of visual feed, therefore the robot’s and human’s hand

are not captured within the scene. The visual map is always transferred to be processed

in WM within the Visuospatial Sketchpad. Relevant changes in the perceived visual feed

constitute scenes. The identification of scenes is related to the formation of EM memory

items (called episodes) inside the Episodic Buffer. This process is managed by a proper

computational component representing the Visuospatial Sketchpad, which we call Visual
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Stimuli Processor (ViSor). Inside ViSor, visual maps are processed using two feature

extraction techniques, color and texture features, for recognizing the detected objects.

The color feature is using Color Structure Descriptor, and the texture feature is using Edge

Histogram Descriptor. Both descriptors are part of the MPEG-7 standard (Manjunath,

Salembier, & Sikora, 2002). In other words, a specific image representing the changes

within the environment is defined as a scene, and scenes are used to form an episode.

Multiple episodes are encoded as collections of EM items. An event consists of several

episodes sequentially ordered based on timestamps.

Each memory item is modeled as a collection of cue-value pairs, where cues corre-

spond to features extracted from incoming images. Once the scene has been captured and

processed through the ViSor, an episode is formed and consolidated into the LTM storage.

Here, a scene is captured after each pick and place movement has been performed by the

robot. Once a scene has been captured and processed through the ViSor component, an

episode is formed and consolidated into the LTM storage. Saliency detection has been

considered in the proposed framework given the widespread belief that it plays a central

role in the human memory consolidation process and episodic segmentation (Posner &

Petersen, 1990; Kaster & Ungerleider, 2000; Jeong, Arie, Lee, & Tani, 2011; Posner &

Petersen, 2012). Schillaci, Bodiroža, & Hafner (2013) provides an excellent analysis of

the influence of saliency in a human-robot interaction domain.

Currently, only EM and SM have been implemented within LTM, and cue-value pairs

in LTM are represented using a relational database. Relevant results (i.e., episodes or

SM items) temporarily stored in the Episodic Buffer are compared with the Memory

Database, which keeps track of familiar SM items and episodes, and consolidated when

either they are not familiar or not listed in the database. The bidirectional arrow connect-

ing the Episodic Buffer (specifically, the ViSor module) and LTM (specifically, the Memory

Database) in Figure 4.1 represents the ability to consolidate and recall memory items.

As postulated by Eichenbaum & Cohen (2001) and Tulving (2001, 2002), human mem-

ory is characterized by the property of undergoing a continuous, subjective rehearsal and

active modification, which is how we actually re-experience past events during memory

recollection. Even though a precise understanding of this phenomenon is still subject to

research efforts, our framework aims at mimicking this feature of the human memory,

which without any doubt plays a central role in everyday behavior.

From a computational point of view, the choice of which information to store inside

LTM as a collection of cue-value pairs is an important design parameter for the whole

architecture. It is necessary to find a trade-off between the proper selection of image fea-

47



4.2. MEMORY ARCHITECTURE CHAPTER 4. INTERCONNECTIVITY

tures (i.e., to be stored as cues) best discriminating among different episodes (i.e., having

well-separable value spaces), and the need for storing the minimum amount of infor-

mation (i.e., the size of the LTM storage) given the continuous nature of the knowledge

acquisition process. Two main ideas are considered for this matter: (i) considering that

every computer science problem is related to the famous “time-space trade-off” regardless

of the capacities and availability of computer memories in the present and the future;

and (ii) anticipating the increasing needs of storing more information in a single memory

item in the future (compared with our currently implemented color and shape informa-

tion). In particular, although the capacity of computer memory is considered abundant

and inexpensive nowadays, having succinct representation of memory items allows for

more efficient memory retrieval processes, which eventually allows more memory items

to be stored, as well as boosts runtime performance.

A similar information flow can be determined when the user asks the robot to recall

previously acquired memory items. Currently, this is done using the cue-value pair based

formalism that is mapped to specific queries in the Phonological Loop to be submitted

to LTM. The same cue-value based formalism is used to present to a human user the

robot accounts related to what has been actually recalled. It is noteworthy that these two

information flows are not to be considered in strict alternative. In fact, it is possible to

pose questions while the robot is still acquiring new knowledge.

The ability to manage different parts of STM is due to our implementation of Cen-

tral Executive. In human memory, the Central Executive is believed to be responsible

for processing information originating from different sources, coordinating a number of

otherwise passive subsystems, as well as performing selective attention and inhibition

strategies (Baddeley, 1996, 1998; Collette & Van der Linden, 2002). In the current im-

plementation, Central Executive is designed as a computational process able to perform a

number of tasks, as follows:

1. Managing the encoding processes of Episodic Buffer to store relevant visual infor-

mation computed by Visuospatial Sketchpad (e.g., object shapes, colors or locations

as perceived in a scene) in the form of cue-value pairs in such LTM components as

EM and SM.

2. Performing familiarity-based information retrieval, i.e., identify relevant cues, based

on logical processes involving cue analysis and problem awareness (Mastrogiovanni,

Scalmato, Sgorbissa, & Zaccaria, 2011; Mastrogiovanni & Sgorbissa, 2012).

3. Executing recollection processes, i.e., recalling memory items from LTM using the
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Figure 4.2: Interconnectivity between Semantic-Episodic-Procedural Memory in terms of
past experience.

results of the familiarity-based retrieval process.

4. Supervising the Phonological Loop to analyze cue-value pairs based information

related to recalled LTM memory items.

4.3 Formalism

In this Section, we define the most important concepts of the proposed architecture

(ERIS), thereby defining the memory model upon which the framework is designed and

implemented. We introduce first the notion of memory item. We will later use the def-

inition of memory item to formally define elements in Semantic Memory and Episodic

Memory.

Definition 1 (Memory Item) A Memory Item i ∈ I is a set of n cue-value pairs, such that
i = {(c1, v1), . . . , (cn, vn)}.

A memory item is a single element that can be used to represent any of the subcompo-

nents of Long-term Memory, such as Semantic Memory, Episodic Memory or Procedural

Memory. Here, we do not model Procedural Memory. However, it is noteworthy that

we explicitly take into account the link between the knowledge represented in Semantic

Memory and Episodic Memory (see Squire & Kandel, 2000). As we discussed in Chap-

ter 3 and Section 4.1.1, Semantic Memory stores general-purpose knowledge about the

environment in terms of concepts and their relationships (which are, in a sense, inde-

pendent from the particular robot and therefore transferable to other robots), whereas

Episodic Memory represents robot experiences (in the form of episodes) anchored to a
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specific point in space and time (which is typically robot-dependent). Figure 4.2 shows

the interconnectivity of Long-Term Memory components in terms of past experience.

Definition 2 (Entity) An Entity ε is a grounded memory item iε ∈ E, with E ⊂ I.

Entities are a representation of objects in the environment, humans and other agents

acting therein. Each entity is mapped to a set of grounded cue-value pairs, where the

semantics associated to cues globally define the entity as a type.

Definition 3 (Object) An Object n is a grounded memory item in ∈ N , with N ⊂ I, where
in is defined in terms of three multi-valued cues, i.e., name, shape and color, and by a number
of Boolean cues, i.e., graspable and manipulable.

Each memory item corresponding to an object is characterized by specific values asso-

ciated with its constituent cues.

Definition 4 (Location) A Location l is a grounded memory item il ∈ L, with L ⊂ I, where
il is defined in terms of one numerical cue corresponding to a 2-element vector pos2d and one
Boolean cue type.

A memory item representing a location can refer to either an absolute or relative 2D

position (expressed using the type and pos2d cues, respectively), whose semantics de-

pends on the specific Cartesian frame with respect to which the location is expressed. For

example, the description of the previously introduced bluebox object can be augmented

with a description {(pos2d, (72, 13)), (type, relative)}.
We also introduce a notion of time inspired by a simple linear time logics approach

(Emerson & Halpern, 1986), as follows.

Definition 5 (Time Instant) A Time Instant t is a cue-value pair, with t = (time, integer).

Time instants are represented in Unix epoch time, which are positive integer numbers.

In ROS structure of memory item, time instant belongs to header cue in each message.

Definition 6 (Semantic Memory) A Semantic Memory SM is a collection of k grounded
memory items {i1, . . . , ik}, which can be divided into 5 disjoint sets, such that SM =
{N,H,L, T,W}, where: N represents known (or previously identified) objects, H stores
information about humans or other agents the robot interacts with, L is related to entities
spatial information (locations), T represents entities temporal information (time instants),
whereas W is an association between lexical knowledge and entities.
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We separately model N and H in order to account for inanimate objects and inten-

tional agents, respectively. As previously noted, in this dissertation we focus on the set N

and not on H, which is characterized by the appropriate knowledge to model the objects

the robot interacts with.

The representation of object is first consolidated as an Semantic Memory item when-

ever a novel object is detected by the ViSor module, through a process which resembles

habituation, which literature has been explained in Chapter 3.4.7.

Definition 7 (Episode and Scene) An Episode σ̂ is a memory item succinctly representing
the captured visual changes of the environment, which is a collection of b grounded memory
items {iσ̂,1, . . . , iσ̂,b}, which occur at a time instant tσ. The visual change occurring at a time
instant tσ is defined as a scene, which is a sequence of visual feed {σ1, . . . , σb}.

In particular, a scene is an instance of a captured image in the visual stream, which is

then later processed using the ViSor module and yields saliency information. The saliency

information is further used to determine the familiarity status of the detected scene. Novel

scenes are visually processed by object recognition module, which results contributes to

a formation of an episode (a scene representation, and also an EM item). The object

recognition module includes the color and texture feature extraction method. Currently,

familiar scenes will not be processed further. Episodes can employ both memory items

related to objects represented therein as well as global descriptors of a scene, such as

the number of objects, through the cue count. Two subsequent scenes are separated by a

significant change in the image saliency level.

Definition 8 (Event Type) An Event Type ξ = (type, active|passive) is a cue-value pair con-
sists of either active or passive event.

Events are classified as being active or passive. An active event originates from one

or more actions performed by the robot itself, whereas a passive event either corresponds

to actions carried out by humans interacting with the robot or to something that simply

happens in the robot workspace and is perceived in a scene. In this dissertation, we

consider both active and passive events. Although the robot witnesses events that are

influenced by its own motions, it should be noted that since the Procedural Memory is

not considered at the moment, active events will not influence conducted experiments.

Definition 9 (Event) An Event η is a collection of s episodes {σ̂η,1, . . . , σ̂η,s}, with associated
type information.
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An event is defined by two corresponding initial and final scenes (represented as

episodes), namely σ̂η,1 and σ̂η,s, as well as by all intermediate scenes. Our concept of

event has three interesting properties: flexible, subjective, and personal. These three

properties will become apparent in the experiment later, and the details are discussed in

the beginning of Chapter 6.

Definition 10 (Episodic Memory) An Episodic Memory EM is a collection of z events
{η1, . . . , ηz}.

The knowledge retrieval process is based on the notion of context and context item.

Definition 11 (Context and context item) A context ξ is modeled as a set of X context
items γξ, such that ξ = {γξ,1, . . . , γξ,X}. A context item γj is characterized by a retrieval cue
cj, a value for that cue vj, and a set of relevant tags Ψj, such that γj = {cj, vj,Ψj|1 < j <

X}.

Differently from memory items, contexts are not part of the set I, meaning that they

do not necessarily correspond to definitions of entities, objects or locations. In our frame-

work, contexts are used in the knowledge retrieval process to recall memory items stored

in the Long-term Memory. As it will be discussed in Section 6.3, humans interacting with

the robot can pose a number of questions, which are formally encoded as contexts.

To this aim, cues can be classified as general-purpose and context-dependent, depend-

ing on their memory scope. For instance, cues may be appropriate to all the available

memory components (e.g., Semantic Memory and Episodic Memory), or be related to

one component exclusively (e.g., Semantic Memory only).

Definition 12 (General-purpose Cue) A cue c is general-purpose if it refers to a memory
item i that is not specific to any memory component.

A context using a general-purpose cue may include, for instance, information related

to both Semantic Memory and Episodic Memory.

Definition 13 (Context-dependent Cue) A cue c is context-dependent if it refers to a mem-
ory item i that is specific to a particular scene observed by the robot.

As we discussed in Section 4.1.1, the visual stream in processed by Visuospatial Sketch-

pad (represented by the implemented ViSor module) to form episodes, which are consoli-

dated in LTM as part of EM through the Episodic Buffer. Context-dependent cues are used

to retrieve memory items stored in EM.
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In a complete sensorimotor process, it is believed that the consolidation process in-

volves Semantic Memory, Episodic Memory and Procedural Memory, as discussed by Tul-

ving (1985) and Squire (2004).

4.4 Implementation

The implementation of ERIS1takes a full advantage of the features offered by ROS (Quigley

et al., 2009), allowing easy expansion and accessibility to general-purpose robots. There

are two ROS packages implemented so far, (1) the Visual Stimuli Processor (ViSor); and

(2) the core architecture (ERIS). Figure 4.3a depicts the two main process available within

the current ERIS core architecture implementation including the ViSor package. The ovals

represent active elements (i.e., ROS nodes), the squares represent passive elements (i.e.,

message passed in between nodes and LTM storage), and the arrows represent the in-

formation flow between nodes. The upper half of the diagram represents a continuous

process of visual-based developmental knowledge acquisition. The ViSor package deals

with raw image and pass the results to ERIS module to be processed further, i.e., recall

the existing memory element and consolidate a new one. Meanwhile, the lower half of

the diagram represents an independent process of the human-robot interaction through

the query client node to provide robot with the query and display the responses, and with

a server node to process the query, as well as the ROS node that allows the knowledge

revision process.

The architecture is fully functional regardless of the absence of Procedural Memory,

which responsible for storing memories related to robot motor skills as it is highly depen-

dent of its physical capabilities. Yet, it has lots of future potentials to be discovered from

the developmental/epigenetic robotics perspective and extensible by other researchers.

As for now, the robot movements does not involve the Procedural Memory. The archi-

tecture allows the robot to autonomously gather and develop knowledge based on visual

stimuli, and interact with human based on Figure 4.3a. Now we discuss the ViSor package

as it is responsible for all the image processing before dealing with the memory processing

in the ERIS package.

1The code is publicly available at https://github.com/ferdianap/eris
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(a) ERIS core package (b) ViSor package

Figure 4.3: Simplified ROS diagram of current architecture implementation
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4.4.1 ViSor Package

The ViSor package consists of global and local processes, as seen in Figure 4.3b. The

global process covers the whole scene (at the scene level), and the local process covers

each of the objects in a single scene (at the object level). The global process currently

includes saliency-based object detection, and the local process includes color and texture

feature extractors. The object detection module is included in the visual attention node,

and both the color and texture feature extractors are implemented based on MPEG-7

(Manjunath et al., 2002) Color Structure Descriptor and Edge Histogram Descriptor, re-

spectively. The Edge Histogram Descriptor covers texture features within an object, as

well as the shape outline of 2D projection of the object with respect to the Field of View

plane. To be concise, this package consists the minimal required modules to process the

scene, distinguish and separate the contents of a memory element.

First, the image resizer node is responsible for down-sampling the scene for efficiency

and performance reason into a resized image, which will be fed into both saliency de-

tection node and attention window node. Then the saliency detection node yields each

information about the detected object within the given scene (i.e., the metadata of the

scene, position of each detected object), which directly processed with the corresponding

scene. Then we get each of the object image with their corresponding information as well

as the scene metadata. This leads to the color and texture local processing nodes, which

yields object metadata ROS message, containing the texture and color representation for

each object and their original object image. The object metadata here refers to the color

and texture representation (descriptors), and the information shared here are the color

and texture representation for each object and their original object image. The reason we

stored the object image given that we have the representation is for two reasons: com-

plies with The Dual-Coding Theory (see Sternberg, 2003, for more details), and for the

knowledge revision, so that we can still get feedbacks from human based on the original

image.

First, the captured scene in the form of raw image is being down-sampled into 160×120
pixel resolution for computational performance efficiency in the img_resizer_node. Then,

the channels of the resized image are split into BGR and HSV and published into /pro-
cessed_img/bgr8_img and /processed_img/hsv_img topic, respectively, by the img_chnldvdr
node. In principle, this node provided for the convenience of image processing methods

based on different color channels. In this case, we use only the BGR channels for a basic

image processing of the scenes. The BGR image is then processed in the saliency_det_node
for object detection based on saliency. The saliency_det_node is implemented as a regu-
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lar method callback (for storing the current scene) and service callback (for processing

the current scene on-demand). After processing the scene, the node publishes the cor-

responding blobInfo message, which will then later be processed in the attention win-

dow node attn_window_node. The node subscribes to both /processed_img/bgr8_img and

/blob_info topics, crops the object blobs based on the information from the blobInfo mes-

sage, and publishes the detected entity in an array form called detEntityArray. We have

implemented object_extractor class for the convenience of object extraction within the

attn_window_node. The detEntityArray is then process in two nodes in parallel as part of

the local scene processing: local_color_node and local_shape_node.
The corresponding feature extraction methods are performed in each node, i.e., Color

Structure Descriptor (CSD) in the local_color_node and Edge Histogram Descriptor (EHD)

in the local_shape_node. The local_color_node publishes /local_feat/color topic, and the

local_shape node publishes /local_feat/shape. These topics are the object metadata de-

picted in Figure 4.3b. In ROS, we implemented textureInfo.msg as the texture information

of each detected object, where 80 is the default size of the Edge Histogram Descriptor

(EHD), and the desc variable holds the corresponding vector values.

Listing 4.1: textureInfo.msg

## This i s the t e x t u r e d e s c r i p t i o n f o r each o b j e c t
## By d e f a u l t , EHD i s used .
## Re l a t ed pkg : v i s o r
Header heade r
i n t 1 6 s i z e # DEFAULT= 80 (VECTOR SIZE )
i n t 1 6 [ ] desc # EHD i s used

For the colorInfo.msg, the default vector size for the Color Structure Descriptor (CSD)

is 64. It should be noted that for both for textureInfo.msg and colorInfo.msg, the feature

extraction methods and the selected vector size must be remain the same for the memory

recollection in terms of familiarity, otherwise error will occurs due to the difference of

the vector size and the feature similarity comparison will not make any sense due to the

difference of features extraction methods.

Listing 4.2: colorInfo.msg

## This i s the c o l o r d e s c r i p t i o n f o r each o b j e c t
## By d e f a u l t , CSD i s used .
## Re l a t ed pkg : v i s o r
Header heade r
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i n t 1 6 s i z e # DEFAULT= 64 (VECTOR SIZE )
i n t 1 6 [ ] desc # CSD i s used

We implemented ROS messages for both color and texture detected for each scene as

localTexture.msg and localColor.msg.

Listing 4.3: localColor.msg

## This i s the c o l o r d e s c r i p t i o n f o r each scene
## Re l a t ed pkg : v i s o r
Header heade r
v i s o r / c o l o r I n f o [ ] o b j e c t_ c o l o r
i n t 1 6 ob j e c t_count

The localColor.msg contains the each of the object color detected within a scene and

object count as an int16 type. While for the localTexture.msg contains several information

such as object count, a set of array of object texture corresponding for each detected ob-

ject, relative spatial information with respect to the field of view in the form of pos_minx,
pos_maxx, pos_miny, and pos_maxy, as well as the corresponding image of the objects.

Listing 4.4: localTexture.msg

## This i s the t e x t u r e d e s c r i p t i o n f o r each scene
## Re l a t ed pkg : v i s o r
Header heade r
i n t 1 6 count # ob j count
t e x t u r e I n f o [ ] o b j e c t_ t e x t u r e
i n t 1 6 [ ] pos_minx
i n t 1 6 [ ] pos_maxx
i n t 1 6 [ ] pos_miny
i n t 1 6 [ ] pos_maxy
sensor_msgs / Image [ ] image

The blobInfo.msg contains the relative spatial information of the detected objects in the

form of rectangular blobs for each scene, and count as the amount of detected objects.

Listing 4.5: blobInfo.msg

## This i s the b lob i n f o rma t i o n
## Re l a t ed pkg : v i s o r
Header heade r
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i n t 1 6 count
i n t 1 6 [ ] minx
i n t 1 6 [ ] maxx
i n t 1 6 [ ] miny
i n t 1 6 [ ] maxy

These information within the blobInfo.msg are then combined with the corresponding

scene image in the attn_window_node, and assigned as the detEntityArray.msg.

Listing 4.6: detEntityArray.msg

## This i s the d e t e c t e d e n t i t i e s i n an a r r a y s t r u c t u r e
## Re l a t ed pkg : v i s o r
Header heade r
i n t 1 6 count
sensor_msgs / Image [ ] e n t i t y
i n t 1 6 [ ] pos_minx
i n t 1 6 [ ] pos_maxx
i n t 1 6 [ ] pos_miny
i n t 1 6 [ ] pos_maxy

4.4.2 ERIS package

Continuing from the previous subsection, the object metadata ROS message that we ob-

tain from the ViSor package is fed into both EM and SM encoder/decoder nodes, which

resulting in an episode and an SM item, respectively. The bidirectional arrows implies

a checking condition, that if one episode or SM item is already exist in the Long-Term

Memory storage, it will not be reconsolidated. The episode and SM item is independently

processed, meaning that if an episode is already exist (a familiar scene is detected), the

episode and all the SM item will not be consolidated. However, if one SM item is al-

ready exist (a familiar object is detected) but a novel scene is detected, the episode and

other detected novel objects will be consolidated and only the SM item correspond to that

familiar object will not be consolidated.

Now we move on to the human-robot interaction based on the lower half of Fig-

ure 4.3a. The left hand side represents the general interaction with human, where hu-

man can ask Baxter questions, in the form of lexical inputs from the query client node

(currently implemented as a command-line interface), regarding its past experience. The
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question asked can be optionally paired with visual stimuli by letting the Baxter witness

the current scene (e.g., the workspace arrangement or a single object) when posing the

question. The right hand side correspond to the knowledge revision process, which has

been detailed in Figure 5.5. The knowledge representation is explicitly represented by

ROS message.

The package mainly consists of encoder module and HRI module. As the encoder

module, an encoder_node has been implemented which currently applies for both SM and

EM. The node subscribes to the /local_feat/shape and /local_feat/color, and although the

node is responsible for memory formation and consolidation, it also performs memory

recollection and familiarity checks of objects and scenes (Case 1 as elaborated in the later

chapters of the fundamental cases of memory recollection).

During the memory recollection, we consider two kinds of familiarity: object and scene

familiarity. An object familiarity is currently computed using two criteria: when both color

and shape similarity value is over the threshold value. During the input familiarity of case

1, both color and texture familiarity check is done by cosine similarity and the threshold

for both features is set to be 70%, hence above the threshold value would be considered

as familiar. Cosine similarity is listed in Equation 4.1, where A and B are two different

1D feature vectors, applies to both color and shape features, assuming that A and B are

the same type of feature and have the same vector size.

similarity = cos(θ) =
∑n
i=1 Ai ×Bi√∑n

i=1 (Ai)2 ×
√∑n

i=1 (Bi)2
(4.1)

Assuming that inF is the object that is considered familiar, the condition of object

familiarity is listed in Equation 4.2, given two sets of 1D vector A and B for both color

and shape features, as well as thcolor and thshape corresponds to the threshold value of

color and shape features.

inF ={cos(θcolor) > thcolor ∧ cos(θshape) > thshape|

Ashape, Bshape, Acolor, Bcolor, thshape = 70%, thcolor = 70%}
(4.2)

This can still be improved in the future development of the project using, for instance,

a robust fuzzy logic controller, considering similarity result such as 69% will be considered

as “not familiar”. It is important to note that the HRI module here serves only as a means

to analyze if the robot has developed and able to provide the human some information

related to the recalled past experience.

On the other hand, the scene familiarity is determined by the object familiarity and
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the relative position of all detected objects. A scene is considered to be familiar when all

the detected objects are considered to be familiar, and the relative position with respect

to the field of view does not exceed the threshold pixel value, which is set to be 20 pixels.

If we consider σF as a familiar scene, inF as a familiar object (as detailed in Equa-

tion 4.2), and the threshold value thlx and thly of 20 pixels, corresponds to both x-axis

and y-axis of the field of view respectively, for checking the location of the detected ob-

jects, the formal notation of scene familiarity is detailed in Equation 4.3. Similarly to the

object familiarity, a more flexible familiarity measures can be achieved by integrating a

complementary fuzzy logic controller or a similar one.

σF ={∀in ⊂ N, ∀lx, ly ⊂ L, (|lxσ̂ − lx| < thlx ∧ |lyσ̂ − ly| < thly)|

in ∈ σ̂, in = inF , lx, ly ∈ σ ∧ (lxσ̂, lyσ̂) ∈ σ̂, thlx = 20pixels, thly = 20pixels}
(4.3)

The structure of an episode is implemented as a ROS message, where it contains in-

formation such the time instant (stored in the header variable), episode label, obj_count
as the number of detected object, seq_count as the number of performed motor skills, rel-

ative position of the objects detected in that particular episode, obj_name as the reference

to the detected object name, and sequence as an array of performed motor skills (which is

currently empty, since it is related to the PM).

Listing 4.7: episode.msg

## This i s the s t r u c t u r e o f an e p i s o d e w i t h i n the Ep i s o d i c Memory
## Re l a t ed pkg : e r i s
Header heade r
s t r i n g l a b e l
i n t 1 6 obj_count
i n t 1 6 seq_count
i n t 1 6 [ ] pos_minx
i n t 1 6 [ ] pos_maxx
i n t 1 6 [ ] pos_miny
i n t 1 6 [ ] pos_maxy
s t r i n g [ ] obj_name #f i l e n ame
s t r i n g [ ] s equence

For the structure of a SM item, smEntity.msg contains information such as the encoding

time instant (in the header variable), object label, an array of related tags, the image of
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the corresponding object, and boolean parameters (i.e., graspable and manipulable).

Listing 4.8: smEntity.msg

## This i s the s t r u c t u r e o f a Semant ic Memory ,
## s p e c i f i c a l l y about a s i n g l e o b j e c t on l y .
## Re l a t ed pkg : e r i s
Header heade r
s t r i n g l a b e l
s t r i n g [ ] tag
sensor_msgs / Image image
i n t 1 6 [ ] c o l o r # Co lo r s t r u c t u r e D e s c r i p t o r
i n t 1 6 [ ] t e x t u r e # Edge Histogram De s c r i p t o r
#boo l g r a s p a b l e
#boo l man i pu l ab l e

To track all the revised knowledge, we design the structure of a Familiarity Filtering

Index (FFI) database ROS message file, such that the generated database file _FFI.db
contains an array of known_objects and known_tags. Raw knowledge will not be listed in

the database file, since no interaction context (in form of label and tags) are associated

with the corresponding object. The database will be dynamically updated when there is a

revised or removal of information, such as tags and object name, based on the interaction

with human.

Listing 4.9: ffiDatabase.msg

## This i s the s t r u c t u r e o f an FFI da tabase
## Re l a t ed pkg : e r i s
s t r i n g [ ] known_objects
s t r i n g [ ] known_tags

To manage all the known tags, once a tag has been associated to an object in an

SM item, a tag file will be generated with the structure based on the tag.msg file, which

contains the tag name and an array of the associated object.

Listing 4.10: tag.msg

## This i s the s t r u c t u r e o f a Tag
## Re l a t ed pkg : e r i s
s t r i n g name
s t r i n g [ ] a s soc_ob j

61



4.4. IMPLEMENTATION CHAPTER 4. INTERCONNECTIVITY

To allow the human to interact with ERIS using contextual information, we provided

a command-line interface in a ROS server-client architecture. The query from human

will be passed as the format according to query.srv, where the request consists of both

interaction case and question in the form of int8 type as well as the array of string of the

requested context. While the response is the multi_responses, which simply an array of

string, for a flexible answer in a natural language by ERIS.

Listing 4.11: query.srv

## This i s the pa ramete r s r e l a t e d to query p r o v i d e d by human
## Re l a t ed pkg : e r i s
i n t 8 i c a s e # I n t e r a c t i o n ca se
i n t 8 q u e s t i o n
s t r i n g [ ] l e x i c a l i n f o
−−−
s t r i n g [ ] mu l t i_ r e s pon s e s

Listing 4.12 shows the help instruction of the command-line interface, including on

how to ask the verbal question in the different cases of memory recollection. For an

experiment where the robot is not present, we have implemented the imageloader node

to load a JPG image in a predefined directory to replace the role of capturing the live

visual stimuli during the human-robot interaction. The image within the preset directory

will be loaded as if the robot experience a live visual stimuli, and will be processed in

the same fashion as in the real robot, in this case, valid for only case 1 and 3 of memory

recollection.

Listing 4.12: Snippet of command-line help instruction

Un i v e r s a l C l i e n t Program ve r . 0 . 1 . 0
Bas i c Command L ine Parameter App
Example que ry ( case 3 , q u e s t i o n 1 , w i th con t e x t ) :
r o s r u n e r i s q u e r y_ c l i e n t −c 3 −q 1 − l l e f tmo s t − l lamp
Va l i d Case :

1 . Image on l y
2 . Context on l y
3 . Image+Context

Make s u r e t ha t the ‘ v i s i o n . JPG ‘ image i s l o c a t e d i n
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the f o l d e r ‘ Bax t e rV i s i o n ‘ . ( Th i s s e r v e s as an a l t e r n a t i v e
fo r l i v e v i s u a l s t i m u l i d u r i n g HRI . )
Choose qu e s t i o n to ask Baxte r :
<img> = v a l i d fo r Case 1 & 3 ,
<ctx> = v a l i d fo r Case 2 ,
<img/ ctx> = v a l i d fo r a l l c a s e s .
1 . Are you f a m i l i a r w/ <img/ ctx >?
2 . What k i nd o f <ctx> were you p r e s e n t e d wi th ?

( r e s u l t combined w/ q1 )
3 . How many o f <ctx> have you seen so f a r ?
4 . Did you remove any o f <ctx >?
5 . Did you move any o f <ctx >?
6 . How many o b j e c t s l e f t a f t e r you remove <ctx >?
7 . What <ctx> ob j e c t d i d you move?

( r e s u l t combined w/ q5 )
8 . How many o b j e c t s a t l e a s t were i n the workspace ?

In principle, the process of memory recollection through human-robot interaction can

be performed at any time, even in the middle of the progressive knowledge development

process. This is because it is only dependent of the currently possessed knowledge instead

of the knowledge development process itself.

In general, the architecture is very flexible for future expansion as well as addition

of a more sophisticated robot development modules, and any ROS compatible robots are

easily integrable.

4.5 Chapter Summary

This chapter provides the main contribution of the thesis, which is the architectural design

of developmental framework in explicit formal notation. The research is motivated by the

significant aspects that are currently missing in the state-of-the-art literature of the re-

lated research field (detailed in Section 4.1, also briefly discussed in Chapter 2) which are

mainly about the development of cognitive architecture for various application domain,

and including the fact that we need a clear distinction between cognitive and develop-

mental robot architecture. The idea behind the research work is inspired based on human

memory organization (discussed in Chapter 3), and the key building block of our develop-
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mental architectural design is the notion of memory item (discussed in Section 4.3). We

have discussed about what has been achieved in terms of design overview (in Section 4.2)

and implementation (in Section 4.4). In our current development stage, there are some

elements that are not implemented yet, such as procedural memory, forgetting mecha-

nism, and sensory elements other than visual. Also, we have not yet formalize the role

of autobiographical memory, due to all the knowledge gathered by the robot are related

to itself, instead of related to both general abstracted memory and self-memory. There-

fore this can be considered also as the role of autobiographical memory, which function

is significant to the developing system.
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Chapter 5

Personal Knowledge Development

We have associations to things. We

have, you know, we have associations

to tables and to - and to dogs and to

cats and to Harvard professors, and

that’s the way the mind works. It’s an

association machine.

Daniel Kahneman

This chapter provides the explanation of how a robot acquires and develops its own

knowledge by interacting with human and the environment, based on the architectural

design elaborated in the previous chapter. The chapter begins by providing an overview

of how the familiarity mechanism works as well as the related literature and motivation,

and the details of the memory processing related to familiarity mechanism, the notion of

context and tags.

5.1 Overview

Association and classification is used by humans at a fundamental level (both consciously

and unconsciously) to organize information. In this chapter, we describe how the human-

assisted knowledge revision process exploits labeling to associate robot knowledge with

tags, which are then used to implement a simple form of classification. As part of the

human-robot interaction process, the robot interacts with the human to classify its factual

and sensory knowledge. Tags are dynamic, since they are obtained as a result of human

knowledge, and can be further revised in later interaction processes. The following two
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sections describe the literature and motivation of using the familiarity mechanism, and

how such a semantic structure is used to implement a robot-based familiarity process, i.e.,

an associative process that allows a robot to retrieve relevant memory item in human-

robot interaction processes.

The main motivations for a simple and generic classification procedure are: (i) famil-

iarity measures based only on object features such as color and shape are highly subjective

and prone to sensing errors, whereas more general semantic information, when agreed by

both humans and robots, is stable; (ii) as discussed in Section 2.5, a knowledge revision

process based on semantic tags allows for the definition of a shared context between the

interacting human and robot.

The detected objects will undergo image processing module to have the color and

texture features extracted as the familiarity determination condition. Color Structure

Descriptor (CSD) and Edge Histogram Descriptor (EHD) are used for both color and tex-

ture/shape outline of the object, respectively. CSD corresponds to a representation of the

color distribution and the local spatial structure of the color of an image. Formally, CSD

is a 1D array of eight big-quantized values

CSD = h̄s(m),m ∈ {1, . . . ,M}

where M is the size of the features of either {256, 128, 64, 32}, and s is the scale of the

associated square structuring element. In this case, we use the value of M = 64, as it

is accurate enough to represent the feature, and the scale s is computed automatically

depending on the image size. EHD computes the local edge distribution of the image by

dividing the image space into 4× 4 sub-images. By doing that, edges are categorized into

5 different types based on the angle, such as horizontal, vertical, 45◦ angle, 135◦ angle,

and non directional edges.

Each feature is represented as a 1D-vector which can be easily compared using cosine

similarity, as previously given by Equation 4.1. The CSD and EHD, which are parts of

MPEG-7 content description, are employed based on the implementation by Bastan, Cam,

Gudukbay, & Ulusoy (2010). The implementation provides other sophisticated visual

features as alternatives of the currently used CSD and EHD.
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5.2 Literature and Motivation

Here we present the literature of tagging related from the perspective of memory archi-

tectural model, which is closely related to personal memory organization and autobio-

graphical memory.

5.2.1 Script and schema

In the early development of human knowledge structure representation, Schank (1982)

and Schank & Abelson (1977) introduced the concept of Script, which is a kind of schema

to represent knowledge of past events and experience. The way script represent events

and past experience is defined to be goal directed and consist of sequence of either gen-

eral or specific high level actions that can be perform. Figure 5.1 shows the restaurant

script defined by Schank & Abelson (1977) to represent past experience of eating out in

a restaurant in general. The script includes roles (i.e., cashier, waitress), and props (i.e.,

table, menu), however, not containing the detail of the food, decor, restaurant name, and

amount to pay in the bill. The details can be inserted into relevant slots in the general

script, and this is convenient considering the hierarchical structure of the script. Scripts

explain the common observation in remembering routine, familiar, often-repeated events

we seem to have a generic memory in which individual occasions, or episodes, have fused

into a composite (Williams et al., 2008). The validity of scripts has been demonstrated

by Bower et al. (1979) where, where they asked students to generate components actions

that comprise an event, and list them in order of occurrence. They were asked about

attending a lecture, visiting a doctor, shopping at a grocery store, eating at a fancy restau-

rant, and getting up in the morning. Figure 5.2 illustrates the lists for attending a lecture

and visiting a doctor; where capital letters, italic, and lower case letters are mention by a

large portion, a few portion, and the fewest portion of the students, respectively. We can

see from the result that they ended up in a hierarchically structured with superordinate

and subordinate goals, and the actions as well as the sequence in the scripts are agreed

by the students. The scripts can also further divided into smaller scenes.

5.2.2 Schema copy plus Tag model

Regardless the positive outcome of the study by Bower et al. (1979), there seems to be

discrepancies of the model with real life events experienced by human. The model as-

sumes that the actions within the scripts must be familiar and general/routine activities.
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Script: Restaurant (the script header)
Roles: Customer, waitress, chef, cashier
Goal: To obtain food to eat
Subscript 1: Entering

move self into restaurant
look at empty tables
device where to sit
move to table
sit down

Subscript 2: Ordering
receive menu
read menu
decide what you want
give order to waitress

Subscript 3: Eating
receive food
ingest food

Subscript 4: Exiting
ask for check
receive check
give tip to waitress
move self to cashier
move self out of restaurant

Figure 5.1: An example of a restaurant script by Schank & Abelson (1977).

We need to consider the fact that there are unique events and one-off experiences, such

as the day you graduate high school, or the time you won a lottery. Findings from Brewer

& Treyens (1981) suggests that when memory was tested for objects in a room, schema-

inconsistent objects were recalled better than schema-consistent objects. Interestingly, a

study by Bower et al. (1979) with schema-inconsistent action turned out to be in a similar

fashion with schema-inconsistent objects by Brewer & Treyens (1981). Nakamura et al.

(1985) conducted an experiment in a form of lectures, where students attended a staged,

15-minutes lecture, which the lecturer performed several actions that varied in the rele-

vancy to the lecture script. Figure 5.3 shows a list of relevant and irrelevant actions that

was performed during the staged lecture. After the lecture, students were asked to rec-

ognized and identify the performed actions from a given list of actions. They found out

that irrelevant actions were recognized better than the relevant ones, and the false alarm
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Attending a lecture Visiting a doctor
ENTER ROOM Enter office
Look for friends CHECK IN WITH RECEPTIONIST
FIND SEAT SIT DOWN
SIT DOWN Wait
Settle belongings Look at other people
Look at other students Name called
Talk Follow nurse
Look at professor Enter examination room
LISTEN TO PROFESSOR Undress
TAKE NOTES Sit on table
CHECK TIME Talk to nurse
Ask questions NURSE TESTS
Change position in seat Wait
Daydream Doctor enters
Look at other students Doctor greets
Take more notes Talk to doctor about problem
Close notebook Doctor asks questions
Gather belongings DOCTOR EXAMINES
Stand up Get dressed
Talk Get medicine
LEAVE Make another appointment

LEAVE OFFICE

Figure 5.2: Script actions for the events of attending a lecture and visiting a doctor based
on the study by Bower et al. (1979).

rate was three times higher for relevant actions. The result of the experiment were inter-

preted in a schema copy plus tag (SC+T) model proposed by Graesser (1981); Graesser,

Gordon, & Sawyer (1979); Graesser & Nakamura (1982); Graesser, Woll, Kowalski, &

Smith (1980); Smith & Graesser (1981), in order to explain the relevancy of the actions

or objects related to the recalled memory occurred based on script-based passages. The

term tags here are correspond to the irrelevant, unexpected, or deviant aspects of the

event. They are also distinctive and memorable, and used for the retrieval of specific

episodes. This notion of tags inspires us to incorporate the formal definition of context in

our implementation of ERIS. Nevertheless, the schema copy plus tag itself is considered

to be oversimplified to model the major phenomena within human memory, and a more

dynamic model to represent past experience is needed.
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Relevant actions
Sitting on a corner of a table
Pointing to information on the blackboard
Opening and closing a book
Moving an eraser to the blackboard
Handing a student a piece of paper

Irrelevant actions
Putting a piece of paper in a trash can
Scratching head
Wiping off glasses
Bending a coffee stirrer

Figure 5.3: Relevant and irrelevant actions considered in one of two lectures experiment
in the study by Nakamura et al. (1985).

5.2.3 Motivation

After preceded by scripts and schema as well as the schema copy plus tag memory mod-

els, plus the thematic and temporal organization discussed in Section 3.5, Reiser, Black,

& Abelson (1985) investigated the function of script-like knowledge structure in the pro-

cess of organizing and recollecting past experience. They also compared the effectiveness

of two different knowledge structure in terms of accessing personal memories. The two

knowledge structures are called activities and general actions. Activities are script-like

structures consist of knowledge in the form of sequence of actions in order to achieve a

particular goal (e.g., eating in a restaurant, getting a medical check up in a hospital). On

the other hand, general actions are higher level actions that can be performed in many

different situation and context (e.g., buying tickets, reading a magazine). Reiser et al.

(1985) also proposed Activity Dominance Hypothesis, to predict that activities would be

better retrieval cues than general actions. This is due to accessing specific activities gen-

erates many inferences about food, decor, service that serves as further cues for retrieving

specific details of memory. They asked subjects to recall specific personal experiences to

fit a given activity cues such as went out drinking, and a general action such as paid at
the cash register. The order of the two cues are varied to analyze the response time of the

two orders, and they found out that the order with activity cues first and general action

as the second cue yields faster response time. They concluded that there are two stages of

personal memory retrieval to achieve optimal level of specificity: 1) establish a context,
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and 2) finding an index or tag that matches particular experience within that context.

This model is called context + index model, which is similar to schema copy + tag model.

However, several flaws of context + index model are pointed out by Conway & Bekerian

(1987) and Barsalou (1988). Conway & Bekerian (1987) failed to replicated the findings

of Reiser et al. (1985), and they suggested that retrieval of personal memory was based

on lifetime periods (e.g., schooldays, college). Barsalou (1988) questioned the Activity

Dominance Hypothesis and compared the effectiveness of a variety of different cues, such

as activity cues (e.g., reading a book), participant cues (e.g., your mother), location cues

(e.g., at home), and time cues (e.g., at noon). They found out that order of the cues is

not an influencing factor in terms of retrieval time. They also suggested that goals (e.g.,

passing an exam or learning to drive) is a good cue to remembering personal memories.

The literature above inspires us to design similar mechanics for a robot to efficiently

stores and retrieve personal memories, considering the interconnectivity between compo-

nents. In particular, the feature of our proposed architecture incorporates the notion of

context and tags for the familiarity mechanism.

5.3 Memory Processing Phase

Familiarity mechanism is closely related to how the personal memories of robot are pro-

cessed. We consider four kinds of memory processing phase: memory formation, consol-

idation, revision, and recollection. Currently there are two memory types implemented,

Semantic Memory (SM) and Episodic Memory (EM). As both types are parts of the Long-

Term Memory, SM represents general facts of the world, and EM represents events-related

information experienced by the robot (currently, it is limited to visual stimuli). To easily

understand the principle of knowledge development process, we describe the four mem-

ory processing phase using illustrative scenarios.

5.3.1 Formation Phase

Let us assume that we present the robot a red ball. After the RGB image of the captured

scene goes through the image processing module, the content of a SM item file is initially

formed as a raw memory item to represent a raw knowledge, depicted in Figure 5.4a.

The OBJ_ identifier refers to a general object, as in the future work we may include other

specific facts that can be represented, such as human face, a person, and animal. The

header contains the encoding timestamp. Initially, the object comes with an empty array
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OBJ_asd123 . sm = {
heade r=〈t imestamp〉 ,
l a b e l=asd123 ,
tag =[ ] ,
image=〈BGR image o f the b a l l 〉 ,
c o l o r=〈CSD〉 ,
t e x t u r e=〈EHD〉

}

(a) An example of raw semantic memory item

SE_zxc456 . em = {
heade r=〈t imestamp〉 ,
l a b e l=zxc456 ,
ob j_count=1,
seq_count=0,
pos_minx =[5 ] ,
pos_maxx=[10 ] ,
pos_miny =[25 ] ,
pos_maxy=[35 ] ,
obj_name=[ asd123 ] ,
s equence =[]

}

(b) An example of raw episodic memory item

Figure 5.4: Structure of raw semantic and episodic memory as ROS message format.

of tag, assuming that the robot does not have the capability to autonomously associate

the asd123 object with its current knowledge. The label for both raw SM and EM item

uses a 6-digit random alphanumeric to prevent label duplication and acts as a temporary

placeholder label. It also contains the BGR image of the detected object and the two

features mentioned earlier.

Figure 5.4b depicts the formed raw EM item. The SE_ identifier refers to a specific
event, which currently the only type of event implemented. The header and label serve

the same purpose with the one in the SM item. Assuming that the scene zxc456 contains

only a single object asd123, the obj_count has the value of 1, representing the object

count at each scene. The seq_count and sequence corresponds to the number of robot

movement sequence from the Procedural Memory (PM) during the scene and the array

of the name of the sequences, which currently serves no purpose yet as the PM details

are not yet implemented. Since the scene is supposed to contains objects, the 2D plane

position of each object with respect to the Field of View are available in the form of array,

with the variable of pos_minx, pos_maxx, pos_miny, and pos_maxy. Finally, the obj_name
corresponds to the object label detected at the scene. This information is interconnected

with knowledge within the semantic memory, because in order to know what object is

detected at a particular scene or event, the knowledge regarding that particular object

must be exist, and semantic memory is the proper place to store these kind of knowledge.
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Table 5.1: Summary of cues of memory item as ROS message

Category Identifier Remarks

Filename prefix OBJ_ indicating objects
Filename prefix SE_ indicating specific event
File extension .sm semantic memory extension
File extension .em episodic memory extension
General-purpose cue header ROS header msg
General-purpose cue label indicating label of a particular memory item
Context-dependent cue tag storing tags from interactions
Placeholder value

〈
. . .

〉
asdasd

1D Array value [ v1, . . . , vn ] given n as the array size and 1 < m < n,
vm is the element value of the array.

5.3.2 Consolidation Phase

To distinguish the raw and revised knowledge, a database is used to track all the known

information based on the interaction with human. Only revised knowledge will be listed

in the database. Initially, when there were no revised knowledge possessed by the robot,

the database is empty. After a memory is formed, it is consolidated to the Long-Term

Memory Storage as its filename (e.g., OBJ_asd123.sm or SE_zxc456.em). Depending on

the type of the knowledge, the consolidation process consists of:

1. storing the formed memory into the hard-drive as the corresponding memory files

(for both raw and revised knowledge), and

2. recording and updating the memory item information within the database (only for

revised knowledge).

For a raw memory item processing (representing raw knowledge), no database opera-

tion is performed, because there were no information provided for interaction by human

during the capture time of the scene.

5.3.3 Revision Phase

Up to this point, the memories formed in Figure 5.4 are called raw knowledge, as discussed

in Section 4.1. When the robot detects a previously seen object, it recognizes the object

as the corresponding memory exists in the long-term memory. With this mechanism, the

robot is able to develop its own knowledge even without human interference.
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However, we expect the robot to interact with human at a certain period of time. When

a human verbally ask if the robot knows what is the object called, it will respond with

nothing regarding the object label, because the robot does not have the information about

the object label that the human supposed to understand. It will need to interact with

human to provide meaningful information to the known knowledge for future occurrence

of human-robot interaction.

Then, notion of knowledge revision plays a role here. The knowledge revision process

involves the notion of tagging of memory items. In order to represent different human-

human and human-environment interactions, it is believed that neural equivalents of

placeholder labels are used to refer to them (Manis & Meltzer, 1978). A tag is a symbolic

reference used to categorize factual knowledge in the form of a Semantic Memory item

(i.e., an object or a related concept). In Semantic Memory, each memory item si is char-

acterized by a label λi, a set of tags Ψi = {ψi,1, . . . , ψi,n}, which allow it to be referenced

by a unique label and multiple associated tags, and physical properties of the objects,

such as visual features Φi = {φi,1, . . . , φi,n}, such that si = (λi,Ψi,Φi), i = 1, . . . , S. This

correspondence entails an associative property: memory items in Semantic Memory are

directly connected to relevant tags and each tag to the associated memory item. Figure 5.5

depicts the sequential process of knowledge revision including the tagging process. Dur-

ing a first initialization phase, a human requests a specific memory item to be revised.

Then, if such memory item exists, it is associated with a label and a set of tags. The

revised memory item is validated and consolidated in long-term memory.

Continuing our example, human symbolically tell the robot that the object that it

saw was a redball and it is associated to the tag round, and plastic. After revision, both

raw SM and EM item in Figure 5.4 become revised memory items (representing revised

knowledge) as in Figure 5.6.

Revising a memory item involves a consolidation process including the database up-

date operation to make sure that the new information within that memory item is properly

updated. Therefore, after the revision example above, the database file _DB.ffi is updated

and contains of the following information:

_DB. f f i ={
known_objects=[ r e d b a l l ]
known_tag=[ round , p l a s t i c ]

}
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Figure 5.5: Tagging in a human-assisted knowledge revision process.

5.3.4 Recollection Phase

Next, the memory recollection involves checking the Long-Term Memory storage and re-

trieve the desired information. This process occurs in the weak sense of conscious and

unconscious recollection. Unconscious recollection means that when the robot is about to

determine whether an object is familiar, it should recall its current knowledge regarding

that object. Meanwhile, conscious recollection occurs during human-robot interaction,

where a human demands a specific information regarding a particular knowledge of a

certain event or fact.

Two kinds of familiarity measures are considered:

1. object familiarity, which is related only to Semantic Memory; and
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OBJ_redba l l . sm = {
heade r=〈t imestamp〉 ,
l a b e l=r e d b a l l ,
tag=[ round , p l a s t i c ] ,
image=〈BGR image o f the b a l l 〉 ,
c o l o r=〈CSD〉 ,
t e x t u r e=〈EHD〉

}

(a) An example of revised semantic memory
item

SE_zxc456 . em = {
heade r=〈t imestamp〉 ,
l a b e l=zxc456 ,
ob j_count=1,
seq_count=0,
pos_minx =[5 ] ,
pos_maxx=[10 ] ,
pos_miny =[25 ] ,
pos_maxy=[35 ] ,
obj_name=[ r e d b a l l ] ,
s equence =[]

}

(b) An example of revised episodic memory
item

Figure 5.6: Revised semantic and episodic memory as ROS message format.

2. scene familiarity, related to both Episodic Memory and Semantic Memory.

During the human-robot interaction process, inquiries can be made to the robot by

specifying the context in which to frame the response. As of Definition 11, a context item

γj is characterized by a retrieval cue cj, a value for that cue vj, and a set of relevant tags

Ψj, such that γj = {cj, vj,Ψj|1 < j < X}. A context item refers to lexical information,

which consists of a single cue, its value, and a set of tags, which are expected to match the

whole or part of the set of tags provided during the knowledge revision process. Then, a

context ξ is modeled as a set of X context items γξ, such that ξ = {γξ,1, . . . , γξ,X}.
In Episodic Memory, the memory item is called an episode, formalized as σ̂ ∈ EM ,

which is a digest of a scene. A scene σ is a captured visual stimuli, resulting from

the changes of visually detected input, which indicates the occurrence of an event at a

particular time. In short, a scene is an event marker. Anything occurs between two

distinct scenes is defined as an event. Scenes that have been captured are formed into

episodes, and stored in the LTM. An event η is associated with, and occurred over a period

of time, which marked from two distinct scenes correspond to the beginning and the end

of an event. It consists of multiple, timestamp-ordered episodes during the period of that

event, defined as η = {σ̂η,1, . . . , σ̂η,s}, given s is the number of episodes for that particular

event.

Figure 5.7 depicts the representation of events and objects, as well as the relations

between them. Any detected objects within a scene are represented as Semantic Memory

76



5.4. LIMITATIONS & ASSUMPTIONS CHAPTER 5. KNOWLEDGE DEVELOPMENT

Figure 5.7: Representation of objects and events, and their relations.

items, and familiar objects detected in a scene with respect to the past experience refer to

the same Semantic Memory item (e.g., the blue box in Figure 5.7 in the newer scene refers

to the previously consolidated Semantic Memory item from the older scene). As changes

occur between scenes, unfamiliar objects are consolidated as raw Semantic Memory items

and the corresponding scene as an Episodic Memory item (episode).

Up to this point, one cycle of the knowledge development process is complete. As

long as ERIS is activated within the robot, the cycle keeps continue and the robot keeps

gathering knowledge into memories and personal experience from the received stimuli.

In some occasions, the cycle could be either [recollection-formation-consolidation] when no

interaction with human is considered, or [recollection-revision-formation-consolidation] when

the interactions are considered. In principal, the cycle [recollection-formation-consolidation]
emphasizes the capability of progressive knowledge development without human in-

tervention or assistance.

5.4 Memory processing limitations and assumptions

We consider two equal scenes in a different timestamp as mutually exclusive, hence

if a familiar scene is detected, it will not be consolidated since we have the first occur-

rence of the scene as the episode from the past experience. The implicit assumption that

we take into account is that every object contained in a scene must have the correspond-

ing Semantic Memory item. In other words, when a robot recalls a particular scene of its

personal experience, it must know what objects exist in that scene by having their Seman-
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tic Memory items in the Long-Term Memory storage, regardless of being raw or revised

knowledge.

For the object familiarity, we currently consider color familiarity using the implemen-

tation of Color Structure Descriptor (CSD), and Edge Histogram Descriptor (EHD) for

the texture and shape familiarity. Both descriptors are part of the MPEG-7 content de-

scription standard (Manjunath et al., 2002). We also consider that the objects used in

the experiments have a distinctive colors that are contrast enough to be detected in the

workspace, in this case a flat, white surface table. The text-based communication is cur-

rently implemented as simplified grammar with no sophisticated natural language pro-

cessing interface, so the input set from the human will be directly processed based on the

formal definitions without involving a sentence parsing process, and the HRI interface

module only gives the readers several examples out of many possible questions to ask

the robot integrated with ERIS, which demonstrates the versatility of verbal interaction

with ERIS developmental structure. We assume a static field of view of the main input

camera, which affect the scene familiarity. Subsequently, this bring us to the limitation

that a scene is considered familiar when detected objects are determined to be familiar

and their spatial differences with respect to the field of view are within a predetermined

threshold value. Occlusion between detected objects and forgetting mechanism are not

considered at the current development stage.

As discussed in the previous subsection, in principle, the cycle [recollection-formation-
consolidation] emphasizes the progressive knowledge development with no human assis-

tance. However, in our current development stage, the captured scenes are segmented

manually, meaning that there is human assistance in capturing the scenes. We consider

this as a segmentation problem, which is directly unrelated to the proposed architectural

design, and will be resolved in the future development stage.

5.5 Different Cases of Memory Recollection

We consider three fundamental cases where memory recollection is performed, which

are:

1. perception of visual stimuli only;

2. lexical context only; and

3. perception of visual stimuli complimented with lexical context.
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Those three cases involves object recollection and scene recollection. From this distinc-

tion, we shall see how inputs within each case affect memory recollection.

During the object recollection for Case 1, this process deals only with SM item. Given

an image referring to an object, a human inquire the robot regarding the familiarity status

of the detected object. In case of object recollection within a scene or during an occur-

rence of an event, please remember the implicit assumption we consider in Section 5.4,

that the robot must know the details of objects information contained in a scene during

a memory recollection process, by having the corresponding SM item in the Long-Term

Memory storage. Therefore, the robot will respond with nothing when a query related to

a novel object is inquired. The scene recollection deals with both EM and SM, and given a

scene image, a human inquire the robot regarding the familiarity status of that particular

scene.

The given input set of lexical context in case 2 and case 3 is defined according to the

context item notation in Definition 11. For case 2, given the input context, a human then

inquire the robot about the familiarity status of the context, which may involve either

episodes or SM items.

Case 3 is simply a combination of case 1 and case 2. Similarly, this can refer either

to object or scene recollection. For the object recollection, given an object image and

contextual information, a human inquire the robot about the familiarity status of an object

that conceptually looks like the input image, but possess different characteristics lexically

described as the context. For the scene recollection, given a scene image and contextual

information, a human inquire the robot about the familiarity status of a particular scene

with the characteristics described in the given context.

This is an important feature of ERIS, as it allows the robot to retrieve different

knowledge based on various, multiple contexts from its current knowledge and/or

the given contextual information. Memory recollection applies to conscious and uncon-
scious process. We refer to it as a conscious process when it occurs as part of a human-

robot interaction process (i.e., case 1, 2 and 3), and as an unconscious process (passively

perceiving the environment) during knowledge acquisition (i.e., case 1 only).

Next, a more advance memory recollection procedure is also applies to exploit the

past experience of the robot, as a part of the human-robot interaction conducted in our

experiment. Such procedure allows human to ask the robot regarding the facts within

possible past events, without limitations only to familiarity. Some examples of the appli-

cable questions to the robot are “Have you been presented with a purple box before a green
ball?”, “Did you move the blue box to the right hand side?” or even “How many objects
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do you know that are related to a box?”. This represents the ability to recall a general

knowledge regarding all the knowledge that the robot has experienced.
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Chapter 6

Experiment 1: Manifestation of Robot
Personal Experience

Character is higher than intellect. A

great soul will be strong to live as well

as think.

Ralph Waldo Emerson

6.1 The Properties of Events

ERIS allows a robot to gain knowledge as time progresses, and the concept of events al-

lows further potential of exhibiting past experiences flexibly based on the contents within

episodes. As we have discussed in the explanation for Definition 9 in Section 4.3, the con-

cept of event is characterized by three interesting properties, which are flexible, subjec-

tive, and personal. Flexible means there are no strict definitions of atomic or compound

events (on the contrary to what has been postulated in the work by Stachowicz & Krui-

jff (2012)). Due to this property, any two events can be distinct, overlap in terms of the

events timestamps, or one can include the other, which also complies with the whole set of

relationships between intervals defined by Allen (1983). Subjective means that an event

may be interpreted in multiple ways, depending on the presence of objects in the scene

during the occurrence of the event. An event is subjective when, for instance, event A =
{episode 1, episode 2, episode 3} where all episodes in event A contains a blue box on the

left hand side, and a red ball on the right hand side. We consider an episode is a collection

of symbols representing specific properties of the scene. Therefore, during human-robot
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interaction, if a human inquire the robot the familiarity status of an event with a blue box
on the left hand side, the robot will respond with event A as the answer. Assuming that the

robot only experience one event (event A) so far, if a human inquire the familiarity status

of an event with a red ball, it will also respond with event A. This illustrates that the same

event may be interpreted in different ways depending on the contents of the episodes

and the request/desired situation. Finally, personal means events between two identical

robots, each exposed with similar visual stimuli in the same architecture might be dif-

ferent due to the difference in the previously gained knowledge. Interestingly, although

addressed from the event perspective, this personal property seems to share common idea

with The Principle of Subjectivity addressed by Stoytchev (2009), which emphasizes the

interaction history during human-robot interaction.

In our architecture, this phenomenon is exhibited fundamentally by processing non-

familiar scenes and consolidating the related memory items. Figure 5.7 illustrates the

phenomenon, as an episode is representing a scene, which is a captured visual stimuli

of the environment. Consolidating the episode means representing a specific snapshot of

visual experience in a particular period of time. Recognition of familiar scenes or objects

is analogous to remembering certain past events, and their corresponding memory item

recollection processes are subsequently performed.

6.2 Motivation for a small scale experiment

Before going directly into the long-term experiment, we shall test our proposed system

in a small scale experiment, which consists of a small number of scenes experienced by

the robot. Ideally, in the long term experiment, the robot should be able to progressively

gaining knowledge and at the same time handle the interaction with human and the

environment for days, months or even longer. Even though the robot is turned off for a

certain period of time, the knowledge (in the form of nonvolatile memories) should not

be influenced during the deactivation period. After the robot is turned back on, the robot

should retain the memories and continue the knowledge development from that point.

In this early development stage of ERIS, it is a good chance (and easier) to explain the

fundamental phenomena of the progressive knowledge development that are exhibited

by the robot using a small amount of scenes.
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6.3 Experimental Design and Evaluation

6.3.1 Experimental Scenario

In this section, we describe the experimental scenario designed to emphasize the features

introduced in the previous chapters. The target robot platform is Baxter, a dual-arm

manipulator from Rethink Robotics. The robot workspace is constituted by a flat, white

surface table with a dimension of 0.5m×2m×0.7m, where we located objects with various

shapes and colors. This is also to make sure that the color of the objects are contrast to the

white surface table. The objects have similar dimension, approximately 0.1m × 0.1m ×
0.1m, which are easily graspable using Baxter’s gripper. The camera integrated in the

Baxter’s left hand is directed towards the objects, and kept at a fixed configuration, as

shown in Figure 6.1. The experiment is made up of two phases:

1. progressive knowledge acquisition; and

2. memory retrieval through interaction.

Initially, Baxter’s LTM storage is empty and it has no memory items, nor it has any

notion of familiarity. During the first phase, Baxter performs pick and place movements in

sequence, moving specific objects using the gripper of the right arm. This phase represents

changes in the environment, which also includes the detection of novel objects and the

removal of existing objects within the robot field of view. A scene is manually segmented

whenever a pick and place action is completed. Examples of scenes captured in this phase

are depicted in Figure 6.2. Then, during the second phase, a human can ask Baxter

about the familiarity status related to specific input at any given time, according to any

of three cases introduced in Section 5.5. Technically, phase 2 can be initiated at any time

during phase 1, because an epigenetic robot should be able to perform phase 1 without

any human interference and human may interact with robot at any given time. However,

here we clearly separate both phases since we would like to consider all the experience

obtained by the robots before the human-robot interaction. Occluding configurations

among objects and forgetting mechanisms are not considered.

After the first phase is complete, knowledge revision can be performed according to

the procedure depicted in Figure 5.5, and known objects are associated with a label and

multiple tags. The relationship among tags, SM and EM data is shown in Figure 6.3.

During the first scene segmentation as depicted in Figure 6.2a, two unidentified objects

labels with their position with respect to the robot field of view are consolidated as episode
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Figure 6.1: Baxter witnessing the event

1. As time progresses, since no novel objects are detected and all the detected objects are

familiar to Baxter with different location, no new SM data is created and only episode
2 is consolidated. Since Baxter has the information of all familiar objects, the objects

information in episode 2 are referring to the existing SM data. So far, Baxter has two

episodes (episode 1 and episode 2) and two unlabeled SM data with color and texture

representation and no associated tags. As a novel object is presented to Baxter, a new

scene is segmented and consolidated. It is labeled as episode 3, which contains three

objects with their corresponding information, which one of them is a novel object. In

addition, a new SM data correspond to the novel object is created. Finally, at the end

of the consolidation of episode 3, Baxter has three episodes and three SM data. At this

point, a knowledge revision process is commenced, where a human assigns tags that are

associated with the objects. After revision, the object labeled as orangelamp is assigned

the tags orange, lamp, and round. Since EM and SM are interconnected, the label of the

orangelamp in episode 1, 2, and 3 are automatically updated from the less meaningful,

random alphanumeric placeholder label.

The tags are only added in the SM because it is independent with respect to past

events. To make things more interesting, some common tags (e.g., round, toys) are as-
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(a) Scene 1 (b) Scene 2 (c) Scene 3

(d) Scene 4 (e) Scene 5 (f) Scene 6

Figure 6.2: Scene configuration dataset

signed to the known objects. The object tealball is assigned the tags round, teal, and toys,
and cube is assigned the tags toys, purple, and cube. The same procedure applies to the

rest of the scenes captured, as shown in Figure 6.2. Please note that other details within

EM data such as object count, timestamp, scene label are omitted for clarity. Now, let us see

the three interaction cases in a bit more detail.

Case 1. In order to verify the robot capabilities to exhibit object familiarity, we present

three objects to Baxter one at a time: every time, the robot provides the familiarity status

related to the presented object. For the scene familiarity, we arrange the objects on the

table to resemble specific experienced scenes and also set a completely new workspace

arrangements to see whether the witnessed scenes are familiar to Baxter.

Case 2. We query Baxter about the familiarity status of contextual information via a

command-line interface. For the object familiarity, this will only correlate with known

SM data. In this case, we expect a Boolean response for the familiarity status, with the

addition of objects that are similar to the context. For the scene familiarity, the input is

contextual information as formally defined in Definition 11, and will correlate with either

SM, EM, or even both, depending on the context.

Case 3. For the object familiarity, several objects are presented one at a time, with

additional contextual information regarding the object characteristics that we would like

Baxter to remember. For the scene familiarity, the workspace is rearranged in various

configurations and a scene is captured for each configuration as the input for Baxter with

additional contextual information.
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Figure 6.3: Object-tag associations after revision for scene 1 to 3

6.3.2 Results

The results for case 1 are shown in Figure 6.4. Six objects are presented to Baxter one at

a time for the object familiarity, and the workspace is rearranged as the depicted configu-

rations. Table 6.1 shows the essential results for case 2. Aside from Boolean responses for

the context in Table 6.1a, the interface may also provide details about objects that sup-

port a Boolean response or similar to the desired input. Figure 6.5 presents both object

and scene familiarity results for case 3. For the object familiarity, since the criterion for

similarity matching is based solely on color, only objects that were previously presented to

Baxter are tested, so the influence of additional contextual information given aside from

the presented object can be easily analyzed.

6.3.3 Discussion

Let us discuss the results for case 1. For the object familiarity test, three objects are

identified to be familiar and other three to be unfamiliar due to the absence of the cor-

responding SM data. As pointed in Section 5.4, object familiarity matching is currently

based on color and texture. The future work will be focused on using a dynamic robot
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Figure 6.4: Experimental results for case 1

field of view to achieve a more sophisticated matching.

In the scene familiarity, three different arrangements of the workspace were set up

and identified as familiar for two arrangements and unfamiliar for one. So far, Baxter is

able to recognize familiar situations based on a single input, either a single object or a

particular workspace arrangement.

With a different approach, the input for case 2 is only constituted by a lexical context

instead of a direct visual stimuli. This affects the overall processing of memory recol-

lection. For the object familiarity, since the object label is desired to be identified, as in

Definition 11, a context item γj is characterized by a retrieval cue cj, a value for that

cue vj, and a set of relevant tags Ψj, such that γj = {cj, vj,Ψj|1 < j < X}. In this

case, the tags Ψj are listed in Table 6.1a. The context item of Tennis ball is identified

to be unfamiliar. However, Baxter is able to pinpoint the object that is related to ball,
by checking all the object label and associated tags, and therefore a Tealball is suggested

as the closest familiar object with Tennis ball. The context item Green box, formalized as
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Table 6.1: Experimental results for case 2

(a) Object familiarity with suggestions

Tags Familiar Suggestion

Tennis ball No Tealball
Green box No -
Round objects Yes Orangelamp, Tealball

(b) Scene familiarity with corresponding scenes

Contextual information Familiar Scene

a ball at the leftmost Yes, scene 1,2,5,6
3 objects with a cube at the rightmost Yes, scene 5
yellow toys No

{c, v,Ψ} = {object,label, green box}, is identified as unfamiliar with no suggestion given.

Similarly, the context item round objects, allows Baxter to give multiple suggestions aside

the familiarity status of the input query. Here, Baxter is familiar with round objects, and

all known round objects are listed, such as Orangelamp and Tealball.
Moving on to scene familiarity in case 2, a number of simple mapping indicators were

implemented to achieve a more variety of inputs, such as leftmost and rightmost. As the

position of the object with respect to the field of view is stored within the captured scene,

given n as an object, δ as a scene, and posx as the x value of position with respect to the

fixed field of view, leftmost and rightmost are simply defined as ∀n ∈ δ, arg minn∈δ posx(n)
and ∀n ∈ δ, arg maxn∈δ posx(n), respectively. With the first context given to Baxter, the

whole question can be interpreted as Are you familiar with a scene with a ball at the
leftmost?, and yields the result of scene 1, 2, 5, and 6. Considering the definition of event,
the architecture may interpret this result one step further by inferring that an event A
occurs between scene 1 and 2, and an event B occurs between scene 5 and 6. Hence, event

A and B are the events occurred when a ball is located at the leftmost. Since the definition

of event A and B depends on the experienced visual stimuli, other robots with the same

architecture may have a different experience, hence resulting in different definitions of

events. The second question is the familiarity of a scene where three objects were presented
with a cube at the right most and yields familiar result with scene 5 as the only identified

familiar scene. Since only one scene yielded as the interaction result, we may wonder

how an event of three objects with a cube at the rightmost is defined. Since there are
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no multiple scenes matching this criterion, that particular event cannot be defined and

considered non-exist. This is because an event is dynamic, meaning that changes within

the field of view are to be expected during the occurrence of an event. On the contrary, a

scene is static. Therefore, we can consider that at a certain point of time (i.e., at scene

5), a workspace configuration matched the criterion. As in the third context, we can also

give a simple context yellow toys, and this yields unfamiliar results for a scene with yellow

toys. From these results so far, Baxter shows the capability of recalling its personal past

events given the contextual information, and the results clarify the properties of events:

flexible and subjective. The personal property of event will become apparent later in the

experiment discussed in the next chapter.

Case 3 involves visual stimuli and contextual information as the input. For the object

familiarity, presented objects and the given context are shown in Figure 6.5a. Three

previously presented objects are paired with various contexts to see how familiarity is

affected by the context. For instance, the orangelamp is presented with an additional

context item of round and yields the tealball as the object that is also associated with round
category; the purple cube with the context item toys and tealball with the context item

round. Other examples of unfamiliar results yielded when the presented objects do not

match with the given context.

Figure 6.5b shows two distinct workspace arrangements monitored by Baxter, and

additional contexts are given to check the familiarity status. Similarly, only familiar

workspace arrangements are shown, so the influence of context can be easily seen. There-

fore, an apparently unfamiliar arrangement with any context yields an unfamiliar result.

We can see that the arrangement of scene 3 and scene 6 pairs with different contexts yield

different familiarity results. This result demonstrates the influence of context through the

personal scene recollection process.

This concludes our analysis about the manifestation of Baxter’s personal experience

through a descriptive experimental scenario, as well as the significance of contextual

information during human-robot interaction.
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(a) Object familiarity result

(b) Scene familiarity result

Figure 6.5: Experimental result for case 3
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Chapter 7

Experiment 2: Exploitation of The
Principle of Subjectivity

Knowledge is true opinion.

Plato

As discussed by Stoytchev (2009), the Principle of Subjectivity is extremely relevant

in an epigenetic robot when we consider the robot interaction with human or the envi-

ronment. Here, we illustrate our concrete example of two identical robot architecture

that may have different knowledge representation given similar visual stimuli of the en-

vironment, and different interaction history with human through contextual information.

First, using one unit of robot, two identical instances of ERIS are executed independently,

within the same workstation. For conciseness, we will refer them as Robot A and Robot

B. Both robots are subject to be given a similar visual stimuli and experience different in-

teraction with human via knowledge revision process. Similar to experiment 1 discussed

in the previous chapter, this experiment is also made up of two phases:

1. progressive knowledge acquisition;

2. memory retrieval through interaction.

Phase 1 is the process when the robots experiencing each of their given stimuli one

after another, which occurs without any human supervision. Each of the memory rep-

resentations will be created autonomously, as discussed previously. As soon as phase 1

ended with the processing of the last detected scene, we proceed to the phase 2, where a

human may ask questions to Baxter through the HRI module about the past experience.
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Technically, phase 2 can be initiated at any time during phase 1, because an epigenetic

robot should be able to perform phase 1 without any human interference and human may

interact with robot at any given time. However, here we clearly separate both phases since

we would like to consider all the experience obtained by the robots before the human-

robot interaction. At the end of the experiment, we expect both robots to comply with

The Principle of Subjectivity, which is to have different knowledge representation and

exhibit dynamic interaction with human, given the fact that both robots have different

interaction history.

7.1 Experimental Design

To see the principle of subjectivity in a better perspective, instead of comparing ERIS

with other epigenetic architectures, we do a side-by-side comparison of both Robot A and

Robot B (represented by one unit of Baxter Research Robot), with identical architecture

and the same initial condition (no prior knowledge and past events), and given different

stimuli based on the case as previously elaborated.

This experiment serves as an extension of the experiment 1 discussed in the previous

chapter. Similar with the previous experiment, Baxter robot serves as the robot platform,

and the robot workspace is constituted by a table where we located objects with various

shapes and colors. The camera integrated in the Baxter’s left hand acts as the main visual

capture device, which directed towards the objects and kept at a fixed configuration, as

shown in Figure 6.1. This time, unlike the previous experiment, using the same robot, two

different sets of workspace configurations are provided to the two identical architectures

which carried out independently, which we have decided to refer them as Robot A and

Robot B as previously mentioned.

Initially, for both Robots, Baxter’s Long-Term Memory storage is empty and it has no

memory items, nor it has any notion of familiarity. Phase 1 is conducted as either (a) a

human present an object into or remove one from Baxter’s Field of View; or (b) Baxter

performs pick and place movements in sequence, moving specific objects using the gripper

of the right arm. This phase represents changes in the environment, which also includes

the detection of novel objects and the removal of existing objects within the robot Field

of View. It is noteworthy that no exploration strategy is considered. A scene is manually

segmented whenever a pick and place action is completed by a human or Baxter. The

visual stimuli received by Robot A and Robot B are listed in Figure 7.1 and Figure 7.2,

respectively. The second phase covers the human-robot interaction procedures via the
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(a) Scene 1 (b) Scene 2 (c) Scene 3

(d) Scene 4 (e) Scene 5 (f) Scene 6

Figure 7.1: Experienced scene by Robot A

human-robot interaction module, where a human may inquire Baxter regarding details

of experienced past events or even simply the familiarity status related to specific input,

according to any of three cases introduced in Section 5.5.

Knowledge revision can be performed anytime during the first phase or even after the

first phase is complete, which procedure is depicted in Figure 5.5. Known objects are

associated with a label and multiple tags. The relationship among tags, SM item and

episode is shown in Table 7.1. For example, during the first scene segmentation of Robot

A as shown in Figure 7.1, two unidentified objects labels with their position with respect

to the Field of View are consolidated as episode 1. As time progresses, detected novel

objects are identified and consolidated when necessary during the scene capture process.

In scene 2, a tennis ball is introduced to Baxter, and its corresponding SM item is consol-

idated as well as the corresponding episode. In scene 3, no novel objects are detected.

However, since the position of an object has changed, a new episode is consolidated to

mark the changes of environment. The episode contains reference to the detected objects

from Baxter’s current knowledge of SM item. So far, Baxter has three episodes (episode

1, 2, and 3) and three unlabeled SM items with color representation and texture rep-

resentation, with no tags associated to the SM items. This process continues until all
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(a) Scene 1 (b) Scene 2 (c) Scene 3

(d) Scene 4 (e) Scene 5 (f) Scene 6

Figure 7.2: Experienced scene by Robot B

the witnessed scenes are processed. At this point, a knowledge revision process is com-

menced, where a human assigns a label and tags that are associated with the objects.

After revision, the object labeled as sirenlamp is assigned the tags orange, and round. Since

the EM and SM are interconnected, the label of the sirenlamp in episode 1, 2, and 3 are

automatically updated from a less meaningful, random alphanumeric placeholder label.

In a similar spirit to the experimental design in the experimental 1, to make things more

interesting, some common tags (e.g., round, yellow, toy) are assigned to the known objects.

The tags yellow and ball are assigned to the object tennisball, and the tags wood, brown, and

cube are assigned to the cube object. The same procedure applies to the rest of the scenes

captured, as shown in Figure 7.1. Please note that other details within the episodes such

as object count, timestamp, scene label are omitted for clarity.

Case 1. First, both Robot A and Robot B are presented with the set of objects that

are exclusively and mutually available for both robots one at a time, i.e., the objects

listed in Table 7.1. This means that both robots will consolidate these scenes, where

only one object is detected, during the interaction with human. In short, the robots
gain knowledge during the interaction. This phenomenon occurs when the robot is

presented with novel objects during human-robot interaction, which is the fundamental
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Table 7.1: The connection between tags, SM items, and episodes

(a) Object-tag associations after revision for Robot A

Objects detected by Robot A

Label Sirenlamp Tennisball Cube Softtoy
Found in Scene 1-3 Scene 2-6 Scene 6,7 Scene 1-4
Tags orange yellow wood black

round ball brown yellow
cube toy

(b) Object-tag associations after revision for Robot B

Objects detected by Robot B

Label Orangelamp Purplecube Tealball
Found in Scene 1-5 Scene 3-6 Scene 1-6
Tags siren purple round

lamp toy ball
cube toy

purpose of ERIS: to enforce mutual understanding between human and robot. To

verify the robot capabilities to exhibit object familiarity, six objects are presented to each

robot one at a time: every time, the robot provides the familiarity status related to the

presented object. For the scene familiarity, we rearranged the objects on the table to

resemble specific experienced scenes and also set a completely new arrangement to see

whether the witnessed scene is familiar to both robots.

Case 2. We query each robot about the familiarity status of contextual information via

a command-line interface. For the object familiarity, this will only correlate with known

SM item. In this case, we expect a Boolean response for the familiarity status, with the

addition of objects that are similar to the context. For the scene familiarity, the input
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is a context item as defined in Definition 11 and will correlate with either SM, EM, or

even both, depending on the context. Similar to the previous experiment, to achieve a

more variety of inputs, a number of simple mapping indicators were implemented, such

as leftmost and rightmost.
Case 3. For the object familiarity, several objects are presented one at a time, with

additional contextual information regarding the object characteristics that we would like

each robot to remember. For the scene familiarity, the workspace is rearranged in vari-

ous configurations and a scene is captured for each configuration as the input for each

individual robot with additional contextual information.

Finally, for the more advance memory recollection procedure, a mixed of common and

different questions will be posed to both robots. According to the working hypothesis of

The Principle of Subjectivity, we expect both robots to respond in a different fashion.

7.2 Experimental Evaluation

7.2.1 Results

The following subsection is a summary of the experimental results, and the next subsec-

tion is dedicated to the major discussion of the result. The results for case 1 are shown

in Table 7.2. Six objects were presented to both Robot A and Robot B one at a time to

test the object familiarity, and a human inquired the familiarity status of the object. For

the scene familiarity, the workspace was rearranged as the depicted configurations, and a

human inquired Baxter the familiarity of the scene, which eventually covers the familiar-

ity of all objects within the scene. The results for case only involved Boolean responses.

Table 7.3 shows the essential results for case 2. Aside from Boolean responses for the

context in Table 7.3a, details about objects that support the Boolean response or similar

to the desired input are provided by the query server module of the corresponding robot.

Table 7.4 and Table 7.5 presents both object and scene familiarity results for case 3, re-

spectively. For the object familiarity applies to case 1 and case 3, since the criterion for

similarity matching is based on color and texture features, objects presented from differ-

ent viewing angle sometimes may be recognized as novel objects, due to the insufficient

recognition rate with respect to the predefined threshold, which in this case 70% for both

color and texture recognition. For simplicity, those multiple SM items which refer to the

same object will be treated as one SM item. To solve this problem, a robust incremental

learning based visual tracking will be integrated as one of the immediate future works.
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Table 7.2: Experimental results for Case 1

(a) Object familiarity test

Robot
Is object familiar?

A 3 3 3 7 3 7

B 3 7 7 3 7 3

(b) Scene familiarity test

Robot
Is scene familiar?

A 7 7 3

B 3 7 7

Table 7.6 shows the results of the advance memory recollection feature given the current

knowledge possessed by each robot after experiencing all respective past events.

7.2.2 Discussion

Let us discuss the results for case 1. For the object familiarity test, four objects are able

to be identified by Robot A (which is sirenlamp, tennisball, cube and softtoy), and three

objects by Robot B (purplecube, tealball, and orangelamp). The unfamiliar objects are due

to the absence of the corresponding SM item. For the scene familiarity, three different

arrangements of the workspace were set up for both robots. Robot A and Robot B are

able to recognize one scene each to be familiar, depending on their past experience.

Another thing to be clarify, during the recognition of objects within a scene, the per-

spective of the object affects the familiarity result. There are cases where, for instance, a

cube that is positioned 45◦ to the left and 45◦ to the right might be recognized as two dif-

ferent objects. As a temporary workaround, as we mentioned before, here we treat them
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Table 7.3: Experimental results for Case 2

(a) Object familiarity with suggestions

Context
Robot A Robot B

Familiar Suggestion Familiar Suggestion

Lamp 3 Sirenlamp 3 Orangelamp
Toy 3 Softtoy 3 Tealball,

Purplecube
Yellow Toy 3 Softtoy 7 Tealball

Purplecube
Purple object 7 - 3 Purplecube
Round entity 3 Sirenlamp 3 Tealball
Brown object 3 Cube 7 -

(b) Scene familiarity with corresponding scenes

Given Context
Familiar Scene

Robot A Robot B

a ball at the leftmost Scene 2,5-6 Scene 1-2,5-6
a ball with a cube Scene 6 Scene 6
at least, a ball with a cube Scene 6 Scene 3-6
yellow toy Scene 1-4 7

a lamp and 1 other object Scene 1 Scene 1-2
a cube and 2 other objects 7 Scene 3-5
2 objects with a cube at the rightmost Scene 6 Scene 6

as the same object by assigning the same tags and label. This consequently may results in

multiple SM items that refers to one particular object. So far, both robots are able to rec-

ognize familiar situations based on a single input, either an image view of a single object

or witnessing a particular workspace arrangement. As two different robots with different

experience, they already shown different response based on the experienced past events.

We will see this more clearly in the subsequent results.

With a different approach, the input for case 2 is only constituted by a lexical context

instead of a direct visual stimuli. For instance, Baxter is provided with verbal inputs

instead of presenting an object. The lexical input “are you familiar with a lamp?” is

provided to both robots. This affects the overall processing of memory recollection, as

the color feature and texture feature will not be very much useful, and only tags related

98



7.2. EVALUATION CHAPTER 7. EXPERIMENT 2

Table 7.4: Experimental results for Case 3

Robot
Given a particular context, is the object familiar?

+ + + + + +
ball orange purple yellow toy toy

A 7 7 7

B 7 7

to each SM item will determine the robots responses. We argue that this phenomenon

emphasizes the usefulness of tags, as information such as color and texture can be

encoded to memory but will not be much of use for the decoding other than familiarity

matching. Tags associated to the SM item from human-robot interaction will help the

robot infer the lexical query since there is no visual feed involved during the interaction.

This can be analogically compared to the different mental representation possessed by

human when dealing with different kinds of stimuli (e.g., visual or lexical stimuli), as

elaborated by Kosslyn (2005) and based on the evidence by Tomasino, Werner, Weiss, &

Fink (2007).

For the object familiarity of lexical stimuli, the robot tries to identify the object from

both object label and associated tags. The context are listed in Table 7.3a based on

the formal design in Definition 11. For the context of lamp, both robots successfully

recognize the desired object as a familiar object, due to the fact that after interaction with

human, the object label or the tag contains a lexical information of lamp. However, due

to the previous interaction through the knowledge revision, each robot yields different

response of the object label, regardless that they refer to the same actual object. For the

same reason, the context toy also successfully recognized. However, both robots refer to

different objects that they know to be related to the keyword toy. When the robots were

asked about yellow toy, Robot A recognized softtoy as to be closely related with yellow
toy as both tags yellow and toy are associated with the object softtoy. On the other hand,

Robot B is not familiar with the context, but other objects associated with the the tags is
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suggested, i.e., tealball and purplecube. The rest of the given context related to the queried

object applies the same procedure.

With the first context is given, Robot A is familiar with the desired scene as of scene 2,

5, and 6, and Robot B with the scene 1, 2, 5, and 6. Considering the definition of event,
the architecture may interpret this result one step further by inferring that, for example,

an event A and event B are events where a ball is located at the leftmost of the field of

view, which occurrence is between scene 5 and 6 for the event A experienced by Robot

A, and between scene 1 and 2 for the event A experienced by Robot B. Similarly event B
experienced by Robot B occurs between scene 5 and 6. Now the remaining scene for Robot

A is scene 2, which does not have a subsequent scene to be defined as an event. If we

briefly recall the definition of episode and event as defined in Section 9, an event consists

of multiple, timestamp-ordered episodes during the period of that event, and an episode

is a digest of a scene. In order to define an event, multiple episodes with respect to the

desired criterion must be present. Therefore, the event of a ball located at the leftmost

cannot be defined with the presence of episode 2 solely. As previously discussed, an event

is dynamic, meaning that changes within the Field of View are to be expected during the

occurrence of an event. On the contrary, a scene (and its corresponding episode) is static.
Therefore, we can consider that at a certain point of time (i.e., at scene 2), a workspace

configuration matched the criterion.

The second question of case 2 scene familiarity is about the familiarity of a scene

where a ball and a cube are identified. Both Robots yields only scene 6, which means only

a matching workspace configuration exists instead of an event, considering that scene 6

for both robots are totally different. The third given context for the next question is about

a scene where at least a ball and a cube is identified. Robot A recognizes scene 6 as the

matched scene for the criterion, and Robot B recognizes scene 3 until scene 6.

If we recall the event B for Robot B in the first question of case 2 that event B consists

of scene 5 and 6, now we have scene 3 until scene 6 defined as a different event. As two

different events, scene 5 and scene 6 overlap for the two given context. This simultane-

ously highlights the flexible and subjective property of an event. Furthermore, since the

definition of events depends on the experienced visual stimuli, both Robot A and Robot

B may possess a completely different definition of event A. This emphasized the personal

property of an event. The rest of the given context for case 2 applies the same proce-

dure. From these results so far, Baxter shows the capability of recalling its personal past

events given only contextual information, and the results clarify the properties of events:

flexible, subjective and personal.
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Case 3 involves both visual stimuli and contextual information as the input. For the

object familiarity, presented objects and the given context are shown in Table 7.4. Six

presented objects are paired with various contexts to see how familiarity is affected by

the context for both robots. For instance, the orangelamp is presented with an additional

context of ball and yields the tennisball as the object that is also associated with ball cat-

egory for Robot A and tealball which associated with round category for Robot B. This is

due to the difference of the interaction history for both robots. Since the result of the

current interaction depends on the past interaction, current robot knowledge and contex-

tual information, it is possible for both robots to yields the current interaction result in a

various, interesting manner. Other examples of unfamiliar results yielded (such as cube,
purplecube for Robot A, and tennisball, purplecube for Robot B) when the presented objects

do not recognized as a familiar object with the given context.

Table 7.5a and Table 7.5b show two distinct workspace arrangements monitored by

each robot, and additional contexts are given to check the familiarity status. Unfamiliar

workspace arrangement with a provided context were also tested to see both robots’ ca-

pability to remember the desired past snapshots based on the present state of the stimuli.

It turns out that given an unfamiliar workspace (i.e., the middle scene in Table 7.5a) and

supplemented with the right context, Robot A is capable of recognizing the desired scene

based on a stimuli that has never been experienced before. On the contrary, given a fa-

miliar scene and an unsuitable context may yields unfamiliar result, as demonstrated by

Robot B with the middle scene in Table 7.5b. These result demonstrates the influence of

context through the personal scene recollection process.

Next, from Table 7.6, we discuss the more advance memory recollection process that

allows a more dynamic interaction as one of the features of ERIS. Both Robot A and Robot

B have been queried with questions that not only yields Boolean results, but also capable

of retrieving information from the contents of experienced scenes/events and general

facts from the SM data in the LTM. Both robots were asked a simple question (e.g., “What
is this object?” by presenting the object to each robot), to a more difficult questions (e.g.,

“Did you move the object?”, “How many objects have you seen so far?”).

Both robots were given several identical questions, and different questions regarding

their past experience. For instance, by presenting the object lamp to the two robots and

posing a question, both robots are able to respond and give a more derived results regard-

ing the question, instead of just returning Boolean response as in Table 7.2a and Table 7.4.

The results for both robots are pretty interesting, since the current robot knowledge de-

pends on the interaction history, both robots yielded different results although queried

101



7.2. EVALUATION CHAPTER 7. EXPERIMENT 2

several identical questions. This makes robots integrated with ERIS achieve a dynamic

and more personal nature of epigenetic robots in terms of interaction quality.

This concludes our analysis about the manifestation of Baxter’s past experience and

possessed knowledge, distinguished as two different robots. We showed how different in-

teraction history and contextual information affects the current Human-Robot interaction,

which corroborates the principle of subjectivity pointed out by Stoytchev (2009).
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Table 7.5: Scene familiarity

(a) Scene familiarity test for Robot A

Robot
Is scene familiar?

+ + +
no ball sirenlamp on the with softtoy on

right side the left side

A 7

(b) Scene familiarity test for Robot B

Robot
Is scene familiar?

+ + +
with purple cube with purplecube, with purplecube

no orangelamp on the left side

B 7
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Table 7.6: Advance memory recollection

(a) Questions and visual stimuli exposed to Robot A

Question for Robot A Answer

What is this? Sirenlamp
What cube were you presented with? Cube
How many toy objects have you seen? 1
How many yellow objects have you seen so far? 2
Did you remove any of the yellow objects? Yes, tennisball

softtoy
How many objects left after you remove the tennis ball? 1, cube
How many objects, at least, were in the workspace? 1, Scene 5

(b) Questions and visual stimuli exposed to Robot B

Question for Robot B Answer

What is this? Orangelamp
What cube were you presented with? purplecube
How many toy objects have you seen? 2, tealball,

purplecube
Did you move the tealball? No
How many yellow objects have you seen so far? 0
What objects did you move? orangelamp

purplecube
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Chapter 8

Summary, Contributions, and Future
Work

I not only use all the brains that I

have, but all that I can borrow.

Woodrow Wilson

In this chapter, we provide summary of this dissertation and the contribution to both

of the epigenetic robotics, and to robotics community in general. We then present several

interesting directions for future work, and some final words.

8.1 Dissertation Summary

Developmental/epigenetic robotics is a relatively new paradigm as well as an interdisci-

plinary branch of research area that revolves around robotics, cognitive psychology, and

behavioral science; where the research area investigates viable methods to make a robot

self-develop its knowledge, or even personality. This dissertation addressed the problem

of mitigating the interaction gap present during Human-Robot Interaction (HRI), consid-

ering the robot is not designed under developmental/epigenetic paradigm. To do so, we

develop an epigenetic architecture called Epigenetic Robot Intelligent System (ERIS).

The development of ERIS is motivated by the lack of available open-source epigenetic

platform that achieves the features of ERIS. Similar epigenetic architectures available and

cognitive architectures are explicitly distinguished and discuss thoroughly in Chapter 2, as

well as the significance of contextual information within HRI. We then introduce the fun-

damentals of human memory in Chapter 3, which provides insight about the four phases
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of memory processing (memory formation, consolidation, recollection, and revision) in

human brain based on the state-of-the-art studies in developmental psychology.

We elaborated the implementation details of ERIS as a ROS stack in Chapter 4, dis-

cussed each ROS package and their relationship to the details presented back in Chapter

3. We presented the conceptual explanations of familiarity mechanism within the imple-

mented ERIS stack in Chapter 5.

Two separate experiments were conducted to validate the following topics: (1) man-

ifestation of robot personal experience; and (2) the Principle of Subjectivity. Both ex-

periments are elaborated in Chapter 6 and Chapter 7, respectively. The first experiment

validates the capability of self-developed knowledge exhibited by the robot by interacting

with human or the environment. The validation is further expanded in the second exper-

iment, from the perspective of an interesting principle called The Principle of Subjectivity,

which fundamentally highlights the influence of human interaction history and received

stimuli to robot personal experience and knowledge development. At each experiment,

we evaluate the results and provide related discussions.

8.2 Contributions

This thesis contributes the development of ERIS, an epigenetic robot framework. As the

contributions to the epigenetic/developmental robotics field, ERIS allows robots to exhibit

the following two major phenomena:

• progressively self-develop their knowledge involving their unique, past experience

• “remember”/recall relevant past events happening in the environment during robot-

environment and human-robot interaction.

Based on the state-of-the-art studies from developmental psychology and behavioral

science field, the following are additional contributions to the field:

• Based on the notion of memory item as the building block, and with the emphasis

on the interconnectivity between memory components presented through an explicit

formalism of ERIS contributes to the capability of consolidating and recalling past

experiences in the form of events and general knowledge (which represent Episodic

Memory and Semantic Memory).

• the ability that allows robots to deal with verbalized contextual information as the

result of interaction with the external world, including humans, to achieve the most
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natural way of interaction possible. The incorporation of contextual information is

systematically elaborated in the formal design of ERIS.

• ERIS complies with dual-coding theory in stimuli processing, where verbal and im-

agery processing have different protocol.

• ERIS demonstrated to be complies with the Principle of Subjectivity when integrated

in two identical robots, yields in personalized robot experience and knowledge

through interaction.

• Robot Operating System (ROS) implementation of ERIS to ensure high compatibility

of integration in ROS-compliant general purpose robots. Also the fact that ROS is

an open source platform, ERIS is also a contribution to the robotics society, which

is highly accessible and extensible by the community. The source code of ERIS is

available at https://github.com/ferdianap/eris.

8.3 Future Work

Despite the given contribution and the progress made to the developmental robotics field,

the work in this dissertation is a small step towards the realization of a fully epige-

netic robotic system and more personalized robot companion, including the exhibition

of dynamic robot personality and individuality. Several interesting research directions are

available to be explored, some of them are the following:

• Modeling the procedural memory

This enhancement allows the robot to recall its motor skills performed at a particular

time/event in the past. It is a challenging task to have a single universal procedural

memory design that suits a variety of robots with different physical structure.

• The user’s and robot’s personality identification

This area requires an explicit formalism of personality to ensure that proper estima-

tion can be done. At our current progress, the notion of robot personality originated

from the manifestation of robot personal experienced is rather vague. One viable

idea is to develop a piece of software that manages the classification of human

behavior and personality traits out of the well-known profiling method by Korem

(1997). This profiling technique allows us to profile people on the spot, or even
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profile people before meeting the individual. Despite a powerful technique, this will

requires us to develop several things before reaching this stage, such as:

– a human gestures recognition module for ERIS,

– a sophisticated natural language processing module to analyze human verbal

communication.

• The robot’s personality adaptation to changes to human’s mood and context

A direct consequence of having a robot understanding an interacting human’s per-

sonality is to be able to adapt to changing moods, assuming that we consider mood

as a significant part of one’s personality. This implies to be able to estimating hu-

man’s personality online and to provide appropriate responses. Once this is avail-

able, we may think of estimating not only profiles in a static way (e.g., the human

has a “sergeant-manager” profile has a tendency to perform a list of actions), but

to identify trends in viable actions corresponds to (or even contradicts) the profile

(e.g., “typically, the human I am interacting with is angry in the morning, but not

this morning due to several reasons”), in order to provide a sort of proactive assis-

tance, and more importantly, how to appropriately deal with all the possible actions

that might be performed by the human with such profiles.

• How robot’s personality affect the way it plans and behaves

This is another apparent consequence in the robot having its own personality. Per-

sonality affects how we interpret the environment, plan and act in the real world.

As such, we may identify models to tune perception and action-oriented robot be-

haviors, for instance, in the case of adapting planning algorithms. Typically, robot

plans are achieved (using, for instance, STRIPS-like algorithms) according to some

sort of optimal criteria (i.e., reducing the number of steps). However, this is not how

humans plan, which is sub-optimal and depends on experience (e.g., I may re-adapt

previously successful plans, or discard an optimal plan because it is way similar to

a plan that failed in the past). Interestingly, this is closely related with the directive

property of autobiographical memory, discussed in Section 3.4, and since memory

affects personality (at least in human), the way a robot modulates planning may be

connected to its personality.

• Interaction of robots having different personalities
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This is a bit different from the usual stuff, but it is very interesting nonetheless, in

the sense that it possibly grounds experiments in psychology. The goal is to un-

derstand how two agents with different personalities interact in doing a common

task, obviously involving interaction or competition of some sorts (e.g., assembling

something together). Since we can evolve robot personalities by providing robots

with proper stimuli, we can precisely define how personalities affect the interac-

tion, also in simulation if necessary. This may eventually ground work on so-called

dyads, relationships between couples of agents in interaction, also with insights in

interactions with humans.

• Exploitation of “knowledge transfer”

A knowledge gain by a robot might be reusable at a certain degree by another robot

that has different physical structure. The reusable aspects includes an adaptation of

motor movement planning, for instance, a scenario where a recipient robot with a

set of transferred knowledge recalls a memory which relates to an unfeasible motor

skills to the recipient robot, but feasible to the donor robot. Although it seems that

only the robot-independent memories will be influenced (i.e., Semantic Memory and

Episodic Memory), the feasibility of the Procedural Memories between the recipient-

donor robot can be used as an advantage to provide an alternative possible motor

movements using the set of existing motor skills possessed by the recipient robot.

• Designing a metric for measuring/estimating both human and robot personal-

ity

This feature benefits from both robot and human perspective. Human may have a

better interaction experience when the robot has a distinct personality, and robot

can estimate human personality (to “profile” them), determine its own personality,

and change it accordingly. To achieve this, some significant improvements that

needs to be done including:

– integrating ERIS stack with a speech-based dialog system grounded with re-

spect to the cue-value pair based formalism;

– integrating a state-of-the-art natural language processing module;

– improving the ViSor package with incremental-learning vision tracking mod-

ule, i.e., the work by Ross, Lim, Lin, & Yang (2008); and
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– integrating modules specifically for analyzing psychological phenomenon of in-

teraction, e.g., recognizing human posture, gesture/body language, and emo-

tion.

• Knowledge generalization

Currently, our system represents knowledge in a “flat” form, using many
〈
cue,

value
〉

pairs. This representation is basic, has obvious benefits but also drawbacks.

The first drawback is that it doesn’t capture the natural top-down and bottom-up na-

ture of knowledge, which continuously abstract grounded knowledge and grounds

abstract knowledge, as reflected by the spreading activation model by Collins &

Loftus (1975) and hierarchical structure of semantic memory by Collins & Quillian

(1969). It is also a good idea to combine the benefits of both models, and we may

further consider grounding the representation of the environment (as well as other

traits of robot’s personality) at different levels.

There are other aspects of epigenetic robotics that needs to be explored, such as men-

tioned by Stoytchev (2009):

• The Verification Principle

A robot should be able to create and maintain knowledge that can be verified by

itself. As the first researcher in AI who explicitly mention about this profound prin-

ciple, Sutton (2001) once claimed that “the key to a successful AI is that it can tell
for itself whether or not it is working correctly”. The term verification here refers to

automatic, relative validation of the knowledge by the robot and for the robot. In

principle, he stated that anything that is potentially learnable must be verifiable in

an autonomous manner. This is what is argued by Stoytchev (2009) that researchers

(or in particular, programmers) must carefully design the structures for the quan-

tification of the abstract knowledge, so that the potentially learnable material (in an

abstract form) can be quantified and verified.

• The Principle of Embodiment

A robot should be able to dynamically distinguish its own body parts from the en-

vironment. Although this topic is quite popular in the field of developmental psy-

chology (Rochat, 2003; Ramachandran, Blakeslee, & Sacks, 1998; Iriki, Tanaka, &

Iwamura, 1996) and there have been a progress regarding this topic (Stoytchev,

2003), there are still more aspects to be considered and explored from the epige-

netic robotics perspective.

110



8.4. CONCLUSIONS CHAPTER 8. SUMMARY

• The Principle of Grounding

Similar to the Symbol Grounding problem by Harnad (1990), this principle is con-

sidered from epigenetic robotics perspective by Stoytchev (2009), where temporal

contingency is considered as an approach to deal with this challenge. However, this

is only the beginning and there could be a lot more to be explored for this topic.

• The Principle of Incremental Development

This principle is considered to be the generalized domain of incremental learning as

a specific machine learning technique that solves a specific problem. Although this

principle is influenced by the other principles, only a small portions of conceptual

progress achieved so far. Having a formalism and implementation based on this

principle is considered a milestone in the research area.

8.4 Conclusions

This dissertation work addresses the problem of epigenetic robotics, where a robot should

be able to developmentally “grows” in terms of robot knowledge, and the manifestation of

robot personal experience. We have achieved this by designing an epigenetic architecture

to accommodate information gathered from the interaction with the world, including

humans.

Chapter 3 provides the details regarding high-level memory and Chapter 4 elaborates

the architecture implementation as well as the interconnectivity between each component

(including memory, which concept is discussed in Chapter 3). We have demonstrated that

using ERIS, a ROS compliant general purpose robot, i.e., Baxter Research Robot used in

the experiments are able to manifest personal experience in a very fundamental forms.

In our current progress, only visual stimuli are considered. We took the experiment fur-

ther by exploiting The Principle of Subjectivity, as one of the most significant principles of

epigenetic robotics, by analyzing Baxter as two different robots in two independent, sep-

arate experiments. In each experiment, Baxter is exposed to different visual stimuli and

different interaction history. The two aspects influence the robot personal development,

validated through verbal interactions with human, where query-based question regarding

the past experience may be posed to Baxter.

Overall, this research work suggests that when a robot has a formal and explicit model

of knowledge which design to adapt to human knowledge, we can expect robot to pro-

gressively self-develop its knowledge through interaction. Furthermore, not only contex-
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tual information influence human interaction with others, it also enhance the interaction

quality between robot and human.
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